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Abstract

We perform complete group classification of the general class of quasi linear wave equations
in two variables. This class may be seen as a broad generalization of the nonlinear d’Alembert,
Liouville, sin/sinh-Gordon and Tzitzeica equations. In this way we derived a number of new
genuinely nonlinear invariant models with high symmetry properties. In particular, we obtain four
classes of nonlinear wave equations admitting five-dimensional invariance groups. Applying the
symmetry reduction technique we construct multi-parameter families of exact solutions of these
equations.

Introduction

It was Sophus Lie who was the first to utilize group properties of differential equations in order to
actually solve them (to construct their exact solutions). He computed the maximal invariance group
of the one-dimensional heat conductivity equation and utilized this symmetry to construct its explicit
solutions. Saying it the modern way, he performed symmetry reduction of the heat equation. Nowadays
symmetry reduction is one of the most powerful tools for solving nonlinear partial differential equations
(PDEs).

The majority of fundamental equations of mathematical and theoretical physics admit wide sym-
metry groups. It is the rich symmetry that enables developing a variety of efficient methods for
mathematical analysis of linear differential equations. However, linear equations give mathematical
description of physical, chemical or biological processes in a first approximation only. To provide
a more detailed and precise description a mathematical model has to incorporate nonlinear terms.
What is more, some important mathematical physics equations have no linearized versions at all. A
well-known example is the system of Yang-Mills equations.

Hyperbolic type second-order nonlinear PDEs in two independent variables are utilized to describe
different types of wave propagation. They are also used in differential geometry, in various fields of
hydro- and gas dynamics, chemical technology, super conductivity, crystal dislocation to mention only
a few applications areas. However the list of models (equations) is surprisingly narrow. By the most
part it is comprised by the Liouville, sine/sinh-Gordon, Goursat, d’Alembert and Tzitzeica equations
and a couple of others. From the group-theoretical viewpoint the popularity of these very models is
due to the fact that they have non-trivial Lie or Lie-Bäcklund symmetry. By this very reason they
are either integrable by the inverse problem methods (see, e.g.,[1]–[3]) or are linearizable [4]–[6]) and
completely integrable [7, 8].
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In this connection it seems to be a very important problem to select from the reasonably exten-
sive class of nonlinear hyperbolic type PDEs those enjoying the best symmetry properties. Saying
’reasonably extensive’ we mean that this class should contain the above enumerated equations as
particular cases, on the one hand, and it should contain a wide variety of new invariant models of
potential interest for applications, on the other. The list of the so obtained invariant equations will
contain candidates for realistic nonlinear mathematical models of the physical and chemical processes
enumerated above.

The history of group classification methods goes back to Lie. The first paper on this subject is
[9], where Lie proves that a linear two-dimensional second-order PDE may admit at most a three-
parameter invariance group (apart from the trivial infinite-parameter symmetry group, which is due
to linearity).

The modern formulation of the problem of group classification of PDEs was suggested by Ovsyan-
nikov in [10]. He developed the regular method (we will refer to it as to the Lie-Ovsyannikov method)
for classifying differential equations with non-trivial symmetry and performed complete group classi-
fication of a class of nonlinear heat conductivity equations. In a number of subsequent publications
more general types of nonlinear heat equations were classified (a review of these results can be found
in [11]).

Analysis of the papers on group classification of PDEs reveals that the majority of them deal
with equations whose arbitrary elements (functions) depend on one variable only. The reason for
this fact is that application of Lie-Ovsyannikov method to PDEs, which contain arbitrary functions
of several variables, is not always possible. To achieve a complete classification one either needs to
specify the transformation group realization or somehow restrict arbitrariness of functions contained
in the equation under study.

Recently, we developed the efficient approach enabling to overcome this difficulty for low dimen-
sional PDEs [12, 13]. Utilizing it we have obtained the ultimate solution of the problem of group
classification of the general quasi-linear heat conductivity equations in two independent variables.

In this paper we apply the approach mentioned above to perform group classification of the most
general quasi-linear hyperbolic type PDE in two independent variables.

1 Group classification algorithm

We begin this section by formulating the problem to be solved. Then we briefly review the already
known results. Finally we give a short description of our approach to group classification of PDEs (for
the detailed account of the necessary facts, see ([13])).

While classifying a given class of differential equations into subclasses, one can use different clas-
sifying features, like linearity, order, the number of independent or dependent variables, etc. In group
analysis of differential equations the principal classifying features are symmetry properties of equa-
tions under study. This means that classification objects are equations together with their symmetry
groups. This point of view is based on the well-known fact that any PDE admits a (possibly triv-
ial) Lie transformation group. And what is more, any transformation group corresponds to a class
of PDEs, which are invariant under this group. So that performing group classification of a class
of PDEs means describing all possible (inequivalent) pairs (PDE, maximal invariance group), where
PDE should belong to the class of equations under consideration.

We perform group classification of the following class of quasi-linear wave equations:

utt = uxx + F (t, x, u, ux). (1.1)

Here F is an arbitrary smooth function, u = u(t, x). Hereafter we adopt notations ut = ∂u
∂t , ux =

∂u
∂x

, utt = ∂2u
∂t2

, . . . .
Our aim is describing all equations of the form (1.1) that admit nontrivial symmetry groups. The

challenge of this task is in the word all. If, for example, we fix the form of a desired invariance group,
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then the classification problem simplify immensely. A slightly more cumbersome (but still tractable
with the standard Lie-Ovsyannikov approach) is the problem of group classification of equation with
arbitrary functions of at most one variable.

As equations invariant under similar Lie groups are identical within the group-theoretic framework,
it makes sense to consider non similar transformation groups [14, 15] only. The important example of
similar Lie groups is provided by Lie transformation groups obtained one from another by a suitable
change of variables. Consequently, equations obtained one from another by a change of variables have
similar symmetry groups and cannot be distinguished within the group-theoretical viewpoint. That is
why, we perform group classification of (1.1) within a (locally invertible) change of variables preserving
the class of PDEs (1.1).

The problem of group classification of linear hyperbolic type equation

utx + A(t, x)ut + B(t, x)ux + C(t, x)u = 0 (1.2)

with u = u(t, x), was solved by Lie [9] (see, also, [16]). In view of this fact, we consider only those
equations of the form (1.1) which are not (locally) equivalent to the linear equation (1.2).

As we have already mentioned in Introduction, the Lie-Ovsyannikov method of group classification
of differential equations has been suggested in [10]. Utilizing this method enabled solving group
classification problem for a number of important one-dimensional nonlinear wave equations:

utt = uxx + F (u); [17]− [19]
utt = [f(u)ux]x; [20]− [22]
utt = f(ux)uxx; [22, 23]

utt = F (ux)uxx + H(ux); [24]
utt = F (uxx); [22]

utt = um
x uxx + f(u); [25]

utt + f(u)ut = (g(u)ux)x + h(u)ux; [26]
utt = (f(x, u)ux)x. [27]

Analysis of the above list shows that the most of arbitrary elements (= arbitrary functions) depend
on one variable. This is not coincidental, indeed, the Lie-Ovsyannikov approach works most efficiently
for the case when arbitrary elements are functions of one variable only. The reason for this fact
is that the obtained system of determining equations is still over-determined. So that it can be
effectively solved using the same technique that is applied to compute maximal symmetry group of
PDEs containing no arbitrary elements.

The matter becomes much more complicated for the case when arbitrary elements are functions
of two (or more) arguments. By this very reason group classifications of nonlinear wave equations

utt + λuxx = g(u, ux); [28, 29]
utt = [f(u)ux + g(x, u)]x; [30]

utt = f(x, ux)uxx + g(x, ux) [31]

are not complete.
We suggest the new approach to problem of group classification of low dimensional PDEs in [12, 13].

This approach is based on Lie-Ovsyannikov infinitesimal method and classification results for abstract
finite-dimensional Lie algebras. It enabled obtaining the complete solution of group classification
problem for the general heat equation with a nonlinear source

ut = uxx + F (t, x, u, ux).
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Later on, we performed complete group classification of the most general quasi-linear evolution equa-
tion [32]–[34]

ut = f(t, x, u, ux)uxx + g(t, x, u, ux).

A starting point of our analysis is a well-known fact that solutions va = (τa, ξa, ηa), a = 1, . . . , n
of the determining equations (we denote them as DE) for symmetry operators

Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u

admitted by (1.1) span a Lie algebra `. So without any loss of generality we can replace DE with the
(possibly infinite) set of systems of PDEs

{
DE,

[Qi, Qj ] = Ck
ij Qk,

or, equivalently, 



DE,

Qiτj −Qjτi = Ck
ij τk,

Qiξj −Qjξi = Ck
ij ξk,

Qiηj −Qjηi = Ck
ij ηk.

In the above formulas the indices i, j, k take the values 1, . . . , n (n ≥ 1 is a dimension of the cor-
responding Lie algebra), Ck

ij are structure constants of the Lie algebra ` and Qa = τa(t, x, u)∂t +
ξa(t, x, u)∂x + ηa(t, x, u)∂u.

If we solve the (over-determined) system of PDEs given above for all possible dimensions n ≥ 1
of all admissible Lie algebras, `, then the problem of group classification of Eq.(1.1) is completely
solved. In other words the problem of group classification of the general wave equation (1.1) reduces
to integrating over-determined systems of PDEs in question for all n = 1, 2, . . . , n0, where n0 is the
maximal dimension of the Lie algebra admitted by the equation under study. More formally, our
algorithm for group classification of the class of PDEs (1.1) consists of the following steps (for more
details, see [34]):

I. Using the infinitesimal Lie method we derive the system of determining equations for coefficients
of the first-order operator that generates symmetry group of equation (1.1) (Note that the
determining equations which explicitly depend on the function F and its derivatives are called
classifying equations). Integrating equations that do not depend on F we obtain the form of the
most general infinitesimal operator admitted by equation (1.1) under arbitrary F . Another task
of this step is calculating the equivalence group E of the class of PDEs (1.1).

II. We construct all realizations of Lie algebras An of the dimension n ≤ 3 in the class of operators
obtained at the first step within the equivalence relation defined by transformations from the
equivalence group E . Inserting the so obtained operators into classifying equations we select
those realizations that can be symmetry algebras of a differential equation of the form (1.1).

III. We compute extensions of the realizations constructed at the previous step to realizations of
higher dimensional (n > 3) Lie algebras. Since extending symmetry algebras results in reducing
arbitrariness of the function F , at some point this function will contain either arbitrary functions
of one variable or arbitrary constants. At this point, we apply Lie-Ovsyannikov classification
method to derive the maximal symmetry group of the equation under study thus completing its
group classification.
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Performing the above enumerated steps yields the complete list of inequivalent equations of the
form (1.1) together with their maximal (in Lie’s sense) symmetry algebras.

We say that the group classification problem is completely solved if it has been proved that

1 ) The constructed symmetry algebras are maximal invariance algebras of the equations under
consideration;

2 ) The list of invariant equations contains only inequivalent ones, namely, no equation can be
transformed into another one from the list by a transformation from the equivalence group E .

2 Preliminary group classification of equation (1.1)

The first step of the algorithm is looking for the infinitesimal operator of symmetry group of equation
(1.1) in the form

Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u, (2.1)

where τ, ξ, η are smooth functions defined on an open domain Ω of the space V = R2×R1 of indepen-
dent R2 = 〈t, x〉 and dependent R1 = 〈u〉 = u(t, x) variables.

Operator (2.1) generates one-parameter invariance group of (1.1) iff its coefficients τ, ξ, η, ε satisfy
the equation (Lie’s invariance criterion)

ϕtt − ϕxx − τFt − ξFx − ηFu − ϕxFux

∣∣∣∣∣
(1.1)

= 0, (2.2)

where

ϕt = Dt(η)− utDt(τ)− uxDt(ξ),
ϕx = Dx(η)− utDx(τ)− uxDx(ξ),
ϕtt = Dt(ϕt)− uttDt(τ)− utxDt(ξ),
ϕxx = Dx(ϕx)− utxDx(τ)− uxxDx(ξ)

and Dt, Dx are operators of total differentiation with respect to the variables t, x. As customary, by

writing

∣∣∣∣∣
(1.1)

we mean that one needs to replace utt and its differential consequences with the expression

uxx + F and its differential consequences.
After a simple algebra we represent (2.2) in the form of system of four PDEs:

(1) ξu = τu = ηuu = 0,

(2) τt − ξx = 0, ξt − τx = 0,

(3) 2ηtu + τxFux = 0, (2.3)
(4) ηtt − ηxx − 2uxηxu + [ηu − 2τt]F − τFt − ξFx

−ηFu − [ηx + ux(ηu − ξx)]Fux = 0.

It follows from equation (1) that τ = τ(t, x), ξ = ξ(t, x), η = h(t, x)u + r(t, x). In the sequel we
differentiate between the cases Fuxux 6= 0 and Fuxux = 0.

Case Fuxux 6= 0. It follows from (3) that τx = ht = 0. Taking into account these equations and
also equation (2), we obtain τ = λt + λ1, ξ = λx + λ2, h = h(x), where λ, λ1, λ2 are arbitrary real
constants.

Case Fuxux = 0. If this is the case, then F = g(t, x, u)ux + f(t, x, u), where f and g are arbitrary
smooth functions.
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Given the condition gu 6= 0, it follows from (3) that τx = ht = 0. So that taking into account
equation (2) we arrive at the already known expressions for τ, ξ, h.

If gu = 0, then fuu 6= 0, since otherwise equation (1.1) becomes linear.
Let g ≡ 0. It follows from (3) that η = h(x)u + r(t, x). Equation (4) now reads as

rtt − rxx − 2h′ux + [h− 2τt]f − τft − ξfx − [hu + r]fu = 0.

As functions τ, ξ, h, r, f do not depend on ux, we have h′ = 0. Hence η = mu + r(t, x), where m is
an arbitrary real constant. Furthermore, if g = g(t, x) 6= 0, then it is straightforward to verify that
system of equations ((3), (4)) is equivalent to the following equations:

2ht = −τxg, 2hx = −τtg − τgt − ξgx,

(htt − hxx)u + rtt − rxx + f [h− 2τt] − τft − ξfx − [hu + r]fu − (hxu + rx)g = 0.

Integrating equation (2) yields τ = ϕ(θ) + ψ(σ), ξ = −ϕ(θ) + ψ(σ), where ϕ,ψ are arbitrary smooth
functions of θ = t− x, σ = t + x. So we prove the following assertion.

Theorem 1 Provided Fuxux 6= 0, the maximal invariance group of equation (1.1) is generated by the
following infinitesimal operator:

Q = (λt + λ1)∂t + (λx + λ2)∂x + [h(x)u + r(t, x)]∂u, (2.4)

where λ, λ1, λ2 are real constants and h = h(x), r = r(t, x), F = F (t, x, u, ux) are functions obeying
the constraint

rtt − rxx − d2h

dx2
u− 2

dh

dx
ux + (h− 2λ) F

−(λt + λ1) Ft − (λx + λ2) Fx − (hu + r) Fu (2.5)

−(rx +
dh

dx
u + (h− λ)ux) Fux = 0.

If F = g(t, x, u)ux + f(t, x, u), gu 6= 0, then the maximal invariance group of equation (1.1) is
generated by infinitesimal operator (2.4), where λ, λ1, λ2 are real constants, and h, r, g, f are functions
satisfying the system of two equations

−2h′ − λg = (λt + λ1)gt + (λx + λ2)gx + (hu + r)gu,

−h′′u + rtt − rxx + (h− 2λ)f = (λt + λ1)ft + (λx + λ2)fx (2.6)
+(hu + r)fu + g(h′u + rx).

Next, if F = g(t, x)ux + f(t, x, u), q 6≡ 0, fuu 6= 0, then the infinitesimal operator of invariance group
of equation (1.1) reads as

Q = τ(t, x)∂t + ξ(t, x)∂x + (h(t, x)u + r(t, x))∂u,

where τ, ξ, h, r, g, f are functions satisfying the system of PDEs

τt − ξx = 0, ξt − τx = 0,

2ht = −τxg, 2hx = −τtg − τgt − ξgx,

(htt − hxx)u + rtt − rxx + f(h− 2τt)− τft

−ξfx − (hu + r)fu − (hxu + rx)g = 0.

Finally, if F = f(t, x, u), fuu 6= 0, then the maximal invariance group of equation (1.1) is generated
by the infinitesimal operator

Q = [ϕ(θ) + ψ(σ)]∂t − [ϕ(θ)− ψ(σ)]∂x + [ku + r(t, x)]∂u,
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where k ∈ R, θ = t−x, σ = t+x and functions ϕ,ψ, r, f and constant k satisfy the following equation:

rtt − rxx + [k − 2ϕ′ − 2ψ′]f − (ϕ + ψ)ft +

+(ϕ− ψ)fx − (ku + r)fu = 0, ϕ′ =
dϕ

dθ
, ψ′ =

dψ

dθ
.

Summing up the above considerations we conclude that the problem of group classification of
equation (1.1) reduces to the one of classifying equations of the more specific forms

utt = uxx + F (t, x, u, ux), Fuxux 6= 0; (2.7)
utt = uxx + g(t, x, u)ux + f(t, x, u), gu 6= 0; (2.8)
utt = uxx + g(t, x)ux + f(t, x, u), g 6= 0, fuu 6= 0; (2.9)
utt = uxx + f(t, x, u), fuu 6= 0. (2.10)

Consider the last two equations. Using the change of variables

t̄ = t− x, x̄ = t + x, u = v(t̄, x̄)

we reduce them to the equations

vt̄x̄ =
1
4
f(t̄, x̄, v),

vt̄x̄ = −1
4
g(t̄, x̄)(vt̄ − vx̄) +

1
4
f(t̄, x̄, v). (2.11)

Now making the change of variables

t̃ = t̄, x̃ = x̄, ṽ(t̃, x̃) = Λ(t̄, x̄)v,

where Λ = exp
[−1

4

∫
g(t̄, x̄)dx̄

]
, we transform (2.11) to become

ṽt̃x̃ =
(

1
4
g − Λ−1Λt̄

)
ṽx̃ − 1

4
gΛ−1Λt̃ṽ +

1
4
Λ−1Λx̄gṽ + Λ−1f.

Hence we conclude that the following assertion holds true.

Assertion 1 The problem of group classification of equations (2.9), (2.10) is equivalent to the one of
classifying equations

utx = g(t, x)ux + f(t, x, u), gx 6= 0, fuu 6= 0; (2.12)
utx = f(t, x, u), fuu 6= 0. (2.13)

Note that the constraint gx 6= 0 is essential, since otherwise (2.12)is locally equivalent to (2.13).
Summing up we conclude that the problem of group classification of (1.1) reduces to classifying the

more particular classes of PDEs (2.7), (2.8, (2.12), (2.13). In what follows, we provide full calculation
details for equations (2.9) and (2.10) only. The reason is just to save space and still be able to present
all details of the algorithm.

First, we consider equations (2.8), (2.12), (2.13).
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3 Group classification of equation (2.8)

According to Theorem 1 the invariance group of equation (2.8) is generated by infinitesimal operator
(2.4). And what is more, the real constants λ, λ1, λ2 and functions h, r, g, f satisfy equations (2.6).
System (2.6) is to be used to specify both the form of nonlinear term (2.8) (i.e., the functions f , g)
and the functions h, r and constants λ, λ1, λ2 in (2.4). It is called the system of classifying equations.

Efficiency of the Lie method for calculation of maximal invariance group of PDE relies essentially
on the fact that routinely the corresponding system of determining equations is over-determined. This
is clearly not the case, since we have only one equation for four (!) arbitrary functions and three of
the latter depend on two variables. By this reason the straightforward application of Lie-Ovsyannikov
algorithm is not possible.

Next, we compute the equivalence group E of equation (2.8). This group is generated by invertible
transformations of the space V preserving the differential structure of equation (2.8) (see, e.g., [14]).
Saying it another way, a group transformation from E

t̄ = α(t, x, u), x̄ = β(t, x, u), v = U(t, x, u),
D(t̄, x̄, v)
D(t, x, u)

6= 0,

should reduce (2.8) to an equation of the same form

vt̄t̄ = vx̄x̄ + g̃(t̄, x̄, v)vx̄ + f̃(t̄, x̄, v), g̃v 6= 0

with possibly different f̃ , g̃.
Ovsyannikov prove [14] that it is possible to modify the Lie’s infinitesimal approach to calculate the

equivalence group in the essentially same way as the invariance group. We omit simple intermediate
calculations and present the final result.

Assertion 2 The maximal equivalence group E of equation (2.8) is

t̄ = kt + k1, x̄ = εkx + k2, v = X(x)u + Y (t, x), (3.1)

where k 6= 0, X 6= 0, ε = ±1, k, k1, k2 ∈ R, and X,Y are arbitrary smooth functions.

This completes the first step of the algorithm.

3.1 Preliminary group classification of equation (2.8).

First, we describe equations of the form (2.8) which admit one-parameter invariance groups.

Lemma 1 There exist transformations (3.1) that reduce operator (2.4) to one of the six forms:

Q = m(t∂t + x∂x), m 6= 0; Q = ∂t + β∂x, β ≥ 0;
Q = ∂t + σ(x)u∂u, σ 6= 0; Q = ∂x; (3.2)
Q = σ(x)u∂u, σ 6= 0; Q = θ(t, x)∂u, θ 6= 0.

Proof can be found in [35].

Theorem 2 There are exactly five inequivalent equations of the form (2.8) that admit one-parameter
transformation groups. They are listed below together with one-dimensional Lie algebras generating
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their invariance groups (note that we do not present the full form of invariant PDEs and just give the
functions f and g)

A1
1 = 〈t∂t + x∂x〉 : g = x−1g̃(ψ, u),

f = x−2f̃(ψ, u), ψ = tx−1, g̃u 6= 0;

A2
1 = 〈∂t + β∂x〉 : g = g̃(η, u), f = f̃(η, u),

η = x− βt, β ≥ 0, g̃u 6= 0;

A3
1 = 〈∂t + σ(x)u∂u〉 : g = −2σ′σ−1 ln |u|+ g̃(ρ, x),

f = (σ′σ−1)2u ln2 |u| − σ′σ−1g̃(ρ, x)u ln |u| − σ−1σ′′u ln |u|+ uf̃(ρ, x),

ρ = u exp(−tσ), σ 6= 0;

A4
1 = 〈∂x〉 : g = g̃(t, u), f = f̃(t, u), g̃u 6= 0;

A5
1 = 〈σ(x)u∂u〉 : g = −2σ′σ−1 ln |u|+ g̃(t, x), f = (σ′σ−1)2u ln2 |u|

−(σ−1σ′′ + σ−1σ′g̃(t, x))u ln |u|+ uf̃(t, x), σ′ 6= 0.

Proof can be found in [35].
In a sequel we will need the following technical lemma.

Lemma 2 There are no realizations of semi-simple Lie algebras by operators of the form (2.4).

Proof. To prove the lemma it suffices to check that there are no realizations of the lowest order simple
Lie algebras by operators (2.4). The commutation relations defining these algebras are [36]:

so(3) = 〈e1, e2, e3〉 : [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1;

sl(2,R) = 〈e1, e2, e3〉 : [e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1.

We start by noting that one of the basis operators e1, e2, e3 can be reduced to one of the five
operators (3.2) (see, Lemma 1). We consider in detail the case of operator

t∂t + x∂x (3.3)

only, since the remaining cases are handled in a similar way.
Let the basis operator e1 of the algebras so(3) and sl(2,R) be of the form (3.3). Computing the

commutator of e1 and Q of the form (2.4) yields the relation

[e1, Q] = −λ1∂t − λ2∂x + [xh′u + xrx + trt]∂u.

To satisfy the first two commutation relations for each of the algebras under study, the basis operators
e2, e3 have to be of the form

α1∂t + α2∂x + (γ(x)u + µ(t, x))∂u,

where α1, α2 ∈ R, γ and µ are smooth functions. It is straightforward to verify that these operators
cannot satisfy the third commutation relation for either algebra sl(2,R) and so(3).

The lemma is proved.

Theorem 3 There are no nonlinear equations (2.8) invariance algebras of which are isomorphic to
semi-simple Lie algebras or contain them as sub-algebras.

Proof. Suppose the inverse. Let (2.8) be an equation the invariance algebra of which contain a sub-
algebra that is semi-simple Lie algebra L. Then by properties of semi-simple Lie algebras there exist
linear combinations of the basis elements of L forming the basis of either so(3) or sl(2,R). However,
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due to Lemma 2 there are no realizations of the algebras so(3), sl(2,R) by operators (2.4). We arrive
at the contradiction which proves the theorem.

It follows from Theorem 3 and Levi-Maltsev theorem (see, e.g., [36, 37]) that nonlinear equation
(2.8) can admit invariance algebras of the dimension higher than one provided, (i) these algebras
are isomorphic to real solvable Lie algebras, or (ii) their finite dimensional sub-algebras are real and
solvable. Using this fact and also the concept of compositional row for solvable Lie algebras we can
perform hierarchical classification of invariant equations starting from the lowest dimensional solvable
Lie algebras and increasing dimension by one till we exhaust all possible invariant equations. We start
by considering two-dimensional solvable Lie algebras.

There exist two inequivalent two-dimensional solvable Lie algebras [37, 38]

A2.1 = 〈e1, e2〉 : [e1, e2] = 0;
A2.2 = 〈e1, e2〉 : [e1, e2] = e2.

To construct all possible realizations of the above algebras we take as the first basis element one of the
realizations of one-dimensional invariance algebras obtained above. The second operator is looked for
in the form (2.4). In the case of commutative algebra A2.1 there is no difference between operators e1

and e2, while for the algebra A2.2 these operators require separate analysis. We give full computation
details for the case when one of the basis elements is of the form A1

1 given in Theorem 2.
Algebra A2.1. Let the operator e1 be of the form (3.3) and the operator e2 read as (2.4). It

follows from the relation [e1, e2] = 0 that λ1 = λ2 = xh′ = 0, trt + xrx = 0. Consequently, we can
choose the basis elements of the algebra under study in the form 〈t∂t + x∂x, (mu + r(ψ))∂u〉, where
m ∈ R, ψ = tx−1. Provided m = 0 the operator e2 becomes r(ψ)∂u. As established earlier, this
realization does not satisfy the determining equations. Hence, m 6= 0. Making the change of variables

t̄ = t, x̄ = x, v = u + m−1r(ψ)

reduces the basis operators in question to the form t̄∂t̄ + x̄∂x̄, mv∂v. That is why we can restrict our
considerations to the realization 〈t∂t + x∂x, u∂u〉.

The second determining equation from (2.6) after being written for the operator u∂u takes the
form ugu = 0, whence it follows that this realization does not satisfy the determining equations. So
the realization A1

1 cannot be extended to a realization of the two-dimensional algebra A2.1.
Algebra A2.2. If operator e1 is of the form (3.3), then it follows from [e1, e2] = e2 that λ = λ1 =

λ2 = 0, xh′ = h, trt + xrx = r.
Next, if the operator e2 reads as (3.3), then we get from [e1, e2] = e2 the erroneous equality 1 = 0.
So the only possible case is when e2 = (mxu + xr(ψ))∂u, m 6= 0, ψ = tx−1, which gives rise to the

following realization of the algebra A2.2: 〈t∂t + x∂x, xu∂u〉. This algebra is indeed invariance algebra
of an equation from the class (2.8) and the functions f and g read as

g = −2x−1 ln |u|+ x−1g̃(ψ), f = x−2u ln2 |u| − x−2g̃(ψ)u ln |u|+ x−2uf̃(ψ), ψ = tx−1.

Analysis of the remaining realizations of one-dimensional Lie algebras yields ten inequivalent A2.1-
and A2.2-invariant equations (see the assertions below). What is more, the obtained (two-dimensional)
algebras are maximal symmetry algebras of the corresponding equations.

Theorem 4 There are at most four inequivalent A2.1-invariant nonlinear equations (2.8). Below we
list the realizations of A2.1 and the corresponding expressions for f and g.

1) 〈∂t, σ(x)u∂u, 〉 : g = −2σ′σ−1 ln |u|,
f = (σ′σ−1)2u ln2 |u| − σ−1σ′u ln |u|+ uf̃(x), σ′ 6= 0;

2) 〈∂t, ∂x〉 : g = g̃(u), f = f̃(u), g̃u 6= 0;

3) 〈∂x, ∂t + u∂u〉 : g = g̃(ω), f = exp(t)f̃(ω), ω = exp(−t), g̃ω 6= 0;
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4) 〈σ(x)u∂u, ∂t − 1
2
kσ(x)ψ(x)u∂u〉 : g = −2σ′σ−1 ln |u|+ kt + g̃(x),

f = (σ′σ−1)2u ln2 |u| − σ−1σ′′u ln |u| − σ−1σ′(kt + g̃(x))u ln |u|

+u

[
1
2
kσ′σ−1t +

1
4
k2t2 +

1
2
kg̃(x) + f̃(x)

]
,

k 6= 0, σ′ 6= 0, ψ =
∫

σ−1dx.

Theorem 5 There exist at most six inequivalent A2.2-invariant nonlinear equations (2.8). Below we
list the realizations of A2.1 and the corresponding expressions for f and g.

1) 〈t∂t + x∂x, k−1|x|ku∂u〉 : g = x−1(−2k ln |u|+ g̃(ψ)),

f = x−2u(−k2 ln2 |u|+ kg̃(ψ) ln |u|+ k(k − 1) ln |u|+ f̃(ψ)),

k 6= 0, ψ = tx−1;

2) 〈∂t + β∂x, exp(β−1x)u∂u〉 : g = −2β−1 ln |u|+ g̃(η),

f = β−2u ln2 |u| − (β−2 + β−1g̃(η))u ln |u|+ uf̃(η),

β > 0, η = x− βt;

3) 〈−t∂t − x∂x, ∂t + β∂x〉 : g = η−1g̃(u), f = η−2f̃(u), β ≥ 0,

η = x− βt, g̃u 6= 0;

4) 〈−t∂t − x∂x, ∂t + mx−1u∂u〉 : g = x−1(2mψ + g̃(ω)),

f = x−1[−2mψu− 2mψ − 2− g̃(ω) + exp(mψ)g̃(ω)],

m > 0, ω = u exp(−mψ), ψ = tx−1, g̃ω 6= 0;

5) 〈∂x, exu∂u〉 : g = −2 ln |u|+ g̃(t), f = u ln2 |u|−
−u ln |u|(1 + g̃(t)) + uf̃(t);

6) 〈−t∂t − x∂x, ∂x〉 : g = t−1g̃(u), f = t−2f̃(u), g̃u 6= 0.

3.2 Completing group classification of (2.8).

As the invariant equations obtained in the previous subsection contain arbitrary functions of at most
one variable, we can use the standard Lie-Ovsyannikov approach to complete group classification of
(2.8). We give the computation details for the case of the first A2.1-invariant equation. The remaining
cases are handled in a similar way.

Putting g = −2σ′σ−1 ln |u|, f = (σ′σ−1)u ln2 |u| − σ−1σ′′u ln |u| + uf̃(x), σ = σ(x), σ′ 6= 0 we
rewrite the first determining equation to become:

−2h′ + 2λσ′σ−1 ln |u| = −2(λx + λ2)(σ′σ−1)′x ln |u| − 2hσ′σ−1 − 2rσ′σ−1u−1.

As h = f(x), σ = σ(x), r = r(t, x), λ, λ2 ∈ R, the above relation is equivalent to the following ones:

h′ = σ′σ−1h, r = 0, λσ′σ−1 = −(λx + λ2)(σ′σ−1)′.

If σ is an arbitrary function, then λ = λ2 = r = 0, h = Cσ, C ∈ R and 〈∂t, σ(x)u∂u〉 is the maximal
symmetry algebra of the equation under study. Hence extension of symmetry algebra is only possible
when the function ψ = σ′σ−1 is a (non-vanishing identically) solution of equation

(αx + β)ψ′ + αψ = 0, α, β ∈ R, |α|+ |β| 6= 0.
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If α 6= 0, then utilizing displacements by x we can get β = 0, so that ψ = mx−1, m 6= 0. Integrating
the remaining determining equations we get

g = −2mx−1 ln |u|, f = mx−2[mu ln2 |u| − (m− 1)u ln |u|+ nu], m 6= 0, m, n ∈ R.

The maximal invariance algebra of the obtained equation is the three-dimensional Lie algebra 〈∂t,
|x|mu∂u, t∂t + x∂x〉 isomorphic to A3.7.

Next, if α = 0, then β 6= 0 and what is more ψ = m, m 6= 0. If this is the case we have

g = ln |u|, f =
1
4
u ln2 |u| − 1

4
u ln |u|+ nu, n ∈ R.

The maximal invariance algebra of the above equation reads as

〈∂t, ∂x, exp
(
−1

2
x

)
u∂u〉.

It is isomorphic to A3.2.
Similarly we prove that the list of inequivalent equations of the form (2.8) admitting three-

dimensional symmetry algebras is exhausted by the equations given below. Note that the presented
algebras are maximal. This means, in particular, that the maximal symmetry algebra of equation
(2.8) is at most three-dimensional.

A3.2-invariant equations

1) utt = uxx + ux ln |u|+ 1
4u ln2 |u| − 1

4u ln |u|+ nu (n ∈ R) : 〈∂t, ∂x, exp
(−1

2x
)
u∂u〉;

2) utt = uxx + m[ln |u| − t]ux + m2

4 u[(ln |u| − t)(ln |u| − t− 1)] + nu(m > 0,

n ∈ R) : 〈∂x, ∂t + u∂u, exp
(−1

2mx
)
u∂u〉.

A3.4-invariant equations

1) utt = uxx + x−1[2 ln |u|+ mx−1t + n]ux + x−2u ln |u|
+(mx−1t + n− 2)x−2u ln |u|+ 1

4m2x−4t2u + 1
2m(n− 3)x−3tu + px−2u

( m 6= 0, n, p ∈ R) : 〈t∂t + x∂x, x−1u∂u, ∂t − m
2 x−1 ln |x|u∂u〉.

A3.5-invariant equations

1) utt = uxx + |u|mux + n|u|1+2m (m 6= 0, n ∈ R) : 〈∂t, ∂x, t∂t + x∂x −m−1u∂u〉;
2) utt = uxx + euux + ne2u (n ∈ R) : 〈∂t, ∂x, t∂t + x∂x − ∂u〉;
3) utt = uxx − x−1[2 ln |u| −mx−1t− n]ux + x−2u ln2 |u|

−x−2(mx−1t + n)u ln |u|+ ux−2
[

m
4 x−2t2 + m

2 (n− 1)x−1t + p
]

(m,n, p ∈ R) : 〈t∂t + x∂x, xu∂u, ∂t + m
4 x−1u∂u〉.

A3.7-invariant equations

1) utt = uxx − 2mx−1ux ln |u|+ mx−2[mu ln2 |u| − (m− 1)u ln |u|+ nu]

(m 6= 0, 1;n ∈ R) : 〈∂t, |x|mu∂u, t∂t + x∂x〉;
2) utt = uxx − x−1[2k + ln |u| −mx−1t− n]ux + k2x−2u ln2 |u|

−kx−2[mtx−1 + k + n− 1]u ln |u|+ 1
2m(k − 2 + n)tx−3u

+1
4m2t2x−4u + px−2u (|k| 6= 0, 1;m 6= 0, n, p ∈ R) :

〈t∂t + x∂x, |x|ku∂u, ∂t + m
2(1+k)x

−1u∂u〉.
This completes group classification of nonlinear equations (2.8).
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4 Group classification of equation (2.12)

Omitting the intermediate calculation details we give the determining equations for symmetry opera-
tors admitted by equation (2.12).

Assertion 3 The maximal invariance group of PDE (2.12) is generated by the infinitesimal operator

Q = τ(t)∂t + ξ(x)∂x + [h(t)u + r(t, x)]∂u, (4.1)

where τ, ξ, h, r, f, g are smooth functions satisfying the conditions

rtx + f [h− τt − ξx] = grx + τft + ξfx + [hu + r]fu, (4.2)
ht = τtg + τgt + ξgx.

Assertion 4 The equivalence group E of (2.12) is formed by the following transformations of the
space V:

(1) t̄ = T (t), x̄ = X(x), v = U(t)u + Y (t, x), t′X ′U 6= 0; (4.3)
(2) t̄ = T (x), x̄ = X(t), v = Ψ(x)Φ(t, x)u + Y (t, x), t′X ′Ψ 6= 0,

Φ(t, x) = exp[−
∫

g(t, x)dt], gx 6= 0.

Given the arbitrary functions g and f equation (4.2) holds only when τ = h = ξ = r = 0. This
means that in the generic case the maximal invariance group of (2.12) is the trivial group of identical
transformations.

We begin symmetry classification of (2.12) by constructing equations that admit one-dimensional
invariance algebras.

Lemma 3 There exist transformations (4.3) reducing operator (4.1) to one of the seven canonical
forms

Q = t∂t + x∂x; Q = ∂t; Q = ∂x + tu∂u;
Q = ∂x + εu∂u, ε = 0, 1; Q = tu∂u, (4.4)
Q = u∂u, Q = r(t, x)∂u, r 6= 0.

Proof. Transformations (4.3) reduce operator Q (4.1) to become

Q̃ = τT ′∂t̄ + ξX ′∂x̄ + [(τU ′ + Uh)u + τYt + ξYx + Ur]∂v. (4.5)

Provided σ · ξ 6= 0, we can choose non vanishing identically solutions of the equations

τT ′ = T, ξX ′ = X, τU ′ + hU = 0, τYt + ξYx + Ur = 0

as T, X,U, Y thus getting operator Q̃ (4.5) in the form Q̃ = t̄∂t̄ + x̄∂x̄. If τ 6= 0, and ξ = 0, then taking
the solutions of the equations

τT ′ = 1, τU ′ + hU = 0 (U 6= 0), τYt + Ur = 0

as T, U, Y reduces operator (4.1) to the form Q̃ = ∂t̄. If τ = 0, ξ 6= 0, then under h′ 6= 0 we get the
operator Q̃ = ∂x̄ + t̄v∂v. Next, if h′ = 0, we arrive at the operator Q̃ = ∂x̄ + εv∂v, where either ε = 0
or ε = 1.

Finally, the case τ = ξ = 0, gives rise to the operators Q̃ = t̄v∂v, Q̃ = v∂v, Q̃ = r(t̄, x̄)∂v.
Rewriting them in the initial variables we get the operators listed in the statement of lemma. The
lemma is proved.
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Theorem 6 There exist at most three inequivalent nonlinear equations (2.12) that admit one-dimen-
sional invariance algebras. The form of functions f, g and the corresponding symmetry algebras are
given below.

A1
1 = 〈t∂t + x∂x〉 : g = t−1g̃(ω), f = t−2f(u, ω), ω = tx−1, g̃ω 6= 0, fuu 6= 0;

A2
1 = 〈∂t〉 : g = g̃(x), f = f̃(x, u), g̃′ 6= 0, f̃uu 6= 0;

A3
1 = 〈∂x + tu∂u〉 : g = x + g̃(t), f = etxf̃(t, ω), ω = e−txu, f̃ωω 6= 0.

Proof. If equation (2.12) admits one-parameter transformation group, then the latter is generated
by infinitesimal operator (4.1). According to Lemma 3 there exist equivalence transformations (4.3)
reducing this operator to one of the seven canonical operators (4.4). Now we need to solve determining
equations (4.2) for each of these operators. The first three operators yield invariant equations and
corresponding symmetry algebras given in the statement of theorem. The next two operators give rise
to inconsistent equations.

Finally, the remaining operators yield that the functions f and g are linear in u, which means that
the corresponding invariant equations are linear.

It is straightforward to verify that for the case of arbitrary functions f̃ , g̃ the corresponding one-
dimensional algebras are maximal in Lie’s sense.

The theorem is proved.
We proceed now to analyzing equations (2.12) which admit two-dimensional symmetry algebras.

Theorem 7 There exist at most three inequivalent nonlinear equations (2.12) that admit two-dimen-
sional symmetry algebras, all of them being A2.2-invariant equations. The forms of functions f and g
and the corresponding realizations of the Lie algebra A2.2 are given below

A1
2.2 = 〈t∂t + x∂x, t2∂t + x2∂x + mut∂u〉 (m ∈ R) :

g = [mt + (k −m)x]t−1(t− x)−1, k 6= 0,

f = |t− x|m−2|x|−mf̃(ω),
ω = u|t− x|−m|x|m, f̃ωω 6= 0;

A2
2.2 = 〈t∂t + x∂x, t2∂t + mtu∂u〉 (m ∈ R) :

g = t−2[kx + mt], k 6= 0, f = |t|m−2|x|−mf̃(ω),
ω = |t|−m|x|mu, f̃ωω 6= 0;

A3
2.2 = 〈t∂t + x∂x, x2∂x + tu∂u〉 :

g = (tx)−1(mx− t) (m ∈ R), f = x−2 exp(−tx−1)f̃(ω),
ω = u exp(tx−1), f̃ωω 6= 0.

To prove the theorem we need to extend realizations Ai
1 (i = 1, 2, 3) to realizations of the algebras

A2.1, A2.2 by operators (4.1). We skip the calculation details.
Note that if the functions f̃ are arbitrary, then the invariance algebras given in the statement of

Theorem 7 are maximal.
Now we can complete the group classification presented in Theorem 7 utilizing the Lie-Ovsyanni-

kov classification routine. Consider in some detail the case of A1
2.2-invariant equations (the remaining

cases are treated in a similar way). The second determining equation from (4.2) reads now as

(t− x)2ht = t−1τt[m(t− x)2 + kx(t− x)] + τ [−t−2m(t− x)2 − 2kt−1x + kt−2x2] + kξ. (4.6)

Differentiating right- and left-hand sides of (4.6) twice by x yields

ht = (m− k)(t−1τt − t−2τ) + kξ′′.
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Hence we get ξ′′′ = 0 and

ξ = λ1x
2 + λ2x + λ3, λ1, λ2, λ3 ∈ R,

h = (m− k)t−1τ + λ1kt + λ4, λ4 ∈ R.

With account of the above facts we obtain from (4.6) that τ = λ1t
2 +λ2t+λ3. So it follows from (4.6)

that the coefficients of infinitesimal operator (4.1), which generates symmetry group of A1
2.2-invariant

equation, read necessarily as

τ = λ1t
2 + λ2t + λ3,

ξ = λ1x
2 + λ2x + λ3,

h = mλ1t + (m− k)λ3t
−1 + (m− k)λ2 + λ4, λ1, λ2, λ3, λ4 ∈ R.

Consequently, the first determining equation from (4.2) takes the form

{x−1(t− x)−1[((m− k)λ2 + λ4)(tx− x2)− (m− k)λ3t
−1x2

−kλ3x + mλ3t]ω + r|t− x|−m|x|m}f̃ω

−x−1(t− x)−1[((m− k)λ2 + λ4)(tx− x2) (4.7)
−(m− k)λ3t

−1x2 − kλ3x + mλ3t]f̃
= |t− x|−m+2|x|m[rtx − t−1(m + kx(t− x)−1rx].

It follows from (4.7) that if the functions f̃ are arbitrary, then the maximal invariance algebra of the
equation under study coincide with the realization A1

2.2. What is more, an extension of the invariance
algebra is only possible when the function f̃ obeys the following equation:

(aω + b)f̃ω − af̃ = c, (4.8)

where a, b, c ∈ R, |a|+ |b| 6= 0. On the other hand, it follows from (4.8)

(aω + b)f̃ωω = 0,

whence fωω = 0. We arrive at the contradiction which proves that there is no extension of the
realization A1

2.2 in question to a higher dimensional invariance algebra of the equation (2.12). Analy-
zing A2

2.2- and A2
2.3-invariant equations we arrive at the same conclusion.

Consequently, there are no nonlinear equations of the form (2.12) whose maximal invariance alge-
bras are solvable Lie algebras of the dimension higher than two. Next, as the algebra sl(2,R) contains
two-dimensional subalgebra isomorphic to A2.2, there are no nonlinear equations (2.12), whose invari-
ance algebras are either isomorphic to sl(2,R) or contain it as a subalgebra. Finally, we verify that
there are no realizations of the algebra so(3) by operators (4.1).

Summing up the above reasonings we arrive at the following assertion.

Theorem 8 A nonlinear equation (2.12) having non-trivial symmetry properties is equivalent to one
of the equations listed in Theorems 6 and 7.

This completes group classification of the class of nonlinear PDEs (2.12).

5 Group classification of equation (2.13)

As earlier, we present the results of the first step of our group classification algorithm skipping deriva-
tion details.
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Assertion 5 Invariance group of equation (2.13) is generated by the infinitesimal operator

Q = τ(t)∂t + ξ(x)∂x + (ku + r(t, x))∂u, (5.1)

where k is a constant and τ, ξ, r, f are functions satisfying the relation

rtx + [k − τ ′ − ξ′]f = τft + ξfx + [ku + r]fu. (5.2)

Assertion 6 Equivalence group E of the class of equations (2.13) is formed by the following transfor-
mations:

(1) t̄ = T (t), x̄ = X(x), v = mu + Y (t, x),
(2) t̄ = T (x), x̄ = X(t), v = mu + Y (t, x), T ′X ′m 6= 0. (5.3)

Note that given an arbitrary f it follows from (5.2) that τ = ξ = k = r = 0, i.e., the group
admitted is trivial. To obtain equations with nontrivial symmetry we need to specify properly the
function f . To this end we perform classification of equations under study admitting one-dimensional
invariance algebras.

Lemma 4 There exist transformations from the group E (5.3) which reduce (5.1) to one of the four
canonical forms:

Q = ∂t + ∂x + εu∂u (ε = 0, 1);
Q = ∂t + εu∂u (ε = 0, 1);
Q = u∂u, Q = g(t, x)∂u (g 6= 0).

Proof. Utilizing transformations (1) from (5.3) we reduce the operator Q to one of the following forms:

Q = ∂t̄ + ∂x̄ + εv∂v (ε = 0, 1) :
Q = ∂t̄ + εv∂v (ε = 0, 1);
Q = ∂x̄ + εv∂v (ε = 0, 1);
Q = v∂v, Q = g(t̄, x̄)∂v (g 6= 0).

Next we note that the change of variables t̃ = x̄, x̃ = t̄, ṽ = v which is of the form (2) from (5.3)
transforms the second operator into the third one. Rewriting the obtained operators in the initial
variables completes the proof.

Theorem 9 There exist exactly two nonlinear equations of the form (2.13) admitting one-dimensional
invariance algebras. The corresponding expressions for function f and invariance algebras are given
below.

A1
1 = 〈∂t + ∂x + εu∂u〉 (ε = 0, 1) : f = eεtf̃(θ, ω), θ = t− x, ω = e−εtu; f̃ωω 6= 0;

A2
1 = 〈∂t + εu∂u〉 (ε = 0, 1) : f = eεtf̃(x, ω), ω = e−εtu, f̃ωω 6= 0.

To prove the theorem, it suffices to select those operators from the list given in Lemma 4 that can
be invariance algebra of nonlinear equation of the form (2.13). To this end we need to solve equation
(5.2) for each of the operators in question.

The first two operators yield A1
1- and A2

1-invariant equations. The last two operators gives rise to
linear invariant equations (2.13), which are not taken into account.

What is more, if the function f̃ is arbitrary, then the algebras A1
1 and A2

1 are maximal invariance
algebras of the corresponding equations.
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Next, we classify nonlinear equations admitting symmetry algebras of the dimension higher than
one. We begin by considering equations whose invariance algebras contain semi-simple subalgebras.
It turns out that the class of operators (5.1) contain no realizations of the algebra so(3). Furthermore
it contains the four inequivalent realizations of the algebra sl(2,R) given below.

(1) 〈∂t,
1
2
e2t∂t,−1

2
e−2t∂t〉;

(2) 〈∂t,
1
2
e2t(∂t + ∂u),−1

2
e−2t(∂t − ∂u)〉;

(3) 〈∂t,
1
2
e2t(∂t + x∂u),−1

2
e−2t(∂t − x∂u)〉;

(4) 〈∂t + ∂x,
1
2
e2t∂t +

1
2
e2x∂x,−1

2
e−2t∂t − 1

2
e−2x∂x + ε[e−2x − e−2t]∂u〉, ε = 0, 1.

Before starting analysis of sl(2,R)-invariant equations we briefly review the group properties of
the Liouville equation

utx = λeu, λ 6= 0. (5.4)

It is a common knowledge that the maximal invariance group of this equation is the infinite-parameter
group generated by the following infinitesimal operator [39]:

Q = h(t)∂t + g(x)∂x − (h′ + g′)∂u,

where h and g are arbitrary smooth functions. Note that due to this fact the Liouville equation can
be linearized by a non-local change of variables (see, e.g., [11, 40, 41]).

After a simple algebra we obtain that realizations (1), (3), (4) with ε = 1 cannot be invariance
algebras of a nonlinear equation of the form (2.13). Realization (2) is the invariance algebra of equation

utx = f̃(x)e−2u, f̃ 6= 0,

which reduces to equation (5.4) via the change of variables

t = t, x = x, u = −1
2
(v − ln |f̃ |), v = v(t, x).

Finally making use of the change of variables

t̄ = e−2t, x̄ = e−2x, v = u

we rewrite (4) under ε = 0 to become

〈∂t + ∂x, t∂t + x∂x, t2∂t + x2∂x〉.

The corresponding invariant equation reads as

utx = (t− x)−2f̃(u), f̃uu 6= 0. (5.5)

If the function f̃ is arbitrary, then the above presented realization is the maximal invariance algebra
of the equation under study. Using the Lie-Ovsyannikov algorithm we establish that extension of
symmetry is only possible when f̃ = λeu + 2. However the corresponding equation is reduced to the
Liouville equation by the change of variables

t = t, x = x, u = v(t, x) + 2 ln |t− x|.

Thus the only inequivalent nonlinear equations (2.13) whose invariance algebras contain semi-
simple subalgebras are given in (5.4) and (5.5), where f̃ is an arbitrary smooth function of u.
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To complete group classification of equation (2.13) we need to describe equations whose invariance
algebras are solvable Lie algebras of the dimension higher than one. We begin with those realizations
of two-dimensional Lie algebras A2.1, A2.2, which can be admitted by nonlinear equations (2.13).

It turns out that the class of operators (5.1) contains one inequivalent realization of the algebra
A2.1 which meets the invariance requirements, namely,

〈∂t + ε1u∂u, ∂x + ε2u∂u〉 (ε1 = 0, 1; ε2 = 0, 1).

The corresponding invariant equation reads as

utx = exp(ε1t + ε2x)f̃(ω), ω = u exp(−ε1t− ε2x). (5.6)

Analysis of equation (5.6) with arbitrary f(ω) shows that under ε1 + ε2 6= 0 the above realization is
its maximal invariance algebra. Provided ε1 = ε2 = 0 the equation takes the form

utx = f(u) (5.7)

and its maximal invariance algebra is the three-dimensional Lie algebra of the operators

〈∂t, ∂x, t∂t − x∂x〉,

which is isomorphic to A3.6.
It is a common knowledge (see, e.g., [17, 18, 19]) that (5.7) admits extension of its symmetry if it

is equivalent either to the Liouville equation (5.4) or to the nonlinear d’Alembert equation

utx = λ|u|n+1, λ 6= 0, n 6= 0,−1. (5.8)

The maximal invariance algebra of (5.8) is the four-dimensional Lie algebra

〈t∂t − 1
n

u∂u, x∂x − 1
n

u∂u, ∂t, ∂x〉.

It is isomorphic to the algebra A2.2 ⊕A2.2.
Extension of symmetry algebra of equation (5.6) with ε1 = 1, ε2 = 0, is only possible when:

utx = λe−mt|u|m+1, λ 6= 0, m 6= 0,−1; (5.9)
utx = λet exp(ue−t), λ 6= 0. (5.10)

The maximal invariance algebra of (5.9) is the four-dimensional Lie algebra of operators

〈∂t + u∂u, emt∂t, ∂x, x∂x − 1
m

u∂u〉,

which is isomorphic to A2.2 ⊕A2.2. Note that the change of variables

t̄ = e−mt, x̄ = x, u = v(t̄, x̄)

reduces the above equation to the form (5.8).
The maximal invariance algebra of (5.10) is spanned by the operators

〈∂t + u∂u, ∂x, x∂x − et∂u〉

and is isomorphic to A1 ⊕A2.2.
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Analyzing A2.2-invariant equations we arrive at the following conclusion. The class of operators
(5.1) contains six inequivalent realizations of the algebra A2.2 which meet the invariance requirements

(1) 〈−t∂t + x∂u, ∂t〉;
(2) 〈−t∂t − x∂x, ∂t + ∂x〉;
(3) 〈−t∂t − x∂x + u∂u, ∂t + ∂x〉; (5.11)
(4) 〈−t∂t + ∂u, ∂t〉;
(5) 〈−t∂t − x∂x − u∂u, ∂t〉;
(6) 〈−t∂t − x∂x, ∂t〉.

Equation invariant under realization (1) reads as

utx = exp(x−1u). (5.12)

Its maximal symmetry algebra is the three-dimensional Lie algebra

〈−t∂t + x∂u, ∂t, x∂x + u∂u〉

isomorphic to A2.2 ⊕A1. Note that the change of variables

t̄ = x, x̄ = et, u = v(t̄, x̄)

reduces (5.12) to the form (5.10).
Equation invariant under the second realization of A2.2 is of the form (5.5). We have already

obtained this equation while describing sl(2,R)-invariant equations.
Realizations (3) and (4) give no new invariant equations as well.
New invariant equation are obtained when we consider the fifth realization from (5.10). It has the

form
utx = x−1f̃(ω), ω = x−1u.

If the function f̃ is arbitrary, then the realization in question is the maximal invariance algebra of the
above equation. Further extension of symmetry properties is only possible if f̃(ω) = λ|ω|m+1 which
gives the following invariant equation:

utx = λ|x|−m−2|u|m+1, λ 6= 0, m 6= 0,−1,−2.

Its maximal symmetry algebra is the three-dimensional Lie algebra having the basis

〈∂t, t∂t + x∂x + u∂u, x∂x +
m + 1

m
u∂u〉.

This algebra is isomorphic to A2.2 ⊕A1.
We sum up the above results in the following assertion.

Theorem 10 The Liouville equation utx = λeu, λ 6= 0, has the highest symmetry among equations
(2.13). Its maximal invariance algebra is infinite-dimensional and spanned by the following infinite
set of basis operators:

Q = h(t)∂t + g(x)∂x − (h′(t) + g′(x))∂u.

Here h and g are arbitrary smooth functions. Next there exist exactly nine inequivalent equations of the
form (2.13) maximal invariance algebras of which have dimension higher that one. These equations
and their invariance algebras are given in Table 1.
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6 Group classification of equation (2.7)

The first step of the algorithm of group classification of (2.7)

utt = uxx + F (t, x, u, ux), Fuxux 6= 0

has been partially performed in the second chapter. It follows from Theorem 1 that the invariance
group of equation (2.7) is generated by infinitesimal operator (2.4). What is more, the real constants
λ, λ1, λ2 and real-valued functions h = h(x), r = r(t, x), F = F (t, x, u, ux) obey relation (2.5). The
equivalence group of the class of equations (2.7) is formed by transformations (3.1).

The above enumerated facts enable using the results of group classification of equation (2.8) in
order to classify invariant equations of the form (2.7). In particular, using Lemmas 1 and 2 it is
straightforward to verify that the following assertions hold true.

Theorem 11 There are at most seven inequivalent classes of nonlinear equations (2.7) invariant
under one-dimensional Lie algebras.

Below we give the full list of the invariant equations and the corresponding invariance algebras.

A1
1 = 〈t∂t + x∂x〉 : F = t−2G(ξ, u, ω), ξ = tx−1, ω = xux;

A2
1 = 〈∂t + k∂x〉 (k > 0) : F = G(η, u, ux), η = x− kt;

A3
1 = 〈∂x〉 : F = G(t, u, ux);

A4
1 = 〈∂t〉 : F = G(x, u, ux);

A5
1 = 〈∂t + f(x)u∂u〉 (f 6= 0) :

F = −tf ′′u + t2(f ′)2u− 2tf ′ux + etfG(x, v, ω),

v = e−tfu, ω = u−1ux − f ′f−1 ln |u|;
A6

1 = 〈f(x)u∂u〉 (f 6= 0) : F = −f−1f ′′u ln |u|
−2f−1f ′ux ln |u|+ f−2(f ′)2u ln2 |u|+ uG(t, x, ω),

ω = u−1ux − f ′f−1 ln |u|;
A7

1 = 〈f(t, x)∂u〉 (f 6= 0) : F = f−1(ftt − fxx)u + G(t, x, ω),

ω = ux − f−1fxu.

Note that if the functions F and G are arbitrary, then the given algebras are maximal (in Lie’s sense)
symmetry algebras of the respective equations.

Theorem 12 An equation of the form (2.7) cannot admit Lie algebra which has a subalgebra having
a nontrivial Levi factor.

With account of the above facts we conclude that nonlinear equation (2.7) admit a symmetry
algebra of the dimension higher than one only if the latter is a solvable real Lie algebra. That is
why, we turn to classifying equations (2.7) whose invariance algebras are two-dimensional solvable Lie
algebras.

As the calculations are similar to those performed in the third section, we present the final result
only. Namely, we give the form of invariant equations and the corresponding realizations of the
two-dimensional invariance algebras.
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I. A2.1-invariant equations

A1
2.1 = 〈t∂t + x∂x, u∂u〉 : F = x−2uG(ξ, ω),

ξ = tx−1, ω = u−1xux;

A2
2.1 = 〈t∂t + x∂x, σ(ξ)∂u〉 (σ 6= 0, ξ = tx−1) :

F = x−2[σ−1((1− ξ2)σ′′ − 2ξσ′)u + G(ξ, ω)],

ω = ξσ′u + σxux;

A3
2.1 = 〈∂t + k∂x, u∂u〉 (k > 0) : F = uG(η, ω),

η = x− kt, ω = u−1ux;

A4
2.1 = 〈∂t + k∂x, ϕ(η)∂u〉 (k > 0, η = x− kt, ϕ 6= 0) :

F = (k2 − 1)ϕ′′ϕ−1u + G(η, ω), ω = ϕux − ϕ′u;

A5
2.1 = 〈∂t + k∂x, ∂x + u∂u〉 (k > 0) :

F = eη G(ω, v), η = x− kt, ω = ue−η, v = u−1ux;

A6
2.1 = 〈∂t, ∂x〉 : F = G(u, ux);

A7
2.1 = 〈∂x, u∂u〉 : F = uG(t, ω), ω = u−1ux;

A8
2.1 = 〈∂x, ϕ(t)∂u〉 (ϕ 6= 0) :

F = ϕ−1ϕ′′u + G(t, ux);

A9
2.1 = 〈∂t, ∂u〉 : F = G(x, ux);

A10
2.1 = 〈∂t, f(x)u∂u〉 (f 6= 0) :

F = −u−1u2
x + uG(x, ω);

ω = u−1ux − f ′f−1 ln |u|;
A11

2.1 = 〈∂t + f(x)u∂u, g(x)u∂u〉 (δ = f−1f ′ − g−1g′ 6= 0) :

F = −g−1g′′u ln |u| − 2g−1g′ux ln |u|
+g−2(g′)2u ln2 |u| − 2fδtux + 2fδg′g−1tu ln |u|
+f2δ2t2u + f(g−1g′′ − f−1f ′′)tu + uG(x, ω),

ω = u−1ux − g′g−1 ln |u| − tfδ;

A12
2.1 = 〈∂t + f(x)u∂u, etf∂u〉 (f 6= 0) :

F = [f2 − tf ′′ + t2(f ′)2]u− 2tf ′ux + etfG(x, ω),

ω = e−tf (ux − tf ′u);

A13
2.1 = 〈f(x)u∂u, g(x)u∂u〉 (δ = f ′g − g′f 6= 0) :

F = −u−1u2
x − δ−1δ′ux

+δ−1[f ′′g′ − g′′f ′]u ln |u|+ uG(t, x);

A14
2.1 = 〈ϕ(t)∂u, ψ(t)∂u〉 (ϕ′ψ − ϕψ′ 6= 0) :

F = ϕ−1ϕ′′u + G(t, x, ux), ϕ′′ψ − ϕψ′′ = 0.
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II. A2.2-invariant equations

A1
2.2 = 〈t∂t + x∂x, xu∂u〉 : F = x−2u ln2 |u|

−2x−1ux ln |u|+ t−2uG(ξ, ω), ξ = tx−1;

ω = xu−1ux − ln |u|;
A2

2.2 = 〈t∂t + x∂x, tϕ(ξ)∂u〉 (ϕ 6= 0, ξ = tx−1) :

F = t−2(1− ξ2)ϕ−1ξ(2ϕ′ + ξϕ′′)u + t−2G(ξ, ω),

ω = xϕux + ξϕ′u;

A3
2.2 = 〈∂t + k∂x, exp(k−1x)u∂u〉 (k > 0) :

F = k−2u ln2 |u| − 2k−1ux ln |u| − k−2u ln |u|
+uG(η, ω), η = x− kt, ω = u−1ux − k−1 ln |u|;

A4
2.2 = 〈∂t + k∂x, etϕ(η)∂u〉 (η = x− kt, k > 0, ϕ 6= 0) :

F =
(
(k2 − 1)ϕ′′ϕ−1 − 2kϕ′ϕ−1 + 1

)
u + G(η, ω),

ω = ϕux − ϕ′u, ϕ′ =
dϕ

dη
;

A5
2.2 = 〈−t∂t − x∂x, ∂t + k∂x〉 (k > 0) :

F = η−2G(u, ω), η = x− kt, ω = uxη;

A6
2.2 = 〈−t∂t − x∂x + mu∂u, ∂t + k∂x〉 (k > 0, m 6= 0) :

F = |η|−2−mG(v, ω), η = x− kt,

ω = u|η|m, v = ux|η|m+1;

A7
2.2 = 〈∂x, exu∂u〉 : F = u ln2 |u| − u ln |u| − 2ux ln |u|

+uG(t, ω), ω = u−1ux − ln |u|;
A8

2.2 = 〈∂x, exϕ(t)∂u〉 (ϕ 6= 0) :

F = (ϕ−1ϕ′′ − 1)u + G(t, ω), ω = ux − u;

A9
2.2 = 〈−t∂t − x∂x, ∂x〉 : F = t−2G(u, tux);

A10
2.2 = 〈−t∂t − x∂x + ku∂u, ∂x〉, (k 6= 0) :

F = |t|−2−kG(v, ω), v = |t|ku, ω = |t|k+1ux;

A11
2.2 = 〈∂t, et∂u〉 : F = u + G(x, ux);

A12
2.2 = 〈−t∂t − x∂x, ∂t〉 : F = x−2G(u, ω), ω = xux;

A13
2.2 = 〈∂t + f(x)u∂u, e(1+f)t∂u〉 (f 6= 0) :

F = − (
tf ′′ − t2(f ′)2 − (1 + f2)

)
u− 2tf ′ux

+etfG(x, ω), ω = e−tf
(
ux − f ′(t + f−1)u

)
;

A14
2.2 = 〈−t∂t − x∂x, ∂t + kx−1u∂u〉 (k > 0);

F = −2ktx−3u + k2t2x−4u + 2ktx−2ux

+x−2 exp(ktx−1)G(v, ω), v = exp(−kx−1t)u,

ω = xu−1ux + ln |u|;
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A15
2.2 = 〈k(t∂t + x∂x), |x|k−1

u∂u〉 (k 6= 0, 1) :

F = −k−2(1− k)x−2u ln |u| − 2k−1x−1ux ln |u|
+k−2x−2u ln2 |u|+ x−2uG(v, ω),

v = tx−1, ω = xu−1ux − k−1 ln |u|;
A16

2.2 = 〈k(t∂t + x∂x), |t|k−1
ϕ(ξ)∂u〉 (k 6= 0, 1, ϕ 6= 0,

ξ = tx−1) : F = [k−1(k−1 − 1) + 2ξ(k−1 − ξ2)ϕ−1ϕ′

+ξ2(1− ξ)2ϕ−1ϕ′′]t−2u + t−2G(ξ, ω),

ω = xϕux + ξϕ′u.

In the above formulas G stands for an arbitrary smooth function. As customary the prime denotes
derivative of a function of one variable.

6.1 Group classification of equation
utt = uxx − u−1u2

x + A(x)ux + B(x)u ln |u|+ uD(t, x)

Before analyzing equations (2.7) admitting algebras of the dimension higher than two we perform
group classification of the equation

utt = uxx − u−1u2
x + A(x)ux + B(x)u ln |u|+ uD(t, x). (6.1)

Here A(x), B(x), D(t, x) are arbitrary smooth functions. Note that class of PDEs (6.1) contains A13
2.1-

invariant equation. What is more important this class contains a major part of equations of the form
(2.7), maximal symmetry algebras of which have dimension three or four. We make use of this fact to
simplify group classification of equations (2.7).

Lemma 5 If the functions A, B and D are arbitrary, then maximal invariance algebra of PDE (6.1)
is the two-dimensional Lie algebra equivalent to A13

2.1 and (6.1) reduces to A13
2.1-invariant equation.

Next if the maximal symmetry algebra of an equation of the form (6.1) is three-dimensional (denote
it as A3), then this equation is equivalent to one of the following ones:

I. A3 ∼ A3.1, A3 = 〈∂t, f(x)u∂u, ϕ(x)u∂u〉,
A = −σ−1σ′, B = σ−1ρ, D = 0, σ = f ′ϕ− fϕ′ 6= 0,
ρ = ϕ′f ′′ − ϕ′′f ′;

II. A3 ∼ A3.1, A3 = 〈f(x)u∂u, ϕ(x)u∂u, ∂t + ψ(x)u∂u〉,
A = −σ−1σ′, B = σ−1ρ,
D = tσ−1[σ′ψ′ − ψρ− σψ′′],
σ = f ′ϕ− ϕ′f 6= 0, ρ = f ′′ϕ′ − ϕ′′f ′,
f ′ψ − fψ′ 6= 0, ϕ′ψ − ϕψ′ 6= 0;

III. D = x−2G(ξ), ξ = tx−1, G 6= 0 :

1) A3 ∼ A3.2, A3 = 〈t∂t + x∂x, u∂u, |x|1−nu∂u〉,
A = nx−1 (n 6= 1), B = 0;

2) A3 ∼ A3.3, A3 = 〈t∂t + x∂x, u∂u, u ln |x|∂u〉, A = x−1, B = 0;

3) A3 ∼ A3.4, A3 = 〈t∂t + x∂x,
√
|x|u∂u,

√
|x| ln |x|u∂u〉,

A = 0, B = 1
4x−2;
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4) A3 ∼ A3.9, A3 = 〈t∂t + x∂x,
√
|x| cos(1

2β ln |x|)u∂u,
√
|x| sin(1

2β ln |x|)u∂u〉, A = 0, B = mx−2,

m > 1
4 , β =

√
4m− 1;

5) A3 ∼ A3.7, A3 = 〈t∂t + x∂x, (
√
|x|)1+βu∂u, (

√
|x|)1−βu∂u〉,

A = 0, B = mx−2, m < 1
4 , m 6= 0, β =

√
1− 4m;

6) A3 ∼ A3.8, A3 = 〈t∂t + x∂x, cos(
√

m ln |x|)u∂u,

sin(
√

m ln |x|)u∂u〉, A = x−1, B = mx−2, m > 0;

7) A3 ∼ A3.6, A3 = 〈t∂t + x∂x, |x|
√
|m|u∂u, |x|−

√
|m|u∂u〉,

A = x−1, B = mx−2, m < 0;

8) A3 ∼ A3.4, A3 = 〈t∂t + x∂x, (
√
|x|)1−nu∂u, (

√
|x|)1−n

× ln |x|u∂u〉, A = nx−1 (n 6= 0, 1), B = 1
4(n− 1)2x−2;

9) A3 ∼ A3.9, A3 = 〈t∂t + x∂x, (
√
|x|)1−n cos(1

2β ln |x|)u∂u,

(
√
|x|)1−n sin(1

2β ln |x|)u∂u〉, A = nx−1 (n 6= 0, 1),

B = mx−2 (m > 1
4(n− 1)2), β =

√
4m− (n− 1)2;

10) A3 ∼ A3.7, A3 = 〈t∂t + x∂x, (
√
|x|)1−β−nu∂u, (

√
|x|)1−n+β

×u∂u〉, A = nx−1 (n 6= 0, 1), B = mx−2

(m < 1
4(n− 1)2, m 6= 0), β =

√
(n− 1)2 − 4m.

IV. D = G(t),

1) A3 ∼ A3.3, A3 = 〈∂x, u∂u, xu∂u〉,
A = B = 0;

2) A3 = A3.2, A3 = 〈∂x, u∂u, exu∂u〉,
A = −1, B = 0;

3) A3 ∼ A3.8, A3 = 〈∂x, cos (x)u∂u, sin (x)u∂u〉,
A = 0, B = 1;

4) A3 ∼ A3.6, A3 = 〈∂x, exu∂u, e−xu∂u〉,
A = 0, B = −1;

5) A3 ∼ A3.4, A3 = 〈∂x, exp
(

1
2x

)
u∂u, exp

(
1
2x

)
xu∂u〉,

A = −1, B = 1
4 ;

6) A3 ∼ A3.7, A3 = 〈∂x, exp
(

1
2(1 + β)x

)
u∂u, exp

(
1
2(1− β)x

)
u∂u〉,

A = −1, B = m (m < 1
4), m 6= 0, β =

√
1− 4m;

7) A3 ∼ A3.9, A3 = 〈∂x, exp
(

1
2x

)
cos(1

2βx)u∂u, exp
(

1
2x

)
sin(1

2βx)u∂u〉,
A = −1, B = m (m > 1

4), β =
√

4m− 1;

V. D = G(η), η = x− kt, k > 0,
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1) A3 ∼ A3.3, A3 = 〈∂t + k∂x, u∂u, xu∂u〉,
A = B = 0;

2) A3 = A3.2, A3 = 〈∂t + k∂x, u∂u, exu∂u〉,
A = −1, B = 0;

3) A3 ∼ A3.8, A3 = 〈∂t + k∂x, cos (x)u∂u, sin (x)u∂u〉,
A = 0, B = 1;

4) A3 ∼ A3.6, A3 = 〈∂t + k∂x, exu∂u, e−xu∂u〉,
A = n, B = −1;

5) A3 ∼ A3.4, A3 = 〈∂t + k∂x, exp
(

1
2x

)
u∂u, exp

(
1
2x

)
xu∂u〉,

A = −1, B = 1
4 ;

6) A3 ∼ A3.7, A3 = 〈∂t + k∂x, exp
(

1
2(1 + β)x

)
u∂u, exp

(
1
2(1− β)x

)
u∂u〉,

A = −1, B = m (m < 1
4), m 6= 0, β =

√
1− 4m;

7) A3 ∼ A3.9, A3 = 〈∂t + k∂x, exp
(

1
2x

)
cos(1

2βx)u∂u,

exp
(

1
2x

)
sin(1

2βx)u∂u〉, A = −1, B = m (m > 1
4) β =

√
4m− 1.

Proof. Inserting the expression

F = −u−1u2
x + A(x)ux + B(x)u ln |u|+ uD(t, x)

into classifying equation (2.5) we get the system of determining equations for the functions h(x), r(t, x)
and constants λ, λ1, λ2:

r = 0, (λx + λ2)A′ + λA = 0,

(λx + λ2)B′ + 2λB = 0, h′′ + Ah′ + Bh = −(λt + λ1)Dt − (λx + λ2)Dx − 2λD.
(6.2)

First, we consider the case of arbitrary functions A,B,D. The left-hand side of the fourth equation
from (6.2) depends on x only. Since D is arbitrary, the relation Dt 6≡ 0 holds. Hence it immediately
follows that the constants λ, λ1, λ2 must be equal to zero. As a consequence, the fourth equation
becomes the linear ordinary differential equation for the function h = h(x)

h′′ + Ah′ + Bh = 0. (6.3)

The general solution of the above equation reads as

h = C1f(x) + C2ϕ(x), C1, C2 ∈ R,

(f(x), ϕ(x)) being the fundamental system of solutions of the equation

y′′ + Ay′ + By = 0, y = y(x). (6.4)

Inserting the expression for h into (6.3) yields

A = −σ−1σ′, B = σ−1(ϕ′f ′′ − f ′ϕ′′),

where σ = ϕf ′ − ϕ′f 6= 0, which proves the first part of the lemma.
Suppose now that D = 0. If at least one of the functions A or B is arbitrary, then λ = λ2 = 0 and

the function h is a solution of (6.3). This completes the proof of the case I of the second part of the
lemma statement.
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Provided functions A and B are not arbitrary, it follows from the second and third equations of
(6.2) that one of the following relations

1) A = B = 0;

2) A = n, B = m, m, n ∈ R, |n|+ |m| 6= 0;

3) A = nx−1, B = mx−2, m, n ∈ R, |n|+ |m| 6= 0

(6.5)

holds. With these conditions the maximal invariance algebra of (6.1) has the dimension higher than
three. Consequently, without any loss of generality we can suggest that D 6= 0. Integrating the
equation

(λt + λ1)Dt + (λx + λ2)Dx + 2λD = H(x),

under D 6= 0 yields the following (inequivalent) expressions for the function D(t, x) :

D = x−2G(ξ) + x−2
∫

xH(x) dx, ξ = tx−1;
D = G(η) + k−1

∫
H(x) dx, η = x− kt, k > 0;

D = G(t) +
∫

H(x) dx,

D = tH(x) + H̃(x).

(6.6)

The change of variables

t = t, x = x, u = θ(x)v(t, x), θ 6= 0, (6.7)

where θ is a solution of equation

θ−1θ′′ − θ−2(θ′)2 + Aθ−1θ′ + B ln |θ|+ Λ(x) = 0,

preserves the form of equation (6.1). We use this fact to simplify the form of the function D

D = x−2G(ξ), ξ = tx−1;

D = G(η), η = x− kt, k > 0;

D = G(t),

D = tH(x).

(6.8)

If the function D is given by the one of the first three expressions, then H(x) ≡ 0 and h satisfies
(6.3).

Given the condition D = tH(x), we have

h′′ + Ah′ + Bh = −λ1H, (λx + λ2)H ′ + 3λH = 0.

So that the maximal invariance algebra of the corresponding equation (6.1) is three-dimensional iff
λ = λ2 = 0, which yields the case II of the second part of the lemma statement.

Turn now to the case when D = x−2G(ξ), ξ = tx−1. Then the (non-vanishing identically) function
G obeys the equation

(λ2ξ − λ1)G′ + 2λ2G = 0. (6.9)

If G is an arbitrary function, then λ1 = λ2 = 0. In addition we have λ 6= 0 (otherwise the maximal
invariance algebra is two-dimensional). Hence we get

xA′ + a = 0, xB′ + 2B = 0.

Consequently, the functions A and B are given by either first or third formula from (6.5). Analyzing
these expressions yields ten cases of the case III of the second part of the lemma statement.
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If the function G is not arbitrary, then integrating (6.9) we get

G = p, p ∈ R, p 6= 0;
G = p(ξ − q)−2, p 6= 0, q ≥ 0.

Given the condition G = p the parameter λ2 vanishes. Hence in view of the requirement for the
maximal algebra to be three-dimensional it follows that λ vanishes as well. This yields the case when
A and B in (6.1) are arbitrary functions (the case I of the second part of lemma statement). If
G = p(ξ − q)−2, p 6= 0, then λ1 = λ2q. Hence we conclude that the maximal invariance algebra of
the corresponding equation (6.1) is three-dimensional iff the functions A,B are given by formulas 3)
from (6.5) (which implies that λ1 = λ2 = 0) and we get the case III of the second part of the lemma
statement. Next if A,B are given by formulas 2 from (6.5) (which implies that λ = 0, D = p(t−qx)−2),
then we arrive at the case IV (under q = 0) or the case V (under q > 0) of the second part of the
lemma statement.

Turn now to the case D = G(η), η = x− kt, k > 0. If these relations hold, then

λ(ηG′ + 2G) + (λ2 − kλ1)G′ = 0.

Hence it follows that if G is an arbitrary function of η, then λ = 0, λ2 = kλ1. That is why, the
maximal invariance algebra of (6.1) is three-dimensional iff either A = B = 0 or the functions A,B
are given by formulas 2 from (6.5). Thus we have derived all equations listed in the case V of the
second part of the lemma statement.

The cases when either G = p (p 6= 0) or G = pη−2 (p 6= 0) yield no new invariant equations (6.5).
Consider now the last possible case D = G(t). If this is the case, then the equation

(λt + λ1)G′ + 2λG = 0

holds. Hence if follows that if G is an arbitrary function, then λ = λ1 = 0. Consequently, the maximal
invariance algebra of equation (6.1) is three-dimensional iff A,B are given by the formula 2 from (6.5).
This yields all invariant equations from the case IV of the second part of the assertion of the lemma.
If either of the relations G = p (p 6= 0) or G = pt−2 (p 6= 0) hold, then no new invariant equations
admitting three-dimensional maximal invariance algebras can be obtained.

To complete the proof of the lemma we need to establish non equivalence of the obtained invariant
equations. To this end it suffices to prove that there are no transformations from the group E , reducing
their invariance algebras one into another.

As we have already mentioned in Section 3 there exist nine non-isomorphic three-dimensional
solvable Lie algebras A3.i = 〈e1, e2, e3〉 (i = 1, 2, . . . , 9). We analyze in some detail the case of the
algebra A3.3. The list of invariant equations and algebras contains three algebras which are isomorphic
to A3.3, namely,

L1 = 〈t∂t + x∂x, u∂u, u ln |x|∂u〉;
L2 = 〈∂x, u∂u, xu∂u〉;
L2 = 〈∂t + k∂x, u∂u, xu∂u〉 (k > 0).

Denote the basis elements of the algebra L2 as e1, e2, e3. Suppose that there is a transformation ϕ
from the group E transforming L2 into L3. In other words we suppose that there exist constants
αi, βi, δi ∈ R (i = 1, 2, 3) such that the relations

ϕ(e1) =
3∑

i=1

αiẽi, ϕ(e2) =
3∑

i=1

βiẽi, ϕ(e3) =
3∑

i=1

δiẽi
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and

4 =

∣∣∣∣∣∣

α1 α2 α3

β1 β2 β3

δ1 δ2 δ3

∣∣∣∣∣∣
6= 0

hold. In the above formulas ẽ1 = ∂t + k∂x, ẽ2 = v∂v, ẽ3 = xv∂v. Equating the coefficients of linearly
independent operators ∂t, ∂x, ∂v yields that α1 = β1 = δ1 = 0. Hence we get the contradictory equation
4 = 0. This means that realizations L2 and L3 are non-isomorphic. Analogously, we prove that L1

and L2 (as well as L1 and L3) are non isomorphic.
The remaining algebras are considered in a similar way. The Lemma is proved.
In what follows we will use the results on classification of abstract four-dimensional solvable real

Lie algebras A4 = 〈e1, e2, e3, e4〉 [42, 43]. There are ten decomposable

4A1 = 3A1 ⊕A1 = A3.1 ⊕A1, A2.2 ⊕ 2A1 = A2.2 ⊕A2.1 = A3.2 ⊕A1,

2A2.2 = A2.2 ⊕A2.2, A3.i ⊕A1 (i = 3, 4, . . . , 9);

and ten non-decomposable four-dimensional solvable real Lie algebras (note that we give below non-
zero commutation relations only).

A4.1 : [e2, e4] = e1, [e3, e4] = e2;
A4.2 : [e1, e4] = qe1, [e2, e4] = e2,

[e3, e4] = e2 + e3, q 6= 0;
A4.3 : [e1, e4] = e1, [e3, e4] = e2;
A4.4 : [e1, e4] = e1, [e2, e4] = e1 + e2,

[e3, e4] = e2 + e3;
A4.5 : [e1, e4] = e1, [e2, e4] = qe2,

]e3, e4] = pe3, −1 ≤ p ≤ q ≤ 1, p · q 6= 0;
A4.6 : [e1, e4] = qe1, [e2, e4] = pe2 − e3,

[e3, e4] = e2 + pe3, q 6= 0, p ≥ 0;
A4.7 : [e2, e3] = e1, [e1, e4] = 2e1,

[e2, e4] = e2, [e3, e4] = e2 + e3;
A4.8 : [e2, e3] = e1, [e1, e4] = (1 + q)e1,

[e2, e4] = e2, [e3, e4] = qe3, |q| ≤ 1;
A4.9 : [e2, e3] = e1, [e1, e4] = 2qe1,

[e2, e4] = qe2 − e3, [e3, e4] = e2 + qe3, q ≥ 0;
A4.10 : [e1, e3] = e1, [e2, e3] = e2,

[e1, e4] = −e2, [e2, e4] = e1.

Theorem 13 Equation utt = uxx − u−1u2
x has the widest symmetry group amongst equations of the

form (6.1). Its maximal invariance algebra is the five-dimensional Lie algebra

A1
5 = 〈∂t, ∂x, t∂t + x∂x, xu∂u, u∂u〉.

There are no equations of the form (6.1) which are inequivalent to the above equation and admit
invariance algebra of the dimension higher than four. Below we give all inequivalent equations (6.1)
admitting four-dimensional together with their symmetry algebras.

I. D = 0,
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1) A4 ∼ A3.6 ⊕A1, A4 = 〈∂t, ∂x, u ch(βx)∂u, u sinh(βx)∂u〉,
A = 0, B = −β2, β 6= 0;

2) A4 ∼ A3.8 ⊕A1, A4 = 〈∂t, ∂x, u cos(βx)∂u, u sin(βx)∂u〉,
A = 0, B = β2, β 6= 0;

3) A4 ∼ A2.1 ⊕A2.2, A4 = 〈∂t, ∂x, u∂u, e−xu∂u〉, A = 1, B = 0;

4) A4 ∼ A3.4 ⊕A1, A4 = 〈∂t, ∂x, e−xu∂u, xe−xu∂u〉, A = 2, B = 1;

5) A4 ∼ A3.9 ⊕A1, A4 = 〈∂t, ∂x, ue−x cos(βx)∂u, ue−x sin(βx)∂u〉,
A = 2, B = m,m > 1, β =

√
m− 1;

6) A4 ∼ A3.7 ⊕A1, A4 = 〈∂t, ∂x, ue−xch(βx)∂u, ue−x sinh(βx)∂u〉,
A = 2, B = m, m > 1, m 6= 0, β =

√
1−m;

7) A4 ∼ A4.2, A4 = 〈∂t, t∂t + x∂x,
√
|x|u∂u, u

√
|x| ln |x|∂u〉,

A = 0, B = 1
4x−2;

8) A4 ∼ A4.5, A4 = 〈∂t, t∂t + x∂x, |x| 12+βu∂u, |x| 12−βu∂u〉, A = 0,

B = mx−2, m < 1
4 , m 6= 0, β =

√
1
4 −m;

9) A4 ∼ A4.6, A4 = 〈∂t, t∂t + x∂x,
√
|x| cos(β ln |x|)u∂u,

√
|x| sin(β ln |x|)u∂u〉,

A = 0, B = mx−2, m > 1
4 , β =

√
m− 1

4 ;

10) A4 ∼ A4.3, A4 = 〈∂t, t∂t + x∂x, u ln |x|∂u, u∂u〉, A = x−1, B = 0;

11) A4 ∼ A3.7 ⊕A1, A4 = 〈∂t, t∂t + x∂x, |x|1−nu∂u, u∂u〉,
A = nx−1, B = 0, n 6= 0, 1;

12) A4 ∼ A4.5, A4 = 〈∂t, t∂t + x∂x, |x| 12 (1−n)u∂u, |x| 12 (1−n)u ln |x|∂u〉,
A = nx−1, B = 1

4(n− 1)2x−2, n 6= 0, 1;

13) A4 ∼ A4.5, A4 = 〈∂t, t∂t + x∂x, |x| 12 (1−n+β)u∂u, |x| 12 (1−n−β)u∂u〉,
A = nx−1, B = mx−2, m < 1

4(n− 1)2, m 6= 0, n 6= 0,

β =
√

(n− 1)2 − 4m;

14) A4 ∼ A4.6, A4 = 〈∂t, t∂t + x∂x, |x| 12 (1−n) cos(β ln |x|)u∂u,

|x| 12 (1−n) sin(β ln |x|)u∂u〉, A = nx−1, B = mx−2,

m 6= 0, n 6= 0, m > 1
4(n− 1)2, β =

√
m− 1

4(n− 1)2;

II. D = ktx−3, k > 0,

1) A4 ∼ A4.1, A4 = 〈∂t − 1
2kx−1u∂u, t∂t + x∂x, xu∂u, u∂u〉, A = B = 0;

2) A4 ∼ A4.2, A4 = 〈∂t − 4
9kx−1u∂u, t∂t + x∂x,

√
|x|u∂u,

√
|x| ln |x|u∂u〉,

A = 0, B = 1
4x−2;

3) A4 ∼ A4.5, A4 = 〈∂t − k
m+2x−1u∂u, t∂t + x∂x, |x| 12+βu∂u, |x| 12−βu∂u〉,

A = 0, B = mx−2, m 6= 0,−2, m < 1
4 , β =

√
1
4 −m;

4) A4 ∼ A4.2, A4 = 〈∂t + 1
9kx−1(1 + 3 ln |x|u)∂u, t∂t + x∂x,

x2u∂u, x−1u∂u〉, A = 0, B = −2x−2;
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5) A4 ∼ A4.6, A4 = 〈∂t − k
m+2x−1u∂u, t∂t + x∂x,

√
|x|u cos(β ln |x|)∂u,

√
|x|u sin(β ln |x|)∂u〉, A = 0, B = mx−2, m > 1

4 , β =
√

m− 1
4 ;

6) A4 ∼ A4.3, A4 = 〈∂t − kx−1u∂u, t∂t + x∂x, u∂u, u ln |x|∂u〉,
A = x−1, B = 0;

7) A4 ∼ A3.4 ⊕A1, A4 = 〈∂t + kx−1(1 + ln |x|)u∂u, t∂t + x∂x, u∂u,
x−1u∂u〉, A = 2x−1, B = 0;

8) A4 ∼ A3.7 ⊕A1, A4 = 〈∂t + k
n−2x−1u∂u, t∂t + x∂x, u∂u, |x|1−nu∂u〉,

A = nx−1, B = 0, n 6= 0, 1, 2;

9) A4 = A4.4, A4 = 〈∂t − 1
2kx−1 ln2 |x|u∂u, t∂t + x∂x,

x−1u∂u, x−1 ln |x|u∂u〉, A = 3x−1, B = x−2;

10) A4 ∼ A4.2, A4 = 〈∂t − 4k
(n−3)2

x−1u∂u, t∂t + x∂x, |x| 12 (1−n)u∂u,

|x| 12 (1−n) ln |x|u∂u〉, A = nx−1, B = 1
4(n− 1)2x−2, n 6= 0, 3;

11) A4 ∼ A4.5, A4 = 〈t∂t + x∂x, ∂t − k
2−n+mx−1u∂u, |x| 12 (1−n+β)u∂u,

|x| 12 (1−n−β)u∂u〉, A = nx−1, B = mx−2,
n 6= 0, 2, m 6= n− 2, m < 1

4(n− 1)2, β =
√

(n− 1)2 − 4m;

12) A4 ∼ A4.2, A4 = 〈t∂t + x∂x, ∂t + k
3−nx−1 ln |x|u∂u, x−1u∂u, |x|2−nu∂u〉,

A = nx−1, B = (n− 2)x−2, n 6= 0, 2, 3;

13) A4 ∼ A4.6, A4 = 〈t∂t + x∂x, ∂t − k
2−n+mx−1u∂u,

|x| 12 (1−n)u cos(β ln |x|)∂u, |x| 12 (1−n)u sin(β ln |x|)∂u〉,
A = nx−1, B = mx−2, n 6= 0, m 6= 0, m > 1

4(n− 1)2,

β =
√

m− 1
4(n− 1)2;

III. D = kt, k > 0,

1) A4 ∼ A4.1, A4 = 〈∂x, ∂t − 1
2kx2u∂u, xu∂u, u∂u〉, A = B = 0;

2) A4 ∼ A4.3, A4 = 〈∂x, ∂t − kxu∂u, e−xu∂u, u∂u〉, A = 1, B = 0;

3) A4 ∼ A3.8 ⊕A1, A4 = 〈∂x, ∂t − kβ−2u∂u, u cos(βx)∂u, u sin(βx)∂u〉,
A = 0, B = β2, β 6= 0;

4) A4 ∼ A3.6 ⊕A1, A4 = 〈∂x, ∂t + kβ−2u∂u, uch(βx)∂u, u sinh(βx)∂u〉,
A = 0, B = −β2, β 6= 0;

5) A4 ∼ A3.4 ⊕A1, A4 = 〈∂x, ∂t − 4ku∂u, exp
(−1

2x
)
u∂u, x exp

(−1
2x

)
u∂u〉,

A = 1, B = 1
4 ;

6) A4 ∼ A3.7 ⊕A1, A4 = 〈∂x, ∂t − km−1u∂u, exp
(−1

2(1− β)x
)
u∂u, exp

(−1
2(1 + β)x

)
u∂u〉,

A = 1, B = m, m < 1
4 , m 6= 0, β =

√
1− 4m;

7) A4 ∼ A3.9 ⊕A1, A4 = 〈∂x, ∂t − km−1u∂u, exp
(−1

2x
)
cos(βx)u∂u,

exp
(−1

2x
)
sin(βx)u∂u〉,

A = 1, B = m, m > 1
4 , β =

√
m− 1

4 ;

IV. D = kt−2, k 6= 0,

A4 ∼ A4.8 (q = −1), A4 = 〈∂x, t∂t + x∂x, xu∂u, u∂u〉, A = B = 0;
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V. D = m(x− kt)−2, k > 0, m 6= 0,

A4 ∼ A4.8 (q = −1), A4 = 〈∂t + k∂x, t∂t + x∂x, xu∂u, u∂u〉, A = B = 0.

Proof. According to Lemma 5 to get the list of inequivalent equations of the form (6.1) we need
to analyze the cases when either D = 0 or D does not vanish identically and is obtained through
equations (6.8).

If D = 0, then the function h satisfies equation (6.3) and the functions A,B are given by one of
the formulas (6.5). It follows from (6.2) that five is the highest possible dimension of an invariance
algebra admitted by (6.1). Equation admitting this algebra is equivalent to the following one:

utt = uxx − u−1u2
x. (6.10)

This proves the first part of the assertion of theorem.
The remaining expressions for the functions A,B from (6.5) yield the fourteen sub-cases of the

case I of the second assertion of the theorem.
The fourth expression for the function D given in (6.8) within the equivalence relation (6.7) boils

down to either D = ktx−3, k > 0 or D = kt, k > 0. The function h satisfies one of the equations

h′′ + Ah′ + Bh = −λ1H,

where either H = kx−3 or H = k. Analysis of the corresponding expressions for the functions A,B
(6.5) yields expressions listed in the cases II and III.

Next the function D given by the third formula from (6.8) simplifies to D = kt−2 (k 6= 0) whence
we get the results listed in the case IV of the second assertion of the theorem. Similarly, the second
expression for the function D gives rise to the formulas of the case V.

The first expression for D from (6.8) gives no new invariant equations.
What is left is to prove that the so obtained invariant equations are inequivalent. We skip the

proof of this fact.
Theorem is proved.

6.2 Nonlinear equations (2.7) invariant under three-dimensional Lie algebras

Class of PDEs (2.7) does not contain an equation whose invariance algebra is isomorphic to a Lie
algebra with a non-trivial Levi ideal (see, Theorem 12). That is why, to complete the second step
of our classification algorithm it suffices to consider three-dimensional solvable real Lie algebras only.
We begin by considering two decomposable three-dimensional solvable Lie algebras.

Note that while classifying invariant equations (2.7) we skip equations belonging to the class (6.1)
which has been analyzed in the previous subsection.

6.2.1 Invariance under decomposable Lie algebras

As A3.1 = 3A1 = A2.1 ⊕ A1, A3.2 = A2.2 ⊕ A1, to construct all realizations of A3.1 it suffices to
compute all possible extensions of the (already known) realizations of the algebras A2.1 = 〈e1, e2〉 and
A2.2 = 〈e1, e2〉. To this end we need to supplement the latter by a basis operator e3 of the form (2.4)
in order to satisfy the commutation relations

[e1, e3] = [e2, e3] = 0. (6.11)

What is more, to simplify the form of e3 we can use transformations from E which do not alter the
remaining basis operators of the corresponding two-dimensional Lie algebras.

We do not present full calculation details. Instead, we give several examples illustrating the main
steps which we need to perform in order to extend A2.1 to a realization of A3.1.
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Consider the realization A1
2.1. Upon checking commutation relations (6.11), where e3 is of form

(2.4), we get
λ1 = λ2 = r(t, x) = 0, h = k = const.

Consequently e3 is the linear combination of e1, e2, namely, e3 = λe1 + ke2 which is impossible by
the assumption that the algebra under study is three-dimensional. Hence we conclude that the above
realization of A1

2.1 cannot be extended to a realization of the algebra A3.1.
Turn now to the realization A2

2.1. Checking commutation relations (6.11), where e3 is of form (2.4),
yields the following realization of A3.1:

〈t∂t + x∂x, σ(ξ)∂u, γ(ξ)∂u〉, ξ = tx−1,

where γ′σ − γσ′ 6= 0. However, the corresponding invariant equation (2.7) is linear.
Finally, consider the realization A3

2.1. Inserting its basis operators and the operator e3 of the form
(2.4) into (6.11) and solving the obtained equations gives the following realization of A3.1:

〈∂t, ∂x, u∂u〉.

Inserting the obtained coefficients for e3 into the classifying equation (2.5) we get invariant equation

utt = uxx + uG(ω), ω = u−1ux,

where in order to ensure non-linearity we need to have Gωω 6= 0.
A similar analysis of the realizations Ai

2.1 (i = 4, 5, . . . , 12, 14) yields three new invariant equations.
For two of so obtained A3.1-invariant equations the corresponding three-dimensional algebras are
maximal. The other two may admit four-dimensional invariance algebras provided arbitrary elements
are properly specified.

Handling in a similar way extensions of A2.2 up to realizations of A3.2 results in ten inequivalent
nonlinear equations the maximal invariance algebras of which are realizations of the three-dimensional
algebra A3.2 and four inequivalent equations (2.7) admitting four-dimensional symmetry algebras.

We perform analysis of the equations admitting four-dimensional algebras in the next sub-section.
Here we present the complete list of nonlinear equations (2.7) the maximal symmetry algebras of
which are realizations of three-dimensional Lie algebras A3.1 and A3.2.
A3.1-invariant equations

A1
3.1 = 〈∂t, ∂x, u∂u〉 :

F = uG(ω), ω = u−1ux;
A2

3.1 = 〈∂x, ϕ(t)∂u, ψ(t)∂u〉 :
σ = ψ′ϕ− ψϕ′ 6= 0, σ′ = 0 :
F = ϕ−1ϕ′′u + G(t, ux).

A3.2-invariant equations

A1
3.2 = 〈∂t, ∂x, exu∂u〉 :

F = −u−1u2
x − u ln |u|+ uG(ω),

ω = u−1ux − ln |u| :
A2

3.2 = 〈−t∂t − x∂x, ∂t + k∂x, u∂u〉 (k ≥ 0) :

F = uη−2G(ω), η = x− kt,
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ω = ηu−1ux;

A3
3.2 = 〈−t∂t − x∂x + mu∂u, ∂t + k∂x, |η|−m∂u〉

(η = x− kt, k = m = 0 or k > 0,m ∈ R) :

F = m(k2 − 1)(m + 1)η−2u + |η|−2−mG(ω),

ω = |η|m(mu + ηux);

A4
3.2 = 〈∂x, exu∂u, ∂t + mu∂u〉 (m > 0) :

F = −u−1u2
x − ux + uG(ω),

ω = u−1ux − ln |u|+ mt;

A5
3.2 = 〈−t∂t − x∂x, ∂x, u∂u〉 :

F = ut−2G(ω), ω = tu−1ux;

A6
3.2 = 〈−t∂t − x∂x, ∂t + kx−1u∂u, u∂u〉 (k > 0) :

F = 2ktx−2ux − 2ktx−3u + k2t2x−4u + x−2uG(ω),

ω = xu−1ux + ktx−1;

A7
3.2 = 〈−t∂t − x∂x, ∂t + kx−1u∂u, exp(ktx−1)∂u〉 (k > 0) :

F = 2ktx−2ux + (k2t2x−4 − 2ktx−3 + k2x−2)u +

+x−2 exp(ktx−1)G(ω), ω = exp(−ktx−1)(xux + ktx−1u);

A8
3.2 = 〈 1

2k
(∂t + k∂x), ex+kt∂u, eη∂u〉 (k > 0, η = x− kt) :

F = (k2 − 1)u + G(η, ω), ω = ux − u;
A9

3.2 = 〈∂t + f(x)u∂u, e(1+f(x))t∂u, f(x)ef(x)t∂u〉 :

F = −(tf ′′ − t2(f ′)2 − (1 + f)2)u− 2tf ′ux + etfG(x, ω),

ω = e−tf (ux − f ′(t + f−1)u), f ′′ + 2f2 + f = 0, f 6= 0;

A10
3.2 = 〈k(t∂t + x∂x), |t|k−1 |ξ| k−1

2k ∂u, |ξ| k−1
2k ∂u〉 (k 6= 0; 1) :

F =
[1− k

k
ξ2 +

1− k2

4k2
(1− ξ2)

]
t−2u + t−2G(ξ, ω),

ω = |ξ| k−1
2k

[
xux +

k − 1
2k

u
]
, ξ = tx−1.

6.2.2 Invariance under non-decomposable three-dimensional solvable Lie algebras

There exist seven non-decomposable three-dimensional solvable Lie algebras over the field of real
numbers. All these algebras contain a subalgebra which is the two-dimensional Abelian ideal. Conse-
quently, we can use the results of classification of A2.1-invariant equations in order to describe equations
admitting non-decomposable three-dimensional solvable real Lie algebras. We remind that equations
of the form (6.1) have already been analyzed and therefore are not considered in the sequel.

As an example we compute extension of the realization A10
2.1 to all possible realizations of non-

decomposable three-dimensional solvable real Lie algebras. The remaining realizations are handled in
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a similar way.
It is straightforward to verify that transformations

t = γt + γ1, x = εγx + γ2, v = ρ(x)u + θ(x), (6.12)

where γ, γ1, γ2 ∈ R, γ 6= 0, ε = ±1, ρ 6= 0, are equivalence transformations for the realization
A10

2.1 = 〈∂t, f(x)u∂u〉 (f 6= 0). That is why, we can utilize the above transformation to simplify the
form of operator e3. As a result, we get three inequivalent expressions for e3

1 ) e3 = t∂t + x∂x + r(t, x)∂u (rt 6= 0 or r = 0);

2 ) e3 = ∂x + r(t, x)∂u (rt 6= 0 or r = 0);

3 ) e3 = r(t, x)∂u (rt 6= 0 or r = 1).

Let e1 = ∂t e2 = f(x)u∂u and e3 = t∂t + x∂x + r(t, x)∂u, then

[e1, e3] = ∂t + rt∂u, [e2, e3] = −xf ′u∂u − rf∂u.

Analyzing commutation relations for the algebras A3.i (i = 3, 4, . . . , 9) we obtain that the necessary
conditions for A10

2.1 to admit extension to a realization of A3.5 are r = 0, xf ′ = −f , of A3.6 as
r = 0, xf ′ = f, and of A3.7 as r = 0, xf ′ = −qf (0 < |q| < 1). So A10

2.1 gives rise to the following
realizations:

A3.5 : e1 = ∂t, e2 = x−1u∂u, e3 = t∂t + x∂x;
A3.6 : e1 = ∂t, e2 = xu∂u, e3 = t∂t + x∂x;
A3.7 : e1 = ∂t, e2 = |x|−qu∂u, e3 = t∂t + x∂x (0 < |q| < 1).

If e3 = ∂x + r(t, x)∂u, then

[e1, e3] = rt∂u, [e2, e3] = −f ′u∂u − rf∂u.

Analyzing the commutation relations for A3.i (i = 3, 4, . . . , 9) we come to conclusion that the realization
A10

2.1 cannot be extended to a realization of the above three-dimensional Lie algebras.
The same conclusion holds true when e3 = r(t, x)∂u (rt 6= 0 or r = 1).
Let e1 = f(x)u∂u, e2 = ∂t. If e3 = t∂t + x∂x + r(t, x)∂u (rt 6= 0 or r = 0), then it follows from

commutation relations
[e1, e3] = −(rf + xf ′u)∂u, [e2, e3] = ∂t + rt∂u

that the only possible extension of the realization A10
2.1 is the realization of A3.5:

〈x−1u∂u, ∂t, t∂t + x∂x〉.
This realization coincides within notation with the already obtained one.

Next if e3 = ∂x + r(t, x)∂u (rt 6= 0 or r = 0), then

[e1, e3] = −(f ′u + rf)∂u, [e2, e3] = rt∂u.

Analyzing the commutation relations for A3.i (i = 3, 4, . . . , 9) we come to conclusion that the realization
A10

2.1 cannot be extended to a realization of the above three-dimensional Lie algebras.
The same conclusion holds true for the case e3 = r(t, x)∂u (rt 6= 0 or r = 1).
Summing up the above considerations we see that the realization A10

2.1 can be extended to the
following realizations of non-decomposable three-dimensional solvable real Lie algebras:

L1 ∼ A3.5, L1 = 〈∂t, x
−1u∂u, t∂t + x∂x〉;

L2 ∼ A3.6, L2 = 〈∂t, xu∂u, t∂t + x∂x〉;
L3 ∼ A3.7, L3 = 〈∂t, |x|−qu∂u, t∂t + x∂x〉 (0 < |q| < 1).
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Solving the corresponding classifying equations yields the following invariant equations:

L1 : utt = uxx − u−1u2
x − 2x−2u ln |u|+ x−2uG(ω), ω = xu−1ux + ln |u|;

L2 : utt = uxx − u−1u2
x + x−2uG(ω),

ω = xu−1ux − ln |u|;
L3 : utt = uxx − u−1u2

x − q(q + 1)x−2u ln |u|+ ux−2G(ω),
ω = xu−1ux + q ln |u| (0 < |q| < 1).

Note that the algebras L1, L2, L3 are maximal (in Lie’s sense) invariance algebras of the corresponding
equations.

While classifying nonlinear equations invariant under non-decomposable three-dimensional solvable
Lie algebras we have discovered equations whose maximal invariance algebras are four-dimensional.
For example, after extending the realization A9

2.1 up to a realization of the algebra A3.3 we got the
following realization of the latter:

〈∂u, ∂t, ∂x + t∂u〉.
The corresponding invariant equation (2.7) is utt = uxx + G(ux). However, the maximal invariance
algebra of this equation is the four-dimensional Lie algebra 〈∂t, t∂u, ∂u, ∂x〉, which is a realization of
A3.3⊕A1. Note also that we have obtained the above invariant equation when classifying A3.1-invariant
equations.

By the above reason, we give below only those nonlinear invariant equations the maximal symmetry
algebras of which are three-dimensional non-decomposable solvable real Lie algebras.
A3.3-invariant equations

A1
3.3 = 〈u∂u, ∂t + k∂x,m∂t + k−1xu∂u〉 (k > 0,m 6= 0) :

F = −u−1u2
x + uG(ω), ω = x− kt + mk2u−1ux;

A2
3.3 = 〈u∂u, ∂x,m∂t + xu∂u〉 (m > 0) :

F = −u−1u2
x + uG(ω), ω = t−mu−1ux;

A3
3.3 = 〈|t| 12 ∂u,−|t| 12 ln |t|∂u, t∂t + x∂x +

1
2
u∂u〉 :

F = −1
4
t−2u + u3

xG(ξ, ω), ξ = tx−1, ω = xu2
x;

A4
3.3 = 〈∂u,−t∂u, ∂t + k∂x〉 (k ≥ 0);

F = G(η, ux), η = x− kt.

A3.4-invariant equations

A1
3.4 = 〈|η|m−1∂u, ∂t + k∂x, t∂t + x∂x + (mu + t|η|m−1)∂u〉

(η = x− kt, k > 0,m 6= 1) :

F = (k2 − 1)(m− 1)(m− 2)η−2u− 2k(m− 1)ηm−2 ln |η|
+|η|m−2G(ω), ω = [ηux − (m− 1)u]|η|−m;

A2
3.4 = 〈∂u,−t∂u, ∂t + k∂x + u∂u〉 (k ≥ 0) :

F = etG(η, ω), η = x− kt, ω = e−tux;

A3
3.4 = 〈|t| 12 ∂u,−|t| 12 ln |t|∂u, t∂t + x∂x +

3
2
u∂u〉 :

F = −1
4
t−2u + u−1

x G(ξ, ω), ξ = tx−1, ω = x−1u2
x;
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A4
3.4 = 〈kx−1u∂u, ∂t − kx−1 ln |x|u∂u, t∂t + x∂x〉 (k > 0) :

F = −3ktx−3u− 2x−2u ln |u| − u−1u2
x + x−2uG(ω),

ω = xu−1ux + ln |u|+ ktx−1;

A5
3.4 = 〈exp(ktx−1)∂u, ∂t + kx−1u∂u, t∂t + x∂x + (u + t exp(ktx−1))∂u〉 (k > 0) :

F = k2x−4u(t2 + x2) + 2x−1(ktx−1 + 1)ux

+2k exp(ktx−1)x−1 ln |x|+ x−1 exp(ktx−1)G(ω),

ω = exp(−ktx−1)(ux + ktx−2u).

A3.5-invariant equations

A1
3.5 = 〈|η|m−1∂u, ∂t + k∂x, t∂t + x∂x + mu∂u〉 (k > 0, m 6= 1)

F = (k2 − 1)(m− 1)(m− 2)η−2u + |η|m−2G(ω),

ω = |η|−m[ηux − (m− 1)u], η = x− kt;

A2
3.5 = 〈∂t, ∂x, t∂t + x∂x〉 :

F = u2
xG(u);

A3
3.5 = 〈∂t, ∂x, t∂t + x∂x + mu∂u〉 (m 6= 0) :

F = |u|1− 2
m G(ω), ω = |ux|m|u|1−m;

A4
3.5 = 〈∂t, ∂x, t∂t + x∂x + ∂u〉 :

F = e−2uG(ω), ω = euux;

A5
3.5 = 〈∂t, x

−1u∂u, t∂t + x∂x〉 :

F = −u−1u2
x − 2x−2u ln |u|+ x−2uG(ω),

ω = xu−1ux + ln |u|;
A6

3.5 = 〈∂t + kx−1u∂u, exp(ktx−1)∂u, t∂t + x∂x + u∂u〉 (k > 0) :

F = kx−4u[kt2 − 2tx + kx2] + 2ktx−2ux + x−1 exp(ktx−1)G(ω),

ω = exp(−ktx−1)(ux + ktx−2u);

A7
3.5 = 〈ϕ(t)∂u, ψ(t)∂u, ∂x + u∂u〉 (ϕ′ψ − ϕψ′ 6= 0) :

F = ϕ−1ϕ′′u + uxG(t, ω),

ω = e−xux, ϕ′′ψ − ϕψ′′ = 0.

A3.6-invariant equations

A1
3.6 = 〈∂t + k∂x, |η|m+1∂u, t∂t + x∂x + mu∂u〉 (k > 0, m 6= −1) :

F = m(k2 − 1)(m + 1)η−2u + |η|m−2G(ω),

ω = |η|1−m[ux − η−1(m + 1)u], η = x− kt;
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A2
3.6 = 〈∂t + mx−1u∂u, xu∂u, t∂t + x∂x〉 (m ≥ 0) :

F = −u−1u2
x − 2mtx−3u + x−2uG(ω),

ω = xu−1ux − ln |u|+ 2mtx−1;

A3
3.6 = 〈∂t + kx−1u∂u, exp(ktx−1)∂u, t∂t + x∂x − u∂u〉 (k > 0) :

F = x−4[k2x2 − 2ktx + k2t2]u + 2ktx−2ux + x−3 exp(ktx−1)G(ω),

ω = exp(−ktx−1)(x2ux + ktu);

A4
3.6 = 〈e−t∂u, et∂u, ∂t + k∂x〉 (k ≥ 0) :

F = u + G(η, ux), η = x− kt;

A5
3.6 = 〈|t|− 1

2 ∂u, |t| 32 ∂u, t∂t + x∂x +
1
2
u∂u〉 :

F =
3
4
t−2u + |t|− 3

2 G(ξ, ω), ξ = tx−1, ω = x−1u2
x.

A3.7-invariant equations

A1
3.7 = 〈∂t + k∂x, |η|m−q∂u, t∂t + x∂x + mu∂u〉

(k > 0, m 6= q, 0 < |q| < 1) :

F = (k2 − 1)(m− q)(m− q − 1)η−2u + |η|m−2G(ω),

ω = |η|1−m[ux − (m− q)η−1u], η = x− kt;

A2
3.7 = 〈∂t + kx−1u∂u, exp(ktx−1)∂u, t∂t + x∂x + qu∂u〉

(k > 0, 0 < |q| < 1) :

F = [k2x−2 + k2x−4t2 − 2ktx−3]u + 2ktx−2ux

+|x|q−2 exp(ktx−1)G(ω),

ω = |x|1−q exp(−ktx−1)(ux + ktx−2u);

A3
3.7 = 〈|t| 12 q∂u, |t|1− 1

2
q∂u, t∂t + x∂x + (1 +

1
2
q)u∂u〉 (q 6= 0,±1) :

F =
1
4
q(q − 2)t−2u + |t| 12 (q−2)G(ξ, ω),

ξ = tx−1, ω = |t|− 1
2
qux;

A4
3.7 = 〈exp

(
1
2
(q − 1)t

)
∂u, exp

(
1
2
(1− q)t

)
∂u, ∂t + k∂x +

1
2
(1 + q)u∂u〉

(q 6= 0,±1; k ≥ 0) :

F =
1
4
(q − 1)2u + exp

(
1
2
(1 + q)t

)
G(η, ω),

η = x− kt, ω = exp
(
−1

2
(1 + q)t

)
ux;

A5
3.7 = 〈∂t + kx−1u∂u, |x|−qu∂u, t∂t + x∂x〉 (k ≥ 0, q 6= 0,±1) :

F = −u−1u2
x − q(q + 1)x−2u ln |u|+ k(q − 1)(q + 2)tx−3u

+ux−2G(ω), ω = xu−1ux + q ln |u|+ k(1− q)tx−1.
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A3.8-invariant equations

A1
3.8 = 〈cos t∂u,− sin t∂u, ∂t + k∂x〉 (k ≥ 0) :

F = −u + G(η, ux), η = x− kt;

A2
3.8 = 〈|t| 12 cos(ln |t|)∂u,−|t| 12 sin(ln |t|)∂u, t∂t + x∂x +

1
2
u∂u〉 :

F = −5
4
t−2u + |t|− 3

2 G(ξ, ω),

ξ = tx−1, ω = |t| 12 ux.

A3.9-invariant equations

A1
3.9 = 〈sin t∂u, cos t∂u, ∂t + k∂x + qu∂u〉 (k ≥ 0, q > 0) :

F = −u + eqtG(η, ω), η = x− kt, ω = e−qtux;

A2
3.9 = 〈|t| 12 sin(ln |t|)∂u, |t| 12 cos(ln |t|)∂u, t∂t + x∂x + (

1
2

+ q)u∂u〉

(q 6= 0) : F = −5
4
t−2u + |t|q− 3

2 G(ξ, ω),

ξ = tx−1, ω = |t| 12−qux.

6.3 Complete group classification of equation (2.7)

The aim of this subsection is to finalize group classification of (2.7). The majority of invariant equations
obtained in the previous sub-section contain arbitrary functions of one variable. That is why we can
utilize the standard Lie-Ovsyannikov approach in order to complete their group classification.

6.3.1 Equations containing arbitrary functions of one variable.

Note that we do not consider the equations belonging to the already studied class (6.1).
As our computations show, new results could be obtained for the equations

utt = uxx + uG(ω), ω = u−1ux, (6.13)
utt = uxx + G(ux) (6.14)

only. Below we give (without proof) the assertions describing their group properties.

Assertion 7 Equation (6.13) admits wider symmetry group iff it is equivalent to the following PDE:

utt = uxx + mu−1u2
x (m 6= 0,−1). (6.15)

The maximal invariance algebra of (6.15) is the four-dimensional Lie algebra

A4 ∼ A3.5 ⊕A1, A4 = 〈∂t, ∂x, t∂t + x∂x, u∂u〉.

Assertion 8 Equation (6.14) admits wider symmetry group iff it is equivalent to one of the following
PDEs:

utt = uxx + eux ; (6.16)
utt = uxx + m ln |ux|, m > 0; (6.17)
utt = uxx + |ux|k, k 6= 0, 1. (6.18)
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The maximal invariance algebras of the above equations are five-dimensional solvable Lie algebras
given below.

A2
5 = 〈∂t, ∂x, ∂u, t∂u, t∂t + x∂x + (u− x)∂u〉;

A3
5 = 〈∂t, ∂x, ∂u, t∂u, t∂t + x∂x + (2u +

1
2
mt2)∂u〉;

A4
5 = 〈∂t, ∂x, ∂u, t∂u, t∂t + x∂x +

k − 2
k − 1

u∂u〉.

Analyzing the remaining equations containing arbitrary functions of one variable we come to
conclusion that for any them to admit wider invariance group one of the following conditions should
hold true:

1) equation in question is equivalent to PDE of the form (6.1), or

2) equation in question is equivalent to PDE of the form (6.15).

Skipping the proof, we present two typical examples. We begin with the equation

utt = uxx + u + G(ux). (6.19)

This equation is invariant under the four-dimensional algebra 〈∂t, ∂x, et∂u, e−t∂u〉 isomorphic to A3.6⊕
A1. Inserting F = u + G(ux) into classifying equation (2.5) yields the system of two equations for G

h′G′ = −h′′ − 2λ, [(h− λ)ux + rx]G′ − (h− 2λ)G = rtt − rxx − 2h′ux − r.

As G′′ 6= 0, the first equation implies that λ = h′ = 0. The second equation takes the form

(hux + rx)G′ − hG = rtt − rxx − r.

Upon differentiating the above equation twice with respect to ux we get (hux +rx)G′′ = 0. As G′′ 6= 0,
the relations h = rx = 0 hold. Hence we conclude that the class of PDEs (6.19) does not contain
equations admitting five-dimensional symmetry algebras.

The system of determining equations for the symmetry group of A2
3.2-invariant equation

utt = uxx + uη−2G(ω), η = x− kt, ω = ηu−1ux, k ≥ 0, (6.20)

is

(η−2rω − η−1rx)Gω − η−2rG = rtt − rxx,

[(λ2 − kλ1)η−3ω + η−1h′]Gω − 2(λ2 − kλ1)η−3G = −2h′η−1ω − h′′.

Differentiating the first equation with respect to ω yields

(η−2rω − η−1rx)Gωω = 0,

whence in view of inequality Gωω 6= 0 we get r = 0. Next differentiating the second equation twice by
ω we get

[(λ2 − lkλ1)η−3ω + η−1h′]Gωωω = 0,

whence it follows that Gωωω = 0. Indeed, if this relation does not hold, we have λ2 = kλ1, h′ = 0 and
operator (2.4) takes the form

λ(t∂t + x∂x) + λ1(∂t + k∂x) + C1u∂u, λ, λ1C1 ∈ R, k ≥ 0.

39



As the above operator contains at most three arbitrary constants it cannot generate a four-parameter
Lie transformation group.

By the above argument we can restrict our considerations to the following class of functions G:

G = Aω2 + Bω + C, A 6= 0,−1, B, C ∈ R. (6.21)

Without any loss of generality we can suppose that A 6= −1 in (6.21) (since otherwise (6.20)
belongs to the class of PDEs (6.1)). Inserting (6.21) into the second equation from (6.21) yields

2(A + 1)η2h′ = B(λ2 − kλ1), η2Bh′ + η3h′′ = 2C(λ2 − kλ1). (6.22)

If k > 0, then this system splits into the three equations (note that h = h(x))

h′ = 0, B(λ2 − kλ1) = C(λ2 − kλ1) = 0.

Provided |B| + |C| 6= 0 there is no way to extend symmetry of equation (6.20). If, on the contrary,
B = C = 0, then F = Au−1u2

x(A 6= 0,−1) and we obtain the equation equivalent to (6.15). Under
k = 0 system (6.22) takes the form

2(A + 1)x2h′ = λ2B, x2Bh′ + h′′x3 = 2λ2C.

Hence

h = −1
2
λ2(A + 1)−1Bx−1 + C1, C1 ∈ R, C =

B2 − 2B

4(A + 1)
.

In this case equation (6.20) does admit additional symmetry operator

∂x − B

2(A + 1)
x−1u∂u

but the change of variables

t̄ = t, x̄ = x, u = |x|νv, ν = − B

2(A + 1)
,

reduces it to the form (6.15).
So equation (6.20) admits wider symmetry group iff it is either belongs to the class of (6.1) or is

equivalent to (6.15).
To finalize the procedure of group classification of equations (2.7) we need to consider invariant

equations obtained in the previous section that contain arbitrary functions of two variables.

6.3.2 Classification of equations with arbitrary functions of two variables.

In the case of equations with arbitrary functions of two variables the standard Lie-Ovsyannikov method
is inefficient and we apply our classification algorithm. To this end, we compute extensions of three-
dimensional solvable Lie algebras to all possible realizations of four-dimensional solvable Lie algebras.
The subsequent step will be to check which of the obtained realizations are symmetry algebras of
nonlinear equations of the form (2.7). In what follows we utilize the results of the paper [44], where
all inequivalent (within the action of inner automorphism group) four-dimensional solvable abstract
Lie algebras are given.

We give full computation details for the case of A3.6-invariant equations. As shown in the previous
sub-section, there are two inequivalent A3.6-invariant equations, namely,

A4
3.6 = 〈e−t∂u, et∂u, ∂t + k∂x〉

(k ≥ 0) : F = u + G(η, ux), η = x− kt;

A5
3.6 = 〈|t|− 1

2 ∂u, |t| 32 ∂u, t∂t + x∂x +
1
2
u∂u〉 :

F =
3
4
t−2u + |t|− 3

2 G(ξ, ω), ξ = tx−1, ω = x−1u2
x.
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According to [44] the algebra A3.6 is the subalgebra of the following four-dimensional solvable Lie
algebras: 2A2.2, A3.6 ⊕A1; A4.2(q = −1);A4.8(q = −1

2).
Algebra 2A2.2. The algebra 2A2.2 = 〈e1, e2, e3, e4〉 is defined by the following commutation relations

(note that we give non-zero relations only):

[e1, e2] = [e1, e4] = [e2, e3] = [e2, e4] = 0, [e1, e2] = e2, [e3, e4] = e4.

It contains a subalgebra A3.6 = 〈e1− e3, e2, e4〉. That is why, we can choose the basis operators of the
realization of A3.6 as e1 − e3, e2, e4. Next, we take an arbitrary operator of the form (2.4) as e1 + e3

and require for the commutation relations

[e1 − e3, e1 + e3] = 0, [e1 + e3, e2] = e2, [e1 + e3, e4] = e4 (6.23)

to hold.
Realization A4

3.6. In this case

e1 − e3 = −∂t − k∂x, e2 = e−t∂u, e4 = et∂u,

e1 + e3 = (λt + λ1)∂t + (λx + λ2)∂x + (hu + r)∂u.

It follows from (6.23) that
λ = λ1 = 0, r = γ = γ(η), h = −1.

Using the change of variables
t̄ = t, x̄ = x, v = u + Λ(η),

where Λ = Λ(η) is a solutions of equation λ2Λ′ + Λ = −γ, we simplify the operator e1 + e3 to become

e1 + e3 = α∂x − u∂u, α ∈ R.

Requiring invariance under the above operator yields that α 6= 0 (otherwise G would be linear in
ux). With this result in hand we rewrite the invariant equation to become

G = exp(−α−1η)H(ω), ω = exp(α−1η)ux.

Thus we arrive at the following realization of the algebra 2A2.2:

〈e−t∂u, et∂u, ∂t + k∂x, α∂x − u∂u〉 (k ≥ 0, α 6= 0).

This algebra is admitted by the equation

utt = uxx + u + exp(−α−1η)G(ω), η = x− kt, ω = exp(α−1η)ux.

If the function G (Gωω 6= 0) is arbitrary, then the obtained realization is the maximal symmetry
algebra of the equation under study. What is more, there is no such G that the above equation admits
a wider invariance algebra.

Realization A5
3.6. In this case

e1 − e3 = −t∂t − x∂x − 1
2
u∂u, e2 = |t|− 1

2 ∂u,

e1 + e3 = (λt + λ1)∂t + (λx + λ2)∂x + (hu + r)∂u, e4 = |t| 32 ∂u.

It follows from commutation relations (6.23) that λ1 = λ2 = λ = 0, h = −1, r = |t| 12 γ(ξ), ξ = tx−1.
Making the change of variables

t̄ = t, x̄ = x, v = u− |t| 12 γ(ξ)
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we get r = 0 in e1 + e3. Consequently, without loss of generality we can choose e1 + e3 = −u∂u.
Requiring for the A5

3.6-invariant equation to admit the operator e1 + e3 yields the constraint 2ωGω =
−G, whence G = |ω|− 1

2 H(ξ). Consequently, the function F is linear in ux. This means that A5
3.6 does

not admit extension to a realization 2A2.2 that can be a symmetry algebra of an essentially nonlinear
equation of the form (2.7).

Algebra A3.6 ⊕A1. What we need to do here is to supplement the set of operators e1, e2, e3 forming
the basis of A3.6 by the operator e4 of the form (2.4) and verify the commutation relations

[e1, e4] = [e2, e4] = [e3, e4] = 0. (6.24)

Realization A4
3.6. It follows from (6.24) that h = λ = λ1 = 0, r = γ(η), η = x−kt in the operator

e4 so that
e4 = α∂x + γ(η)∂u, α ∈ R.

If α 6= 0, then e4 is equivalent to ∂x. Hence we get two possible realizations of the algebra A3.6 ⊕A1:

〈e−t∂u, et∂u, ∂t, ∂x〉;
〈e−t∂u, et∂u, ∂t + k∂x, γ(η)∂u〉.

Analyzing the above realizations we come to conclusion that the second one cannot be invariance
algebra of a nonlinear equation of the form (2.7). The first realization is the maximal invariance
algebra of the equation (6.19), if G is an arbitrary function.

Realization A5
3.6. It follows from (6.24) that λ1 = λ2 = h = λ = 0 and

r = |t| 12 γ(ξ), ξ = tx−1,

so that the operator e4 necessarily takes the form e4 = |t| 12 γ(ξ)∂u. As the straightforward verification
shows the so obtained realization cannot be invariance algebra of a nonlinear equation of the form
(2.7).

Algebra A4.2 (q = −1). We need to supplement the set of operators e1, e2, e4 forming the basis of
A3.6 by the operator e3 of the form (2.4) so that the following commutation relation hold

[e1, e3] = [e2, e3] = 0, [e3, e4] = e2 + e3. (6.25)

Realization A4
3.6. In this case

e1 = e−t∂u, e2 = et∂u, e4 = −∂t − k∂x

and it follows from (6.25) that the coefficients of e3 satisfy equations h = λ = λ1 = λ2 = 0, the
function r being a solution of the equation

rt + krx = r + et.

Further analysis shows that this realization cannot be invariance algebra of nonlinear equation of the
form (2.7).

Realization A5
3.6. In this case

e1 = |t|− 1
2 ∂u, e2 = |t| 32 ∂u, e4 = −t∂t − x∂x − 1

2
u∂u.

It follows from (6.25) that the coefficients of the operator e3 satisfy equations λ = λ1 = λ2 = h = 0
and the function r is a solution of the equation

trt + xrx =
3
2
r + |t| 32 .
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Further analysis shows that the so obtained realization cannot be invariance algebra of a nonlinear
equation of the form (2.7).

Algebra A4.8 (q = −1
2). We need to supplement the set of operators e1, e3, e4 forming the basis of

A3.6 by the e2 of the form (2.4) in order to satisfy the commutation relations

[e1, e2] = 0, [e2, e3] = e1, [e2, e4] = e2. (6.26)

Realization A4
3.6. In this case

e1 = e−t∂u, e3 = et∂u, e4 =
1
2
∂t +

1
2
k∂x

and the second commutation relation yields the false equality 1 = 0.
Realization A5

3.6. In this case

e1 = |t|− 1
2 ∂u, e2 = |t| 32 ∂u, e4 = −t∂t − x∂x − 1

2
u∂u

and again the second commutation relation from (6.26) cannot be satisfied.
Consequently, there is no extension of the realization of A3.6 to a realization of the algebra A3.8 (q =

−1
2).
The remaining equations containing arbitrary functions of two variables are handled in a similar

way. The results can be summarized as follows

1) if the functions contained in the equations under study are arbitrary, then the corresponding
realizations are their maximal invariance algebras, and

2) except for equation (6.14), all the equations in question do not allow for extension of their
symmetry.

Below we give the complete list of invariant equations obtained through group analysis of equations
with arbitrary functions of two variables.

6.3.3 Equations invariant under four-dimensional solvable Lie algebras.

A2.2 ⊕ 2A1-invariant equations

1) 〈∂x, ∂t + u∂u, et∂u, e−t∂u〉 : F = u + etG(ω), ω = u−tux;

2) 〈 1
2k

(∂t + k∂x), ex+kt∂u, eη∂u, ∂x + u∂u〉 (k > 0, η = x− kt) :

F = (k2 − 1)u + eηG(ω), ω = e−η(ux − u).

2A2.2-invariant equations

1) 〈∂t + εu∂u, ∂x, ex+kt∂u, ex−kt∂u〉 (ε = 0, 1; k > 0) :
F = (k2 − 1)u + eεtG(ω), ω = e−εt(ux − u);

2) 〈α∂x − u∂u, ∂t + k∂x, e−t∂u, et∂u〉 (k ≥ 0, α > 0) :
F = u + exp(−α−1η)G(ω), η = x− kt, ω = exp(α−1η)ux.

A3.3 ⊕A1-invariant equations

1) 〈∂t, ∂x, ∂u, t∂u〉 : F = G(ux).
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A3.4 ⊕A1-invariant equations

1) 〈∂u, ∂x, t∂t + x∂x + (u + x)∂u, t∂u〉 :
F = t−1G(ω), ω = ux − ln |t|;

2) 〈∂t + u∂u, ∂x, t∂u, ∂u〉 : F = etG(ω), ω = e−tux;
3) 〈x−1∂u, ∂x − x−1(u + ln |x|)∂u, t∂t + x∂x, tx−1∂u〉 :

F = 2x−1ux + x−2 + t−1x−1G(ω), ω = xux + u− ln |tx−1|.

A3.5 ⊕A1-invariant equations

1) 〈∂x, ∂u, t∂t + x∂x + u∂u, t∂u〉 : F = t−1G(ux);
2) 〈x−1∂u, ∂x − x−1u∂u, t∂t + x∂x, tx−1∂u〉 :

F = −2x−2u + 2t−1(ux + x−1u) ln |t(ux + x−1u)|
+t−1(ux + x−1u)G(ω), ω = xux + u.

A3.6 ⊕A1-invariant equations

1) 〈∂x, t∂u, t∂t + x∂x, ∂u〉 : F = t−2G(ω), ω = t−1ux;
2) 〈∂t, ∂x, et∂u, e−t∂u〉 : F = u + G(ux).

A3.7 ⊕A1-invariant equations

1) 〈exp
(
−1

2
(1− q)t

)
∂u, exp

(
1
2
(1− q)t

)
∂u, ∂t +

1
2
(1 + q)u∂u, ∂x〉

(q 6= 0,±1) : F =
1
4
(1− q)2u + exp

(
1
2
(1 + q)t

)
G(ω),

ω = exp
(
−1

2
(1 + q)t

)
ux;

2) 〈∂x, |t| 12 (1−q)∂u, |t| 12 (1+q)∂u, t∂t + x∂x +
1
2
(1 + q)u∂u〉

(q 6= 0,±1) : F =
1
4
(q2 − 1)t−2u + |t| 12 (q−3)G(ω),

ω = |t| 12 (1−q)ux;

3) 〈|t|− 1
q |ξ| q+1

2q ∂u, ∂x − 1 + q

2q
x−1u∂u,−q(t∂t + x∂x), |ξ| 1+q

2q ∂u〉

(q 6= 0,±1) : F =
[
1− q2

4q2
(t−2 + x−2)

]
u +

1 + q

q
x−1ux

+t−2|ξ| 1+q
2q G(ω), ξ = tx−1, ω = |ξ| q−1

2q

[
xux +

q + 1
2q

u

]
.

A3.8 ⊕A1-invariant equations

1) 〈sin t∂u, cos t∂u, ∂t, ∂x〉 : F = −u + G(ux).

A3.9 ⊕A1-invariant equations

1) 〈sin t∂u, cos t∂u, ∂t + qu∂u, ∂x〉(q > 0) :
F = −u + eqtG(ω), ω = e−qtux.
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A4.1-invariant equations

1) 〈∂u,−t∂u, ∂x, ∂t − tx∂u〉 : F = G(ω), ω = ux +
1
2
t2;

2) 〈∂u,−t∂u, α∂x +
1
2
t2∂u, ∂t + kx∂x〉 (k ≥ 0, α > 0) :

F = α−1(x− kt) + G(ux).

A4.2-invariant equations

1) 〈|t|1− 1
2
q∂u, |t| 12 q∂u, ∂x, t∂t + x∂x +

[(
1 +

1
2
q

)
u + x|t| 12 q

]
∂u〉

(q 6= 0, 1) : F =
1
4
q(q − 2)t−2u + |t| 12 (q−3)G(ω),

ω = |t| 12 (1−q)ux − 2|t| 12 ;

2) 〈∂x,
√
|t|∂u,

√
|t| ln |t|∂u, t∂t + x∂x +

(
q +

1
2

)
u∂u〉

(q 6= 0) : F = −1
4
t−2u + |t|q− 3

2 G(ω), ω = |t| 12−qux.

A4.3-invariant equations

1) 〈∂x, |t| 12 ∂u,−|t| 12 ln |t|∂u, t∂t + x∂x +
1
2
u∂u〉 :

F = −1
4
t−2u + |t|− 3

2 G(ω), ω = |t| 12 ux;

2) 〈∂x, t∂u, ∂u, t∂t + x∂x〉 : F = t−2G(ω), ω = tux;
3) 〈ekt∂u, ∂t + ku∂u, β∂x + tekt∂u, e−kt∂u〉 (k 6= 0, β > 0) :

F = k2u + 2kβ−1xekt + ektG(ω), ω = e−ktux;

4) 〈ex+kt∂u, eη∂u, α(∂x + u∂u) + 2kteη∂u,− 1
2k

(∂t + k∂x)〉
(α 6= 0, k > 0) : F = (k2 − 1)u− 4k2α−1ηeη + eηG(ω),
ω = e−η(ux − u), η = x− kt.

A4.4-invariant equations

1) 〈|t| 12 ∂u,−|t| 12 ln |t|∂u, ∂x, t∂t + x∂x +
[
3
2
u− x|t| 12 ln |t|

]
∂u〉 :

F =
1
4
t−2u + |t|− 1

2 G(ω), ω = |t|− 1
2 ux +

1
2

ln2 |t|.
A4.5-invariant equations

1) 〈∂x, |t|m−α∂u, |t|1−m+α∂u, t∂t + x∂x + mu∂u〉
(m 6= 1

2
(1 + α),

1
2

+ α; α 6= 0) :

F = (m− α)(m− α− 1)t−2u + |t|m−2G(ω), ω = |t|1−mux.

A4.6-invariant equations

1) 〈∂x, |t| 12 sin(q−1 ln |t|)∂u, |t| 12 cos(q−1 ln |t|)∂u, qt∂t + qx∂x(
1
2
q + p

)
u∂u〉 (q 6= 0, p ≥ 0) :

F = −
(

1
4

+ q−2

)
t−2u + |t|q−1(p− 3

2
q)G(ω), ω = |t|q−1( 1

2
q−p)ux.
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A4.7-invariant equations

1) 〈∂u,−t∂u, ∂t + k∂x, t∂t + x∂x +
(

2u− 1
2
t2

)
∂u〉 (k ≥ 0) :

F = − ln |η|+ G(ω), ω = η−1ux, η = x− kt.

A4.8-invariant equations

1) 〈∂t + εu∂u, ∂x, ex∂u, tex∂u〉 (ε = 0; 1) :
F = −u + eεtG(ω), ω = e−εt(ux − u);

2) 〈|x|m−q∂u, ∂t, t|x|m−q∂u, t∂t + x∂x + mu∂u〉 (q 6= 0, m ∈ R) :
F = −(m− q)(m− q − 1)x−2u + |x|m−2G(ω),
ω = |x|1−m[ux − (m− q)x−1u];

3) 〈∂t + k∂x, ∂u, t∂u, t∂t + x∂x + qu∂u〉 (k > 0, q ∈ R) :
F = |η|q−2G(ω), ω = |η|1−qux, η = x− kt;

4) 〈x−1∂u, ∂t + ∂x − x−1u∂u, tx−1∂u, t∂t + x∂x〉 :
F = 2x−1ux + x−1(t− x)−1G(ω), ω = xux + u;

5) 〈∂u,−t∂u, ∂t + k∂x + u∂u, α∂x + u∂u〉 (α 6= 0, k ≥ 0) :
F = exp(α−1η + t)G(ω), ω = exp(−α−1η − t)ux, η = x− kt.

A4.10-invariant equations

1) 〈sin t∂u, cos t∂u, ∂x + u∂u, ∂t + k∂x〉(k ≥ 0) :
F = −u + eηG(ω), ω = e−ηux, η = x− kt.

In the above formulas G = G(ω) is an arbitrary function satisfying the condition Fuxux 6= 0.

7 Symmetry reduction and solutions of nonlinear wave equations

Among the various applications of Lie symmetry groups the most prominent and remarkable one is a
possibility to construct exact solutions of nonlinear PDEs. The basic idea is reducing multi-dimensional
differential equations to ordinary differential equations via special ansatzes (invariant solutions). A
regular (but not the only!) way to derive those ansatzes is to utilize symmetry group admitted by the
equation under study (for more details see, e.g., [14, 15]). Though the obtained ordinary differential
equations are, as a rule, nonlinear, they possess in many cases a residual symmetry allowing for
constructing their general or particular solutions. Inserting the latter into the corresponding ansatz
yields the exact solution of initial nonlinear multi-dimensional PDE. This method is often referred to
in the literature as symmetry reduction of PDEs.

The majority of papers on exact solutions of equations (1.1) deal with the PDEs of the form

utx = f(u), (7.1)

where f is a smooth function. The particular cases of the above equation are

• the Liouville equation (f(u) = eu),

• the Bonnet (or sin-Gordon) equation (f(u) = sinu),
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• the sinh-Gordon equation (f(u) = sinhu),

• the Tzitzeica equation (f(u) = eu + e−2u).

It is a common knowledge that the Liouville equation is integrated in a closed form. The sin/sinh-
Gordon equations are integrable by the inverse scattering method. Some exact solutions of the Tz-
itzeica equation were found in [4, 5].

A number of explicit solutions of equations (7.1) different from those mentioned above have been
constructed in [45] (see, also [40] and the references therein). The broad classes of exact solutions of
equations (7.1) under f(u) = λuk are obtained in [46]. The case f = a sin(λu) + b sin

(
1
2λu

)
has been

studied in [5, 12, 47].
In what follows we concentrate on constructing solutions of nonlinear wave equations (2.7) having

the richest symmetry properties. To this end we apply the symmetry reduction method.
To perform reduction of PDEs (2.7) to ordinary differential equations we need to describe all

inequivalent one-dimensional subalgebras of the symmetry algebras of the equations under study.
What is more, basis operators of these algebras

τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u,

have to obey the following restriction [14]:

|τ |+ |ξ| 6= 0 (7.2)

in some open domain Ω of the space V = R2×R1 of independent R2 = 〈t, x〉 and dependent R1 = 〈u〉
variables.

As we proved in the previous sections, equations

utt = uxx − u−1u2
x; (7.3)

utt = uxx + eux ; (7.4)
utt = uxx + m ln |ux| (m > 0); (7.5)
utt = uxx + |ux|k (k 6= 0, 1). (7.6)

enjoy the highest symmetry properties amongst PDEs of the form (2.7).
We consider in some detail the main steps of the symmetry reduction algorithm for equation

(7.3). To classify one-dimensional subalgebras we utilize the method suggested in [44] and the lists of
one-dimensional subalgebras of four-dimensional subalgebras obtained in [44].

Equation (7.3) admits the algebra

A1
5 = (A3.3 ⊕A1)+⊃ 〈e5〉,

where A3.3 = 〈e1, e2, e3〉 = 〈u∂u, ∂x, xu∂u〉, A1 = 〈e4〉 = 〈∂t〉, e5 = t∂t + x∂x.
In what follows we need the commutation relations of the basis operators of the algebra A3.3⊕A1

with the operator e5:

[e1, e5] = 0, [e2, e5] = e2, [e3, e5] = −e3, [e4, e5] = e4.

According to [44] the one-dimensional subalgebras of A3.3 ⊕A1 defined within the action of inner
automorphism group of this algebra are 〈e1〉, 〈e1+αe4〉, 〈e4〉, 〈e2〉, 〈e2+αe4〉, 〈e3〉, 〈e3+αe4〉, 〈e2+βe3〉,
〈e2 + βe3 + αe4〉 (α, β 6= 0). The above subalgebras can be further simplified by using transformation
group generated by the operator e5. For example, using the Campbell-Hausdorff formula we transform
e1 + αe4 as follows:

exp(θe5)(e1 + αe4) exp(−θe5) = e1 + αeθe4.
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Consequently, choosing θ = − ln |α| we simplify e1 + αe4 to become e1 ± e4. Similarly, we prove that
we can put α = ±1 in e3 + αe4 and β = ±1 in e2 + βe3, e3 + βe3 + αe4.

To complete classification of one-dimensional subalgebras we have to describe all inequivalent
subalgebras with non-zero projection on the basis operator e5, i.e., subalgebras of the form

Λ = e5 + α1e1 + α2e2 + α3e3 + α4e4, α1, α2, α3, α4 ∈ R. (7.7)

Utilizing the automorphism exp(θe4) with a properly chosen θ we have α4 = 0 in (7.7). Next applying
the transformation exp(θ1e2 + θ2e3) to operator (7.7) reduces it to one of the following operators
e5, e5 + αe1 (α 6= 0).

So the list of the one-dimensional subalgebras of the five-dimensional algebra A1
5 determined within

the action of inner automorphism group is exhausted by the following algebras: 〈e1〉, 〈e1 ± e4〉, 〈e4〉,
〈e2〉, 〈e2 +αe4〉, 〈e3〉, 〈e3±e4〉, 〈e2±e3〉, 〈e2±e3 +αe4〉, 〈e5〉, 〈e5 +αe1〉 (α 6= 0). By direct verification
we prove that the basis operators of the algebras 〈e1〉, 〈e3〉 do not satisfy condition (7.2).

Finally, we make use of the fact that the discrete groups of transformations

t̄ = −t, x̄ = x, v = u;
t̄ = t, x̄ = −x, v = u;
t̄ = −t, x̄ = −x, v = u,

also belong to the equivalence group of (7.3). Using the above transformations enables to further
simplify the optimal system of inequivalent subalgebras

〈e1 + e4〉, 〈e4〉, 〈e2〉, 〈e2 + αe4〉, 〈e3 + e4〉, (7.8)
〈e2 ± e3〉, 〈e2 ± e3 + αe4〉, 〈e5〉, 〈e5 + αe1〉 (α > 0).

The second step of the method of symmetry reduction is constructing the complete set of invariants
f(t, x, u) for each inequivalent one-dimensional subalgebra. As a typical example, we consider the case
of the subalgebra 〈e1 + e4〉. To construct its invariants we need to integrate the first-order PDE

(e1 + e4) ◦ F (t, x, u) = 0

or
uFu + Ft = 0.

The complete set of first integrals of the above equation is ω1 = x, ω2 = e−tu. Hence we get the
general form of invariant solution (ansatz) ω2 = ϕ(ω1). Solving this equation with respect to u we
finally have

u = etϕ(x). (7.9)

Inserting (7.9) into (7.3) yields ordinary differential equation for unknown function ϕ

ϕ′′ − ϕ−1(ϕ′)2 − ϕ = 0,

which is easily integrated

ϕ = exp
[
1
2
x2 + C1x + C2

]
, C1, C2 ∈ R.

Inserting the so obtained expression for φ into ansatz (7.9) yields the explicit form of invariant solution
of equation (7.3)

u = exp
[
t +

1
2
x2 + C1x + C2

]
, C1, C2 ∈ R.

The full list of so obtained exact solutions of (7.3) is given in the Appendix. In a similar way we
perform symmetry reduction and construct exact solutions of equations (7.4)–(7.6). These solutions
are also listed in Appendix.
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8 Concluding remarks

Let us briefly summarize the results obtained in this paper.
We prove that the problem of group classification of the general quasi-linear hyperbolic type

equation (1.1) reduces to classifying equations of more specific forms

I. utt = uxx + F (t, x, u, ux), Fuxux 6= 0;
II. utt = uxx + g(t, x, u)ux + f(t, x, u), gu 6= 0;

III. utx = g(t, x)ux + f(t, x, u), gx 6= 0, fuu 6= 0;
IV. utx = f(t, x, u), fuu 6= 0.

The cases of PDEs that are essentially nonlinear in ux (the class of PDEs I) and either linear in ux or
do not depend on ux (the classes II - IV) need to be considered separately.

If we denote as DE the set of PDEs II – III, then the results of application of our algorithm for
group classification of equations I–IV can be summarized as follows.

1) We perform complete group classification of the class DE . We prove that the Liouville equation
has the highest symmetry properties among equations from DE . Next we prove that the only
equation belonging to this class and admitting the four-dimensional invariance algebra is the
nonlinear d’Alembert equations. It is established that there are twelve inequivalent equations
from DE invariant under three-dimensional Lie algebras. We give the lists of all inequivalent
equations from DE that admit one- and two-dimensional symmetry algebras.

2) We have studied the structure of invariance algebras admitted by nonlinear equations from the
class I. It is proved, in particular, that their invariance algebras are necessarily solvable.

3) We perform complete group classification of nonlinear equations from the class of PDEs I. We
prove that the highest symmetry algebras admitted by those equations are five-dimensional
and construct all inequivalent classes of equations invariant with respect to five-dimensional Lie
algebras. We also construct all inequivalent equations of the form I admitting one-, two-, three-
and four-dimensional Lie algebras.

The results of group classification of the class of nonlinear wave equations (1.1) are utilized for
constructing their explicit solutions. Namely, we perform symmetry reduction of all equations (1.1)
admitting five-dimensional symmetry algebras to ordinary differential equations and constructed multi-
parameter families of their exact solutions.
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Appendix. Exact solutions of equations (7.3)–(7.6).

Below we present the lists of invariant solutions of nonlinear wave equations (7.3)–(7.6), which are
obtained using the symmetry reduction approach.

Exact solutions of (7.3):

〈e1 + e4〉 : u = exp
[
t +

1
2
x2 + C1x + C2

]
,

〈e4〉 : u = exp[C1x + C2],
〈e2〉 : u = C1t + C2,

〈e2 + αe4〉, (α > 0) : u = C2|t− αx + C1|1−α2
,

〈e3 + e4〉 : u = exp
[
tx +

1
12

x4 + C1x + C2

]
,

〈e2 − e3〉 : u = C1 exp
(
−1

2
x2

)
cos(t + C2),

〈e2 + e3〉 : u = C1 exp
(

1
2
x2

)
cosh(t + C2),

〈e2 + e3 + e4〉 : u = exp
[
C1 +

1
2
x2 ± (t− x)

]
,

〈e2 − e3 + αe4〉 (α 6= 1, α > 0) : u = C2 exp
(
−1

2
x2

)[
cos

(
C1 +

t− αx

α2 − 1

)]1−α2

,

〈e2 + e3 + αe4〉 (α 6= 1, α > 0) : u = C2 exp
(
−1

2
x2

)[
cosh

(
C1 +

t− αx

1− α2

)]1−α2

,

〈e5〉 : u = exp

{∫ ξ (
C1(η2 − 1) +

1
4
(η2 − 1) ln

∣∣∣∣
1 + η

1− η

∣∣∣∣−
1
2
η

]−1

dη + C2

}
, ξ = tx−1,

〈e5 + e1〉 : u = t exp

{∫ ξ [
C1η

2 +
1
2
η ln

∣∣∣∣
1 + η

1− η

∣∣∣∣− η

]−1

dη + C2

}
,

〈e5 + αe1〉 : u = |t|α exp
[∫ ξ

g(η)dη + C1

]
, where ξ = tx−1 and g(ξ) is a solution of

the Riccati equation, ξ2(ξ2 − 1)g′ = ξ2g2 − 2ξ(ξ2 − α)g + α(α− 1).

Here e1 = u∂u, e2 = ∂x, e3 = xu∂u, e4 = ∂t, e5 = t∂t + x∂x and C1, C2 are arbitrary real constants.

Exact solutions of (7.4):

〈e4〉 : u = C1t + C2,

〈e2〉 : u = (x + C1)[1− ln |x + C1|] + C2,

〈e2 + αe4〉 (α > 0, α 6= 1) : u = (x− αt) ln |1− α2|
−(x− αt + C1)[ln |x− αt + C1| − 1] + C2,

〈e3 + αe4〉 (α > 0) : u = α−1tx + α2 exp(α−1t) + C1t + C2,

〈e2 + εe3〉 (ε = ±1) : u =
1
2
εt2 + ϕ(x), ϕ′ = y(x),

y − ln |ε− ey| = εx + C1,
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〈e2 + βe3 + e4〉 (β 6= 0) : u =
1
2
βt2 + (x− t) ln |β|+ C1,

〈e2 + βe3 + αe4〉 (β 6= 0, α > 0, α 6= 1) : u =
1
2
βt2 + ϕ(η), η = x− αt,

ϕ = y′(η), y − ln |β − ey| = β(1− α2)−1η + C1,

〈e5〉 : u = −x ln |x|+ C1t + x,

〈e5 + αe3〉 (α > 0) : u = (αt− x) ln |x|+ xϕ(ξ), ξ = tx−1,

(ξ2 − 1)ϕ′′ + exp[−ξϕ′ + ϕ + αξ − 1] = 1 + αξ.

Here e1 = ∂u, e2 = ∂t, e3 = t∂u, e4 = ∂x e5 = t∂t + x∂x + (u − x)∂u and C1, C2 are arbitrary real
constants.

Exact solutions of (7.5):

〈e1 + e4〉 : u = x + C1t + C2,

〈e4〉 : u = C1t + C2,

〈e2〉 : u = ϕ(x), ϕ′ = f(x),
∫

df

ln |f | = −mx + C1,

〈e2 + e4〉 : u = x− t + C1,

〈e2 + αe4〉 (α > 0, α 6= 1) : u = ϕ(η), η = x− αt, ϕ′ = f(η),∫
df

ln |f | = − m

1− α2
(x− αt) + C1,

〈e3 + αe4〉 (α > 0) : u = α−1tx +
1
2
mt2(1 + lnα) +

1
2
mt2

(
ln |t| − 1

2

)

+C1t + C2, α > 0,

〈e5〉 : u =
1
2
m2 ln |t|+ t2ϕ, where ϕ = ϕ(ξ) (ξ = tx−1) satisfies equation

ξ2(ξ2 − 1)ϕ′′ + 2ξ(ξ2 − 2)ϕ′ − 2ϕ + m ln |ξ2ϕ′| − 3
2
m = 0.

Here e1 = ∂u, e2 = ∂t, e3 = t∂u, e4 = ∂x, e5 = t∂t + x∂x +
(
2u + 1

2mt2
)
∂u and C1, C2 are arbitrary

real constants.

Exact solutions of (7.6):

〈e1 + e4〉 : u =
1
2
t2 + x + C1t + C2,

〈e4〉 : u = C1t + C2,

〈e2〉 : u = (2− k)−1(C1 + (k − 1)x)
2−k
1−k + C2 and k 6= 2,

u = C2 ln |x− C1| and k = 2;
〈e2 + αe4〉 (α > 0, α 6= 1) : u = (1− α2) ln |C1 − x + αt|+ C2 and k = 2,

u =
1− k

2− k

(
1− k

α2 − 1

) 1
1−k

|x− αt + C1|
2−k
1−k + C2 and k 6= 0, 1, 2,

〈e3 + e4〉 : u = tx + t(ln |t| − 1) + C1t + C2 and k = −1,

u = tx− ln |t|+ C1t + C2 and k = −2;
u = tx + (k2 + 3k + 2)−1|t|k+2 + C1t + C2 and k 6= 0, 1,−1,−2,

53



〈e2 + εe3〉 (ε = ±1) : u =
1
2
εt2

∫ x

f(η)dη + C2, where f is defined by
∫

df

ε− |f |k = η + C1,

〈e2 + εe3 + αe4〉 (ε = ±1, α > 0) : u =
1
2
εt2

∫ η

f(z)dz + C2,

η = x− αt, where f is defined by
∫

df

ε− |f |k = (1− α2)−1z + C1,

〈e5〉 : u = |t| k−2
k−1 ϕ(ξ), ξ = tx−1, where ϕ is defined by

ξ2(ξ2 − 1)ϕ′′ + 2ξ

(
ξ2 − k − 2

k − 1

)
ϕ′ + (−1)kξ2k|ϕ′|k +

k − 2
(k − 1)2

ϕ = 0

and k 6= 0, 1, 2,

u =
∫ ξ [

C1(1− η2) +
1
4
(1− η2) ln

∣∣∣∣
1 + η

1− η

∣∣∣∣−
1
2
η

]−1

dη + C2,

ξ = tx−1 and k = 2,

〈e5 + αe1〉 (α > 0) : u = α ln |t|+
∫ ξ

f(η)dη + C1,

ξ = tx−1, f = f(η) is a solution of Riccati equation
η2(η2 − 1)f ′ + η4f2 + 2η3f + α = 0 and k = 2.

Here e1 = ∂u, e2 = ∂t, e3 = t∂u, e4 = ∂x, e5 = t∂t + x∂x + k−2
k−1u∂u, k 6= 0, 1 and C1, C2 are arbitrary

real constants.
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Table I. Invariant equations (2.13)

Number Function f Symmetry operators Invariance algebra
type

1 etf̃(ω), ∂t + u∂u, ∂x A2.1

ω = ue−t, f̃ωω 6= 0
2 et+xf̃(ω), ∂t + u∂u, A2.1

ω = ue−t−x, f̃ωω 6= 0 ∂x + u∂u

3 (t− x)−3f̃(ω), −t∂t − x∂x + u∂u, A2.2

ω = (t− x)u, f̃ωω 6= 0 ∂t + ∂x

4 x−1f̃(ω), −t∂t − x∂x − u∂u, A2.2

ω = x−1u, f̃ωω 6= 0 ∂t

5 (t− x)−2f̃(u), ∂t + ∂x, sl(2, R)
f̃uu 6= 0 t∂t + x∂x,

t2∂t + x2∂x

6 exp(x−1u) −t∂t + x∂u, A2.2 ⊕A1

∂t, x∂x + u∂u

7 λ|x|−m−2|u|m+1, ∂t, t∂t − 1
mu∂u, A2.2 ⊕A1

λ 6= 0,m 6= 0,−, 1− 2 x∂x + m+1
m u∂u

8 f̃(u), f̃uu 6= 0 ∂t, ∂x,−t∂t − x∂x A3.6

9 λ|u|n+1, λ 6= 0, n 6= 0,−1 t∂t − 1
nu∂u A2.2 ⊕A2.2

x∂x − 1
nu∂u

∂t, ∂x
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