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We perform complete group classification of the general class of quasilinear wave
equations in two variables. This class may be seen as a generalization of the
nonlinear d’Alembert, Liouville, sin/sinh-Gordon and Tzitzeica equations. We de-
rive a number of new genuinely nonlinear invariant models with high symmetry
properties. In particular, we obtain four classes of nonlinear wave equations that
admit five-dimensional invariance groups. @005 American Institute of
Physics.[DOI: 10.1063/1.1884886

INTRODUCTION

More than a century ago Lie introduced the concept of continuous transformation group into
mathematical physics and mechanics. His initial motivation was to develop a theory of integration
of ordinary differential equations enabling to answer the basic questions, like, why some equations
are integrable and others are not. His fundamental results obtained on this way, can be seen as a
far reaching generalization of the Galois’s and Abel’s theory of solubility of algebraic equations by
radicals. Since that time the Lie’s theory of continuous transformation groups has become appli-
cable to an astonishingly wide range of mathematical and physical problems.

It was Lie who was the first to utilize group properties of differential equations for construct-
ing of their exact solutions. In particular, he computed the maximal invariance group of the
one-dimensional heat conductivity equation and applied this symmetry to construct its explicit
solutions. Saying it the modern way, he performed symmetry reduction of the heat equation. Since
late 1970s symmetry reduction becomes one of the most popular tools for solving nonlinear partial
differential equationgPDES.

By now symmetry properties of the majority of fundamental equations of mathematical and
theoretical physics are well known. It turns out that for the most part these equations admit wide
symmetry groups. Especially this is the case for linear PDEs and it is this rich symmetry that
enables developing a variety of efficient methods for mathematical analysis of linear differential
equations. However, linear equations give mathematical description of physical, chemical or bio-
logical processes in a first approximation only. To provide a more detailed and precise description
a mathematical model must incorporate nonlinear terms. Note that some important differential
equations are intrinsically nonlinear and have no linear counterpart.

Hyperbolic type second-order nonlinear PDEs in two independent variables play a fundamen-
tal role in modern mathematical physics. Equations of this type are utilized to describe various
types of wave propagation. They are used in differential geometry, in various fields of hydro-
dynamics and gas dynamics, chemical technology, superconductivity, crystal dislocation to men-
tion only a few applications areas. Surprisingly the list of equations utilized is rather narrow. In
fact, it is comprised by the Liouville, sine/sinh-Gordon, Goursat, d’Alembert, and Tzitzeica equa-
tions and a couple of others. Popularity of these very models has a natural group-theoretical
interpretation, namely, all of them have nontrivial Lie or Lie—Backlund symmetry. By this very
reason some of them are integrable by the inverse problem metheds e.g., Refs. 133r
linearizablé° and completely integrabref?
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Knowing symmetry group of the equation under study provides us with the powerful equation
exploration tool. So it is natural to attempt classifying a reasonably extensive class of nonlinear
hyperbolic type PDEs into subclasses of equations enjoying the best symmetry properties. Saying
reasonably extensive we mean thiathis class should contain the above enumerated equations as
particular cases, an(i) it should contain a variety of new invariant models of potential interest
for applications. The list of the so obtained invariant equations will contain candidates for realistic
nonlinear mathematical models of the physical and chemical processes mentioned above.

The history of group classification methods goes back to Lie itself. Probably, the very first
paper on this subject is Ref. 9, where Lie proves that a linear two-dimensional second-order PDE
may admit at most a three-parameter invariance gi@part from the trivial infinite-parameter
symmetry group, which is due to linearjty

The modern formulation of the problem of group classification of PDEs was suggested by
Ovsyannikov in Ref. 10. He developed a regular mettia@ will refer to it as the Lie—
Ovsyannikov methodfor classifying differential equations with nontrivial symmetry and per-
formed complete group classification of the nonlinear heat conductivity equation. In a number of
subsequent publications more general types of nonlinear heat equations were classifed of
these results can be found in Ref)11

However, even a very quick analysis of the papers on group classification of PDEs reveals that
an overwhelming majority of them deals with equations whose arbitrary elengmistiong
depend on one variable only. The reason for this is that Lie—Ovsyannikov method becomes inef-
ficient for PDEs containing arbitrary functions of several variables. To achieve a complete classi-
fication one either needs to specify the transformation group realization or restrict somehow an
arbitrariness of the functions contained in the equation under study. We have recently, developed
an efficient approach enabling to overcome this difficulty for low dimensional PBEtilizing
it we have derived the complete group classification of the general quasilinear heat conductivity
equation in two independent variables. In this paper we apply the approach in question to perform
group classification of the most general quasilinear hyperbolic PDE in two independent variables.

|. GROUP CLASSIFICATION ALGORITHM

While classifying a given class of differential equations into subclasses, one can use different
classifying features, like linearity, order, the number of independent or dependent variables, etc. In
group analysis of differential equations the principal classifying features are symmetry properties
of equations under study. This means that classification objects are equations considered together
with their symmetry groups. This point of view is based on the well-known fact that any PDE
admits a(possibly trivia) Lie transformation group. And what is more, any transformation group
corresponds to a class of PDEs, which are invariant under this group. So the problem of group
classification of a class of PDEs reduces to describing all pos§itdguivalent pairs (PDE,
maximal invariance groypwhere PDE should belong to the class of equations under consider-
ation.

We perform group classification of the following class of quasilinear wave equations:

utt: uXX+ F(t,X,U,UX). (11)

Here F is an arbitrary smooth functiory=u(t,x). Hereafter we adopt notationg=du/dt, u,
=d,/ 0y, Uy=dPul ot?, etc.

Our aim is describingll equations of the fornfl.1) that admit nontrivial symmetry groups.
The challenge of this task is in the woadl. If, for example, we somehow constrain the form of
invariance group to be found, then the classification problem simplifies enormously. A slightly
more cumbersomgbut still tractable with the standard Lie—Ovsyannikov approé&the problem
of group classification of equation with arbitrary functions of, at most, one variable.

As equations invariant under similar Lie groups are identical within the group-theoretic frame-
work, it makes sense to consider nonsimilar transformation gtétpsnly. The important ex-
ample of similar Lie groups is provided by Lie transformation groups obtained one from another
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by a suitable change of variables. Consequently, equations obtained one from another by a change
of variables have similar symmetry groups and cannot be distinguished within the group-
theoretical viewpoint. That is why, we perform group classificatiorflof) within a change of
variables preserving the class of PD@Es]).

The problem of group classification of linear hyperbolic type equation

Uy, + AL, X) U, + B(t,X)u, + C(t,x)u=0 (1.2

with u=u(t,x), was solved by Lid(see, also, Ref. 16In view of this fact, we consider only those
equations of the fornfl.1) which are noft(locally) equivalent to the linear equatidi.?2).

As we have already mentioned in the Introduction, the Lie—Ovsyannikov method of group
classification of differential equations has been suggested in Ref. 10. Utilizing this method enabled
solving the group classification problem for a number of important one-dimensional nonlinear
wave equations:

Ug = U+ F(U)  (Refs, 1719,
Ue=[f(U)ug,  (Refs. 20-22,
Ug = f(U)Uyy  (Refs. 22,23,
Uy = F(U)Uy+ H(uy)  (Ref. 24,
U= FlUy) (Ref. 22,
Ug = UM + F(U)  (Ref. 25,
Ug + F(U)U, = (Q(U)UY + h(U)u,  (Ref. 28,

Ug = (F(x,u)uy)y  (Ref. 27).

Analysis of the above list shows that most of all arbitrary eleméntsbitrary functiong
depend on one variable. This is not coincidental. As we already mentioned, the Lie—Ovsyannikov
approach works smoothly for the case when the arbitrary elements are functions of one variable.
The reason for this is that the obtained system of determining equations is still over-determined.
So it can be effectively solved within the same techniques used to compute maximal symmetry
group of PDEs containing no arbitrary elements.

The situation becomes much more complicated for the case when arbitrary elements are
functions of two(or more arguments. By this very reason the group classification of nonlinear
wave equations,

Ut + AUy, = g(u,uy)  (Refs. 28,29,
Ug = [f(Wuc+gx,u)l  (Ref. 30,

Uyt = f(X, ux)uxx + g(x,ux) (Ref- 3]) ’

is not complete.
We suggest an efficient approach to the problem of group classification of low dimensional
PDEs in Refs. 12 and 13. This approach is based on the Lie—Ovsyannikov infinitesimal method
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and classification results for abstract finite-dimensional Lie algebras. It enables us to obtain the
complete solution of the group classification problem for the general heat equation with a nonlin-
ear source

Uy = Uy + F(E,X,U,U,)

Later on, we perform complete group classification of the most general quasilinear evolution
equations>~*

U = (£, X, U, Uy Uy + g(t, X, U, Uy) .

We utilize the above approach to obtain complete solution of the group classification problem for
the class of Eqs(1.1).

Our algorithm of group classification of the class of POEg]) is implemented in the fol-
lowing three steps$further details can be found in Ref. 34

()] Using the infinitesimal Lie method we derive the system of determining equations for
coefficients of the first-order operator that generates symmetry group of equation
(Note that the determining equations which explicitly depend on the fun&iamd its
derivatives are called classifying equatigristegrating equations that do not dependron
we obtain the form of the most general infinitesimal operator admitted by1Et). under
arbitraryF. Another task of this step is calculating the equivalence ggopthe class of
PDEs(1.1).

(I We construct all realizations of Lie algebrag of the dimensionn<3 in the class of
operators obtained at the first step within the equivalence relation defined by transforma-
tions from the equivalence groufy Inserting the so obtained operators into classifying
equations we select those realizations that can be symmetry algebras of a differential
equation of the form(1.1).

(I) We compute all possible extensions of realizations constructed at the previous step to
realizations of higher dimensional > 3) Lie algebras. Since extending symmetry algebras
results in reducing arbitrariness of the functiénpat some point this function will contain
either arbitrary functions of at most one variable or arbitrary constants. At this point, we
apply the standard classification meth@¢hich is due to Lie and Ovsyannikpwo derive
the maximal symmetry group of the equation under study. This completes group classifi-
cation of (1.1).

Performing the above enumerated steps yields the complete list of inequivalent equations of
the form(1.2) together with their maximalin Lie's sens¢ symmetry algebras.
We say that the group classification problem is completely solved when it is proved that

(1) the constructed symmetry algebras are maximal invariance algebras of the equations under
consideration;

(2) the list of invariant equations contains only inequivalent ones, namely, no equation can be
transformed into another one from the list by a transformation from the equivalence&group

Il. PRELIMINARY GROUP CLASSIFICATION OF Eq. (1.1)

We look for the infinitesimal operator of symmetry group of equatibrd) in the form

Q= (t,x,u)d; + £(t,x,u)dx + 7(t,X,u)dy, (2.1
where 7, ¢ 7 are smooth functions defined on an open donfinf the spaceV=R2x R? of
independenti?=(t,x) and dependerit!=(u)=u(t,x) variables.

Operator(2.1) generates one-parameter invariance groufdd iff its coefficientsr, & 7, €
satisfy the equatiofiLie’s invariance criteriop
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(Ptt _ (PXX _ TFt _ §FX _ 77Fu _ (PXFUX|(1-1) = O, (22)

where

@' =Dy(7) = uD(7) — uDy(&),
GDX = Dx( 7]) - uth(T) - UxDx(f)a
@" = Dy(¢") = UgDy(7) = UpDy(9),

@ =Dy(¢") - utxDx(T) — U Dy(é),

andDy, D, are operators of total differentiation with respect to the variablrsAs customary, by
writing (1.1) we mean that one needs to replageand its differential consequences with the
expressioru,,+F and its differential consequences(@.2).

After a simple transformations algebra we red(2¢) to the form

(1 &=7=nu=0,

(2) ®-&=0, &-71=0,
(2.3
(3 277tu+TxFuX:0-

(4) 7= Px— 2+ [7/u - ZTt]
XF = 1F = &Fy - k- [77x+ Uy( 7y~ gx)]Fuxz 0.

The first two groups of PDEs froif2.3) are to be used to derive the form of the most general
infinitesimal operator admitted biL.1). The remaining PDEs are classifying equations.

We prove in Ref. 35 that the following assertion holds.

Theorem 1: Provided Fu 70, the maximal invariance group of equation (1.1) is generated
by the following infinitesimal operator:

Q=(\t+N)d + (AX+Np)dy +[h(X)u+r(t,x)]d,, (2.9
where\, \4, \, are real constants and=hh(x), r=r(t,x), F=F(t,x,u,u,) are functions obeying the
constraint

d’h dh
Fe =P~ g2Y ™ Z&UX +(h=2V0)F = (At + N )F = A+ N)Fy— (hu+)F,
dh
—(rx+ &u+(h—)\)ux)FuX:0. (2.5

If F=g(t,x,u)u+f(t,x,u), g,# 0, then the maximal invariance group of equation (1.1) is
generated by infinitesimal operator (2.4), whare\,, A, are real constants }r, g, f are functions
satisfying system of two equations

—2h" = Ag=(At+ NG+ (AX+N\)gy + (hu+T1)gy,
(2.6)
—h'Uu+ry =+ (h=20)f = (At + N f + (Ax+ N f + (hu+n)f,+g(h’'u+r,).

Next, if F=g(t,x)u,+f(t,x,u), q#0, f,,#0, then the infinitesimal operator of the invariance
group of equation (1.1) reads as
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Q = T(tvx)at + g(tvx)ax + (h(tax)u + r(t,x))&u,

wherer, & h, r, g, f are functions satisfying system of PDEs

Tt_gxzo! gt_'rxzoy
2hv=-79, 2h,=-7rg- 70— £0x

(hy = hu+ry =1+ f(h = 27) = 7f = &f, = (hu+n)f, - (hu+r,)g=0.
Finally, if F=f(t,x,u), f,,# 0, then the maximal invariance group of equation (1.1) is generated
by infinitesimal operator
Q=[e(0) + ¢(0) 10, = [@(0) = a) o + [Ku+r(t,x)]dy,
where ke R, 6=t-x, o=t+x and functionsp, ¢, r, f and constant k satisfy the following equation:
de dy

=Tt (k=20 =20/ 1= (¢ + D+ (o= )T~ (u+ DR =0, @'= =

By virtue of the above theorem the problem of group classification of equétidnhreduces
to the one of classifying equations of more specific forms,

Uy = Uy + F(E,X,U,U,), Fuxux #0, (2.7

U = U + 9L X, WUy + F(E X W), g, # 0, (2.9
Uy = g(t,x)u, + f(t,x,u), g,#0, f,,#0, (2.9
Uy = f(t,x,u), f,,#0. (2.10

Note that conditiorg, # 0 is essential, since otherwi$2.9) is locally equivaleni2.10.
Summing up, we conclude that the problem of group classificatiqd.&f reduces to classi-
fying more specific classes of PDE2.7)—(2.10.
First, we consider equatiorf2.8)—(2.10).

IIl. GROUP CLASSIFICATION OF EQ. (2.8)

According to Theorem 1 invariance group of equati@8) is generated by infinitesimal
operator(2.4). And what is more, the real constants \;, A, and functionsh, r, g, f satisfy
equationg2.6). System(2.6) is to be used to specify both the form of functiding from (2.8) and
functionsh, r and constants, A4, A, in (2.4). It is called the determiningsometimes classifying
equations.

Efficiency of the Lie method for calculation of maximal invariance group of PDE is essen-
tially based on the fact that routinely system of determining equations is over-determined. This is
clearly not the case, since we have only one equation for(#9warbitrary functions and three of
the latter depend on two variables. By this very reason direct application of Lie approach in the
Ovsyannikov’'s spirit is no longer efficient when we attempt classifying PDEs with arbitrary
functions of several variables.

Compute the equivalence grolpof equation(2.8). This group is generated by invertible
transformations of the spaépreserving the differential structure of equati@®) (see, e.g., Ref.

14). Saying it another way, group transformation frém
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D(t,X,v)
D(t,x,u)

t=alt,xu), x=pgtxu), v=U(txW),
should reducég2.8) to equation of the same form
o= v+ GEX U+ LX), G, # 0
with possibly differentf, 0.
As proved by Ovsyannikol’ it is possible to modify the Lie’s infinitesimal approach to
calculate equivalence group in essentially same way as invariance group. We omit the simple

intermediate calculations and present the final result.
Assertion 1: The maximal equivalence grafipf Eq. (2.8) reads as

t=kt+k;, X=ekx+ky, v=XXUu+Y(tX), (3.1

where k0, X#0, e=+1,k,k;,k, e R, and X Y are arbitrary smooth functions
This completes the first step of the algorithm.

A. Preliminary group classification of Eq. (2.8)

First, we derive inequivalent classes of equations of the f(@® admitting one-parameter
invariance groups.

Lemma 1: There exist transformations (3.1) that reduce operator (2.4) to one of the six
possible forms

Q=m(tg,+xd), m#0, Q=g +Bd B=0,
Q= +ao(x)ud, o#0, Q=4d, (3.2

Q=o0(x)ud,, o#0,Q=46(t,x)d, 6+0.
Proof: Change of variable§3.1) reduces operatd2.4) to become
(5 = KM + Ny drt ek + No) dx+ [Yi(At+ N p) + AX+ No)(X'u+Y,) + X(hu+r1)]d,. (3.3

If X#0 in (2.4), then settingk;=\"I\ 1k, k,=eN"I\,k, and taking asX, Y (X#0) integrals of
system of PDEs,

X'(Ax+\,) +Xh=0,
YAt +Np) + Y, (AX+Np) + Xr=0,
we reduceg3.3) to the form
Q= (tor+xd.
Provided\=0 and\; # 0, we similarly obtain

Q=d+Bd; B=0, Q=d+o(Xvd, o#0.

Next, if A=\,;=0, \,# 0 in (2.4), then setting=e\,", and taking a¥, Y (X 0) integrals of
equations

NoX' +hX=0, Y,+rX=0,

we reduce operatgB.3) to become@:é;
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Finally, the case.=\;=\,=0, gives rise to operato®=a(Xjvd,, Q= O(t,X)d,.

Rewriting the above operators in the initial variabtex completes the proof.

Theorem 2: There are exactly five inequivalent equations of the form (2.8) that admit one-
parameter transformation groups. Below we list these equations together with one-dimensional
Lie algebras generating their invariance groups (note that we do not present the full form of
invariant PDEs we just give the functions f and g)

AL=(tg+xd), 9=x"(pu),
f=x?f(yu), y=tx1, 7,#0,

A=+ By, 9=B(nu), f=f(nu),
n=x-pt, B=0, G,#0,

A3 = (o + o(X)udy, g=-20"c *In|u+G(p,x),
f= (o' o H2uInu| - o’ 0" G(p,x)u In|u| = o~ Lo"u Inu| + uf(p,x),
p=uexp—to), o#0,
Al=(a9, 9=T(tu), f=Ttw, G,#0,

A=(a(x)udy, g=-20"0 tInu+3(t,x), f=(c’0H2uln?ul
- (07Y" + o o' G(t,x))u Inju| + uf(t,x), o #0.

Proof: If Eq. (2.8) admits a one-parameter invariance group, then it is generated by operator
of the form(2.4). According to Lemma 1, the latter is equivalent to one of the six operé&dd2s
That is why, all we need to do is integrate six systems of determining equations corresponding to
operatorg2.6). For the first five operators solutions of determining equations are easily shown to
have the form given in the statement of the theorem.

We consider in more detail the operaf@r 6(t, u)d,. Determining Eqs(2.6) for this operator
reduce to the form

O — Oy = efu + 649, 69,= 0,

whence we geg,=0. Consequently, the system of determining equations is incompatible and the
corresponding invariant equation fails to exist.

Nonequivalence of the invariant equations follows from nonequivalence of the corresponding
symmetry operators.

The theorem is proved.

Note that in the sequel we give the formulations of theorems omitting routine proofs. The
detailed proofs of the most of the statements presented in this paper can be found in Ref. 35.

It is a common knowledge that there exist two inequivalent two-dimensional solvable Lie
algebra®®—*°

Ay1=(e,e), [e,8]=0,
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Aro=(epe), [ene]=6,.

To construct all possible realizations of the above algebras we take as the first basis element one
of the realizations of one-dimensional invariance algebras listed in Lemma 1. The second operator
is looked for in the generic forn2.4).

Algebra A ;: Let operatore; be of the formd,+xd, and operatoe, read as(2.4). Then it
follows from the relatiorfe;,e,]=0 that\;=\,=xh’=0, tr,+xr,=0. Consequently, we can choose
basis elements of the algebra in question in the fdtpt+xdy, (mu+r(i))d,), whereme R, &
=tx". Providedm=0, the operatoe, becomesr(i)d,. It is straightforward to verify that this
realization does not satisfy the determining equations. Hanee). Making the change of vari-
ables
t=t, X=X, v=u+mr(y)
reduces the basis operators in question to the taraxdy; muvd,. That is why we can restrict our
considerations to the realizatidty, +xdy, ud,).

The second determining equation frqgh6) takes the formug,=0. Hence it follows that the
realization under consideration does not satisfy the determining equations. Consequently, the
realizationA} cannot be extended to a realization of the two-dimensional algiebra

Algebra A, If operatore; is of the formtd,+xd,, then it follows from[e;,e,]=e, that A
=N1=N,=0, xh' =h, tr+xr,=r.

Next, if e, reads agd;+xd,, then we get fronje;,e,]=e, the erroneous equality 1=0.

That is why, the only possible case is wheys (mxu+xr())d, m# 0, ¢=tx"1, which gives
rise to the following realization of the algebis »: (td,+xdy,xud,). This is indeed invariance
algebra of an equation from the claga8 and the functions and g read asg=-2x"*In|u]
+XG(y), f=x"2uIn?u|-x"2g(Yu Inju|+x2uf(y), y=tx%

Analysis of the remaining realizations of one-dimensional Lie algebras yields 10 inequivalent
A, ;- and A, invariant equationgsee the assertions belpwWhat is more, the obtainedwo-
dimensional algebras are maximal symmetry algebras of the corresponding equations.

Theorem 3: There are, at most, four inequivalen A-invariant nonlinear equations (2.8).
Below we list the realizations of,A and the corresponding expressions for f and g

(1) (3poud,), g=-20"c" Inlu],
f=(0'oH2uIn?ul - o7to"ulnlu| + uf(x), o' #0,
2 (dad, 9=FW), f=fw), B+#0,
3 (Bud+ud), 9=T(w), f=expf(w), w=exgf-1), F,+#0,
(@) (o()udy,d - ska()(ud,), g=-20" o In|u| +kt+F(x),
f=(o'0™H2uIn?ul - o~ 'o"uIn|u| - o™*o" (kt+F(x))u In[u]

e B 20+ B + T

k#0, o #0, ¢=f0'_1dx.

Theorem 4: There exist, at most, six inequivalenj Anvariant nonlinear equations (2.8).
Below we list the realizations of,A and the corresponding expressions for f and g
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(1) (ta+xa KX ud),  g=x""(=2kIn|ul +3(),
f=x"2u(= k2 In2|u| + Kg(»)In|u] + k(k = DInju| + T()),

k#0, ¢=tx1
(2) (o + Bo,expBX)udy), g=-287"In|ul+8(n),
f=B72uIn?u - (872+ B G(m)uInjul + uf(z),
B>0, n=x-pt
3) (~ta-xdd+Ba), 9=73W), f=7%(w), B=0,

n=x-pt, G,#0,

(4) (—td =X d+mxX'Udy,  g=x"(2my+G(w)),

f=x7- 2myu - 2myy - 2 -G(w) + expmy)G(w)],

m>0, w=uexp-my), ¢=tx?1 G,#0,
(5) {(€Udy), g=-2Inul+3t), f=uln?ul-uln|ul(1+T(t))+ u~f(t),
(6) (—th—%0d), g=tgw), f=tf(u), G,+#O.

B. Completing group classification of (2.8)

As the invariant equations obtained in the previous subsection contain arbitrary functions of,
at most, one variable, we can now apply the standard Lie—Ovsyannikov routine to complete the
group classification of2.8). We give the computation details for the case of the Agsginvariant
equation, the remaining cases are handled in a similar way.

Settingg=-20"c *Inju|, f=(c’ " HuIn?|u|-o"1¢"u In|u|+u?(x), o=o(x), o’ #0 we rewrite
the first determining equation to become

—-2h" + 2\’ o tnjul = - 20\x + \p) (0’ 07 Y), Inju| - 2ho’ o™t - 2ro’ o7t
As h=f(x), o=0o(x), r=r(t,x), N\, \, € R, the above relation is equivalent to the following ones:
h'=cd'o7h, r=0, Moo l=-(Ax+N\)(0'cY) .

If o is an arbitrary function, them=\,=r=0, h=Co, Ce R and we get(s;,o(x)ud,) as the
maximal symmetry algebra. Hence, extension of the symmetry algebra is only possible when the
function =0’ ¢! is a (nonvanishing identicallysolution of the equation

(ax+ By +ay=0, a,BeR, |af+|B8 #0.

If «#0, then at the expense of displacementsxbye can get3=0, so thaty=mx?*, m+0.
Integrating the remaining determining equations yields
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g=-2mxtInjul, f=mx{muln?u/-(m-1ulnju/+nu], m=#0, mneR.

The maximal invariance algebra of the obtained equation is the three-dimensional Lie algebra
(8;,]X|Mudy, t;+xd,) isomorphic toA; .
Next, if =0, theng# 0 and=m, m+ 0. If this is the case, we have

g=Inju, f=Zuln?u/-Zulnju/+ny neR.
The maximal invariance algebra of the above equation reads as

(3 oy, expl - 2x)ud).

It is isomorphic toAs ».

Similarly, we prove that the list of inequivalent equations of the f@&® admitting three-
dimensional symmetry algebras is exhausted by the equations given below. Note that the presented
algebras are maximal. This means, in particular, that maximal symmetry algebra(@f &ds, at
most, three dimensional.

A rinvariant equations,

(1) Uy = U+ UgInjul + Fuln?ul - Fulnjul + nu(n e R), (4, dy, exd— 3x)udy),

(2) Uy = Uy + m{In|u] = t]u, + (mZ4)u[(Infu| - t)(Inju| =t = )]+ nu(m > 0,n € R),
(4,3, + udy,exp(— mx)ud,).
As sinvariant equations,
(1) Uy = U+ X2 Infu] + mx it + nJu + X 2u Inju] + (Mx Yt + n = 2)x72u Infu] + smPx 42U
+2m(n-3)x3tu+px2u(m## 0,n,p e R), (td,+ XdyX Udy, 6 — (M2)x L In[X|udy).
A; s-invariant equations,

(1) Ug= U+ [UMue+nfu*® (m#0,neR), (d,dytd+Xd—mtud,),
(2) ug=uu+eu +ne (neR), (G dtd+Xd—dy),

(3) Uy = Uy — X2 Inju] = mx %t = nJuy + X2 In?|u| = x"2(mx 2t + n)u Infu + ux 7 (m/4)x2t2
+(M/2)(n-D)x Yt +pl(mn,p e R), (td +Xdy,Xudy, d + (M/4)X udy).
A; rinvariant equations,
(1) Uy = U — 2mx tu Inju] + mx I muln?|u| = (m = 1)u Inju] + nu]

X(M#0,1neR), (d,/XMudy,td, +xdy,

(2) Uy = U= X2k + Infu] = mx*t = nJuy + k2 2u In?u] = kxZmtxt + k+n = 1Ju Inju| + $m(k
- 2+n)txCu+ ;P fu+ pxau (K #0,1;m# 0,n,p e R),
(16, + X |X[Kudy, o + [MV2(1 + k) X ud,).

This completes the group classification of nonlinear equatiarg.

IV. GROUP CLASSIFICATION OF Eq. (2.9)

Omitting calculation details we present below the determining equations for symmetry opera-
tors admitted by Eq(2.9).
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Assertion 2: The maximal invariance group of PDE (2.9) is generated by the infinitesimal
operator,

Q=)+ EX)dy + [h(Hu+r(t,x)]a,, (4.1
wherer, & h, r, f, g are smooth functions satisfying the conditions
Fx flh- T gx] =gry+ 7f + &+ [hu+ I’]fu,
(4.2
h = ng + 70; + £0y.
Assertion 3: The equivalence grodpof (2.9) is formed by the following transformations of
the space V :

1) t=T@®), X=XX), v=U®u+Y(tx), t'X'U#D0,

(2) t=T(x), X=Xt), v=¥XP{t,X)u+Y(tx), t'X'¥+0, 4.3

d(t,x) = exp(—f g(t,x)dt),gX #0.

As the direct verification shows, given arbitrary functianandf, it follows from (4.2) that
r=h=£&=r=0. So that in the generic case the maximal invariance gro(p.#9fis the trivial group
of identical transformations.

We begin classification of2.9) by constructing equations that admit one-dimensional sym-
metry algebras. The following assertions hold.

Lemma 2: There exist transformations (4.3) reducing operator (4.1) to one of the seven
canonical forms given below

Q=to+xd, Q=d, Q=d+tud,
Q=d+eud, €=0,1, Q=tud,, (4.4)

Q=ud, Q=r(txd, r+0.

Theorem 5: There exist, at most, three inequivalent nonlinear equations (2.9) that admit
one-dimensional invariance algebras. The form of functigrgsdnd the corresponding symmetry
algebras are given below,

Al=(to +xd), g=tF(w), f=t2f(uw), o=t G,#0, f,#0,

A2=(3y, 9=, f=f(xu), G #0, f,#0,

Ad= (o +tudy), g=x+7(1), f=ef(t,0), w=etu, foo# 0.

We proceed now to analyzing Eq2.9) admitting two-dimensional symmetry algebras.

Theorem 6: There exist, at most, three inequivalent nonlinear equations (2.9) that admit
two-dimensional symmetry algebras, all of them being-iAvariant equations. The forms of
functions f and g and the corresponding realizations of the Lie algebrardad as

A 5= (to+ X, 2o+ X0+ mutdy) (M e R),

g=[mt+(k-mx]t'{t-x), k=#0,
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F=|t=x"™2x " (w),
w=ult=x"x"™ T, #0,
A3 = (td, + Xd 20 + mtugy)  (me R),
g=tJkx+mt], k#0, f=[t|™2x "f(w),
o=t X, T,,+#0,
A3 5= (1, + Xdy, X205 + tudy),
g= "X mx-t(me R), f=x2exp-tx"Hf(w),

w=uexptx?, T,,#0.

Note that if the functiorf is arbitrary, then the invariance algebras given in the statement of
Theorem 6 are maximal.

It turns out that the above theorems provide complete group classification of the class of PDEs
(2.9. Namely, the following assertion holds true.

Theorem 7: A nonlinear equation (2.9) having nontrivial symmetry properties is equivalent to
one of the equations listed in Theorems 5 and 6.

V. GROUP CLASSIFICATION OF Eqg. (2.10)

As earlier, we present the results of the first step of our group classification algorithm skipping
derivation details.
Assertion 4: Invariance group of equation (2.10) is generated by infinitesimal operator

Q=1(t)d + &X) oy + (ku+r(t,Xx))dy, (5.1
where Kk is a constant, &, r, f are functions satisfying the relation

Fo+ k=7 = &1f = 7f + &+ [ku+r]fy,. (5.2

Assertion 5: Equivalence group of the class of equations (2.10) is formed by the following
transformations:

(1) t=T@), X=X(X), v=mu+Y(tXx),
(5.3
(2) t=T(x), x=X(t), v=mu+Y(x), T'Xm=#D0.

Note that given an arbitrary functidh it follows from (5.2) that 7=¢=k=r=0, i.e., the group
admitted is trivial. To obtain equations with nontrivial symmetry we need to specify properly the
function f. To this end we perform classification of equations under study admitting one-
dimensional invariance algebras. The following assertions give exhaustive classification of those.

Lemma 3: There exist transformations from the grau¢s.3) that reduce (5.1) to one of the
four canonical forms,

Q=0d+d+eud, (€=0,1,
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TABLE I. Invariant equationg$2.10.

Invariance algebra

Number Functiorf Symmetry operators type
1 f(w), G+ Udy, Iy Ay
w=ue', T,,#0
2 e (w), dtudy, Az
w=uet™ T, #0 Iyt udy
3 (t-%"%(w), —tdy— X+ Udy, Asn
w=(t—X)u,?ww#=0 dp+dy
4 xf(w), —tdy—Xd—Udy, Asn
w=X’1u,?mw#O 2
5 (t=x)f(u), o+ d, si2,R)
fuu#0 Lo +Xdy,
t26,+%20,
6 expxtu) —td+Xdy, A A
Oy XA+ U,
7 N[X| "™ 2ufmL, O td=1/mug, Ay ®A
N#0, m#0, —, 1-2 Xdy+ m+1/mud,
T(u), T,u#0 Sy Ox, —L— Xy Asg
NMu[™, A#0,n#0, -1 td,—1/nud, As DA,
xdy—1/nud,
h, dy

Q=d+eud, (e=0,1),

Q=ud, Q=g(txd, (g+0).

Theorem 8: There exist exactly two nonlinear equations of the form (2.10) admitting one-
dimensional invariance algebras. The corresponding expressions for function f and invariance
algebras are given below,

Al= (3 +d+eud) (e=0,1), f=eff(,w), 6=t-x w=eu, T,,+0,

A= (g+eud) (€=0,1), f=eff(xw), w=eu T,,+0.

Our analysis of Eqs(2.10 admitting higher dimensional invariance algebras yields the fol-
lowing assertion.

Theorem 9: The Liouville equation y=\e", A #0, has the highest symmetry among equa-
tions (2.10). Its maximal invariance algebra is infinite-dimensional and is spanned by the follow-
ing infinite set of basis operators:

Q=h(t)d+g(x)dy = (h'(t) +g'(x))dy,

where h and g are arbitrary smooth functions. Next, there exist exactly nine inequivalent equations
of the form (2.10), whose maximal invariance algebras have dimension higher that one. We give
these equations and their invariance algebras in Table I.

Details of the proof can be found in Ref. 35.
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VI. GROUP CLASSIFICATION OF Eq. (2.7)
The first step of the algorithm of group classification(2£7),

Utt = UXX+ F(t,X, ulux)! FUXUX ;ﬁ 0’

has been partially performed in Sec. Il. It follows from Theorem 1 that the invariance group of Eq.
(2.7 is generated by infinitesimal operat.4). What is more, the real constarXs\;, A\, and
real-valued functiondi=h(x), r=r(t,x), F=F(t,x,u,u,) obey the relatior(2.5). The equivalence
group of the class of equatiori2.7) is formed by transformation&.1).

With these facts in hand we can utilize results of group classification of E§).in order to
classify Eq.(2.7). In particular, using Lemma 1 and Lemma 2 from Ref. 35 it is straightforward to
verify that the following assertions hold true.

Theorem 10: There are, at most, seven inequivalent classes of nonlinear equations (2.7)
invariant under the one-dimensional Lie algebras.

Below we give the full list of the invariant equations and the corresponding invariance alge-
bras,

Al=(tg+xd), F=t2G({u,0), £=txY  w=xu,
AZ=(g+kdy (k>0), F=G(nuuy), n=x-Kkt
Ai=(3), F=G(tu,uy,

AT=(3), F=G(xu,uy),

A= (g +f(xudy) (f#0),
F=—tf"u+t2(f")%u - 2tf'u, + e'G(x,v, ),

v=eu, w=uu,—ffLinul,

AS=(f(xudy (f#0), F=—-ff"uln|ul - 2ff ugInju| + f2(f")2u In?u + uG(t,x, ),
o=u"u,—f'f1In|ul,
Al=(f(t,x)a,) (f#0), F=ffy-fu+Gtxw),

w=u, - ffu.

Note that if the function§ andG are arbitrary, then the presented algebras are maximéale's
sensg symmetry algebras of the respective equations.

Theorem 11: An equation of the form (2.7) cannot admit Lie algebra which has a subalgebra
having nontrivial Levi factor.

With account of the above facts we conclude that nonlinear equaofsadmit a symmetry
algebra of the dimension higher than one only if the latter is a solvable real Lie algebra. That is
why, we turn to classifying equatiorf2.7) whose invariance algebras are two-dimensional solv-
able Lie algebras.

Below we present the list of invariant equations and the corresponding realizations of the
two-dimensional invariance algebras.

() A, q-invariant equations,
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A 1= {td + XdUdy), F=X2UG(¢w),
E=txt, w=ulxu,

A3 1=t + X 0(93) (0 # 0,6=1X7Y),
F=xo H(1-&)o" - 2¢0" u+G(§w)],
= Eo'U+ oXUy,

A3 1= (atkdoudy  (k>0), F=uG(nw),
p=x—-kt, o=ulu,

A31= (0 + ki @()dy  (k>0,n=x-kte #0),
F=(K-1)¢"¢u+G(ne), ©=eu-¢'U,
AS 1= (g + ki d+udy (k> 0),
F=€e"G(w,v), n=x-kt, o=ue’ v=ulu,
A3 1= (B, F=Gluuy,
AJ1=(3.udy), F=uG(tw), wo=uTu,,

A3 1= (0003 (¢#0),

F=¢ '¢'u+Gl(t,uy,

A1=(dude)y  F=GX W),

A3 = (3 f0uay  (F#0),
F=-uu+uGx w)),

w=u"tu—f'f2In|ul,
Az4=(a+ f(X)ud,g0udy) (8= -g7'g’ #0),

F=-g%g"uln|ul - 2g7'g"u, In|u] + g~4(g")?u In?|u| — 2f Stu, + 2f 5g'g tu In|u]
+ f268°%2u+ f(g 719" — fH")tu + UG(X, w),

w=u"u,—-g'gtInul - tfs,

AA= (3 +f(Xua,e'ay) (f#0),
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F=[f2—tf" + 2(f")2Ju - 2tf'u, + e'G(x, ),
w=e(u,—tf'u),
AZ1= (F(0Udgua)  (5=F'g-g'f#0),
F=—utZ- 618 u+ s f'g’ —g"f'Juln|u| + uG(t,x),
A= (e Dy (¢ =y’ #0),

F=og'u+G(txu), ¢"'¢— ¢y =0.
(I A, rinvariant equations,

A} ,= (o + xduxudy, F=x2uln?ul - 2 tu Injul + t2uG(£,0), é=tx1,
o =xu"tu, -~ In|u,
A3 2= (o + X0 te(§dy (¢ #0,6=tx7Y,
F=t?2(1- )¢ E2¢" + E@")U+17G(¢,0),
= XUy + Eo'U,
A3 ,= (g, + kdy, exp(k X)udy) (k> 0),

F=k2uIn?|u| - 2k tu Inju| =k 2uIn|u] + UG(7,w), 7=x-kt, w=u"tu—kInu

AL ,= (0 + ki, €e(n)ay (p=x-ktk> 0,0+ 0),
F=((K-1)¢"¢ = 2k¢' ¢ "+ DU+ G(n,0),

! ! d(P
= unX_ QD uv QD = d_l
n
AS,=(—1d — Xdy 0+ kdy) (k> 0),
F=7%72G(u,w), 7=x-ki, ©=um,

AS L= (—td — Xd+ mudy, a + k) (k> 0,m# 0),

F= |77|_2_mG(v,a)), n=x-kt,

m |m+l
’ ’

w:U|77 U:Ux|77

A ,=(d,€udy, F=uln?ul-uln|u|-2u,Injul+uG(t,w), w=u"u—In|ul,
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P2 (0n€e(DA) (¢ #0),
F=(¢'¢"-Du+G(t,w), o=uc-u,

A ,=(—td = Xdydy, F=t2G(u,tuy),
A% = (— 13— X+ kud,,d)  (k# 0),
F=[t2*G,w), v=|tfu, o=,
AL =(,€'9), F=u+G(xuy,
AFo= (o =Xdyd), F=x7G(U0), ©=xu,
A= (g + F()ua, ety (f#0),
F=—(tf"—t3(f')2- (L +f))u-2tf u, + e'G(x, 0), w=e(u,—f'(t+fHu),
AM = (~td,— X3y d + kX tudy) (k> 0),
F = — 2ktx3u + K22 %0 + 2kix 2+ x 2 expktXx HG(v, w), v =exp—kxt)u,
o =xu"tu, + In|u,
AFy= (Kt +xa), X ua)  (k#0,D),
F=-k2(1-Kkx2ulnjul - 2k X ug Inju| + k2 2u In?|u| + X 2uG(v, ),
1

v=txt,  w=xulu,-kinlul,

AL = (k(ta + xa) [t " e(9dy)  (k#0,10#0,6=txh), F=[kk™-1)+2&K?
-l + E(1- 20 W T+ 12G(4 w),

= XUy + Ep' U.
In the above formula$ stands for an arbitrary smooth function. As customary, the prime
denotes the derivative of a function of one variable.
A. Group classification of the equation Up= Uy — U U2+ A(X) U+ B(X)u In|u|+uD(t, x)

Before analyzing Eq92.7) admitting algebras of the dimension higher than two we perform
group classification of the equation

Uyt = Uy — U2 + A(X)Uy + B(X)u In|u] + uD(t,x). (6.2)

HereA(x),B(x),D(t,x) are arbitrary smooth functions. Note that the above class of PDEs contains
A}3-invariant equation. Importantly, clag.1) contains a major part of equations of the form
(2.7, whose maximal symmetry algebras have dimension three or four. This fact is used to
simplify group classification of Eq$2.7).
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The complete account of symmetry properties of PBH) is given in the following asser-

tions.
Lemma 4: If AB, and D are arbitrary, then the maximal invariance algebra of PDE (6.1) is

the two-dimensional Lie algebra equivalent té_?‘lﬁand (6.1) reduces to ﬁ-invariant equation.
Next, if the maximal symmetry algebra of an equation of the form (6.1) is three-dimensional (we
denote it as 4), then this equation is equivalent to one of the following ones

(1) Az~ Azy, Az=(d, F(X)udy, e(x)udy),
A=-gl¢, B=0'_1p, D=0, o=f'p-fp' #0,
p=¢'f"=¢"t",

(1) Az~ Az, Ag=(f(X)udy, e(X)udy, d; + f(x)udy),
A=-¢l¢', B= U_lp,

D=to o'y = yp—oy/],
o=fo—@'f#0, p=f'¢ —¢"f,
=1y #0, o'y—oy #0,

() D=x72G(§), é=tx1L,G#0,

(1) Ag~ Ao Ag= (1, + Xy, udy, [X|*ud),
A=nx?! (n#1), B=0,

(2) A3 ~ A3.3, A3 = <t(9t + Xdy,Ud, U |n|X|¢9u>,
A=x" B=0,

(3) A3 ~ A3_4, A3 = <t(9t + X(?X, \/MU(?U, \/M |n|X|U(9u>,
A=0, B=3x?
(4) A~ Azq Ag= <t(9t + Xdy, \’M cos(%,B In|x|)u(9u, \/M sin(%,b’ In|x|)u(9u>,
A=0, B=mx?,

—

L B=\4m-1,

m> 7,

e —
(5) Ag~Ag7 Ag=(ta+ Xf?x,(\"|x|)1+BUf9u'(V/M)l Bua,y,

A=0, B=mx? m<3, m#0, B=y1-4m,
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(6) As~ Ay Ag= (3, +Xd,, cogymIn|x|)udy, sin(vmIn|x|)udy),

A=x1 B=mx?3 m>0,
(7) As~ g Ag= (td+xd, x| ™ua, [x~TMua,,
A=x1 B=mx?% m<0,

(8) Ag~ Ay Ag={td, +Xxdy (VX)) dy, (VX)L X In|x|udy),

A=nx! (n#0,1), B= %(n -1)%?,

(9) Ag~ Azq Ag= (tat +%d,, (VX)) cos(%,B In|x|)uau, (Vxrn sin(%,B In|x|)uau>,
A=nx! (n#0,1),

B=mx?2 (m>3(n-1)?), B=v4m-(n-1)%

(10) Ay~ Ag7 Ag= (td+ Xy (VIX) 2B Mudy, (VX)X uay),
A=nx! (n#0,1), B=mx?

(m<i-12m#0), g=\(n-17-am
(IV) D=G(1),

(1) A3~ Ags  Az=(dyUd,,Xud,),

(2) As=Agz  Az=(dy,Udy, EUdy),
A=-1, B=0,
(3) Az~ Azg  Az=(dy,cogX)Ud,, SIN(X) U,
A=0, B=1,

(4) Ag~Azg  Az=(dx€"Ud,e7Ud,),

=1

(6) Ag~Az7 Ag= <¢9X, exp(%(l +ﬁ)x)uau,exp(%(1 —,B)X)uau>,
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A=-1, B=m (m<1%), m#o0, g=V1-4m,
(7) A~ AgeAs = {a,, expl( 2x)cod 3 Bx)udy, exp(3x)sin(3 Bx)udy),
A=-1, B=m (m>3), B=V4m-1,
(V) D=G(%), m=x-kt, k>0,

(1) AS -~ A3.3! AS = <07t + k&X! U&U!XU&U>!

(2) As=Ags  Ag=(d;+kd,,ud,€udy,
A=-1, B=0,
(3) Az~ Agg  Ag=(d+ kdy, cogx)udy, sin(x)udy),
A=0, B=1,

(4) A3 ~ A3.6' A3 = <(9t + k(?x,exuﬁu,e_xuau>,

(6) Ag~Azy Ag= (at +Kdy, exd%(l +,3)x)uau,exp(%(1 - ,B)X)uau>,

A=-1, B=m (m<3), m#0, B=V1-4m,
(7) Ag~ Ags  As={d,+kdy, exp 3x)cod 2 8x)ud,, expl 2x)sin(38x)ud,),

A=-1, B=m (m>1%), B=V4am-1.

Theorem 12: Equation ut:uxx—u‘luﬁ has the widest symmetry group amongst equations of
the form (6.1). Its maximal invariance algebra is the five-dimensional Lie algebra

AL = (G, O 10, + Xy XUy, U, .

There are no equations of the form (6.1) which are inequivalent to the above equation and admit
invariance algebra of the dimension higher than four. Inequivalent equations (6.1) admitting
four-dimensional algebras are listed below together with their symmetry algebras

(h b=0,
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(1) Ay~ Age® A, Ay=(dydy,u ch(BX)dy, u sinh(Bx)dy),
A=0, B=-p8% pB#0,
(2) Ay~ Agg® Ay, Ag=(d,dy, U cog BX)dy,u sin(Bx)dy),
A=0, B=p% pB+#0,
(B) Ay~ A1 ®Ayp  Ay=(d,d,ud,e udy), A=1, B=0,
(4) Ag~Ag4® Ay, Ay={d,d,e7Ud,xe*ud,), A=2, B=1,
(5) Ay~ Agg® Ay, Ay={(d,dy,ue™ cogBX)dy, ue ™ sin(Bx)d),
A=2, B=m, m>1, B={m-1,
(6) Ay~ Ag70 Ay, Ay=(d,dy,ue™ ch(Bx)d,,ue™ sinh(Bx)d,),
A=2, B=m, m>1, m#0, B=1y1-m,
(D) Ao~ Paz Ag= (3,10, + Xoy \[X|udy,u[X] Inx|a,),
A=0, B=3x2
(8) Ay~ Ays  Ay=(dta + xax,|x|%+ﬁuau, |x|%‘ﬁuau>, A=0,
B=mx? m<2% m=#0, g=yi-m
(9) As~Ass  Aa= (3,0, + xdy \[X] cos( B In[x|)udy, \[x| sin(B Infx|)ud,),
A=0, B=mx?% m>3:, pB=ym-3,
(10) Ay~ Az Ay=(dptd + xduuln|x|d,udy), A=x? B=0,

(1D Ay~ A37® Ay, Ay=(d,td; + X0y,

X1 "Udy, udy),

A=nx?! B=0, n#0,1,
1 1
(12) Ay~ Ays, Ay= (30, + X, |X1 22 udy, [x2E M u InX|a,),

A=nx?, B=i(n-1%7? n#0,1,

1 1
(13) Ay~ Ays Ag=(dtd+ Xy [X 21 ™Puay, X 24 Pug,),
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A=nx? B=mx? m<i(n-12 m#0, n#0,
B=1(n-1)2-4m,

1 1
X2 cog B In|x|)udy, x| 2™ sin(B In[x|)udy),

(14 Ay~ Ayg A4= <¢9t,t8t + Xdy,
A=nx1 B=mx?

m#0, n#0, m>in-12 B=\m-i(n-1y?
(I D=ktx3, k>0,
(1) Ap~Ags, Ag= {0 — Sk, td, + Xy, XU, UG), A=B=0,
(2) Ag~Ags Ag={d— 2kx Uy td, + X0, Vix|udy, VI In|x|ud,),
A=0, B=3x2

1 1
X|2*Pudy,|x|27Pud,),

() As~Ass A= - [K(m+ 2)]X_1U(9u,t(7t + Xdy,
A=0, B=mx?% m#0,-2, m<j, B=vV;i-m,
(8) Ay~ Ay Ag= {0+ sk UL + 3 InX|U) Iy, ta; + Xy, X2Ud,, X tudy), A=0, B=-2x72

(5) Ay~ Asg  Ay= (3~ [KI(m+ 2)1x Tudy, td; + xd,\[X|u cog B Inlx))d, v|x|u sin(B In[x))d,),
A=0, B=mx?% m>3, B=\Vm-j,

(6) Ay~ Ays  Ay=(d—kxtugy,td, + Xdy, udy,u In|x|d,),
A=x1 B=0,

(7) A4 -~ A3.4 ® Ala A4 = <‘9t + kx_l(l + |n|X|)Uﬁu,tz9t + Xk, uaU!X_lU§u>|
A=2x*, B=0,

(8) Ay~ Ag7® Ay, Ag=(d,+[KI(Nn=2)]Xudy,td, + Xy, udy,[X "ud,),
A=nx! B=0, n#0,1,2,

(9) As=Ass As={0 — 2kxIN2|X|Udy, ta, + XAy, X Uy, XL IN|X|Ud,),
A=3x1 B=x73

1 1
(10) Ay~ Asn  Ay=(d,—[4K/(n = 3)%]x Uy, td, + Xdy, [X| 2™ udy, |23 ™ Infx|ud,),
A=nxY B=in-1)%72 n#0,3,
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1 1
(1) Ay~ Ays  Ay={td, + xdy, d; — [K(2 =+ m) X tudy, x| 2™ Pud,, [x| 2 Pua,),

A=nx! B=mx?
n#0,2, m#n-2, m<in-12 pg=\(n-17-4m,
(12 Ay~ Agp  Ay={(td + Xy, d; + [KI(3 =) Ix L In|x|udy, X 2udy,| x> "ud,),
A=nx?! B=(n-2)x3? n=#0,23,

(13 Ay~ Ase  Ay= o +Xdy,d = [KI(2 = n+m)]x "ud,

X249 cod( B Infx)) . [X| 2 u sin(8 Inx))dy).
A=nx?, B=mx? n#0, m#0, m>3i(n-1)7?
B=\m-3(n-17
() D=Kt, k>0,
(DA~ AL, A= <f9x-¢9t - %kxzu&u,xu&u,uau>, A=B=0,
(2) Ap~Ass  Ay= {0y, d - kxud, €*Ud,udy), A=1, B=0,
(B) Ay~ Agg® Ay, Ay={dy,d — KB 2ud,,u cog BX)dy,u Sin(BX)d,),
A=0, B=@ pB+0,
(@) Ay~ Agg® Ar, Ay =(d,dr + KB 2Udy,u Ch(BX)dy, U SINN(BX) ),
A=0, B=-p8% pB#0,
(5) Ag~ Ags® Ay, Ay ={d,,0— 4kud,,exp(— 2x)ud,,x exp(— 2x)ud,),
A=1, B=1,
(6) Ay~ Ag7® Ay, Ay=(dyd, — kmtudy, exd— 2(1 - B)x)udy, exd(— 3(1 + B)x)udy),
A=1, B=m, m<3% m=#0, g=V1-4m,
(7) Ay~ Ago® Ay, Ay={d,d— kmitud,,exp(— 3x)cos Bx)ud,, exp(- 2x)sin(Bx)ud,),
A=1, B=m m>3% pg={m-1,

(IV) D=kt? k+#0,
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A4~A4.8 (q:_ 1)! A4:<8X!tat+an!Xuau1uau>! A:B:O!
(V) D=m(x-kt)™?, k>0, m=#0,

Ar~Ass (Q=-1), A;={d+kdytd +Xdy,Xud,,ud,), A=B=0.

Proof can be found in Ref. 35.

B. Nonlinear equations (2.7) invariant under three-dimensional Lie algebras

Equations of the fornf2.7) cannot be invariant under the algebra which is isomorphic to a Lie
algebra with a nontrivial Levi idedf That is why, to complete the second step of our classifica-
tion algorithm it suffices to consider three-dimensional solvable real Lie algebras. We begin by
considering two decomposable three-dimensional solvable Lie algebras.

Note that while classifying invariant equatiof®s7) we skip those belonging to the cla$sl),
since the latter has already been analyzed.

1. Invariance under decomposable Lie algebras

As A 1=3A1=A, 18 A, A3,=A,,® A, to construct all realizations & 4 it suffices to com-
pute all possible extensions of tii@ready known realizations of the algebras, ,=(e;,e,) and
A, ,=(e;,8,). To this end we need to supplement the latter by a basis operavbithe form(2.4)
in order to satisfy the commutation relations

(e e3]=[exe3]=0. (6.2

What is more, to simplify the form ad; we may use those transformations frérthat do not alter
the remaining basis operators of the corresponding two-dimensional Lie algebras.
We skip the full calculation details and give a couple of examples illustrating the main
calculation steps needed to extefsg; to a realization ofA; ;.
Consider the realizatioA ;. Upon checking commutation relatiof&2), wheree; is of form
(2.4), we get

N =Np=1(t,x) =0, h=k=const.

Consequentlye; is the linear combination d#;, e,, namely,e;=\e; +ke,, which is impossible by
the assumption that the algebra under study is three dimensional. Hence we conclude that the
above realization oA} ; cannot be extended to a realization of the algekya
Turn now to the realizatio®3 ,. Checking commutation relatior{§.2), wheree; is of form
(2.4) yields the following realization of ;:

(tdy + Xdy, 0(£)dy, V(E) Dy, &= tx_ly

wherey'o— yo' # 0 However, the corresponding invariant equati@rv) is linear.

Finally, consider the realizatioAg_l. Inserting its basis operators and the operatoof the
form (2.4) into (6.2 and solving the obtained equations gives the following realizatiof;qf

<&tiaX!U&u>-

Inserting the obtained coefficients feg into the classifying equatiof2.5 we get invariant

equation
Uy = Uy + UG(w), = U_lUXy

where(to ensure nonlinearijywe need to have,,,# 0.
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Similar analysis of the realizations, , (i=4,5,...,12, 1% yields three new invariant equa-
tions. For two of thus obtained; ;-invariant equations the corresponding three-dimensional al-
gebras are maximal. The other two may admit four-dimensional invariance algebras provided
arbitrary elements are properly specified.

Handling in a similar way the extensions A&j , up to realizations of; , gives 10 inequiva-
lent nonlinear equations whose maximal invariance algebras are realizations of the three-
dimensional algebrd; , and four inequivalent equation2.7) admitting four-dimensional sym-
metry algebras.

We perform analysis of equations admitting four-dimensional algebras in the next section.
Here we present the complete list of nonlinear equati@id whose maximal symmetry algebras
are realizations of three-dimensional Lie algebfgs and A ».

A j-invariant equations,

AL 1= (3,3 Udy),
F=uG(w), w=u"u,
A5 1= (35 @1, h(1) ),

o=y o-yo' #0, o' =0,

F=¢o"u+Glt,uy).

A rinvariant equations,

Aé.zz (O 05, €°U),
F=-uw-uln|u +uG(w),
o=u"u,—In|ul,

A3 L= (= 10— Xdy, d + kd,udy (k= 0),
F= U7]_2G(w), n=x-kt,
= nulu,,

A3 5= (= 16, — X + MUy, o, + Kdy, | 7™,
(p=x-kt, k=m=0 ork>0, me R),
F=m(k* - 1)(m+ 17 2u+ |7 "G(w),
o =[7™(mu+ 7u,),

A3 ,= (3, €Udy, &+ MUy  (m>0),

F=-uu-u+uG(w),
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o=u"tu,—Inju] + mt,
A3 5= (— 10— Xdy, Iy, U,
F=ut?G(w), w=tulu,
AS ,= (=t — Xdy, 0 + kX tudy,udyy (k> 0),
F = 2ktx 2u, — 2ktx 3u + k22U + X 2uG(w),
= xulu, + ktx L,
AS = (= td, — Xdy, 6 + kx tud, expktx Hay (k> 0),

F = 2ktx 2u, + (K224 = 2ktx 3+ kX 2)u + x 2 expkix HG(w), o = exp(— ktx 1) (xu, + ktx u),
8 _ 1 +kt —
Azr= E(ﬁt"‘ kdy),e*"9,,e79, ) (k>0, p=x-Kkt),

F=(K-1Du+G(nw), w=u-—u,

A3 ,= (g + F(X)ud,, e F(x)e ™),
F=—(tf" - t2(f")2 - (1 +)A)u - 2tf u + 'G(x, ),
w=ef(u—f'(t+fYHu), " +2f2+f=0, f+0,

AR = (Kl + xa,) 1€ K0, | D2g)  (k# 0;1),

1-K?

W(l - 52)}t_2u +172G(¢ w),

1-kK
F=| —&+
{kg

k-1
w:|§|(k—1)/2k[xux+ - U], £=tx L,

2. Invariance under nondecomposable three-dimensional solvable Lie algebras

There exist seven nondecomposable three-dimensional solvable Lie algebras over the field of
real numbers. All those algebras contain a subalgebra which is the two-dimensional Abelian ideal.
Consequently, we can use the results of classificatio®ofinvariant equations in order to
describe equations admitting nondecomposable three-dimensional solvable real Lie algebras. We
remind that equations of the for(6.1) has already been analyzed and therefore are not considered
in the sequel.

Note that there are nonlinear PDEs of the considered form that admits four-dimensional
invariance algebras. As four-dimensional algebras will be considered separately in the next sec-
tion, we give below only those nonlinear invariant equations whose maximal symmetry algebras
are three-dimensional nondecomposable solvable real Lie algebras.
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A; yinvariant equations,

A} 5= (Udy, & + kd,md, + K xud,)  (k>0,m=#0),
F=-ul+uG(w), w=x-kt+mkuly,,
A3 5= (Udy, Ay, Md; + xudy)  (m>0),
F=-u'+uG(w), w=t-muly,

A3 .= <|t|%au,— |t|% In|t| dy, td, + xdy + %u&u>,
F=-it2U+UWG({w), é=tXY o=x&,
A35= (0w = tdudt ka) (k= 0),

F=G(nu,), mn=x-kt.

Az sinvariant equations,

A 4= (| 7™ 2y, + Ko, 1, + XA, + (mu+ 1] 7™ d,,)
(p=x-kt, k>0, m# 1),

F= (K= 1)(m=-1)(m=2)72u-2k(m=1)7™?In|5| + |5 ?G(w),
o=[nu, = (m=Dul|7™,

AZ 4= (3~ tda + ko +udy  (k=0),
F=€G(np,w), n=x-kt, w=€'u,,

A2 = ([t]2d0,— [t13 In[t]ay,ta, + xa, + 2udy),
F=-t2u+ U G({w), é=tx% w=x14
A3 4= (k< udy, 6 — k<t In|x|udy, toy + Xy (k> 0),

F = - 3ktx3u - 2x2u Inju| - u™U2 + X 2uG(w),

o =xu"tu + Inju + ktx?,

A3 4= (exp(ktx ) dy, o, + kX Tudy, ta, + xdy + (u+ t expktx Y)a,) (k> 0),

F =k %u(t? + x2) + 2x L(ktx 1 + 1)u, + 2k expktx H)x 2 In|x| + x * exp(ktx 1) G(w),

o = exp(— ktx b (u, + ktx2u).
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A; s-invariant equations,

AL 5= (| 7™ 20y, 0 + Ky td + xa + mugyy (k> 0, m# 1),
F=(K-1)(m-1)(m-2) 75 u+|y"?G(w),
=g nu—(m=-1ul, =x-kt,

A 5= (0 Ot + X0,

F=uG(u),

A3 = (0, td + Xd+mudy) (M 0),
F=|uMG(w),  o=|uMu*™,

AG 5= (hy dhotdh + X+ ),

F=e2G(w), w=eu,

A3 5= (XU Lo+ X3,
F=-uuZ-2x2uln|ul + x 2uG(w),

o =xu"tu, + In|u,

AS 5= (0, + k< tudy, expktx Y dy, toy + xdy + udy) (k> 0),
F = kxu[kt? — 2tx + kx@] + 2ktx 2u, + x L exp(ktx H)G(w),
o = exp(— ktxh) (u, + ktx2u),

Al 5= (e, i) ade+ud) (@' = oy’ #0),

F=¢ "u+uG(t o)),

w=€"U, ¢y =0.

Az ginvariant equations,

A3 6= (0 + Koy | 7™ 0t + Xox+ mudy)  (k>0, m# - 1),
F=m(k®- 1)(m+ 1) 2u+|7™°G(w),
o=[7""Mu,- 77 (m+ul, p=x-kt,

A3 6= (d+ MX TUdy, xudy, td + xd) (M= 0),
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F=-uu-2mtxCu+ x uG(w),
o =xu"tu, - Inju] + 2mtx?,
A3 5= (d, + k< tudy, expktx Y ay, toy + xdy —udy) (k> 0),
F = x Y[k - 2ktx+ K2t?]u + 2ktx 2u, + X3 expktx ) G(w),
o = exp(— ktx 1) (x2u, + ktu),
A 6= (€090 +ka) (k= 0),

F=u+G(nuy), n=x-Kkt,
1 3
23 6= (It 200 1300161+ X6y + By,

F=2t2u+ 66w, 1Y w=xHi,

A; rinvariant equations,

A3 5= (3, + kd,

7|99, 10, + Xdy + mud,)
(k>0,m#q, 0<|q <1),
F=(K-)(m-gm-q-1)7°u+|y"*Clw),
o=[7""Mu, - (m-q)7'ul, p=x-kt,
A3 5= (g, + kX tudy, expktx ) dy, td, + Xdy + qudy)
(k>0,0<|q <1,
F = [k?x 2+ k242 — 2ktx 3Ju + 2ktx 2u, + [X]92 exp(ktx 1) G(w),
o= |x|* 9 exp(— ktx ) (u, + ktx2u),
A= <|t|%qau, |t|1_%qﬁu,to7t + Xdy + (1 + %q)u&u> (g#0,+1),
F=1a@-2t%u+ 292G w),
E=txl w= |t|‘%qux,
A% = (exp(3(q- Dt)dy, exd 3(1 - q)t)a,, a + ka, + 3(1 +q)ud,)

(q#0,£1k=0),

Downloaded 25 May 2005 to 204.52.215.123. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



053301-31  Group classification of nonlinear wave equations J. Math. Phys. 46, 053301 (2005)
F=3(0-1u+exp(3(1 +t)G(nw),
n=x-kt,  o=exp(-3(1+q)t)u,,
A3 5= (d+ kX tudy, [XTud,ta + xa)  (k=0,q# 0, £1),

F=-ulu?-q(g+ D)x2uln|u| + k(g - 1)(q + 2tx3u + ux °G(w),
o=xu"tu +qInjul + k(1 -g)tx L.

A grinvariant equations

A3 5= (costd,, - sintd,, g +kd) (k=0),
F:—U+G(7]1ux)1 n:x—kt,
2 1 1. .
Az g= <|t| 2 cogIn|t])dy, = [t|2 sin(In|t])dy, td, + xay + EUﬁu>a
F=- 32+ [t %64 0),

E=txl w=|tY,.
A; ginvariant equations

A} o= (sintd,,costdy,d + kdy+qud,) (k=0,q>0),

F=-u+e"G(nw0w), n=x-kto=e%,,
1 1
A3 4= <|t|§ sin(In|t))d,, [t|2 cogIn|t))dy,td, + xdy + (% + q)uau>
3
(q#0), F=-3t2+[t|72G(¢ w),
1
E=txl, w=|t)27%,.

C. Complete group classification of Eq.  (2.7)

The aim of this section is finalizing group classification(2f7). The majority of invariant
equations obtained in the preceding section contain arbitrary functions of one variable. So that we
can utilize the standard Lie—Ovsyannikov approach in order to complete their group classification.

1. Equations depending on an arbitrary function of one variable

Note that equations belonging to the already investigated cla&& Hfare not considered.
As our computations show, new results could be obtained for the equations,

Ug = U+ UG(w), = U_lum (6.3

Ut = Uy + G(Uy), (6.4)

only. Below we give(without proof the assertions describing their group properties.
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Assertion 6: Equation (6.3) admits wider symmetry group iff it is equivalent to the following
equation
Ug = U+ mutu?  (m#0,-1). (6.5
The maximal invariance algebra of (6.5) is the four-dimensional Lie algebra
Ap~AssD A Ay={(d, 0t + Xdy,Udy) .

Assertion 7: Equation (6.4) admits wider symmetry group iff it is equivalent to one of the
following PDEs

Uy = Uy + €%, (6.6)
Ui = U+ minju, m>0, (6.7)
Ug = U+ [ug®, k#0,1. (6.9

The maximal invariance algebras of the above equations are five-dimensional solvable Lie alge-
bras listed below

AZ = (3, 0 Iyt 1, + Xy + (U= X)),

P2 = (3 0o Ot + x5 + (20 + 2mB) 3y,

. k-2
A =\ 0 0o D 0 10+ Xyt — UGy ).

Analyzing the remaining equations containing arbitrary functions of one variable we come to
conclusion that one of them can admit wider invariance groups iff either

(1) itis equivalent to PDE of the fornt6.1), or
(2) itis equivalent to PDE of the forn6.5).

To finalize the procedure of group classification of E@s7) we need to consider invariant
equations obtained in the preceding section that contain arbitrary functions of two variables.

2. Classification of equations with arbitrary functions of two variables

In the case under study the standard Lie—Ovsyannikov method is inefficient and we apply our
classification algorithm. In order to do this we perform extension of three-dimensional solvable
Lie algebras to all possible realizations of four-dimensional solvable Lie algebras. The next step
will be to check which of the obtained realizations are symmetry algebras of nonlinear equations
of the form(2.7). In what follows we use the results of Ref. 41, where all inequivaleithin the
action of inner automorphism gropfour-dimensional solvable abstract Lie algebras are given.

The computation details can be found in Ref. 35. Here we summarize the obtained results as
follows:

(1) If the functions contained in the equations under study are arbitrary, then the corresponding
realizations are their maximal invariance algebras, and

(2) Except for Eq.(6.4), all the equations in question do not allow for extension of their
symmetry.

Below we give the complete list of PDE2.7) invariant under four-dimensional solvable Lie
algebras that are obtained through group analysis of equations with arbitrary functions of two
variables.

A, @ 2As-invariant equations,
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(1) (3,6, + A, €'9,€79), F=u+eG(w), w=uly,
1 +kt
(2 E((ﬁt"' k(?x),ex 0, €7y, dy + Udy, (k> 0,7=x- kp),

F=(K-1u+e’G(w), w=€"(u,—u).

2A, rinvariant equations,

(1) (3, + eudy, dy, € 9,e™5,) (e=0,1k>0),
F=(k®-1Du+e'Glw), o=e(u,—u),
(2) {@dy— udy, o, + kdy,€'9,,'9,) (k=0,a>0),

Fzu+exp-a'nGlw), n=x-kt, w=expa nu,.

Az 3® As-invariant equations,

(1) <at!&xv ﬁu,tﬁu>, F = G(ux) .

Az 4@ As-invariant equations

(1) (dy, I, + X+ (U+X) 9, ),
F=t1G(w), w=u,—Int,
(2) (0, +Udy,dy,td, 0y, F=€G(w),w=¢€"u,,
(3) (X729, 0y — X XU+ In|X|) 9y, td; + X, tx2,),

F=2xtu +x 2+t X 1G(w), w=xu+u-IntxY.
A; 5@ As-invariant equations,
(1) (G Aty + Xx+ Udy td),  F=17G(uy),

(2) (X8, 0 — X Tudy, to, + X, tx1a,),

F=-2x2u+ 2t Y(u + x" tu)Int(u, + x 2| + t7Hu, + X U)G(w), @ =Xu+u.

Az 6@ As-invariant equations,

(1) (Gt tdr +Xddy, F=t2G(w), o=t1u,

(2) (0,0, €9, €79, F=u+G(uy).

A; 7@ As-invariant equations,

(1) (exp(— 3(1 —a)t)dy, exp (1 = q)t) 3y, 0 + 3(1 +Q)Udy, dy)

(#0,21), F=X1-g2u+expg3(1+qgt)G(w),
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w=exp(- 2(1+q)t)u,,
(2) <¢9x, |t|%<1‘q>au,|t|%(1+q)5wu,t¢9t + X+ 3(1+ q)uau>
(@#0,£1), F=i(q- Dr2u+t79G(w),

1
w= |t|§(1‘q)ux,

1+
3) < [t| Y| g @ D29y 5 — Z—qqx‘luau, = ql(td + Xdy), |§|<1*q>’2qau>

1
(q#0,+1), F= [ (t2+ x'z)] u+ ;qx'lux + 172 (H20G (),

_ - q+1
=txt, =4 1)’2q[x + u]
3 w =g Ut o
Az g® As-invariant equations,

(1) (sintg,,costd,,d,dy, F=-u+G(u,).

Az 9@ As-invariant equations,

(1) (sintg,,costd,,d; + qud,dy (q>0),

F=-u+e"G(w), w=e%,.

A, iinvariant equations,

(1) (0= t0 0% 0 — tXdy), F=G(w), w=ux+ 5t
(2) (9~ tdy, ady + 3t29,,0,+ kxd,) (k= 0,a > 0),

F=aY(x—kt)+ G(u,).

A, rinvariant equations,

(1) <|t|1‘%q(9u, |t|%qau,ax,tat +Xdy + [(1 + gq)u + x|t|%q]au>
(q#0,D), F=1lq@-2t2u+t396(w),
0= [0y, - 2lt]3,
(2 <0"x, VIt d, VIt In[t]d o + xd,+ (q + %)Uﬁu>

3 1
(#0), F=-3t2u+[t|"2G(w), w=]t|27%,.

A, yinvariant equations,

Downloaded 25 May 2005 to 204.52.215.123. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



053301-35  Group classification of nonlinear wave equations J. Math. Phys. 46, 053301 (2005)
1 1 1
(1) {0y [t|20y, = [t|2 In[t|dy, td, + xdx + 5udy),

F=- 22+ (| 36(0), o= [t]2u,,
(2) {9y, tdy, A tdy + Xdy), F=1"2G(w),w =tuy,
(3) (9, 0, + kudy, By + teg,,e™9,)  (k#0,8>0),
F=Ku+ 2kB X'+ G(w), w=e¥u,,
(4) (€*Kg,,e"d,, ald, + ud,) + 2kte”d,, — (1/2K) (d, + kdy))
(a#0,k>0), F=(K-1u-4ka 19"+ e’G(w),

w=€"u,—u), n=x-Kkt.

A, sinvariant equations,
1 1 1
(D) ([t 304~ [t2 1Nt} dotae + X+ [ 2u—x1t]3 Infe o),
1.-2 -1 - 1n2
F=3t7u+ [t 2G(w),w = [t 2u + 5 In?t].
A, sinvariant equations,
(1) (I [t|™ay, [t|1™ A, td; + Xdy + Mudy)
(m# %(1+a),% +aja# 0),

F=(m-a)(m-a-Dt72u+ [t|™?G(w), o= [t|'™Mu,.

A, grinvariant equations,

(1 st it i o ()
(1) {4y [t|2 sin(g™ In[t])ay, [t|2 co(q™ In|t))d,, qtd; + gxd 30 + pJud,) (g # 0,p=0),

F=—(+ g2+ ("396(w), w=[|7 G0y,

A, rinvariant equations,

(1) (3~ 13y, + Kdyta, + X + (2u - 3t%)3,) (k= 0),

F=-1In7|+G(w), w=7%1, »n=x-kt

A, grinvariant equations,

(1) (4, + eudy, d, €919,  (e=0:1),
F=-u+e'G(w), w=€eu—-u),

(2) {|X|™ %3y, 3, tX|™ %, td + xdx+ MUy (q# 0, me R),
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F=-(m-g)(m-qg-)x2u+x"*G(w),
o =X*"Mu- (m=-ag)xul,
(3) ( + kdy, sty to + X+ qudy)  (k>0, g e R),
F=|7"%G(w), w=|7""%, n=x-kt,
(4) (X7L8y, 0 + 0y — X TUdy, tX 29, ta, + X3y,
F=2tu +x Ht-x"1G(w), w=xu+u,
(5) (dy,—tdy, o + ko + udy, ady +udy) (a#0,k=0),

F=expan+1t)G(w), w=exp-atyp-tu, »7=x—kt.

A, jginvariant equations,

(1) (sintd,,costd,,dy +ud,, d; +kdy (k= 0),

F=-u+e"G(w), w=€"u, n=x-kt.

In the above formula&=G(w) is an arbitrary function satisfying the conditicmxux# 0.

CONCLUDING REMARKS

Let us briefly summarize the results obtained in this paper.
We prove that the problem of group classification of the general quasilinear hyperbolic type
equation(1.1) reduces to classifying equations of more specific forms,

(1) ug = U+ F(t,x,u,Uy), I:uxux #0,
(”) u[I:uXX+g(t1X1u)uX+f(tlxlu)l gLI7£ 01
() uy = gt,x)u, + f(t,x,u), g,#0, f,,#0,

(IV) uy = f(t,x,u), f,,#0.

If we denote aD€ the set of PDESII)—(Ill), then the results of application of our algorithm
for group classification of equatiori—(1V) can be summarized as follows.

(1) We perform complete group classification of the cld38. We prove that the Liouville
equation has the highest symmetry properties among equationgféoidext, we prove that
the only equation belonging to this class and admitting the four-dimensional invariance
algebra is the nonlinear d’Alembert equations. It is established that there are 12 inequivalent
equations fromD¢ invariant under three-dimensional Lie algebras. We give the lists of all
inequivalent equations fro?& that admit one- and two-dimensional symmetry algebras.

(2) We have studied the structure of invariance algebras admitted by nonlinear equations from
the clasdl). It is proved, in particular, that their invariance algebras are necessarily solvable.

(3) We perform complete group classification of nonlinear equations from the class of(PDEs
We prove that the highest symmetry algebras admitted by those equations are five dimen-
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sional and construct all inequivalent classes of equations invariant with respect to five-
dimensional Lie algebras. We also construct all inequivalent equations of the(lfpiad-
mitting one-, two-, three-, and four-dimensional Lie algebras.

In one of our future papers we intend to exploit the obtained classification results to construct
exact solutions of nonlinear wave equatidghs(IV).
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