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We perform complete group classification of the general class of quasilinear wave
equations in two variables. This class may be seen as a generalization of the
nonlinear d’Alembert, Liouville, sin/sinh-Gordon and Tzitzeica equations. We de-
rive a number of new genuinely nonlinear invariant models with high symmetry
properties. In particular, we obtain four classes of nonlinear wave equations that
admit five-dimensional invariance groups. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1884886g

INTRODUCTION

More than a century ago Lie introduced the concept of continuous transformation group into
mathematical physics and mechanics. His initial motivation was to develop a theory of integration
of ordinary differential equations enabling to answer the basic questions, like, why some equations
are integrable and others are not. His fundamental results obtained on this way, can be seen as a
far reaching generalization of the Galois’s and Abel’s theory of solubility of algebraic equations by
radicals. Since that time the Lie’s theory of continuous transformation groups has become appli-
cable to an astonishingly wide range of mathematical and physical problems.

It was Lie who was the first to utilize group properties of differential equations for construct-
ing of their exact solutions. In particular, he computed the maximal invariance group of the
one-dimensional heat conductivity equation and applied this symmetry to construct its explicit
solutions. Saying it the modern way, he performed symmetry reduction of the heat equation. Since
late 1970s symmetry reduction becomes one of the most popular tools for solving nonlinear partial
differential equationssPDEsd.

By now symmetry properties of the majority of fundamental equations of mathematical and
theoretical physics are well known. It turns out that for the most part these equations admit wide
symmetry groups. Especially this is the case for linear PDEs and it is this rich symmetry that
enables developing a variety of efficient methods for mathematical analysis of linear differential
equations. However, linear equations give mathematical description of physical, chemical or bio-
logical processes in a first approximation only. To provide a more detailed and precise description
a mathematical model must incorporate nonlinear terms. Note that some important differential
equations are intrinsically nonlinear and have no linear counterpart.

Hyperbolic type second-order nonlinear PDEs in two independent variables play a fundamen-
tal role in modern mathematical physics. Equations of this type are utilized to describe various
types of wave propagation. They are used in differential geometry, in various fields of hydro-
dynamics and gas dynamics, chemical technology, superconductivity, crystal dislocation to men-
tion only a few applications areas. Surprisingly the list of equations utilized is rather narrow. In
fact, it is comprised by the Liouville, sine/sinh-Gordon, Goursat, d’Alembert, and Tzitzeica equa-
tions and a couple of others. Popularity of these very models has a natural group-theoretical
interpretation, namely, all of them have nontrivial Lie or Lie–Bäcklund symmetry. By this very
reason some of them are integrable by the inverse problem methodsssee, e.g., Refs. 1–3d or
linearizable4–6 and completely integrable.7,8
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Knowing symmetry group of the equation under study provides us with the powerful equation
exploration tool. So it is natural to attempt classifying a reasonably extensive class of nonlinear
hyperbolic type PDEs into subclasses of equations enjoying the best symmetry properties. Saying
reasonably extensive we mean thatsid this class should contain the above enumerated equations as
particular cases, andsii d it should contain a variety of new invariant models of potential interest
for applications. The list of the so obtained invariant equations will contain candidates for realistic
nonlinear mathematical models of the physical and chemical processes mentioned above.

The history of group classification methods goes back to Lie itself. Probably, the very first
paper on this subject is Ref. 9, where Lie proves that a linear two-dimensional second-order PDE
may admit at most a three-parameter invariance groupsapart from the trivial infinite-parameter
symmetry group, which is due to linearityd.

The modern formulation of the problem of group classification of PDEs was suggested by
Ovsyannikov in Ref. 10. He developed a regular methodswe will refer to it as the Lie–
Ovsyannikov methodd for classifying differential equations with nontrivial symmetry and per-
formed complete group classification of the nonlinear heat conductivity equation. In a number of
subsequent publications more general types of nonlinear heat equations were classifiedsreview of
these results can be found in Ref. 11d.

However, even a very quick analysis of the papers on group classification of PDEs reveals that
an overwhelming majority of them deals with equations whose arbitrary elementssfunctionsd
depend on one variable only. The reason for this is that Lie–Ovsyannikov method becomes inef-
ficient for PDEs containing arbitrary functions of several variables. To achieve a complete classi-
fication one either needs to specify the transformation group realization or restrict somehow an
arbitrariness of the functions contained in the equation under study. We have recently, developed
an efficient approach enabling to overcome this difficulty for low dimensional PDEs.12,13Utilizing
it we have derived the complete group classification of the general quasilinear heat conductivity
equation in two independent variables. In this paper we apply the approach in question to perform
group classification of the most general quasilinear hyperbolic PDE in two independent variables.

I. GROUP CLASSIFICATION ALGORITHM

While classifying a given class of differential equations into subclasses, one can use different
classifying features, like linearity, order, the number of independent or dependent variables, etc. In
group analysis of differential equations the principal classifying features are symmetry properties
of equations under study. This means that classification objects are equations considered together
with their symmetry groups. This point of view is based on the well-known fact that any PDE
admits aspossibly triviald Lie transformation group. And what is more, any transformation group
corresponds to a class of PDEs, which are invariant under this group. So the problem of group
classification of a class of PDEs reduces to describing all possiblesinequivalentd pairs sPDE,
maximal invariance groupd, where PDE should belong to the class of equations under consider-
ation.

We perform group classification of the following class of quasilinear wave equations:

utt = uxx + Fst,x,u,uxd. s1.1d

Here F is an arbitrary smooth function,u=ust ,xd. Hereafter we adopt notationsut=]u/]t, ux

=]u/]x, utt=]2u/]t2, etc.
Our aim is describingall equations of the forms1.1d that admit nontrivial symmetry groups.

The challenge of this task is in the wordall. If, for example, we somehow constrain the form of
invariance group to be found, then the classification problem simplifies enormously. A slightly
more cumbersomesbut still tractable with the standard Lie–Ovsyannikov approachd is the problem
of group classification of equation with arbitrary functions of, at most, one variable.

As equations invariant under similar Lie groups are identical within the group-theoretic frame-
work, it makes sense to consider nonsimilar transformation groups14,15 only. The important ex-
ample of similar Lie groups is provided by Lie transformation groups obtained one from another
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by a suitable change of variables. Consequently, equations obtained one from another by a change
of variables have similar symmetry groups and cannot be distinguished within the group-
theoretical viewpoint. That is why, we perform group classification ofs1.1d within a change of
variables preserving the class of PDEss1.1d.

The problem of group classification of linear hyperbolic type equation

utx + Ast,xdut + Bst,xdux + Cst,xdu = 0 s1.2d

with u=ust ,xd, was solved by Lie9 ssee, also, Ref. 16d. In view of this fact, we consider only those
equations of the forms1.1d which are notslocallyd equivalent to the linear equations1.2d.

As we have already mentioned in the Introduction, the Lie–Ovsyannikov method of group
classification of differential equations has been suggested in Ref. 10. Utilizing this method enabled
solving the group classification problem for a number of important one-dimensional nonlinear
wave equations:

utt = uxx + Fsud sRefs. 17–19d,

utt = ffsuduxgx sRefs. 20–22d,

utt = fsuxduxx sRefs. 22,23d,

utt = Fsuxduxx + Hsuxd sRef. 24d,

utt = Fsuxxd sRef. 22d,

utt = ux
muxx + fsud sRef. 25d,

utt + fsudut = sgsuduxdx + hsudux sRef. 26d,

utt = sfsx,uduxdx sRef. 27d.

Analysis of the above list shows that most of all arbitrary elementss=arbitrary functionsd
depend on one variable. This is not coincidental. As we already mentioned, the Lie–Ovsyannikov
approach works smoothly for the case when the arbitrary elements are functions of one variable.
The reason for this is that the obtained system of determining equations is still over-determined.
So it can be effectively solved within the same techniques used to compute maximal symmetry
group of PDEs containing no arbitrary elements.

The situation becomes much more complicated for the case when arbitrary elements are
functions of twosor mored arguments. By this very reason the group classification of nonlinear
wave equations,

utt + luxx = gsu,uxd sRefs. 28,29d,

utt = ffsudux + gsx,udgx sRef. 30d,

utt = fsx,uxduxx + gsx,uxd sRef. 31d,

is not complete.
We suggest an efficient approach to the problem of group classification of low dimensional

PDEs in Refs. 12 and 13. This approach is based on the Lie–Ovsyannikov infinitesimal method
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and classification results for abstract finite-dimensional Lie algebras. It enables us to obtain the
complete solution of the group classification problem for the general heat equation with a nonlin-
ear source

ut = uxx + Fst,x,u,uxd.

Later on, we perform complete group classification of the most general quasilinear evolution
equation,32–34

ut = fst,x,u,uxduxx + gst,x,u,uxd.

We utilize the above approach to obtain complete solution of the group classification problem for
the class of Eqs.s1.1d.

Our algorithm of group classification of the class of PDEss1.1d is implemented in the fol-
lowing three stepssfurther details can be found in Ref. 34d:

sId Using the infinitesimal Lie method we derive the system of determining equations for
coefficients of the first-order operator that generates symmetry group of equations1.1d.
sNote that the determining equations which explicitly depend on the functionF and its
derivatives are called classifying equations.d Integrating equations that do not depend onF
we obtain the form of the most general infinitesimal operator admitted by Eq.s1.1d under
arbitraryF. Another task of this step is calculating the equivalence groupE of the class of
PDEss1.1d.

sII d We construct all realizations of Lie algebrasAn of the dimensionnø3 in the class of
operators obtained at the first step within the equivalence relation defined by transforma-
tions from the equivalence groupE. Inserting the so obtained operators into classifying
equations we select those realizations that can be symmetry algebras of a differential
equation of the forms1.1d.

sIII d We compute all possible extensions of realizations constructed at the previous step to
realizations of higher dimensionalsn.3d Lie algebras. Since extending symmetry algebras
results in reducing arbitrariness of the functionF, at some point this function will contain
either arbitrary functions of at most one variable or arbitrary constants. At this point, we
apply the standard classification methodswhich is due to Lie and Ovsyannikovd to derive
the maximal symmetry group of the equation under study. This completes group classifi-
cation of s1.1d.

Performing the above enumerated steps yields the complete list of inequivalent equations of
the form s1.1d together with their maximalsin Lie’s sensed symmetry algebras.

We say that the group classification problem is completely solved when it is proved that

s1d the constructed symmetry algebras are maximal invariance algebras of the equations under
consideration;

s2d the list of invariant equations contains only inequivalent ones, namely, no equation can be
transformed into another one from the list by a transformation from the equivalence groupE.

II. PRELIMINARY GROUP CLASSIFICATION OF Eq. „1.1…

We look for the infinitesimal operator of symmetry group of equations1.1d in the form

Q = tst,x,ud]t + jst,x,ud]x + hst,x,ud]u, s2.1d

wheret, j, h are smooth functions defined on an open domainV of the spaceV=R23R1 of
independentR2=kt ,xl and dependentR1=kul=ust ,xd variables.

Operators2.1d generates one-parameter invariance group ofs1.1d iff its coefficientst, j, h, e
satisfy the equationsLie’s invariance criteriond
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uwtt − wxx − tFt − jFx − hFu − wxFux
us1.1d = 0, s2.2d

where

wt = Dtshd − utDtstd − uxDtsjd,

wx = Dxshd − utDxstd − uxDxsjd,

wtt = Dtswtd − uttDtstd − utxDtsjd,

wxx = Dxswxd − utxDxstd − uxxDxsjd,

andDt, Dx are operators of total differentiation with respect to the variablest, x. As customary, by
writing s1.1d we mean that one needs to replaceutt and its differential consequences with the
expressionuxx+F and its differential consequences ins2.2d.

After a simple transformations algebra we reduces2.2d to the form

s1d ju = tu = huu = 0,

s2d tt − jx = 0, jt − tx = 0,

s2.3d
s3d 2htu + txFux

= 0,

s4d htt − hxx − 2uxhxu + fhu − 2ttg

3F − tFt − jFx − hFu − fhx + uxshu − jxdgFux
= 0.

The first two groups of PDEs froms2.3d are to be used to derive the form of the most general
infinitesimal operator admitted bys1.1d. The remaining PDEs are classifying equations.

We prove in Ref. 35 that the following assertion holds.
Theorem 1: Provided Fuxux

Þ0, the maximal invariance group of equation (1.1) is generated
by the following infinitesimal operator:

Q = slt + l1d]t + slx + l2d]x + fhsxdu + rst,xdg]u, s2.4d

wherel, l1, l2 are real constants and h=hsxd, r =rst ,xd, F=Fst ,x,u,uxd are functions obeying the
constraint

rtt − rxx −
d2h

dx2u − 2
dh

dx
ux + sh − 2ldF − slt + l1dFt − slx + l2dFx − shu+ rdFu

− Srx +
dh

dx
u + sh − lduxDFux

= 0. s2.5d

If F =gst ,x,udux+ fst ,x,ud, guÞ0, then the maximal invariance group of equation (1.1) is
generated by infinitesimal operator (2.4), wherel, l1, l2 are real constants h, r, g, f are functions
satisfying system of two equations

− 2h8 − lg = slt + l1dgt + slx + l2dgx + shu+ rdgu,

s2.6d
− h9u + rtt − rxx + sh − 2ldf = slt + l1df t + slx + l2dfx + shu+ rdfu + gsh8u + rxd.

Next, if F=gst ,xdux+ fst ,x,ud, qò0, fuuÞ0, then the infinitesimal operator of the invariance
group of equation (1.1) reads as
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Q = tst,xd]t + jst,xd]x + shst,xdu + rst,xdd]u,

wheret, j, h, r, g, f are functions satisfying system of PDEs

tt − jx = 0, jt − tx = 0,

2ht = − txg, 2hx = − ttg − tgt − jgx,

shtt − hxxdu + rtt − rxx + fsh − 2ttd − tf t − jfx − shu+ rdfu − shxu + rxdg = 0.

Finally, if F= fst ,x,ud, fuuÞ0, then the maximal invariance group of equation (1.1) is generated
by infinitesimal operator

Q = fwsud + cssdg]t − fwsud − cssdg]x + fku+ rst,xdg]u,

where kPR, u= t−x, s= t+x and functionsw, c, r, f and constant k satisfy the following equation:

rtt − rxx + fk − 2w8 − 2c8gf − sw + cdf t + sw − cdfx − sku+ rdfu = 0, w8 =
dw

du
, c8 =

dc

du
.

By virtue of the above theorem the problem of group classification of equations1.1d reduces
to the one of classifying equations of more specific forms,

utt = uxx + Fst,x,u,uxd, Fuxux
Þ 0, s2.7d

utt = uxx + gst,x,udux + fst,x,ud, gu Þ 0, s2.8d

utx = gst,xdux + fst,x,ud, gx Þ 0, fuu Þ 0, s2.9d

utx = fst,x,ud, fuu Þ 0. s2.10d

Note that conditiongxÞ0 is essential, since otherwises2.9d is locally equivalents2.10d.
Summing up, we conclude that the problem of group classification ofs1.1d reduces to classi-

fying more specific classes of PDEss2.7d–s2.10d.
First, we consider equationss2.8d–s2.10d.

III. GROUP CLASSIFICATION OF EQ. „2.8…

According to Theorem 1 invariance group of equations2.8d is generated by infinitesimal
operators2.4d. And what is more, the real constantsl, l1, l2 and functionsh, r, g, f satisfy
equationss2.6d. Systems2.6d is to be used to specify both the form of functionsf, g from s2.8d and
functionsh, r and constantsl, l1, l2 in s2.4d. It is called the determiningssometimes classifyingd
equations.

Efficiency of the Lie method for calculation of maximal invariance group of PDE is essen-
tially based on the fact that routinely system of determining equations is over-determined. This is
clearly not the case, since we have only one equation for fours!d arbitrary functions and three of
the latter depend on two variables. By this very reason direct application of Lie approach in the
Ovsyannikov’s spirit is no longer efficient when we attempt classifying PDEs with arbitrary
functions of several variables.

Compute the equivalence groupE of equations2.8d. This group is generated by invertible
transformations of the spaceV preserving the differential structure of equations2.8d ssee, e.g., Ref.
14d. Saying it another way, group transformation fromE
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t̄ = ast,x,ud, x̄ = bst,x,ud, v = Ust,x,ud,
Dst̄,x̄,vd
Dst,x,ud

Þ 0,

should reduces2.8d to equation of the same form

vt̄t̄ = vx̄x̄ + g̃st̄,x̄,vdvx̄ + f̃st̄,x̄,vd, g̃v Þ 0

with possibly differentf̃, g̃.
As proved by Ovsyannikov,14 it is possible to modify the Lie’s infinitesimal approach to

calculate equivalence group in essentially same way as invariance group. We omit the simple
intermediate calculations and present the final result.

Assertion 1: The maximal equivalence groupE of Eq. (2.8) reads as

t̄ = kt + k1, x̄ = ekx+ k2, v = Xsxdu + Yst,xd, s3.1d

where kÞ0, XÞ0, e= ±1,k,k1,k2PR, and X, Y are arbitrary smooth functions.
This completes the first step of the algorithm.

A. Preliminary group classification of Eq. „2.8…

First, we derive inequivalent classes of equations of the forms2.8d admitting one-parameter
invariance groups.

Lemma 1: There exist transformations (3.1) that reduce operator (2.4) to one of the six
possible forms,

Q = mst]t + x]xd, mÞ 0, Q = ]t + b]x, b ù 0,

Q = ]t + ssxdu]u, s Þ 0, Q = ]x, s3.2d

Q = ssxdu]u, s Þ 0,Q = ust,xd]u, u Þ 0.

Proof: Change of variabless3.1d reduces operators2.4d to become

Q̃ = kslt + l1d]t̄ + ekslx + l2d]x̄ + fYtslt + l1d + slx + l2dsX8u + Yxd + Xshu+ rdg]v. s3.3d

If lÞ0 in s2.4d, then settingk1=l−1l1k, k2=el−1l2k, and taking asX, Y sXÞ0d integrals of
system of PDEs,

X8slx + l2d + Xh= 0,

Ytslt + l1d + Yxslx + l2d + Xr = 0,

we reduces3.3d to the form

Q̃ = lst̄]t̄ + x̄]x̄d.

Providedl=0 andl1Þ0, we similarly obtain

Q̃ = ]t̄ + b]x̄, b ù 0, Q = ]t̄ + ssx̄dv]v, s Þ 0.

Next, if l=l1=0, l2Þ0 in s2.4d, then settingk=el2
−1, and taking asX, Y sXÞ0d integrals of

equations

l2X8 + hX= 0, Yx + rX = 0,

we reduce operators3.3d to becomeQ̃=]x̄.
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Finally, the casel=l1=l2=0, gives rise to operatorsQ̃=ssx̄dv]v, Q̃=ust̄ , x̄d]v.
Rewriting the above operators in the initial variablest, x completes the proof.
Theorem 2: There are exactly five inequivalent equations of the form (2.8) that admit one-

parameter transformation groups. Below we list these equations together with one-dimensional
Lie algebras generating their invariance groups (note that we do not present the full form of
invariant PDEs we just give the functions f and g),

A1
1 = kt]t + x]xl, g = x−1g̃sc,ud,

f = x−2f̃sc,ud, c = tx−1, g̃u Þ 0,

A1
2 = k]t + b]xl, g = g̃sh,ud, f = f̃sh,ud,

h = x − bt, b ù 0, g̃u Þ 0,

A1
3 = k]t + ssxdu]ul, g = − 2s8s−1 lnuuu + g̃sr,xd,

f = ss8s−1d2u ln2uuu − s8s−1g̃sr,xdu lnuuu − s−1s9u lnuuu + uf̃sr,xd,

r = u exps− tsd, s Þ 0,

A1
4 = k]xl, g = g̃st,ud, f = f̃st,ud, g̃u Þ 0,

A1
5 = kssxdu]ul, g = − 2s8s−1 lnuuu + g̃st,xd, f = ss8s−1d2u ln2uuu

− ss−1s9 + s−1s8g̃st,xddu lnuuu + uf̃st,xd, s8 Þ 0.

Proof: If Eq. s2.8d admits a one-parameter invariance group, then it is generated by operator
of the forms2.4d. According to Lemma 1, the latter is equivalent to one of the six operatorss3.2d.
That is why, all we need to do is integrate six systems of determining equations corresponding to
operatorss2.6d. For the first five operators solutions of determining equations are easily shown to
have the form given in the statement of the theorem.

We consider in more detail the operatorQ=ust ,ud]u. Determining Eqs.s2.6d for this operator
reduce to the form

utt − uxx = ufu + uxg, ugu = 0,

whence we getgu=0. Consequently, the system of determining equations is incompatible and the
corresponding invariant equation fails to exist.

Nonequivalence of the invariant equations follows from nonequivalence of the corresponding
symmetry operators.

The theorem is proved.
Note that in the sequel we give the formulations of theorems omitting routine proofs. The

detailed proofs of the most of the statements presented in this paper can be found in Ref. 35.
It is a common knowledge that there exist two inequivalent two-dimensional solvable Lie

algebras36–40

A2.1= ke1,e2l, fe1,e2g = 0,
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A2.2= ke1,e2l, fe1,e2g = e2.

To construct all possible realizations of the above algebras we take as the first basis element one
of the realizations of one-dimensional invariance algebras listed in Lemma 1. The second operator
is looked for in the generic forms2.4d.

Algebra A2.1: Let operatore1 be of the form]t+x]x and operatore2 read ass2.4d. Then it
follows from the relationfe1,e2g=0 thatl1=l2=xh8=0, tr t+xrx=0. Consequently, we can choose
basis elements of the algebra in question in the formkt]t+x]x,smu+rscdd]ul, wheremPR, c
= tx−1. Providedm=0, the operatore2 becomesrscd]u. It is straightforward to verify that this
realization does not satisfy the determining equations. Hence,mÞ0. Making the change of vari-
ables

t̄ = t, x̄ = x, v = u + m−1rscd

reduces the basis operators in question to the formt̄]t̄+ x̄]x̄, mv]v. That is why we can restrict our
considerations to the realizationkt]t+x]x,u]ul.

The second determining equation froms2.6d takes the formugu=0. Hence it follows that the
realization under consideration does not satisfy the determining equations. Consequently, the
realizationA1

1 cannot be extended to a realization of the two-dimensional algebraA2.1.
Algebra A2.2: If operatore1 is of the form t]t+x]x, then it follows fromfe1,e2g=e2 that l

=l1=l2=0, xh8=h, tr t+xrx=r.
Next, if e2 reads ast]t+x]x, then we get fromfe1,e2g=e2 the erroneous equality 1=0.
That is why, the only possible case is whene2=smxu+xrscdd]u, mÞ0, c= tx−1, which gives

rise to the following realization of the algebraA2.2: kt]t+x]x,xu]ul. This is indeed invariance
algebra of an equation from the classs2.8d and the functionsf and g read asg=−2x−1 lnuuu
+x−1g̃scd, f =x−2u ln2uuu−x−2g̃scdu lnuuu+x−2uf̃scd, c= tx−1.

Analysis of the remaining realizations of one-dimensional Lie algebras yields 10 inequivalent
A2.1- and A2.2-invariant equationsssee the assertions belowd. What is more, the obtainedstwo-
dimensionald algebras are maximal symmetry algebras of the corresponding equations.

Theorem 3: There are, at most, four inequivalent A2.1 -invariant nonlinear equations (2.8).
Below we list the realizations of A2.1 and the corresponding expressions for f and g.

s1d k]t,ssxdu]u,l, g = − 2s8s−1 lnuuu,

f = ss8s−1d2u ln2uuu − s−1s8u lnuuu + uf̃sxd, s8 Þ 0,

s2d k]t,]xl, g = g̃sud, f = f̃sud, g̃u Þ 0,

s3d k]x,]t + u]ul, g = g̃svd, f = expstd f̃svd, v = exps− td, g̃v Þ 0,

s4d kssxdu]u,]t − 1
2kssxdcsxdu]ul, g = − 2s8s−1 lnuuu + kt + g̃sxd,

f = ss8s−1d2u ln2uuu − s−1s9u lnuuu − s−1s8skt + g̃sxddu lnuuu

+ uf 1
2ks8s−1t + 1

4k2t2 + 1
2kg̃sxd + f̃sxdg ,

k Þ 0, s8 Þ 0, c =E s−1 dx.

Theorem 4: There exist, at most, six inequivalent A2.2-invariant nonlinear equations (2.8).
Below we list the realizations of A2.1 and the corresponding expressions for f and g.
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s1d kt]t + x]x,k
−1uxuku]ul, g = x−1s− 2k lnuuu + g̃scdd,

f = x−2us− k2 ln2uuu + kg̃scdlnuuu + ksk − 1dlnuuu + f̃scdd,

k Þ 0, c = tx−1,

s2d k]t + b]x,expsb−1xdu]ul, g = − 2b−1 lnuuu + g̃shd,

f = b−2u ln2uuu − sb−2 + b−1g̃shddu lnuuu + uf̃shd,

b . 0, h = x − bt,

s3d k− t]t − x]x,]t + b]xl, g = h−1g̃sud, f = h−2f̃sud, b ù 0,

h = x − bt, g̃u Þ 0,

s4d k− t]t − x]x,]t + mx−1u]ul, g = x−1s2mc + g̃svdd,

f = x−1f− 2mcu − 2mc − 2 − g̃svd + expsmcdg̃svdg,

m. 0, v = u exps− mcd, c = tx−1, g̃v Þ 0,

s5d k]x,e
xu]ul, g = − 2 lnuuu + g̃std, f = u ln2uuu − u lnuuus1 + g̃stdd + uf̃std,

s6d k− t]t − x]x,]xl, g = t−1g̃sud, f = t−2f̃sud, g̃u Þ 0.

B. Completing group classification of „2.8…

As the invariant equations obtained in the previous subsection contain arbitrary functions of,
at most, one variable, we can now apply the standard Lie–Ovsyannikov routine to complete the
group classification ofs2.8d. We give the computation details for the case of the firstA2.1-invariant
equation, the remaining cases are handled in a similar way.

Settingg=−2s8s−1 lnuuu, f =ss8s−1du ln2uuu−s−1s9u lnuuu+uf̃sxd, s=ssxd, s8Þ0 we rewrite
the first determining equation to become

− 2h8 + 2ls8s−1 lnuuu = − 2slx + l2dss8s−1dx8 lnuuu − 2hs8s−1 − 2rs8s−1u−1.

As h= fsxd, s=ssxd, r =rst ,xd, l, l2PR, the above relation is equivalent to the following ones:

h8 = s8s−1h, r = 0, ls8s−1 = − slx + l2dss8s−1d8.

If s is an arbitrary function, thenl=l2=r =0, h=Cs, CPR and we getk]t ,ssxdu]ul as the
maximal symmetry algebra. Hence, extension of the symmetry algebra is only possible when the
function c=s8s−1 is a snonvanishing identicallyd solution of the equation

sax + bdc8 + ac = 0, a,b P R, uau + ubu Þ 0.

If aÞ0, then at the expense of displacements byx we can getb=0, so thatc=mx−1, mÞ0.
Integrating the remaining determining equations yields
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g = − 2mx−1 lnuuu, f = mx−2fmu ln2uuu − sm− 1du lnuuu + nug, mÞ 0, m,n P R.

The maximal invariance algebra of the obtained equation is the three-dimensional Lie algebra
k]t , uxumu]u,t]t+x]xl isomorphic toA3.7.

Next, if a=0, thenbÞ0 andc=m, mÞ0. If this is the case, we have

g = lnuuu, f = 1
4u ln2uuu − 1

4u lnuuu + nu, n P R.

The maximal invariance algebra of the above equation reads as

k]t,]x,exps− 1
2xdu]ul .

It is isomorphic toA3.2.
Similarly, we prove that the list of inequivalent equations of the forms2.8d admitting three-

dimensional symmetry algebras is exhausted by the equations given below. Note that the presented
algebras are maximal. This means, in particular, that maximal symmetry algebra of Eq.s2.8d is, at
most, three dimensional.

A3.2-invariant equations,

s1d utt = uxx + ux lnuuu + 1
4u ln2uuu − 1

4u lnuuu + nusn P Rd,k]t,]x,exps− 1
2xdu]ul ,

s2d utt = uxx + mflnuuu − tgux + sm2/4dufslnuuu − tdslnuuu − t − 1dg + nusm. 0,n P Rd,

k]x,]t + u]u,exps− 1
2mxdu]ul .

A3.4-invariant equations,

s1d utt = uxx + x−1f2 lnuuu + mx−1t + ngux + x−2u lnuuu + smx−1t + n − 2dx−2u lnuuu + 1
4m2x−4t2u

+ 1
2msn − 3dx−3tu + px−2usmÞ 0,n,p P Rd, kt]t + x]x,x

−1u]u,]t − sm/2dx−1 lnuxuu]ul.

A3.5-invariant equations,

s1d utt = uxx + uuumux + nuuu1+2m smÞ 0,n P Rd, k]t,]x,t]t + x]x − m−1u]ul,

s2d utt = uxx + euux + ne2u sn P Rd, k]t,]x,t]t + x]x − ]ul,

s3d utt = uxx − x−1f2 lnuuu − mx−1t − ngux + x−2u ln2uuu − x−2smx−1t + ndu lnuuu + ux−2fsm/4dx−2t2

+ sm/2dsn − 1dx−1t + pgsm,n,p P Rd, kt]t + x]x,xu]u,]t + sm/4dx−1u]ul.

A3.7-invariant equations,

s1d utt = uxx − 2mx−1ux lnuuu + mx−2fmu ln2uuu − sm− 1du lnuuu + nug

3smÞ 0,1;n P Rd, k]t,uxumu]u,t]t + x]xl,

s2d utt = uxx − x−1f2k + lnuuu − mx−1t − ngux + k2x−2u ln2uuu − kx−2fmtx−1 + k + n − 1gu lnuuu + 1
2msk

− 2 +ndtx−3u + 1
4m2t2x−4u + px−2u suku Þ 0,1;mÞ 0,n,p P Rd,

kt]t + x]x,uxuku]u,]t + fm/2s1 + kdgx−1u]ul.

This completes the group classification of nonlinear equationss2.8d.

IV. GROUP CLASSIFICATION OF Eq. „2.9…

Omitting calculation details we present below the determining equations for symmetry opera-
tors admitted by Eq.s2.9d.
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Assertion 2: The maximal invariance group of PDE (2.9) is generated by the infinitesimal
operator,

Q = tstd]t + jsxd]x + fhstdu + rst,xdg]u, s4.1d

wheret, j, h, r, f, g are smooth functions satisfying the conditions

rtx + ffh − tt − jxg = grx + tf t + jfx + fhu+ rgfu,

s4.2d
ht = ttg + tgt + jgx.

Assertion 3: The equivalence groupE of (2.9) is formed by the following transformations of
the space V :

s1d t̄ = Tstd, x̄ = Xsxd, v = Ustdu + Yst,xd, t8X8U Þ 0,

s2d t̄ = Tsxd, x̄ = Xstd, v = CsxdFst,xdu + Yst,xd, t8X8C Þ 0, s4.3d

Fst,xd = expS−E gst,xddtD,gx Þ 0.

As the direct verification shows, given arbitrary functionsg and f, it follows from s4.2d that
t=h=j=r =0. So that in the generic case the maximal invariance group ofs2.9d is the trivial group
of identical transformations.

We begin classification ofs2.9d by constructing equations that admit one-dimensional sym-
metry algebras. The following assertions hold.

Lemma 2: There exist transformations (4.3) reducing operator (4.1) to one of the seven
canonical forms given below

Q = t]t + x]x, Q = ]t, Q = ]x + tu]u,

Q = ]x + eu]u, e = 0,1, Q = tu]u, s4.4d

Q = u]u, Q = rst,xd]u, r Þ 0.

Theorem 5: There exist, at most, three inequivalent nonlinear equations (2.9) that admit
one-dimensional invariance algebras. The form of functions f, g and the corresponding symmetry
algebras are given below,

A1
1 = kt]t + x]xl, g = t−1g̃svd, f = t−2fsu,vd, v = tx−1, g̃v Þ 0, fuu Þ 0,

A1
2 = k]tl, g = g̃sxd, f = f̃sx,ud, g̃8 Þ 0, f̃ uu Þ 0,

A1
3 = k]x + tu]ul, g = x + g̃std, f = etxf̃st,vd, v = e−txu, f̃vv Þ 0.

We proceed now to analyzing Eqs.s2.9d admitting two-dimensional symmetry algebras.
Theorem 6: There exist, at most, three inequivalent nonlinear equations (2.9) that admit

two-dimensional symmetry algebras, all of them being A2.2-invariant equations. The forms of
functions f and g and the corresponding realizations of the Lie algebra A2.2 read as

A2.2
1 = kt]t + x]x,t

2]t + x2]x + mut]ul smP Rd,

g = fmt+ sk − mdxgt−1st − xd−1, k Þ 0,
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f = ut − xum−2uxu−mf̃svd,

v = uut − xu−muxum, f̃vv Þ 0,

A2.2
2 = kt]t + x]x,t

2]t + mtu]ul smP Rd,

g = t−2fkx+ mtg, k Þ 0, f = utum−2uxu−mf̃svd,

v = utu−muxumu, f̃vv Þ 0,

A2.2
3 = kt]t + x]x,x

2]x + tu]ul,

g = stxd−1smx− tdsmP Rd, f = x−2 exps− tx−1d f̃svd,

v = u expstx−1d, f̃vv Þ 0.

Note that if the functionf̃ is arbitrary, then the invariance algebras given in the statement of
Theorem 6 are maximal.

It turns out that the above theorems provide complete group classification of the class of PDEs
s2.9d. Namely, the following assertion holds true.

Theorem 7: A nonlinear equation (2.9) having nontrivial symmetry properties is equivalent to
one of the equations listed in Theorems 5 and 6.

V. GROUP CLASSIFICATION OF Eq. „2.10…

As earlier, we present the results of the first step of our group classification algorithm skipping
derivation details.

Assertion 4: Invariance group of equation (2.10) is generated by infinitesimal operator

Q = tstd]t + jsxd]x + sku+ rst,xdd]u, s5.1d

where k is a constantt, j, r, f are functions satisfying the relation

rtx + fk − t8 − j8gf = tf t + jfx + fku+ rgfu. s5.2d

Assertion 5: Equivalence groupE of the class of equations (2.10) is formed by the following
transformations:

s1d t̄ = Tstd, x̄ = Xsxd, v = mu+ Yst,xd,

s5.3d
s2d t̄ = Tsxd, x̄ = Xstd, v = mu+ Yst,xd, T8X8mÞ 0.

Note that given an arbitrary functionf, it follows from s5.2d thatt=j=k=r =0, i.e., the group
admitted is trivial. To obtain equations with nontrivial symmetry we need to specify properly the
function f. To this end we perform classification of equations under study admitting one-
dimensional invariance algebras. The following assertions give exhaustive classification of those.

Lemma 3: There exist transformations from the groupE (5.3) that reduce (5.1) to one of the
four canonical forms,

Q = ]t + ]x + eu]u se = 0,1d,
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Q = ]t + eu]u se = 0,1d,

Q = u]u, Q = gst,xd]u sg Þ 0d.

Theorem 8: There exist exactly two nonlinear equations of the form (2.10) admitting one-
dimensional invariance algebras. The corresponding expressions for function f and invariance
algebras are given below,

A1
1 = k]t + ]x + eu]ul se = 0,1d, f = eet f̃su,vd, u = t − x, v = e−etu, f̃vv Þ 0,

A1
2 = k]t + eu]ul se = 0,1d, f = eet f̃sx,vd, v = e−etu, f̃vv Þ 0.

Our analysis of Eqs.s2.10d admitting higher dimensional invariance algebras yields the fol-
lowing assertion.

Theorem 9: The Liouville equation utx=leu, lÞ0, has the highest symmetry among equa-
tions (2.10). Its maximal invariance algebra is infinite-dimensional and is spanned by the follow-
ing infinite set of basis operators:

Q = hstd]t + gsxd]x − sh8std + g8sxdd]u,

where h and g are arbitrary smooth functions. Next, there exist exactly nine inequivalent equations
of the form (2.10), whose maximal invariance algebras have dimension higher that one. We give
these equations and their invariance algebras in Table I.

Details of the proof can be found in Ref. 35.

TABLE I. Invariant equationss2.10d.

Number Functionf Symmetry operators
Invariance algebra

type

1 etf̃svd, ]t+u]u, ]x A2.1

v=ue−t, f̃vvÞ0

2 et+xf̃svd, ]t+u]u, A2.1

v=ue−t−x, f̃vvÞ0 ]x+u]u

3 st−xd−3f̃svd, −t]t−x]x+u]u, A2.2

v=st−xdu, f̃vvÞ0 ]t+]x

4 x−1f̃svd, −t]t−x]x−u]u, A2.2

v=x−1u, f̃vvÞ0 ]t

5 st−xd−2f̃sud, ]t+]x, sls2,Rd

f̃ uuÞ0 t]t+x]x,

t2]t+x2]x

6 expsx−1ud −t]t+x]u, A2.2% A1

]t, x]x+u]u

7 luxu−m−2uuum+1, ]t, t]t− 1/mu]u, A2.2% A1

lÞ0, mÞ0, 2, 1−2 x]x+ m+1/mu]u

8 f̃sud, f̃ uuÞ0 ]t, ]x, −t]t−x]x A3.6

9 luuun+1, lÞ0, nÞ0, −1 t]t− 1/nu]u A2.2% A2.2

x]x− 1/nu]u

]t, ]x
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VI. GROUP CLASSIFICATION OF Eq. „2.7…

The first step of the algorithm of group classification ofs2.7d,

utt = uxx + Fst,x,u,uxd, Fuxux
Þ 0,

has been partially performed in Sec. II. It follows from Theorem 1 that the invariance group of Eq.
s2.7d is generated by infinitesimal operators2.4d. What is more, the real constantsl, l1, l2 and
real-valued functionsh=hsxd, r =rst ,xd, F=Fst ,x,u,uxd obey the relations2.5d. The equivalence
group of the class of equationss2.7d is formed by transformationss3.1d.

With these facts in hand we can utilize results of group classification of Eq.s2.8d in order to
classify Eq.s2.7d. In particular, using Lemma 1 and Lemma 2 from Ref. 35 it is straightforward to
verify that the following assertions hold true.

Theorem 10: There are, at most, seven inequivalent classes of nonlinear equations (2.7)
invariant under the one-dimensional Lie algebras.

Below we give the full list of the invariant equations and the corresponding invariance alge-
bras,

A1
1 = kt]t + x]xl, F = t−2Gsj,u,vd, j = tx−1, v = xux,

A1
2 = k]t + k]xl sk . 0d, F = Gsh,u,uxd, h = x − kt,

A1
3 = k]xl, F = Gst,u,uxd,

A1
4 = k]tl, F = Gsx,u,uxd,

A1
5 = k]t + fsxdu]ul sf Þ 0d,

F = − tf9u + t2sf8d2u − 2tf8ux + etfGsx,v,vd,

v = e−tfu, v = u−1ux − f8f−1 lnuuu,

A1
6 = kfsxdu]ul sf Þ 0d, F = − f−1f9u lnuuu − 2f−1f8ux lnuuu + f−2sf8d2u ln2uuu + uGst,x,vd,

v = u−1ux − f8f−1 lnuuu,

A1
7 = kfst,xd]ul sf Þ 0d, F = f−1sf tt − fxxdu + Gst,x,vd,

v = ux − f−1fxu.

Note that if the functionsF andG are arbitrary, then the presented algebras are maximalsin Lie’s
sensed symmetry algebras of the respective equations.

Theorem 11:An equation of the form (2.7) cannot admit Lie algebra which has a subalgebra
having nontrivial Levi factor.

With account of the above facts we conclude that nonlinear equationss2.7d admit a symmetry
algebra of the dimension higher than one only if the latter is a solvable real Lie algebra. That is
why, we turn to classifying equationss2.7d whose invariance algebras are two-dimensional solv-
able Lie algebras.

Below we present the list of invariant equations and the corresponding realizations of the
two-dimensional invariance algebras.

sId A2.1-invariant equations,
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A2.1
1 = kt]t + x]x,u]ul, F = x−2uGsj,vd,

j = tx−1, v = u−1xux,

A2.1
2 = kt]t + x]x,ssjd]ul ss Þ 0,j = tx−1d,

F = x−2fs−1ss1 − j2ds9 − 2js8du + Gsj,vdg,

v = js8u + sxux,

A2.1
3 = k]t + k]x,u]ul sk . 0d, F = uGsh,vd,

h = x − kt, v = u−1ux,

A2.1
4 = k]t + k]x,wshd]ul sk . 0,h = x − kt,w Þ 0d,

F = sk2 − 1dw9w−1u + Gsh,vd, v = wux − w8u,

A2.1
5 = k]t + k]x,]x + u]ul sk . 0d,

F = ehGsv,vd, h = x − kt, v = ue−h, v = u−1ux,

A2.1
6 = k]t,]xl, F = Gsu,uxd,

A2.1
7 = k]x,u]ul, F = uGst,vd, v = u−1ux,

A2.1
8 = k]x,wstd]ul sw Þ 0d,

F = w−1w9u + Gst,uxd,

A2.1
9 = k]t,]ul, F = Gsx,uxd,

A2.1
10 = k]t, fsxdu]ul sf Þ 0d,

F = − u−1ux
2 + uGsx,vd,

v = u−1ux − f8f−1 lnuuu,

A2.1
11 = k]t + fsxdu]u,gsxdu]ul sd = f−1f8 − g−1g8 Þ 0d,

F = − g−1g9u lnuuu − 2g−1g8ux lnuuu + g−2sg8d2u ln2uuu − 2fdtux + 2fdg8g−1tu lnuuu

+ f2d2t2u + fsg−1g9 − f−1f9dtu + uGsx,vd,

v = u−1ux − g8g−1 lnuuu − tfd,

A2.1
12 = k]t + fsxdu]u,e

tf]ul sf Þ 0d,
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F = ff2 − tf9 + t2sf8d2gu − 2tf8ux + etfGsx,vd,

v = e−tfsux − tf8ud,

A2.1
13 = kfsxdu]u,gsxdu]ul sd = f8g − g8f Þ 0d,

F = − u−1ux
2 − d−1d8ux + d−1ff9g8 − g9f8gu lnuuu + uGst,xd,

A2.1
14 = kwstd]u,cstd]ul sw8c − wc8 Þ 0d,

F = w−1w9u + Gst,x,uxd, w9c − wc9 = 0.

sII d A2.2-invariant equations,

A2.2
1 = kt]t + x]x,xu]ul, F = x−2u ln2uuu − 2x−1ux lnuuu + t−2uGsj,vd, j = tx−1,

v = xu−1ux − lnuuu,

A2.2
2 = kt]t + x]x,twsjd]ul sw Þ 0,j = tx−1d,

F = t−2s1 − j2dw−1js2w8 + jw9du + t−2Gsj,vd,

v = xwux + jw8u,

A2.2
3 = k]t + k]x,expsk−1xdu]ulsk . 0d,

F = k−2u ln2uuu − 2k−1ux lnuuu − k−2u lnuuu + uGsh,vd, h = x − kt, v = u−1ux − k−1 lnuuu,

A2.2
4 = k]t + k]x,e

twshd]ul sh = x − kt,k . 0,w Þ 0d,

F = ssk2 − 1dw9w−1 − 2kw8w−1 + 1du + Gsh,vd,

v = wux − w8u, w8 =
dw

dh
,

A2.2
5 = k− t]t − x]x,]t + k]xl sk . 0d,

F = h−2Gsu,vd, h = x − kt, v = uxh,

A2.2
6 = k− t]t − x]x + mu]u,]t + k]xl sk . 0,mÞ 0d,

F = uhu−2−mGsv,vd, h = x − kt,

v = uuhum, v = uxuhum+1,

A2.2
7 = k]x,e

xu]ul, F = u ln2uuu − u lnuuu − 2ux lnuuu + uGst,vd, v = u−1ux − lnuuu,
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A2.2
8 = k]x,e

xwstd]ul sw Þ 0d,

F = sw−1w9 − 1du + Gst,vd, v = ux − u,

A2.2
9 = k− t]t − x]x,]xl, F = t−2Gsu,tuxd,

A2.2
10 = k− t]t − x]x + ku]u,]xl sk Þ 0d,

F = utu−2−kGsv,vd, v = utuku, v = utuk+1ux,

A2.2
11 = k]t,e

t]ul, F = u + Gsx,uxd,

A2.2
12 = k− t]t − x]x,]tl, F = x−2Gsu,vd, v = xux,

A2.2
13 = k]t + fsxdu]u,e

s1+fdt]ul sf Þ 0d,

F = − stf9 − t2sf8d2 − s1 + f2ddu − 2tf8ux + etfGsx,vd, v = e−tfsux − f8st + f−1dud,

A2.2
14 = k− t]t − x]x,]t + kx−1u]ul sk . 0d,

F = − 2ktx−3u + k2t2x−4u + 2ktx−2ux + x−2 expsktx−1dGsv,vd, v = exps− kx−1tdu,

v = xu−1ux + lnuuu,

A2.2
15 = kkst]t + x]xd,uxuk

−1
u]ul sk Þ 0,1d,

F = − k−2s1 − kdx−2u lnuuu − 2k−1x−1ux lnuuu + k−2x−2u ln2uuu + x−2uGsv,vd,

v = tx−1, v = xu−1ux − k−1 lnuuu,

A2.2
16 = kkst]t + x]xd,utuk

−1
wsjd]ul sk Þ 0,1,w Þ 0,j = tx−1d, F = fk−1sk−1 − 1d + 2jsk−1

− j2dw−1w8 + j2s1 − jd2w−1w9gt−2u + t−2Gsj,vd,

v = xwux + jw8u.

In the above formulasG stands for an arbitrary smooth function. As customary, the prime
denotes the derivative of a function of one variable.

A. Group classification of the equation utt =uxx −u−1ux
2+A„x…ux +B„x…u ln zu z+uD„t ,x…

Before analyzing Eqs.s2.7d admitting algebras of the dimension higher than two we perform
group classification of the equation

utt = uxx − u−1ux
2 + Asxdux + Bsxdu lnuuu + uDst,xd. s6.1d

HereAsxd ,Bsxd ,Dst ,xd are arbitrary smooth functions. Note that the above class of PDEs contains
A2.1

13-invariant equation. Importantly, classs6.1d contains a major part of equations of the form
s2.7d, whose maximal symmetry algebras have dimension three or four. This fact is used to
simplify group classification of Eqs.s2.7d.
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The complete account of symmetry properties of PDEs6.1d is given in the following asser-
tions.

Lemma 4: If A, B, and D are arbitrary, then the maximal invariance algebra of PDE (6.1) is
the two-dimensional Lie algebra equivalent to A2.1

13 and (6.1) reduces to A2.1
13-invariant equation.

Next, if the maximal symmetry algebra of an equation of the form (6.1) is three-dimensional (we
denote it as A3), then this equation is equivalent to one of the following ones:

sId A3 , A3.1, A3 = k]t, fsxdu]u,wsxdu]ul,

A = − s−1s8, B = s−1r, D = 0, s = f8w − fw8 Þ 0,

r = w8f9 − w9f8,

sII d A3 , A3.1, A3 = kfsxdu]u,wsxdu]u,]t + csxdu]ul,

A = − s−1s8, B = s−1r,

D = ts−1fs8c8 − cr − sc9g,

s = f8w − w8f Þ 0, r = f9w8 − w9f8,

f8c − fc8 Þ 0, w8c − wc8 Þ 0,

sIII d D = x−2Gsjd, j = tx−1,G Þ 0,

s1d A3 , A3.2, A3 = kt]t + x]x,u]u,uxu1−nu]ul,

A = nx−1 sn Þ 1d, B = 0,

s2d A3 , A3.3, A3 = kt]t + x]x,u]u,u lnuxu]ul,

A = x−1, B = 0,

s3d A3 , A3.4, A3 = kt]t + x]x,Îuxuu]u,Îuxu lnuxuu]ul,

A = 0, B = 1
4x−2,

s4d A3 , A3.9, A3 = kt]t + x]x,Îuxu coss 1
2b lnuxudu]u,Îuxu sins 1

2b lnuxudu]ul,

A = 0, B = mx−2,

m.
1
4, b = Î4m− 1,

s5d A3 , A3.7, A3 = kt]t + x]x,sÎuxud1+bu]u,sÎuxud1−bu]ul,

A = 0, B = mx−2, m,
1
4, mÞ 0, b = Î1 − 4m,
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s6d A3 , A3.8, A3 = kt]t + x]x,cossÎm lnuxudu]u,sinsÎm lnuxudu]ul,

A = x−1, B = mx−2, m. 0,

s7d A3 , A3.6, A3 = kt]t + x]x,uxuÎumuu]u,uxu−Îumuu]ul,

A = x−1, B = mx−2, m, 0,

s8d A3 , A3.4, A3 = kt]t + x]x,sÎuxud1−nu]u,sÎuxud1−n 3 lnuxuu]ul,

A = nx−1 sn Þ 0,1d, B = 1
4sn − 1d2x−2,

s9d A3 , A3.9, A3 = kt]t + x]x,sÎuxud1−n coss 1
2b lnuxudu]u,sÎuxud1−n sins 1

2b lnuxudu]ul,

A = nx−1 sn Þ 0,1d,

B = mx−2 sm.
1
4sn − 1d2d, b = Î4m− sn − 1d2,

s10d A3 , A3.7, A3 = kt]t + x]x,sÎuxud1−b−nu]u,sÎuxud1−n+b 3 u]ul,

A = nx−1 sn Þ 0,1d, B = mx−2

sm,
1
4sn − 1d2,mÞ 0d, b = Îsn − 1d2 − 4m.

sIV d D = Gstd,

s1d A3 , A3.3, A3 = k]x,u]u,xu]ul,

A = B = 0,

s2d A3 = A3.2, A3 = k]x,u]u,e
xu]ul,

A = − 1, B = 0,

s3d A3 , A3.8, A3 = k]x,cossxdu]u,sinsxdu]ul,

A = 0, B = 1,

s4d A3 , A3.6, A3 = k]x,e
xu]u,e

−xu]ul,

A = 0, B = − 1,

s5d A3 , A3.4, A3 = k]x,exps 1
2xdu]u,exps 1

2xdxu]ul ,

A = − 1, B = 1
4 ,

s6d A3 , A3.7, A3 = k]x,exps 1
2s1 + bdxdu]u,exps 1

2s1 − bdxdu]ul ,
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A = − 1, B = m sm,
1
4d, mÞ 0, b = Î1 − 4m,

s7d A3 , A3.9,A3 = k]x,exps 1
2xdcoss 1

2bxdu]u,exps 1
2xdsins 1

2bxdu]ul ,

A = − 1, B = m sm.
1
4d, b = Î4m− 1,

sVd D = Gshd, h = x − kt, k . 0,

s1d A3 , A3.3, A3 = k]t + k]x,u]u,xu]ul,

A = B = 0,

s2d A3 = A3.2, A3 = k]t + k]x,u]u,e
xu]ul,

A = − 1, B = 0,

s3d A3 , A3.8, A3 = k]t + k]x,cossxdu]u,sinsxdu]ul,

A = 0, B = 1,

s4d A3 , A3.6, A3 = k]t + k]x,e
xu]u,e

−xu]ul,

A = n, B = − 1,

s5d A3 , A3.4, A3 = k]t + k]x,exps 1
2xdu]u,exps 1

2xdxu]ul ,

A = − 1, B = 1
4 ,

s6d A3 , A3.7, A3 = k]t + k]x,exps 1
2s1 + bdxdu]u,exps 1

2s1 − bdxdu]ul ,

A = − 1, B = m sm,
1
4d, mÞ 0, b = Î1 − 4m,

s7d A3 , A3.9, A3 = k]t + k]x,exps 1
2xdcoss 1

2bxdu]u,exps 1
2xdsins 1

2bxdu]ul ,

A = − 1, B = m sm.
1
4d, b = Î4m− 1.

Theorem 12: Equation utt=uxx−u−1ux
2 has the widest symmetry group amongst equations of

the form (6.1). Its maximal invariance algebra is the five-dimensional Lie algebra,

A5
1 = k]t,]x,t]t + x]x,xu]u,u]ul.

There are no equations of the form (6.1) which are inequivalent to the above equation and admit
invariance algebra of the dimension higher than four. Inequivalent equations (6.1) admitting
four-dimensional algebras are listed below together with their symmetry algebras.

sId D = 0,
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s1d A4 , A3.6 % A1, A4 = k]t,]x,u chsbxd]u,u sinhsbxd]ul,

A = 0, B = − b2, b Þ 0,

s2d A4 , A3.8 % A1, A4 = k]t,]x,u cossbxd]u,u sinsbxd]ul,

A = 0, B = b2, b Þ 0,

s3d A4 , A2.1 % A2.2, A4 = k]t,]x,u]u,e
−xu]ul, A = 1, B = 0,

s4d A4 , A3.4 % A1, A4 = k]t,]x,e
−xu]u,xe−xu]ul, A = 2, B = 1,

s5d A4 , A3.9 % A1, A4 = k]t,]x,ue−x cossbxd]u,ue−x sinsbxd]ul,

A = 2, B = m, m. 1, b = Îm− 1,

s6d A4 , A3.7 % A1, A4 = k]t,]x,ue−x chsbxd]u,ue−x sinhsbxd]ul,

A = 2, B = m, m. 1, mÞ 0, b = Î1 − m,

s7d A4 , A4.2, A4 = k]t,t]t + x]x,Îuxuu]u,uÎuxu lnuxu]ul,

A = 0, B = 1
4x−2,

s8d A4 , A4.5, A4 = k]t,t]t + x]x,uxu
1
2

+bu]u,uxu
1
2

−bu]ul, A = 0,

B = mx−2, m,
1
4, mÞ 0, b = Î1

4 − m,

s9d A4 , A4.6, A4 = k]t,t]t + x]x,Îuxu cossb lnuxudu]u,Îuxu sinsb lnuxudu]ul,

A = 0, B = mx−2, m.
1
4, b = Îm− 1

4 ,

s10d A4 , A4.3, A4 = k]t,t]t + x]x,u lnuxu]u,u]ul, A = x−1, B = 0,

s11d A4 , A3.7 % A1, A4 = k]t,t]t + x]x,uxu1−nu]u,u]ul,

A = nx−1, B = 0, n Þ 0,1,

s12d A4 , A4.5, A4 = k]t,t]t + x]x,uxu
1
2

s1−ndu]u,uxu
1
2

s1−ndu lnuxu]ul,

A = nx−1, B = 1
4sn − 1d2x−2, n Þ 0,1,

s13d A4 , A4.5, A4 = k]t,t]t + x]x,uxu
1
2

s1−n+bdu]u,uxu
1
2

s1−n−bdu]ul,
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A = nx−1, B = mx−2, m,
1
4sn − 1d2, mÞ 0, n Þ 0,

b = Îsn − 1d2 − 4m,

s14d A4 , A4.6, A4 = k]t,t]t + x]x,uxu
1
2

s1−nd cossb lnuxudu]u,uxu
1
2

s1−nd sinsb lnuxudu]ul,

A = nx−1, B = mx−2,

mÞ 0, n Þ 0, m.
1
4sn − 1d2, b = Îm− 1

4sn − 1d2,

sII d D = ktx−3, k . 0,

s1d A4 , A4.1, A4 = k]t − 1
2kx−1u]u,t]t + x]x,xu]u,u]ul, A = B = 0,

s2d A4 , A4.2, A4 = k]t − 4
9kx−1u]u,t]t + x]x,Îuxuu]u,Îuxu lnuxuu]ul ,

A = 0, B = 1
4x−2,

s3d A4 , A4.5, A4 = k]t − fk/sm+ 2dgx−1u]u,t]t + x]x,uxu
1
2

+bu]u,uxu
1
2

−bu]ul,

A = 0, B = mx−2, mÞ 0,− 2, m,
1
4, b = Î1

4 − m,

s4d A4 , A4.2, A4 = k]t + 1
9kx−1s1 + 3 lnuxuud]u,t]t + x]x,x

2u]u,x
−1u]ul, A = 0, B = − 2x−2,

s5d A4 , A4.6, A4 = k]t − fk/sm+ 2dgx−1u]u,t]t + x]x,Îuxuu cossb lnuxud]u,Îuxuu sinsb lnuxud]ul,

A = 0, B = mx−2, m.
1
4, b = Îm− 1

4 ,

s6d A4 , A4.3, A4 = k]t − kx−1u]u,t]t + x]x,u]u,u lnuxu]ul,

A = x−1, B = 0,

s7d A4 , A3.4 % A1, A4 = k]t + kx−1s1 + lnuxudu]u,t]t + x]x,u]u,x
−1u]ul,

A = 2x−1, B = 0,

s8d A4 , A3.7 % A1, A4 = k]t + fk/sn − 2dgx−1u]u,t]t + x]x,u]u,uxu1−nu]ul,

A = nx−1, B = 0, n Þ 0,1,2,

s9d A4 = A4.4, A4 = k]t − 1
2kx−1 ln2uxuu]u,t]t + x]x,x

−1u]u,x
−1 lnuxuu]ul,

A = 3x−1, B = x−2,

s10d A4 , A4.2, A4 = k]t − f4k/sn − 3d2gx−1u]u,t]t + x]x,uxu
1
2

s1−ndu]u,uxu
1
2

s1−nd lnuxuu]ul,

A = nx−1, B = 1
4sn − 1d2x−2, n Þ 0,3,
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s11d A4 , A4.5, A4 = kt]t + x]x,]t − fks2 − n + mdgx−1u]u,uxu
1
2

s1−n+bdu]u,uxu
1
2

s1−n−bdu]ul,

A = nx−1, B = mx−2,

n Þ 0,2, mÞ n − 2, m,
1
4sn − 1d2, b = Îsn − 1d2 − 4m,

s12d A4 , A4.2, A4 = kt]t + x]x,]t + fk/s3 − ndgx−1 lnuxuu]u,x
−1u]u,uxu2−nu]ul,

A = nx−1, B = sn − 2dx−2, n Þ 0,2,3,

s13d A4 , A4.6, A4 = kt]t + x]x,]t − fk/s2 − n + mdgx−1u]u,

uxu
1
2

s1−ndu cossb lnuxud]u,uxu
1
2

s1−ndu sinsb lnuxud]ul,

A = nx−1, B = mx−2, n Þ 0, mÞ 0, m.
1
4sn − 1d2,

b = Îm− 1
4sn − 1d2,

sIII d D = kt, k . 0,

s1d A4 , A4.1, A4 = k]x,]t − 1
2kx2u]u,xu]u,u]ul, A = B = 0,

s2d A4 , A4.3, A4 = k]x,]t − kxu]u,e
−xu]u,u]ul, A = 1, B = 0,

s3d A4 , A3.8 % A1, A4 = k]x,]t − kb−2u]u,u cossbxd]u,u sinsbxd]ul,

A = 0, B = b2, b Þ 0,

s4d A4 , A3.6 % A1, A4 = k]x,]t + kb−2u]u,u chsbxd]u,u sinhsbxd]ul,

A = 0, B = − b2, b Þ 0,

s5d A4 , A3.4 % A1, A4 = k]x,]t − 4ku]u,exps− 1
2xdu]u,x exps− 1

2xdu]ul ,

A = 1, B = 1
4 ,

s6d A4 , A3.7 % A1, A4 = k]x,]t − km−1u]u,exps− 1
2s1 − bdxdu]u,exps− 1

2s1 + bdxdu]ul ,

A = 1, B = m, m,
1
4, mÞ 0, b = Î1 − 4m,

s7d A4 , A3.9 % A1, A4 = k]x,]t − km−1u]u,exps− 1
2xdcossbxdu]u,exps− 1

2xdsinsbxdu]ul ,

A = 1, B = m, m.
1
4, b = Îm− 1

4 ,

sIV d D = kt−2, k Þ 0,
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A4 , A4.8 sq = − 1d, A4 = k]x,t]t + x]x,xu]u,u]ul, A = B = 0,

sVd D = msx − ktd−2, k . 0, mÞ 0,

A4 , A4.8 sq = − 1d, A4 = k]t + k]x,t]t + x]x,xu]u,u]ul, A = B = 0.

Proof can be found in Ref. 35.

B. Nonlinear equations „2.7… invariant under three-dimensional Lie algebras

Equations of the forms2.7d cannot be invariant under the algebra which is isomorphic to a Lie
algebra with a nontrivial Levi ideal.35 That is why, to complete the second step of our classifica-
tion algorithm it suffices to consider three-dimensional solvable real Lie algebras. We begin by
considering two decomposable three-dimensional solvable Lie algebras.

Note that while classifying invariant equationss2.7d we skip those belonging to the classs6.1d,
since the latter has already been analyzed.

1. Invariance under decomposable Lie algebras

As A3.1=3A1=A2.1% A1, A3.2=A2.2% A1, to construct all realizations ofA3.1 it suffices to com-
pute all possible extensions of thesalready knownd realizations of the algebrasA2.1=ke1,e2l and
A2.2=ke1,e2l. To this end we need to supplement the latter by a basis operatore3 of the forms2.4d
in order to satisfy the commutation relations

fe1,e3g = fe2,e3g = 0. s6.2d

What is more, to simplify the form ofe3 we may use those transformations fromE that do not alter
the remaining basis operators of the corresponding two-dimensional Lie algebras.

We skip the full calculation details and give a couple of examples illustrating the main
calculation steps needed to extendA2.1 to a realization ofA3.1.

Consider the realizationA2.1
1 . Upon checking commutation relationss6.2d, wheree3 is of form

s2.4d, we get

l1 = l2 = rst,xd = 0, h = k = const.

Consequently,e3 is the linear combination ofe1, e2, namely,e3=le1+ke2, which is impossible by
the assumption that the algebra under study is three dimensional. Hence we conclude that the
above realization ofA2.1

1 cannot be extended to a realization of the algebraA3.1.
Turn now to the realizationA2.1

2 . Checking commutation relationss6.2d, wheree3 is of form
s2.4d yields the following realization ofA3.1:

kt]t + x]x,ssjd]u,gsjd]ul, j = tx−1,

whereg8s−gs8Þ0 However, the corresponding invariant equations2.7d is linear.
Finally, consider the realizationA2.1

3 . Inserting its basis operators and the operatore3 of the
form s2.4d into s6.2d and solving the obtained equations gives the following realization ofA3.1:

k]t,]x,u]ul.

Inserting the obtained coefficients fore3 into the classifying equations2.5d we get invariant
equation

utt = uxx + uGsvd, v = u−1ux,

wheresto ensure nonlinearityd we need to haveGvvÞ0.
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Similar analysis of the realizationsA2.1
i si =4,5, . . . ,12,14d yields three new invariant equa-

tions. For two of thus obtainedA3.1-invariant equations the corresponding three-dimensional al-
gebras are maximal. The other two may admit four-dimensional invariance algebras provided
arbitrary elements are properly specified.

Handling in a similar way the extensions ofA2.2 up to realizations ofA3.2 gives 10 inequiva-
lent nonlinear equations whose maximal invariance algebras are realizations of the three-
dimensional algebraA3.2 and four inequivalent equationss2.7d admitting four-dimensional sym-
metry algebras.

We perform analysis of equations admitting four-dimensional algebras in the next section.
Here we present the complete list of nonlinear equationss2.7d whose maximal symmetry algebras
are realizations of three-dimensional Lie algebrasA3.1 andA3.2.

A3.1-invariant equations,

A3.1
1 = k]t,]x,u]ul,

F = uGsvd, v = u−1ux,

A3.1
2 = k]x,wstd]u,cstd]ul,

s = c8w − cw8 Þ 0, s8 = 0,

F = w−1w9u + Gst,uxd.

A3.2-invariant equations,

A3.2
1 = k]t,]x,e

xu]ul,

F = − u−1ux
2 − u lnuuu + uGsvd,

v = u−1ux − lnuuu,

A3.2
2 = k− t]t − x]x,]t + k]x,u]ul sk ù 0d,

F = uh−2Gsvd, h = x − kt,

v = hu−1ux,

A3.2
3 = k− t]t − x]x + mu]u,]t + k]x,uhu−m]ul

sh = x − kt, k = m= 0 or k . 0, mP Rd,

F = msk2 − 1dsm+ 1dh−2u + uhu−2−mGsvd,

v = uhumsmu+ huxd,

A3.2
4 = k]x,e

xu]u,]t + mu]ul sm. 0d,

F = − u−1ux
2 − ux + uGsvd,
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v = u−1ux − lnuuu + mt,

A3.2
5 = k− t]t − x]x,]x,u]ul,

F = ut−2Gsvd, v = tu−1ux,

A3.2
6 = k− t]t − x]x,]t + kx−1u]u,u]ul sk . 0d,

F = 2ktx−2ux − 2ktx−3u + k2t2x−4u + x−2uGsvd,

v = xu−1ux + ktx−1,

A3.2
7 = k− t]t − x]x,]t + kx−1u]u,expsktx−1d]ul sk . 0d,

F = 2ktx−2ux + sk2t2x−4 − 2ktx−3 + k2x−2du + x−2 expsktx−1dGsvd, v = exps− ktx−1dsxux + ktx−1ud,

A3.2
8 =K 1

2k
s]t + k]xd,ex+kt]u,e

h]uL sk . 0, h = x − ktd,

F = sk2 − 1du + Gsh,vd, v = ux − u,

A3.2
9 = k]t + fsxdu]u,e

s1+fsxddt]u, fsxdefsxdt]ul,

F = − stf9 − t2sf8d2 − s1 + fd2du − 2tf8ux + etfGsx,vd,

v = e−tfsux − f8st + f−1dud, f9 + 2f2 + f = 0, f Þ 0,

A3.2
10 = kkst]t + x]xd,utuk

−1
ujusk−1d/2k]u,ujusk−1d/2k]ul sk Þ 0;1d,

F = F1 − k

k
j2 +

1 − k2

4k2 s1 − j2dGt−2u + t−2Gsj,vd,

v = ujusk−1d/2kFxux +
k − 1

2k
uG, j = tx−1.

2. Invariance under nondecomposable three-dimensional solvable Lie algebras

There exist seven nondecomposable three-dimensional solvable Lie algebras over the field of
real numbers. All those algebras contain a subalgebra which is the two-dimensional Abelian ideal.
Consequently, we can use the results of classification ofA2.1-invariant equations in order to
describe equations admitting nondecomposable three-dimensional solvable real Lie algebras. We
remind that equations of the forms6.1d has already been analyzed and therefore are not considered
in the sequel.

Note that there are nonlinear PDEs of the considered form that admits four-dimensional
invariance algebras. As four-dimensional algebras will be considered separately in the next sec-
tion, we give below only those nonlinear invariant equations whose maximal symmetry algebras
are three-dimensional nondecomposable solvable real Lie algebras.
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A3.3-invariant equations,

A3.3
1 = ku]u,]t + k]x,m]t + k−1xu]ul sk . 0,mÞ 0d,

F = − u−1ux
2 + uGsvd, v = x − kt + mk2u−1ux,

A3.3
2 = ku]u,]x,m]t + xu]ul sm. 0d,

F = − u−1ux
2 + uGsvd, v = t − mu−1ux,

A3.3
3 = kutu

1
2]u,− utu

1
2 lnutu]u,t]t + x]x + 1

2u]ul ,

F = − 1
4t−2u + ux

3Gsj,vd, j = tx−1, v = xux
2,

A3.3
4 = k]u,− t]u,]t + k]xl sk ù 0d,

F = Gsh,uxd, h = x − kt.

A3.4-invariant equations,

A3.4
1 = kuhum−1]u,]t + k]x,t]t + x]x + smu+ tuhum−1d]ul

sh = x − kt, k . 0, mÞ 1d,

F = sk2 − 1dsm− 1dsm− 2dh−2u − 2ksm− 1dhm−2 lnuhu + uhum−2Gsvd,

v = fhux − sm− 1duguhu−m,

A3.4
2 = k]u,− t]u,]t + k]x + u]ul sk ù 0d,

F = etGsh,vd, h = x − kt, v = e−tux,

A3.4
3 = kutu

1
2]u,− utu

1
2 lnutu]u,t]t + x]x + 3

2u]ul ,

F = − 1
4t−2u + ux

−1Gsj,vd, j = tx−1, v = x−1ux
2,

A3.4
4 = kkx−1u]u,]t − kx−1 lnuxuu]u,t]t + x]xl sk . 0d,

F = − 3ktx−3u − 2x−2u lnuuu − u−1ux
2 + x−2uGsvd,

v = xu−1ux + lnuuu + ktx−1,

A3.4
5 = kexpsktx−1d]u,]t + kx−1u]u,t]t + x]x + su + t expsktx−1dd]ul sk . 0d,

F = k2x−4ust2 + x2d + 2x−1sktx−1 + 1dux + 2k expsktx−1dx−1 lnuxu + x−1 expsktx−1dGsvd,

v = exps− ktx−1dsux + ktx−2ud.
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A3.5-invariant equations,

A3.5
1 = kuhum−1]u,]t + k]x,t]t + x]x + mu]ul sk . 0, mÞ 1d,

F = sk2 − 1dsm− 1dsm− 2dh−2u + uhum−2Gsvd,

v = uhu−mfhux − sm− 1dug, h = x − kt,

A3.5
2 = k]t,]x,t]t + x]xl,

F = ux
2Gsud,

A3.5
3 = k]t,]x,t]t + x]x + mu]ul smÞ 0d,

F = uuu1−s2/mdGsvd, v = uuxumuuu1−m,

A3.5
4 = k]t,]x,t]t + x]x + ]ul,

F = e−2uGsvd, v = euux,

A3.5
5 = k]t,x

−1u]u,t]t + x]xl,

F = − u−1ux
2 − 2x−2u lnuuu + x−2uGsvd,

v = xu−1ux + lnuuu,

A3.5
6 = k]t + kx−1u]u,expsktx−1d]u,t]t + x]x + u]ul sk . 0d,

F = kx−4ufkt2 − 2tx + kx2g + 2ktx−2ux + x−1 expsktx−1dGsvd,

v = exps− ktx−1dsux + ktx−2ud,

A3.5
7 = kwstd]u,cstd]u,]x + u]ul sw8c − wc8 Þ 0d,

F = w−1w9u + uxGst,vd,

v = e−xux, w9c − wc9 = 0.

A3.6-invariant equations,

A3.6
1 = k]t + k]x,uhum+1]u,t]t + x]x + mu]ul sk . 0, mÞ − 1d,

F = msk2 − 1dsm+ 1dh−2u + uhum−2Gsvd,

v = uhu1−mfux − h−1sm+ 1dug, h = x − kt,

A3.6
2 = k]t + mx−1u]u,xu]u,t]t + x]xl smù 0d,
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F = − u−1ux
2 − 2mtx−3u + x−2uGsvd,

v = xu−1ux − lnuuu + 2mtx−1,

A3.6
3 = k]t + kx−1u]u,expsktx−1d]u,t]t + x]x − u]ul sk . 0d,

F = x−4fk2x2 − 2ktx+ k2t2gu + 2ktx−2ux + x−3 expsktx−1dGsvd,

v = exps− ktx−1dsx2ux + ktud,

A3.6
4 = ke−t]u,e

t]u,]t + k]xl sk ù 0d,

F = u + Gsh,uxd, h = x − kt,

A3.6
5 = kutu−

1
2]u,utu

3
2]u,t]t + x]x + 1

2u]ul ,

F = 3
4t−2u + utu−3/2Gsj,vd, j = tx−1, v = x−1ux

2.

A3.7-invariant equations,

A3.7
1 = k]t + k]x,uhum−q]u,t]t + x]x + mu]ul

sk . 0, mÞ q, 0 , uqu , 1d,

F = sk2 − 1dsm− qdsm− q − 1dh−2u + uhum−2Gsvd,

v = uhu1−mfux − sm− qdh−1ug, h = x − kt,

A3.7
2 = k]t + kx−1u]u,expsktx−1d]u,t]t + x]x + qu]ul

sk . 0,0, uqu , 1d,

F = fk2x−2 + k2x−4t2 − 2ktx−3gu + 2ktx−2ux + uxuq−2 expsktx−1dGsvd,

v = uxu1−q exps− ktx−1dsux + ktx−2ud,

A3.7
3 = kutu

1
2

q]u,utu1−1
2

q]u,t]t + x]x + s1 + 1
2qdu]ul sq Þ 0, ± 1d,

F = 1
4qsq − 2dt−2u + utu

1
2

sq−2dGsj,vd,

j = tx−1, v = utu−
1
2

qux,

A3.7
4 = kexps 1

2sq − 1dtd]u,exps 1
2s1 − qdtd]u,]t + k]x + 1

2s1 + qdu]ul

sq Þ 0, ± 1;k ù 0d,
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F = 1
4sq − 1d2u + exps 1

2s1 + qdtdGsh,vd,

h = x − kt, v = exps− 1
2s1 + qdtdux,

A3.7
5 = k]t + kx−1u]u,uxu−qu]u,t]t + x]xl sk ù 0, q Þ 0, ± 1d,

F = − u−1ux
2 − qsq + 1dx−2u lnuuu + ksq − 1dsq + 2dtx−3u + ux−2Gsvd,

v = xu−1ux + q lnuuu + ks1 − qdtx−1.

A3.8-invariant equations

A3.8
1 = kcost]u,− sint]u,]t + k]xl sk ù 0d,

F = − u + Gsh,uxd, h = x − kt,

A3.8
2 = kutu

1
2 cosslnutud]u,− utu

1
2 sinslnutud]u,t]t + x]x + 1

2u]ul ,

F = − 5
4t−2u + utu−3/2Gsj,vd,

j = tx−1, v = utu1/2ux.

A3.9-invariant equations

A3.9
1 = ksin t]u,cost]u,]t + k]x + qu]ul sk ù 0, q . 0d,

F = − u + eqtGsh,vd, h = x − kt,v = e−qtux,

A3.9
2 = kutu

1
2 sinslnutud]u,utu

1
2 cosslnutud]u,t]t + x]x + s 1

2 + qdu]ul

sq Þ 0d, F = − 5
4t−2u + utuq−3

2Gsj,vd,

j = tx−1, v = utu
1
2

−qux.

C. Complete group classification of Eq. „2.7…

The aim of this section is finalizing group classification ofs2.7d. The majority of invariant
equations obtained in the preceding section contain arbitrary functions of one variable. So that we
can utilize the standard Lie–Ovsyannikov approach in order to complete their group classification.

1. Equations depending on an arbitrary function of one variable

Note that equations belonging to the already investigated class ofs6.1d are not considered.
As our computations show, new results could be obtained for the equations,

utt = uxx + uGsvd, v = u−1ux, s6.3d

utt = uxx + Gsuxd, s6.4d

only. Below we giveswithout proofd the assertions describing their group properties.
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Assertion 6: Equation (6.3) admits wider symmetry group iff it is equivalent to the following
equation:

utt = uxx + mu−1ux
2 smÞ 0,− 1d. s6.5d

The maximal invariance algebra of (6.5) is the four-dimensional Lie algebra,

A4 , A3.5 % A1, A4 = k]t,]x,t]t + x]x,u]ul.

Assertion 7: Equation (6.4) admits wider symmetry group iff it is equivalent to one of the
following PDEs:

utt = uxx + eux, s6.6d

utt = uxx + m lnuuxu, m. 0, s6.7d

utt = uxx + uuxuk, k Þ 0,1. s6.8d

The maximal invariance algebras of the above equations are five-dimensional solvable Lie alge-
bras listed below,

A5
2 = k]t,]x,]u,t]u,t]t + x]x + su − xd]ul,

A5
3 = k]t,]x,]u,t]u,t]t + x]x + s2u + 1

2mt2d]ul ,

A5
4 =K]t,]x,]u,t]u,t]t + x]x +

k − 2

k − 1
u]uL .

Analyzing the remaining equations containing arbitrary functions of one variable we come to
conclusion that one of them can admit wider invariance groups iff either

s1d it is equivalent to PDE of the forms6.1d, or
s2d it is equivalent to PDE of the forms6.5d.

To finalize the procedure of group classification of Eqs.s2.7d we need to consider invariant
equations obtained in the preceding section that contain arbitrary functions of two variables.

2. Classification of equations with arbitrary functions of two variables

In the case under study the standard Lie–Ovsyannikov method is inefficient and we apply our
classification algorithm. In order to do this we perform extension of three-dimensional solvable
Lie algebras to all possible realizations of four-dimensional solvable Lie algebras. The next step
will be to check which of the obtained realizations are symmetry algebras of nonlinear equations
of the forms2.7d. In what follows we use the results of Ref. 41, where all inequivalentswithin the
action of inner automorphism groupd four-dimensional solvable abstract Lie algebras are given.

The computation details can be found in Ref. 35. Here we summarize the obtained results as
follows:

s1d If the functions contained in the equations under study are arbitrary, then the corresponding
realizations are their maximal invariance algebras, and

s2d Except for Eq.s6.4d, all the equations in question do not allow for extension of their
symmetry.

Below we give the complete list of PDEss2.7d invariant under four-dimensional solvable Lie
algebras that are obtained through group analysis of equations with arbitrary functions of two
variables.

A2.2% 2A1-invariant equations,

053301-32 V. Lahno and R. Zhdanov J. Math. Phys. 46, 053301 ~2005!

Downloaded 25 May 2005 to 204.52.215.123. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



s1d k]x,]t + u]u,e
t]u,e

−t]ul, F = u + etGsvd, v = u−tux,

s2d K 1

2k
s]t + k]xd,ex+kt]u,e

h]u,]x + u]uL sk . 0,h = x − ktd,

F = sk2 − 1du + ehGsvd, v = e−hsux − ud.

2A2.2-invariant equations,

s1d k]t + eu]u,]x,e
x+kt]u,e

x−kt]ul se = 0,1;k . 0d,

F = sk2 − 1du + eetGsvd, v = e−etsux − ud,

s2d ka]x − u]u,]t + k]x,e
−t]u,e

t]ul sk ù 0,a . 0d,

F = u + exps− a−1hdGsvd, h = x − kt, v = expsa−1hdux.

A3.3% A1-invariant equations,

s1d k]t,]x,]u,t]ul, F = Gsuxd.

A3.4% A1-invariant equations

s1d k]u,]x,t]t + x]x + su + xd]u,t]ul,

F = t−1Gsvd, v = ux − lnutu,

s2d k]t + u]u,]x,t]u,]ul, F = etGsvd,v = e−tux,

s3d kx−1]u,]x − x−1su + lnuxud]u,t]t + x]x,tx
−1]ul,

F = 2x−1ux + x−2 + t−1x−1Gsvd, v = xux + u − lnutx−1u.

A3.5% A1-invariant equations,

s1d k]x,]u,t]t + x]x + u]u,t]ul, F = t−1Gsuxd,

s2d kx−1]u,]x − x−1u]u,t]t + x]x,tx
−1]ul,

F = − 2x−2u + 2t−1sux + x−1udlnutsux + x−1udu + t−1sux + x−1udGsvd, v = xux + u.

A3.6% A1-invariant equations,

s1d k]x,t]u,t]t + x]x,]ul, F = t−2Gsvd, v = t−1ux,

s2d k]t,]x,e
t]u,e

−t]ul, F = u + Gsuxd.

A3.7% A1-invariant equations,

s1d kexps− 1
2s1 − qdtd]u,exps 1

2s1 − qdtd]u,]t + 1
2s1 + qdu]u,]xl

sq Þ 0, ± 1d, F = 1
4s1 − qd2u + exps 1

2s1 + qdtdGsvd,
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v = exps− 1
2s1 + qdtdux,

s2d k]x,utu
1
2

s1−qd]u,utu
1
2

s1+qd]u,t]t + x]x + 1
2s1 + qdu]ul

sq Þ 0, ± 1d, F = 1
4sq2 − 1dt−2u + utu

1
2

sq−3dGsvd,

v = utu
1
2

s1−qdux,

s3d Kutu−1/qujusq+1d/2q]u,]x −
1 + q

2q
x−1u]u,− qst]t + x]xd,ujus1+qd/2q]uL

sq Þ 0, ± 1d, F = F1 − q2

4q2 st−2 + x−2dGu +
1 + q

q
x−1ux + t−2ujus1+qd/2qGsvd,

j = tx−1, v = ujusq−1d/2qFxux +
q + 1

2q
uG .

A3.8% A1-invariant equations,

s1d ksin t]u,cost]u,]t,]xl, F = − u + Gsuxd.

A3.9% A1-invariant equations,

s1d ksin t]u,cost]u,]t + qu]u,]xl sq . 0d,

F = − u + eqtGsvd, v = e−qtux.

A4.1-invariant equations,

s1d k]u,− t]u,]x,]t − tx]ul, F = Gsvd, v = ux + 1
2t2,

s2d k]u,− t]u,a]x + 1
2t2]u,]t + kx]xl sk ù 0,a . 0d,

F = a−1sx − ktd + Gsuxd.

A4.2-invariant equations,

s1d kutu1−1
2

q]u,utu
1
2

q]u,]x,t]t + x]x + fs1 + 1
2qdu + xutu

1
2

qg]ul

sq Þ 0,1d, F = 1
4qsq − 2dt−2u + utu

1
2

sq−3dGsvd,

v = utu
1
2

s1−qdux − 2utu
1
2 ,

s2d k]x,Îutu]u,Îutu lnutu]u,t]t + x]x + sq + 1
2du]ul

sq Þ 0d, F = − 1
4t−2u + utuq−3

2Gsvd, v = utu
1
2

−qux.

A4.3-invariant equations,
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s1d k]x,utu
1
2]u,− utu

1
2 lnutu]u,t]t + x]x + 1

2u]ul ,

F = − 1
4t−2u + utu−

3
2Gsvd, v = utu

1
2ux,

s2d k]x,t]u,]u,t]t + x]xl, F = t−2Gsvd,v = tux,

s3d kekt]u,]t + ku]u,b]x + tekt]u,e
−kt]ul sk Þ 0,b . 0d,

F = k2u + 2kb−1xekt + ektGsvd, v = e−ktux,

s4d kex+kt]u,e
h]u,as]x + u]ud + 2kteh]u,− s1/2kds]t + k]xdl

sa Þ 0, k . 0d, F = sk2 − 1du − 4k2a−1heh + ehGsvd,

v = e−hsux − ud, h = x − kt.

A4.4-invariant equations,

s1d kutu
1
2]u,− utu

1
2 lnutu]u,]x,t]t + x]x + f 3

2u − xutu
1
2 lnutug]ul ,

F = 1
4t−2u + utu−

1
2Gsvd,v = utu−

1
2ux + 1

2 ln2utu.

A4.5-invariant equations,

s1d k]x,utum−a]u,utu1−m+a]u,t]t + x]x + mu]ul

smÞ 1
2s1 + ad, 1

2 + a;a Þ 0d ,

F = sm− adsm− a − 1dt−2u + utum−2Gsvd, v = utu1−mux.

A4.6-invariant equations,

s1d k]x,utu
1
2 sinsq−1 lnutud]u,utu

1
2 cossq−1 lnutud]u,qt]t + qx]xs 1

2q + pdu]ul sq Þ 0,p ù 0d,

F = − s 1
4 + q−2dt−2u + utuq

−1sp−3
2

qdGsvd, v = utuq
−1s1

2
q−pdux.

A4.7-invariant equations,

s1d k]u,− t]u,]t + k]x,t]t + x]x + s2u − 1
2t2d]ul sk ù 0d,

F = − lnuhu + Gsvd, v = h−1ux, h = x − kt.

A4.8-invariant equations,

s1d k]t + eu]u,]x,e
x]u,te

x]ul se = 0;1d,

F = − u + eetGsvd, v = e−etsux − ud,

s2d kuxum−q]u,]t,tuxum−q]u,t]t + x]x + mu]ul sq Þ 0, mP Rd,
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F = − sm− qdsm− q − 1dx−2u + uxum−2Gsvd,

v = uxu1−mfux − sm− qdx−1ug,

s3d k]t + k]x,]u,t]u,t]t + x]x + qu]ul sk . 0, q P Rd,

F = uhuq−2Gsvd, v = uhu1−qux, h = x − kt,

s4d kx−1]u,]t + ]x − x−1u]u,tx
−1]u,t]t + x]xl,

F = 2x−1ux + x−1st − xd−1Gsvd, v = xux + u,

s5d k]u,− t]u,]t + k]x + u]u,a]x + u]ul sa Þ 0, k ù 0d,

F = expsa−1h + tdGsvd, v = exps− a−1h − tdux, h = x − kt.

A4.10-invariant equations,

s1d ksin t]u,cost]u,]x + u]u,]t + k]xl sk ù 0d,

F = − u + ehGsvd, v = e−hux, h = x − kt.

In the above formulasG=Gsvd is an arbitrary function satisfying the conditionFuxux
Þ0.

CONCLUDING REMARKS

Let us briefly summarize the results obtained in this paper.
We prove that the problem of group classification of the general quasilinear hyperbolic type

equations1.1d reduces to classifying equations of more specific forms,

sId utt = uxx + Fst,x,u,uxd, Fuxux
Þ 0,

sII d utt = uxx + gst,x,udux + fst,x,ud, gu Þ 0,

sIII d utx = gst,xdux + fst,x,ud, gx Þ 0, fuu Þ 0,

sIV d utx = fst,x,ud, fuu Þ 0.

If we denote asDE the set of PDEssII d–sIII d, then the results of application of our algorithm
for group classification of equationssId–sIV d can be summarized as follows.

s1d We perform complete group classification of the classDE. We prove that the Liouville
equation has the highest symmetry properties among equations fromDE. Next, we prove that
the only equation belonging to this class and admitting the four-dimensional invariance
algebra is the nonlinear d’Alembert equations. It is established that there are 12 inequivalent
equations fromDE invariant under three-dimensional Lie algebras. We give the lists of all
inequivalent equations fromDE that admit one- and two-dimensional symmetry algebras.

s2d We have studied the structure of invariance algebras admitted by nonlinear equations from
the classsId. It is proved, in particular, that their invariance algebras are necessarily solvable.

s3d We perform complete group classification of nonlinear equations from the class of PDEssId.
We prove that the highest symmetry algebras admitted by those equations are five dimen-
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sional and construct all inequivalent classes of equations invariant with respect to five-
dimensional Lie algebras. We also construct all inequivalent equations of the formsId ad-
mitting one-, two-, three-, and four-dimensional Lie algebras.

In one of our future papers we intend to exploit the obtained classification results to construct
exact solutions of nonlinear wave equationssId–sIV d.

1S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zacharov,Theory of Solitons. The Inverse Scattering Method
sConsultants Bureau, New York, 1980d.

2G. B. Whitham,Linear and Nonlinear WavessWiley-Interscience, New York, 1974d.
3F. Calogero, and A. Degasperis,Solitons and the Spectral Transform IsNorth-Holland, Amsterdam, 1982d.
4V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, and A. A. Rodionov,Application of Group-Theoretical Methods in
HydrodynamicssNauka, Novosibirsk, 1994d.

5O. V. Kaptsov and Yu. V. Shan’ko, Diff. Eq.35, 1683s1999d.
6E. I. Ganzha, Theor. Math. Phys.122, 39 s2000d.
7J. Weiss, J. Math. Phys.25, 2226s1984d.
8A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys56, 61 s2001d.
9S. Lie, Arch. Math. 6, 328 s1881d.

10L. V. Ovsyannikov, Dokl. Akad. Nauk SSSR125, 592 s1959d.
11N. H. Ibragimov,CRC Handbook of Lie Group Analysis of Differential Equations. V.1. Symmetries, Exact solutions, and

Conservation LawssCRC, Boca Raton, FL, 1994d.
12R. Z. Zhdanov and V. I. Lagno, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki2000, 12 s2000d.
13R. Z. Zhdanov and V. I. Lagno, J. Phys. A32, 7405s1999d.
14L. V. Ovsyannikov,Group Analysis of Differential EquationssAcademic, New York, 1982d.
15P. J. Olver,Applications of Lie Groups to Differential EquationssSpringer-Verlag, New York, 1986d.
16L. V. Ovsyannikov, Prikl. Mekh. Tekh. Fiz.1960, 126 s1960d.
17A. Barone, C. Esposito, and A. C. Scott, Riv. Nuovo Cimento1, 227 s1971d.
18S. Kumei, J. Math. Phys.16, 2461s1975d.
19E. Pucci and M. C. Salvatori, Int. J. Non-Linear Mech.21, 147 s1986d.
20W. F. Ames, E. Adams, and R. J. Lohner, Int. J. Non-Linear Mech.16, 439 s1981d.
21W. F. Ames,Nonlinear Partial Differential Equations in EngineeringsAcademic, New York, 1972d, Vol. II, pp. 87–142.
22A. Oron and Ph. Rosenau, Phys. Lett. A118, 172 s1986d.
23E. S. Suhubi and A. Bakkaloglu, Int. J. Non-Linear Mech.26, 567 s1991d.
24M. L. Gandarias, M. Torrisi, and A. Valenti, Int. J. Non-Linear Mech.39, 389 s2004d.
25D. J. Arrigo, Int. J. Non-Linear Mech.26, 619 s1991d.
26J. G. Kingston and C. Sophocleous, Int. J. Non-Linear Mech.36, 987 s2001d.
27M. Torrisi and A. Valenti, Int. J. Non-Linear Mech.20, 135 s1985d.
28S. C. Chikwendu, Int. J. Non-Linear Mech.16, 117 s1981d.
29E. Pucci, Riv. Mat. Univ. Parma12, 71 s1987d.
30A. Donato, Int. J. Non-Linear Mech.22, 307 s1987d.
31N. H. Ibragimov, M. Torrisi, and A. Valenti, J. Math. Phys.32, 2988s1991d.
32A. Abramenko, V. I. Lagno, and A. M. Samoilenko, Diff. Eq.38, 502 s2002d.
33V. I. Lagno and A. M. Samoilenko, Diff. Eq.38, 384 s2002d.
34P. Basarab-Horwath, V. Lahno, and R. Zhdanov, Acta Appl. Math.69, 43 s2001d.
35V. Lagno, R. Zhdanov, and O. Magda, nlin.SI/0405069.
36N. Jacobson,Lie AlgebrassInterscience, New York, 1962d.
37A. O. Barut and R. Raczka,Theory of Group Representations and ApplicationssPWN-Polish Scientific Publishers,

Warszawa, 1977d.
38M. Goto and F. D. Grosshans,Semisimple Lie AlgebrassMarcel Dekker, New York, 1978d.
39G. M. Mubarakzjanov, Izv. Vyssh. Uchebn. Zaved., Mat.55, 95 s1966d.
40G. M. Mubarakzjanov, Izv. Vyssh. Uchebn. Zaved., Mat.32, 114 s1963d.
41J. Patera and P. Winternitz, J. Math. Phys.18, 1449s1977d.

053301-37 Group classification of nonlinear wave equations J. Math. Phys. 46, 053301 ~2005!

Downloaded 25 May 2005 to 204.52.215.123. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp


