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6.1. Non-Lie reduction of Poincaré-invariant spinor equations . . . . 277
6.2. Non-Lie reduction of Galilei-invariant spinor equations . . . . . 295

7. REDUCTION AND EXACT SOLUTIONS OF SU(2) YANG-
MILLS EQUATIONS 301
7.1. Symmetry reduction and exact solutions of the Yang-Mills equa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
7.2. Non-Lie reduction of the Yang-Mills equations . . . . . . . . . . 323

APPENDIX 1. THE POINCARÉ GROUP AND ITS REPRE-
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Physical law should have
mathematical beauty

P.-M. Dirac

P R E F A C E

The Dirac equation describing motion of an elementary particle with spin 1/2 (electron
or proton) is an inseparable part of the modern mathematical and theoretical physics.
Together with the Maxwell and Schrödinger equations it forms a basis of the quantum
mechanics, quantum electrodynamics and quantum field theory.

Following Dirac’s discovery of the linear equation of an electron there appeared
fundamental papers by D.D. Ivanenko, W. Heisenberg, R. Finkelstein with collabo-
rators and F. Gürsey advocating the idea of nonlinear description of an elementary
particle with spin 1/2 which made it possible to take into account its self-interaction.
Furthermore, W. Heisenberg put forward the idea to use a nonlinear Dirac equation
as a possible basis model for a unified field theory. These ideas have contributed sub-
stantially to the modern view of an elementary particle as a complex dynamical sys-
tem described (modeled) by a nonlinear system of partial differential equations. The
general structure of such nonlinear equations is determined by the Lorentz-Poincaré-
Einstein or the Galilei relativity principle.

Till now there is no book devoted to a systematic study of nonlinear general-
izations of the classical Dirac equation. So it was our primary intention to write
a book devoted entirely to a comprehensive and detailed group-theoretical study of
first–order nonlinear spinor partial differential equations satisfying either the Lorentz–
Poincaré–Einstein or the Galilei relativity principle. These equations contain, as par-
ticular cases, the nonlinear spinor models suggested by D.D. Ivanenko, W. Heisenberg,
R. Finkelstein and F. Gürsey.

In the course of research we have discovered that the methods and techniques de-
veloped to study nonlinear Dirac equations can be successfully applied to a wide range
of Poincaré- and Galilei-invariant nonlinear multi-dimensional equations of modern
quantum field theory describing interactions of spinor, scalar and vector fields.

As a result, the book has a ‘two-level’ structure. At the first level, it may be
considered as a self-contained group-theoretical introduction to the theory of the
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first-order nonlinear spinor equations with a particular emphasis on a development
of efficient methods for constructing their exact (classical) solutions. At the sec-
ond level, we employ these methods to construct multi-parameter families of exact
solutions of nonlinear wave, Dirac-d’Alembert, Maxwell-Dirac, d’Alembert-eikonal,
SU(2) Yang-Mills, Lévy-Leblond, and some other partial differential equations. Fur-
thermore, the approach used enables us to give a systematic and unified treatment of
the related questions such as conditional symmetry of differential equations, separa-
tion of variables in linear systems of partial differential equations, and integrability
of some nonlinear systems of differential equations in two-independent variables.

It was our aim to write a book in a form accessible not only for ‘pure theoreticians’
but also for those who are interested in applications of group-theoretical/symmetry
methods to concrete nonlinear systems of partial differential equations. Every oppor-
tunity is taken to illustrate general statements by specific examples and to reduce to
a reasonable minimum the level of abstractness in the exposition.

The book is based on the authors’ results obtained at the Institute of Mathematics
of the National Academy of Sciences of Ukraine in 1984–1996 [139, 140, 146], [148]–
[171], [291]–[320]. It also accumulates a rich experience of other groups working
in the related areas of group-theoretical, algebraic-theoretical analysis of differential
equations. The bibliography is claimed to be the most comprehensive and complete
as far as symmetry and exact solutions of nonlinear spinor equations are concerned.
But it is not our intention to give the full list of references devoted to application
and development of group-theoretical methods in the mathematical and theoretical
physics. Only references used directly are cited.

When the book was at the last stage of preparation one of the authors (RZ)
was at the Arnold-Sommerfeld Institute for Mathematical Physics (Clausthal-Zeller-
feld, Germany) as an Alexander von Humboldt Fellow. He is indebted to Professor
H.-D. Doebner for an invitation and kind hospitality. His critical remarks as well as
stimulating discussions with participants of the Seminar at the Institute for Theoret-
ical Physics, V. Dobrev, J. Hennig, W. Lücke, P. Nattermann and W. Scherer, are
gratefully acknowledged. Authors would like to thank Soros Foundation for financial
support.

Our special thanks are addressed to W.M. Shtelen, I.A. Yehorchenko and P. Ba-
sarab-Horvath for critical reading the manuscript and and valuable suggestions.

We express deep gratitude to our colleagues at the Department of Applied Re-
search of the Institute of Mathematics of the National Academy of Sciences of Ukraine,
A.G. Nikitin, I.V. Revenko, V.I. Lahno, A.Yu. Andreitsev, for their fruitful cooper-
ation and also to G.A. Zhdanova for her kind help in preparing the manuscript for
publication.

Ukraine, Kyiv –
Germany, Clausthal-Zellerfeld

1996, June



INTRODUCTION

In 1913 the outstanding French mathematician Elie Cartan discovered spinors
[42, 45]. He made this discovery while investigating irreducible representations
of the group of rotations in the n-dimensional Euclidean space. He was the
first to find and to describe in full detail spinor representations of the group
of rotations.

The theory of spinors became an inseparable part of mathematical and
theoretical physics after Dirac’s discovery of the equation of motion for an
electron (1928) which bears his name [69, 71]. The four complex-valued func-
tions of four arguments contained in the Dirac equation are the components
of a spinor with respect to the Lorentz group.

It is interesting to note that the methods used by Cartan and Dirac to
discover spinors are essentially different. These methods lie at the basis of
algebraic-theoretical, group-theoretical investigations in modern quantum the-
ory.

Today spinors and spinor representations play a basic role in mathematical
and theoretical physics, since all elementary particles, classical and quantum
fields having half-integer spins (s = 1/2, 3/2, 5/2, . . .) are described with their
help. Moreover, using de Broglie’s heuristic idea of ”fusion” we can construct
particles (fields) having integer spins (s = 0, 1, 2, . . .) from a particle (field)
having the spin s = 1/2. That is why the theory of spinors and spinor analysis
as the principal analytical apparatus for investigation of spinor dynamical
systems are useful in solving problems from other fields of mathematics and
quantum physics.

The first paper devoted to a nonlinear generalization of the Dirac equation
was published by Ivanenko in 1938 [192]. Later Finkelstein with collaborators
in 1951 [80, 81] and Heisenberg in 1953 [180, 181] started analyzing various
nonlinear generalizations of the Dirac equation.

Heisenberg [181]–[184] put forward a vast program on the construction of a
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unified field theory of elementary particles. As a basis of this theory he chose
a self-interacting spinor field described by a nonlinear equation. According to
Heisenberg such a field is determined by the following Dirac-type nonlinear
equation:

iγµ∂µψ + λγµγ4(ψ̄γµγ4ψ)ψ = 0, (0.1)

where ψ is a four-component Dirac spinor and λ is a parameter. We will call
system (0.1) the Dirac-Heisenberg equation.

The present book deals with the following two principal problems: the first
one is to describe systems of nonlinear spinor partial differential equations of
the first and second orders invariant under the Poincaré and the Galilei groups
and under their natural extensions; the second problem is the construction in
explicit form of exact solutions of the classical nonlinear spinor, vector and
scalar differential equations describing interaction of the Dirac, Maxwell and
Yukawa fields.

Unlike the majority of researchers we do not derive nonlinear equations
within the framework of the variational principle. We apply the symmetry
selection principle, namely, from the whole set of partial differential equations
(PDEs) of a given order we select those on whose sets of solutions some fixed
representation of the Poincaré or the Galilei group is realized. Such an ap-
proach to the derivation of motion equations seems to be more general than
the traditional method based on the Lagrange function [116, 119, 137].

The major part of the book is devoted to the development of efficient
methods designed to obtain exact solutions of nonlinear equations. All these
methods are based on the idea of reducing multi-dimensional partial differen-
tial equations to equations having smaller dimensions.

While reducing PDEs a key role is played by substitutions of the special
form [88, 89, 92, 137, 155]

ψ(x) = A(x)ϕ(ω1, ω2, . . . , ωn), (0.2)

where ϕ(ω) is an unknown function-column and A(x) is a variable matrix of
corresponding dimensions; ωα = ωα(x), α = 1, . . . , n are real-valued scalar
functions.

Explicit forms of the functions A(x), ωα(x) are obtained by requiring
that substitution of the expression (0.2) into the PDE under study reduces
it to an equation containing only ”new” dependent (ϕ) and independent
(ω1, ω2, . . . , ωn) variables. Of course, the availability of an effective proce-
dure of computing the matrix A(x) and the variables ωα(x) providing the



INTRODUCTION 5

reduction of the initial equation is implied. Furthermore, the construction
described above will be called the Ansatz for field ψ(x).

Provided the equation under study possesses nontrivial local symmetry,
there exists an effective algorithm for constructing Ansätze (suggested and
applied for the first time to some of the simplest PDEs by Sophus Lie). Ansätze
obtained in this way will be called Lie Ansätze.

In [91, 92] we suggested the generalization of the Lie method. The idea of
this generalization is based on the following observation: the Lie method of
constructing particular solutions, apart from its group-theoretical foundations,
can be considered as addition of some first-order PDE to a given equation.
Within the Lie approach this additional equation is a linear combination of
basis elements of the invariance algebra of the equation under investigation.
In view of this fact it was suggested to consider the coefficients of that linear
combination as arbitrary functions of x, ψ, ψxµ , ψxµxν . In other words the
additional constraint on the set of solutions of the equation under investigation
is, generally speaking, a nonlinear first- or second-order PDE with variable
coefficients. Such a generalization proved to be constructive. In many cases
it provided the possibility of obtaining broad classes of exact solutions of
nonlinear equations which could not be found within the framework of the
classical Lie approach [96, 97], [105]–[107], [120, 124, 108, 126, 127, 128, 137,
143], [154]–[160], [246, 303, 308].

With the use of nonlocal and conditional symmetry of linear and nonlin-
ear spinor equations (the notion of the conditional symmetry of differential
equations was introduced in [91, 116, 137]) we obtain wide classes of non-
Lie Ansätze, which reduce these equations to systems of ordinary differential
equations (ODEs).

Due to large symmetry of equations being considered systems of ODEs
obtained by reduction via Lie and non-Lie Ansätze are often integrable by
quadratures. Their exact solutions, after being substituted into the corre-
sponding Ansätze, give rise to particular solutions of the nonlinear spinor
equations under study.

As shown in Section 2.6, exact solutions of nonlinear spinor equations
make it possible to construct exact solutions of other Poincaré-invariant equa-
tions. In particular, we construct a number of exact solutions of the nonlinear
d’Alembert equation via solutions of the nonlinear Dirac equation.

More detailed information concerning the contents of the book is provided
by chapter and section titles.

For the reader’s convenience, we give a brief account of some facts, termi-
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nology and notations from group theory which are used in the book (for more
details, see [6, 33, 34, 41, 49, 76, 79, 190, 218, 233, 236]).

An r-parameter Lie transformation group Gr is a set of transformations of
the space Rn × Cm

x′α = fα(x, u, θ), α = 0, . . . , n− 1,

u′β = gβ(x, u, θ), β = 0, . . . ,m− 1,
(0.3)

θ ∈ U, U is an open sphere in Rr, where fα and gβ are real-analytical functions
of θ satisfying the following relations:

1. fα(x, u, 0) = xα, gβ(x, u, 0) = uβ,

2. ∀{θ1, θ2} ⊂ U, ∃θ3 = T (θ1, θ2) ∈ U :
fα

(
f(x, u, θ1), g(x, u, θ1), θ2

)
= fα(x, u, θ3),

gβ

(
f(x, u, θ1), g(x, u, θ1), θ2

)
= gβ(x, u, θ3).

Here T : U × U → U is a vector-function whose components are real-
analytical functions satisfying the relations

1. T (θ, 0) = T (0, θ) = θ, ∀θ ∈ U,

2. ∀θ ∈ U, ∃θ−1 ∈ U : T (θ, θ−1) = T (θ−1, θ) = 0,

3. ∀{θ1, θ2, θ3} ⊂ U : T
(
T (θ1, θ2), θ3

)
= T

(
θ1, T (θ2, θ3)

)
.

The r-parameter Lie transformation group (0.3) is related to the r-dimensi-
onal vector space AGr whose basis elements are first-order differential opera-
tors

Qτ =
n−1∑

α=0

ξτα(x, u)
∂

∂xα
+

m−1∑

β=0

ητβ(x, u)
∂

∂uβ
, (0.4)

the coefficients ξτα, ητβ being defined by the following formulae:

ξτα(x, u) = ∂fα
∂θτ

∣∣∣∣
θ = 0

,

ητβ(x, u) =
∂gβ

∂θτ

∣∣∣∣
θ = 0

.

(0.5)

The vector space AGr is closed with respect to the operation

(X,Y ) → Z = XY − Y X ≡ [X, Y ]
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and, consequently, forms an r-dimensional Lie algebra. This algebra is called
the Lie algebra of the group Gr.

Conversely, given the Lie algebra with basis elements (0.4), where ξτα and
ητβ are sufficiently smooth functions, then the r-parameter Lie transformation
group is obtained by solving the Lie equations

∂fα
∂θτ

= ξτα(f, g), fα(x, u, 0) = xα,

∂gβ

∂θτ
= ητβ(f, g), gβ(x, u, 0) = uβ, τ = 1, . . . , r

(0.6)

and by constructing the superposition of the resulting one-parameter Lie
groups.

Thus, there exists a one-to-one correspondence between a Lie transforma-
tion group Gr and its Lie algebra AGr. To emphasize this correspondence
we say that operators Qτ generate the group Gr. These operators are called
infinitesimal operators (generators) of the group Gr (as a rule, we omit the
word ”infinitesimal”).

We say that the differential equation

L
(
x, u(x)

)
= 0 (0.7)

is invariant under the group of transformations Gr (or: admits the group Gr)
if the change of variables (0.3) transforms the set of solutions of equation (0.7)
into itself. The group Gr is called invariance or symmetry group of equation
(0.7). A corresponding Lie algebra is called invariance or symmetry algebra
of the equation in question.

According to Lie [218] the differential equation (0.7) is invariant under the
group Gr having generators (0.4) if and only if

Q̃τL
∣∣∣∣

= 0,
[L]

(0.8)

where [L] means the set of solutions of the equation L = 0 and Q̃τ is the N -th
prolongation of the operator Qτ (N is the order of differential equation (0.7)).

The N -th prolongation of the operator

Q =
n−1∑

α=0

ξα(x, u)
∂

∂xα
+

m−1∑

β=0

ηβ(x, u)
∂

∂uβ
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is constructed as follows

Q̃ = Q + ζβα1

∂

∂

(
∂uβ

∂xα1

) + · · ·+ ζβα1...αN

∂

∂

(
∂Nuβ

∂xα1 . . . ∂xαN

) ,

where

ζβα1
= Dα1ηβ − ∂uβ

∂xα
Dα1ξα,

ζβα1α2 = Dα2ζβα1
− ∂2uβ

∂xα1∂xα
Dα2ξα,

ζβα1...αN
= DαN ζβα1...αN−1

− ∂Nuβ

∂xα1 . . . ∂xαN−1∂xα
DαN ξα,

Dα =
∂

∂xα
+

∂uβ

∂xα

∂

∂uβ
+

∞∑

n=1

∂n+1uβ

∂xα1 . . . ∂xαn∂xα

∂

∂

(
∂nuβ

∂xα1 . . . ∂xαn

)

(summation over repeated indices is implied).
The invariance criterion (0.8) gives rise to a linear system of PDEs (the

determining equations) for the functions ξα, ηβ, whose general solution deter-
mines the maximal (in Lie sense) invariance algebra of the equation considered.
The corresponding Lie group is called the maximal invariance (symmetry)
group of equation (0.7).

The procedure described above is just Lie method for investigating sym-
metries of differential equations. Application of this method to equations of
mathematical physics requires the performing of cumbersome computations
(this is especially the case for multi-component systems of PDEs). If we deal
with a system of linear PDEs

L(x)u(x) = 0, u = (u0, u1, . . . , um−1)T , (0.9)

the computations can be substantially simplified. A symmetry operator acting
in the linear space of solutions of system (0.9) is seeked in the form

Q =
n−1∑

µ=0

ξµ(x)
∂

∂xµ
+ η(x), (0.10)

where ξµ(x) are smooth real-valued scalar functions, η(x) is some (m × m)-
matrix. Within the Lie approach operator (0.10) is represented in the form

X =
n−1∑

α=0

ξα(x)
∂

∂xα
−

m−1∑

β1,β2=0

ηβ1β2(x)uβ2

∂

∂uβ1

.
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The invariance criterion for system of PDEs (0.9) reads (see, e.g., [115])

LQu(x)
∣∣∣∣

= 0.
[Lu]

(0.11)

Condition (0.11) means that the operator Q transforms the set of solutions of
(0.9) into itself.

Relation (0.11) is rewritten in the following equivalent form:

[L,Q] = R(x)L, (0.12)

where R(x) is some (m × m)-matrix. The above operator equality is to be
understood in the following way: operators on the left- and right-hand sides
of (0.12) give the same result when acting on an arbitrary solution of system
(0.9).

Let us emphasize that the invariance algebra obtained by solving relation
(0.11) or (0.12) is not the maximal one because any system of linear PDEs
admits the Lie transformation group

x′µ = xµ, µ = 0, . . . , n− 1,

u′β = uβ + θu0β(x), β = 0, . . . ,m− 1,

where θ is a real parameter, u0(x) is an arbitrary solution of the system con-
sidered. But the above Lie group gives no essential information about the
structure of solutions of the equation under study and is not considered in the
present book.

For many symmetry groups of systems of PDEs of mathematical and the-
oretical physics, the matrix η(x) possesses very important algebraic proper-
ties which simplify substantially all manipulations with symmetry operators
(0.10). Moreover, in most of the problems considered in this book we use the
algebraic relations which are satisfied by η(x), but we do not use their explicit
form. That is why we will represent the infinitesimal symmetry operators in
the form (0.10) (if it is possible and does not lead to confusion).

In the approach based on the formulae (0.10), (0.11) the restrictions of Lie
method are quite evident since an operator transforming the set of solutions
of equation (0.9) into itself does not have to be of the form (0.10) (a symmetry
operator may belong to the class of differential operators of the order N ≥ 1
or to the class of integro-differential operators [115, 116, 118]).

Below we give a list of notations and conventions used throughout the
book.
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A scalar product in the Minkowski space R(1, 3) with the metric tensor

gµν =





0, µ 6= ν,
1, µ = ν = 0,

−1, µ = ν = 1, 2, 3

is denoted by a · b = gµνaµbν , {a, b} ⊂ R(1, 3).
A scalar product in the Euclidean space R(3) with the metric tensor δab =

−gab is written as follows

~n · ~m = δab namb = nama.

Summation over repeated indices is used, indices being denoted by the
Greek letters α, β, µ, ν with the values 0, 1, 2, 3 and indices being denoted by
the Latin letters a, b, c with the values 1, 2, 3 (unless otherwise indicated).

By the symbol εabc the antisymmetric tensor of rank three

εabc =





1, (a, b, c) = cycle (1, 2, 3),
−1, (a, b, c) = cycle (2, 1, 3),

0, in other cases

is designated.
All the functions considered in the book are supposed to be differentiable

as many times as is necessary. The derivative of a function of one variable f =
f(z) is denoted by a dot over the symbol ḟ ≡ df/dz. To distinguish a partial
derivative we use the symbol ∂z, i.e. ∂f/∂z ≡ ∂zf , and the partial derivative
with respect to the µ-th independent variable is denoted by ∂µf ≡ ∂xµf .

Vector and tensor indices are written as subscripts (xµ, Aµ, Fµν , etc.) and
spinor indices as superscripts (ψα). Lowering or raising of an index in the
Minkowski space R(1, 3) is carried out by the metric tensor gµν , for example,

xµ = gµνxν =
{

x0, µ = 0,
−xa, µ = a = 1, 2, 3.

Complex conjugation is denoted by the asterisk (x + iy)∗ = x − iy and
the matrix transposed with respect to a given matrix A is designated by AT .
The symbol A† stands for a complex conjugate of a transposed matrix, i.e.
(AT )∗ = A†.



C H A P T E R 1

SYMMETRY

OF NONLINEAR

SPINOR EQUATIONS

The first chapter is of an introductory character. Here we present well-known
facts about different representations of the Dirac equation [115, 116, 118],
its local and nonlocal (non-Lorentz) symmetry and conservation laws for the
Dirac field. Detailed group-theoretical analysis of nonlinear generalizations
of the Dirac equation which are invariant under the Poincaré group P (1, 3),
extended Poincaré group P̃ (1, 3) and conformal group C(1, 3) is carried out.
Some second-order Poincaré- and conformally-invariant spinor equations are
considered. Wide classes of nonlinear PDEs for spinor, scalar and vector fields
invariant under the groups P (1, 3), P̃ (1, 3), C(1, 3) are described.

We establish correspondence between reducibility of PDEs and their con-
ditional symmetry (the results obtained play a crucial role when constructing
exact solutions of multi-dimensional partial differential equations).

1.1. Local and nonlocal symmetry of the Dirac equation

The Dirac equation is the system of four linear complex partial differential
equations

(iγµ∂µ −m)ψ(x) = 0, (1.1.1)

where ψ = ψ(x0, x1, x2, x3) is the four-component, complex-valued functi-
on-column, m = const, γµ are (4 × 4)-matrices satisfying the Clifford-Dirac
algebra

γµγν + γνγµ = 2gµνI, µ, ν = 0, . . . , 3, (1.1.2)

where I is the unit (4× 4)-matrix.
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Under the massless Dirac equation we mean system (1.1.1) with m = 0.
Since on the set of solutions of the Dirac equation a spinor representation

of the Lorentz group is realized (see the Appendix 1), the function ψ(x) is
called the spinor field (or, for brevity, the spinor) and equation (1.1.1) as well
as its nonlinear generalizations are called spinor equations.

If we act with the operator iγµ∂µ + m on the left-hand side of equality
(1.1.1) and use relations (1.1.2), then a system of four splitting wave equations
for the spinor ψ(x)

(∂µ∂µ + m2)ψ(x) = 0 (1.1.3)

is obtained.
It is worth noting that Dirac derived equation (1.1.1) by factorizing the

second-order differential operator ∂µ∂µ + m2, i.e., by representing it in the
form of the product of two first-order operators Q± = iγµ∂µ ±m, whence it
followed that γµ were matrices satisfying the algebra (1.1.2) [35, 69, 71].

1. Algebra of the Dirac matrices. We say that a representation of the
Clifford-Dirac algebra is given if there are four (4×4)-matrices satisfying rela-
tions (1.1.2). There exist infinitely many representations of the Clifford-Dirac
algebra. But all these representations are equivalent, namely, for each two
sets of matrices

{
γ′µ

}
,

{
γµ

}
satisfying (1.1.2) there exists such a nonsingular

(4× 4)-matrix V that

γ′µ = V γµV −1, µ = 0, . . . , 3. (1.1.4)

If it is not indicated otherwise, we assume that the matrices γµ realize the
following representation of the algebra (1.1.2):

γ0 =

(
I 0
0 −I

)
, γa =

(
0 σa

−σa 0

)
, (1.1.5)

where I, 0 are the unit and zero (2× 2)-matrices, σa are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.1.6)

In addition, we use the following representations of the Clifford-Dirac al-
gebra:
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γ0 =

(
0 iI
−iI 0

)
, γ1 =

(
−iσ3 0

0 iσ3

)
,

γ2 =

(
iI 0
0 −iI

)
, γ3 =

(
0 −iI
−iI 0

)
;

(1.1.7)

γ0 =

(
0 I
I 0

)
, γa =

(
0 σa

−σa 0

)
, a = 1, 2, 3. (1.1.8)

Straightforward verification shows that the matrix γ4 = γ0γ1γ2γ3 satisfies
relations of the form

γ4γµ + γµγ4 = 0, γ2
4 = −1, µ = 0, . . . , 3.

Matrices γ0, γ1, γ2, γ3, γ4 form the maximal set of generators of the
Clifford-Dirac algebra in the class of (4× 4)-matrices.

The maximal set of generators of the Clifford-Dirac algebra in the class
of (8 × 8)-matrices is exhausted up to the equivalence relation (1.1.4) by the
following matrices:

Γ̃µ =

(
γµ 0
0 γµ

)
, Γ̃4 =

(
0 γ4

γ4 0

)
,

Γ̃5 =

(
0 iγ4

−iγ4 0

)
, Γ̃6 =

(
γ4 0
0 −γ4

)
, µ = 0, . . . , 3,

(1.1.9)

where 0 is the zero (4× 4)-matrix.
It is known that all possible products of matrices γµ form a basis in the

linear space of (4 × 4)-matrices. The elements of this basis can be chosen as
follows

I, γµ, γµγν , γ4γµ, γ4, µ < ν, µ, ν = 0, . . . , 3. (1.1.10)

Sixteen matrices (1.1.10) are linearly independent and, consequently, an
arbitrary (4 × 4)-matrix is represented as a linear combination of the basis
elements (1.1.10).

2. Various formulations of the Dirac equation. The four-component
function-row ψ̄(x) = (ψ(x))†γ0 is called a Dirac-conjugate spinor. To obtain
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an equation for ψ̄(x) we apply a complex conjugation procedure to (1.1.1)
with subsequent transposition and multiply the obtained expression by γ0 on
the right. Taking into account relations γ†0 = γ0, γ†a = −γa, we have

i∂µψ̄γµ + mψ̄ = 0. (1.1.11)

If we designate
ψ̃ = iγ2ψ

∗, (1.1.12)

then equation (1.1.11) can be rewritten in the form

(iγµ∂µ −m)ψ̃ = 0.

Hence it follows that system (1.1.1), (1.1.11) can be represented in the
form of the eight-component equation

(iΓ̃µ∂µ −m)Ψ(x) = 0, (1.1.13)

where
Ψ(x) =

(
ψ(x)
ψ̃(x)

)
.

If we choose the matrices γµ in the representation (1.1.7), we can rewrite
the Dirac equation (1.1.1) as a system of eight real PDEs

(iΓ̃µ −m)Ψ̃(x) = 0, (1.1.14)

where
Ψ̃(x) =

(
Re ψ(x)
Imψ(x)

)
.

On multiplying equation (1.1.1) by the matrix γ0 on the left we get the
Dirac equation in the Hamilton form

i∂0ψ = Hψ = (−iγ0γa∂a + mγ0)ψ.

Choosing the matrices γµ in the representation (1.1.8) and representing
the spinor ψ(x) in the form

ψ(x) =
(

ϕ−(x)
ϕ+(x)

)
, (1.1.15)

where ϕ±(x) are two-component functions, we rewrite the Dirac equation as
follows

(i∂0 + iσa∂a)ϕ+ −mϕ− = 0,

(i∂0 − iσa∂a)ϕ− −mϕ+ = 0.
(1.1.16)
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Acting on the first equation of system (1.1.16) by the operator i∂0− iσa∂a

we have
(∂µ∂µ + m2)ϕ+(x) = 0

and what is more ϕ−(x) = m−1(i∂0 + iσa∂a)ϕ+(x). Consequently, the system
of four first-order differential equations (1.1.1) is equivalent to the system of
two splitting wave equations.

From (1.1.16) it is clear that the massless Dirac equation

iγµ∂µψ(x) = 0 (1.1.17)

splits into two Weyl equations for two-component spinors ϕ±(x).
Let us also note that the massless Dirac equation (1.1.17) can be rep-

resented in the form of the Maxwell equations with currents. To become
convinced of this fact we represent the four-component function ψ(x) in the
following equivalent form:

ψ =




−E1

E3

−H2

F


 + i




E2

G
−H1

H3


 , (1.1.18)

where Ea, Ha, F, G are some smooth real-valued functions.
Substituting (1.1.18) into (1.1.17) and splitting with respect to i we get

the Maxwell equations with currents [138]

∂0
~E = rot ~H +~j, div ~E = j0,

∂0
~H = −rot ~E + ~k, div ~H = k0,

(1.1.19)

where jµ = ∂µF, kµ = ∂µG.
The above presented formulations of the Dirac equation are, of course,

equivalent but choosing an appropriate one we can substantially simplify com-
putations when solving the specific problem. In addition, these formulations
enable us to obtain principally different generalizations of equation (1.1.1) for
the fields with an arbitrary spin [115, 116].

3. Lie symmetry of the Dirac equation. We adduce the assertions
describing the maximal (in Lie sense) invariance groups admitted by the Dirac
equation.
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Theorem 1.1.1. The maximal local invariance group of the Dirac equation
(1.1.1) is the 14-parameter group G1 = P (1, 3) ⊗ V (4),1 where P (1, 3) is the
Poincaré group having the generators

Pµ = ∂µ, Jµν = xµ∂ν − xν∂
µ + Sµν (1.1.20)

and V (4) is the 4-parameter group of transformations in the space (ψ∗, ψ)
generated by the operators

Q0 = ψα∂ψα + ψ∗α∂ψ∗α ,

Q1 = iψα∂ψα − iψ∗α∂ψ∗α ,

Q2 = {γ2ψ
∗}α∂ψα − {γ2ψ}α∂ψ∗α ,

Q3 = {iγ2ψ
∗}α∂ψα + {iγ2ψ}α∂ψ∗α .

(1.1.21)

In formulae (1.1.20), (1.1.21) {Ψ}α is the α-th component of the function
Ψ and

Sµν =
1
4
[γµ, γν ] =

1
4
(γµγν − γνγµ),

∂ψα = ∂/∂ψα, ∂ψ∗α = ∂/∂ψ∗α.

Theorem 1.1.2. The maximal local invariance group of the massless Dirac
equation (1.1.17) is the 23-parameter group G2 = C(1, 3) ⊗ V (8),2 where
C(1, 3) is the conformal group having the generators

Pµ = ∂µ, Jµν = xµ∂ν − xν∂
µ + Sµν ,

D = xµ∂µ + 3/2,

Kµ = 2xµ(xν∂ν + 3/2)− x · x∂µ + 2Sµνx
ν

(1.1.22)

and V (8) is the 8-parameter group of transformations in the space (ψ∗, ψ)

1Since equation (1.1.1) is linear, it admits an infinite-parameter group ψ′ = ψ + θΨ(x),
where θ is a group parameter and Ψ is an arbitrary solution of system of PDEs (1.1.1). Such
a symmetry gives no essential information about the structure of solutions of the equation
under study and therefore is neglected.

2See the previous footnote.
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generated by the operators (1.1.21) and

Q4 = {γ4ψ}α∂ψα − {γ4ψ
∗}α∂ψ∗α ,

Q5 = {iγ4ψ}α∂ψα + {iγ4ψ
∗}α∂ψ∗α ,

Q6 = {γ2γ4ψ
∗}α∂ψα + {γ2γ4ψ}α∂ψ∗α ,

Q7 = {iγ2γ4ψ
∗}α∂ψα − {iγ2γ4ψ}α∂ψ∗α .

(1.1.23)

The fact that the groups G1, G2 are the maximal invariance groups ad-
mitted by equation (1.1.1) is established by rather cumbersome computations
with the help of the Lie method [63, 188].

Straightforward verification shows that operators Pµ, Jµν , D satisfy the
following commutation relations:

[Pµ, Pν ] = 0, [Pµ, Jαβ ] = gµαPβ − gµβPα,

[Pµ, D] = Pµ, [Jµν , D] = 0,
[Jµν , Jαβ ] = gµβJνα + gναJµβ − gµαJνβ − gνβJµα.

Consequently, the operators Pµ, Jµν , D form a basis of the 11-dimensional
Lie algebra which is called the extended Poincaré algebra AP̃ (1, 3). The cor-
responding Lie group is called the extended Poincaré group P̃ (1, 3).

Let us adduce explicit forms of transformation groups generated by opera-
tors (1.1.20)–(1.1.23) (corresponding formulae are obtained by solving the Lie
equations (0.6)).

1) the group of translations (X = θµPµ)

x′µ = xµ + θµ, ψ′(x′) = ψ(x); (1.1.24)

2) the Lorentz group O(1, 3)
a) the rotation group O(3) (X = 1

2εabcθaJbc)

x′0 = x0,

x′a = xa cos θ − θ−1 sin θ εabcθbxc + θ−2θa(1− cos θ)θbxb, (1.1.25)

ψ′(x′) = exp
{
−1

2
εabcθaSbc

}
ψ(x);

b) the Lorentz transformations (X = J0a)

x′0 = x0 cosh θ0 + xa sinh θ0,

x′a = xa cosh θ0 + x0 sinh θ0,
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x′b = xb, b 6= a, (1.1.26)

ψ′(x′) = exp
{

θ0

2
γ0γa

}
ψ(x);

3) the group of scale transformations (X = D)

x′µ = eθ0xµ, ψ′(x′) = e−kθ0ψ(x), with k = 3/2; (1.1.27)

4) the group of special conformal transformations (X = θµKµ)

x′µ = (xµ − θµx · x)σ−1(x),

ψ′(x′) = σ(x)(1− γ · θγ · x)ψ(x);
(1.1.28)

5) the group V (8)

X = Q0 : x′µ = xµ,

ψ′(x′) = eθ0ψ(x), ψ∗′(x′) = eθ0ψ∗(x);

X = Q1 : x′µ = xµ,

ψ′(x′) = eiθ0ψ(x), ψ∗′ = e−iθ0ψ∗(x);

X = Q2 : x′µ = xµ, (1.1.29)
ψ′(x′) = ψ(x) cosh θ0 + γ2ψ

∗(x) sinh θ0,

ψ∗′(x′) = ψ∗(x) cosh θ0 − γ2ψ(x) sinh θ0;

X = Q3 : x′µ = xµ,

ψ′(x′) = ψ(x) cosh θ0 + iγ2ψ
∗(x) sinh θ0,

ψ∗′(x′) = ψ∗(x) cosh θ0 + iγ2ψ(x) sinh θ0;

X = Q4 : x′µ = xµ,

ψ′(x′) = exp{θ0γ4}ψ(x), ψ∗′(x′) = exp{−θ0γ4}ψ∗(x);

X = Q5 : x′µ = xµ,

ψ′(x′) = exp{iθ0γ4}ψ(x), ψ∗′(x′) = exp{iθ0γ4}ψ∗(x);

X = Q6 : x′µ = xµ, (1.1.30)
ψ′(x′) = ψ(x) cos θ0 + γ2γ4ψ

∗(x) sin θ0,

ψ∗′(x′) = ψ∗(x) cos θ0 + γ2γ4ψ(x) sin θ0;

X = Q7 : x′µ = xµ,
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ψ′(x′) = ψ(x) cos θ0 + iγ2γ4ψ
∗(x) sin θ0,

ψ∗′(x′) = ψ∗(x) cos θ0 − iγ2γ4ψ(x) sin θ0.

In the above formulae θµ ∈ R1, µ = 0, . . . , 3 are group parameters, θ =
(θaθa)1/2, σ(x) = 1 − 2θ · x + (θ · θ)(x · x), by the symbol X we designate a
generator of the corresponding group.

The direct verification shows that the Dirac equation is invariant under
the Lie transformation groups (1.1.24)–(1.1.30). For example, if we make in
PDE (1.1.1) the change of variables (1.1.25), then the identity holds

(iγµ∂′µ −m)ψ′(x′) = exp
{

1
2
εabcθaSbc

}
(iγµ∂µ −m)ψ(x),

whence it follows that the set of solutions of equation (1.1.1) is invariant with
respect to the action of the group (1.1.25).

In addition, the Dirac equation admits discrete transformation groups
which cannot be obtained with the help of the Lie method. We adduce the
most important discrete symmetries of equation (1.1.1).
1) the spatial inversion

x′0 = x0, x′a = −xa,

ψ′(x′) = γ0ψ(x), ψ∗′(x′) = γ0ψ
∗(x);

(1.1.31)

2) the time reversal

x′0 = −x0, x′a = xa,

ψ′(x′) = γ1γ3ψ
∗(x), ψ∗′(x′) = γ1γ3ψ(x);

(1.1.32)

3) the charge conjugation

x′µ = xµ,

ψ′(x′) = iγ2ψ
∗(x), ψ∗′(x′) = iγ2ψ(x).

Transformation groups (1.1.31), (1.1.32), (1.1.25), (1.1.26) form the full
Lorentz group (for more detail, see [118, 174]).

4. Non-Lie symmetry of the Dirac equation. In the previous subsection
we adduced theorems describing maximal local invariance groups of equations
(1.1.1), (1.1.17). Such a symmetry can be defined as invariance with respect
to a Lie algebra having basis elements of the form

X = ξµ(x, ψ, ψ∗)∂µ + ηα(x, ψ, ψ∗)∂ψα + η∗α(x, ψ, ψ∗)∂ψ∗α , (1.1.33)
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where ξµ, ηα, η∗α are some scalar smooth functions.
As pointed out in the introduction, the above symmetry does not exhaust

all symmetry properties of the Dirac equation because there exist linear differ-
ential and integro-differential symmetry operators which cannot be represented
in the form (1.1.33) and, consequently, correspond to a non-Lie symmetry of
the Dirac equation.

Let M1 be a class of complex linear first-order differential operators with
variable matrix coefficients acting on the space of four-component functions,
i.e.,

M1 =
{
Q = Aµ∂µ + B

}
,

where Aµ(x), B(x) are complex (4 × 4)-matrices. Evidently, the class M1

contains all Lie symmetry operators which can be obtained with the help of
formula (0.12).

Following [118] we adduce assertions describing all symmetry operators of
the Dirac equation belonging to the class M1.

Theorem 1.1.3 [118, 196, 255]. Equation (1.1.1) has 26 linearly-independent
symmetry operators belonging to the class M1. The list of these operators is
exhausted by the generators of the Poincaré group (1.1.20) and by the following
operators:

I, B = γ4(ixµ∂µ + 3i/2−mγ · x),
ωµν = (i/2)(γµ∂ν − γν∂

µ) + mSµν , (1.1.34)
ρµ = (1/2)γ4(i∂µ −mγµ),
Rµ = xνωµν + ωµνx

ν ,

where I is the unit (4× 4)-matrix.

Note 1.1.1. Set of operators (1.1.20), (1.1.34) is not closed with respect to
the algebraic operation

Q1, Q2 → Q3 = [Q1, Q2].

Consequently, it does not form a Lie algebra. Nevertheless, there exist such
subsets of the above set which are Lie algebras. An important example is
provided by the operators Pµ, Jµν satisfying the commutation relations

[Pµ, Pν ] = 0, [Pµ, Jαβ] = gµαPν − gναPµ,

[Jµν , Jαβ] = gµβJνα + gναJµβ − gµαJνβ − gνβJµα.
(1.1.35)
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This algebra is called the Lie algebra of the Poincaré group (or Poincaré
algebra) and is designated by the symbol AP (1, 3).

Another interesting example is the eight-dimensional Lie algebra

Σµν = mSµν + (i/2)(1− iγ4)(γµ∂ν − γν∂
µ),

Σ0 = I, Σ1 = mγ4 + (1− iγ4)γµ∂µ

obtained in [115, 116].

Note 1.1.2. As the direct check shows the relations

B = −εµναβJµνJαβ , [Pµ, B] = 2ρµ,

[ρµ, B] = (1/2)(Pµ + mRµ),
[Pµ, Rν ] = 2ωµν

hold true. Hence it follows that all symmetry operators of the Dirac equation
Q ∈ M1 belong to the enveloping algebra of the Poincaré algebra (i.e., to
the algebra whose basis elements are polynomials in Pµ, Jµν with constant
coefficients). Furthermore, any linear N -th order partial differential operator
with matrix coefficients which is a symmetry operator of the Dirac equation
(1.1.1) under m 6= 0 belongs to the enveloping algebra of the Poincaré algebra
[118].

Theorem 1.1.4 [118, 230]. The massless Dirac equation (1.1.17) has 52
linearly-independent symmetry operators belonging to the class M1. A basis
of the linear vector space of such operators can be chosen as follows

Pµ, Jµν , Kµ, D, I, P̃µ = iγ4Pµ,

J̃µν = iγ4Jµν , D̃ = iγ4D, K̃µ = iγ4Kµ,

F = iγ4, Rµ = (D − 1/2)γµ − γ · xPµ, (1.1.36)
R̃µ = iγ4Rµ, ωµν = γµPν − γνPµ,

Qµν = i([Rµ,Kν ]− [Rν ,Kµ]).

Note 1.1.3. Operators Rµ, R̃µ, ωµν , Qµν are not contained in the enveloping
algebra of the local invariance algebra of equation (1.1.17). Consequently, they
are essentially new.

Until now when analyzing non-Lie symmetry of the Dirac equation we
considered only linear transformations of the set of its solutions. To investigate
symmetry of equation (1.1.1) in the class of operators generating both linear
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and anti-linear transformations (i.e., transformations of the form

ψ′ = L1ψ + L2ψ
∗,

ψ∗′ = L∗1ψ
∗ + L∗2ψ,

where L1, L2 are some linear differential operators) we turn to the eight-
component form of the Dirac equation (1.1.13).

Let M2 be a class of complex first-order linear differential operators with
matrix coefficients

X = Aµ(x)∂µ + B(x)

acting on the space of eight-component functions Ψ = Ψ(x).

Theorem 1.1.5 [118]. The general form of a symmetry operator for equation
(1.1.13) belonging to the class M2 is given by the formula

Q =

(
Q0 −γ2Q

∗
1γ2

Q1 −γ2Q
∗
0γ2

)
,

where Q0, Q1 are arbitrary linear combinations of the generators of the Poin-
caré group and of operators (1.1.34) with complex coefficients.

Theorem 1.1.6 [118]. The general form of a symmetry operator for equation
(1.1.13) with m = 0 belonging to the class M2 is given by the formula

Q =

(
Q0 −γ2Q

∗
1γ2

Q1 −γ2Q
∗
0γ2

)
,

where Q0, Q1 are arbitrary linear combinations of the operators (1.1.36) with
complex coefficients.

A detailed account of symmetry properties of the linear Dirac equation in
the class of high-order differential and integro-differential operators is given in
the monographs [115, 116, 118, 119].

It is well-known that the maximal (in Lie sense) invariance group of the
Weyl equation

(i∂0 + iσa∂a)ϕ(x) = 0 (1.1.37)

is the conformal group C(1, 3) supplemented by the two-dimensional transfor-
mation group

x′µ = xµ, µ = 0, . . . , 3,

ϕ′(x′) = eθ1+iθ2ϕ(x),
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where {θ1, θ2} ⊂ R1.
The class M1 has no additional symmetry operators. The class M2 con-

tains 52 symmetry operators for the Weyl equation [230].

5. Absolute time for the Dirac equation. All fundamental equations of
quantum field theory (Maxwell, Dirac, Klein-Gordon-Fock, d’Alembert etc.)
are invariant with respect to the Lorentz transformations. With these trans-
formations time changes after transfer from one inertial coordinate system to
another. In other words, the principal motion equations of the quantum field
theory are invariant with respect to the Lorentz group O(1, 3) ∈ P (1, 3).

A question arises whether there exist invariance algebras admitted by the
Maxwell, Dirac and Klein-Gordon-Fock equations which generate transforma-
tions for the time variable x0 ≡ t and coordinates ~x ≡ (x1, x2, x3) different
from the Lorentz and Galilei transformations. A positive answer to this ques-
tion was given in the papers [83]–[86].

Theorem 1.1.7 [83]–[86]. The Dirac equation (1.1.1) is invariant under the
Poincaré algebra having the following basis elements:

P
(1)
0 ≡ H = −γ0γa∂a − imγ0, P

(1)
a = −∂a,

J
(1)
0a = −x0∂a − 1

2(xaH + Hxa),

J
(1)
ab = xb∂a − xa∂b + 1

2γaγb,

(1.1.38)

where a, b = 1, 2, 3, a < b.
Proof is carried out by direct check.

Note 1.1.4. The operators J
(1)
0a generate non-Lorentz transformations of the

time variable x0 = t and coordinates xa. Time does not change

t → t′ = exp{vaJ
(1)
0a }t exp{−vaJ

(1)
0a } ≡ t (1.1.39)

and the coordinates transform as follows:

xa → x′a = exp{vbJ
(1)
0b }xa exp{−vbJ

(1)
0b }

6= exp{vbJ0b}xa exp{−vbJ0b}︸ ︷︷ ︸
Lorentz transformations

. (1.1.40)

Here vb are parameters which are interpreted as components of the velocity
of a moving inertial reference frame with respect to a fixed one.

Note 1.1.5. It follows from Theorem 1.1.7 that on the set of solutions of the
Dirac equation two inequivalent representations of the Poincaré algebra are
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realized. Operators P
(1)
0 , J

(1)
0a from (1.1.38) generate nonlocal transformations

of coordinates xa leaving the time variable x0 = t invariant. Let us empha-
size that transformations (1.1.40) are different from the standard Galilei and
Lorentz transformations.

As the relations
(
P

(1)
0

)2 −
(
P (1)

a

) (
P (1)

a

)
= −m2,

[P (1)
0 , J

(1)
0a ] = P (1)

a ,

[P (1)
b , J

(1)
0a ] = −gabP

(1)
0

hold, the energy P
(1)
0 and momentum P

(1)
a operators transform according to

the standard Lorentz law. But for the time variable x0 = t and coordinates
xa this is not the case and the interval s2 = x2

0 − xaxa is not invariant with
respect to the transformations (1.1.39), (1.1.40).

Thus, the Dirac equation as well as the Maxwell and the Klein-Gordon-
Fock equations [83]–[86] have dual symmetry (Lorentz and non-Lorentz).

The dual symmetry of the Dirac equation is a consequence of the fact that
the spectrum of the operator H has a lacuna in the interval (−m,m) and the
spectrum of the operator P

(1)
0 is continuous on the real axis [83]–[86].

In conclusion we briefly consider symmetry properties of the equation

(1− iγ4)γµ∂µψ = 0, (1.1.41)

which is obtained from the massless Dirac equation (1.1.17) by multiplying it
by the singular matrix 1− iγ4. This equation is distinguished by the fact that
two inequivalent representations of the conformal group C(1, 3) are realized on
the set of its solutions. The first one is given by formulae (1.1.24)–(1.1.28). In
addition, equation (1.1.41) admits the group C(1, 3) with generators Pµ, Jµν

of the form (1.1.20) and

D = −xµ∂µ − 3/2 + λ1(iγ4 − 1),

Kµ = 2xµD − x · x∂µ − 2Sµνx
ν + λ2(iγ4 − 1)γµ,

(1.1.42)

where λ1, λ2 are non-zero constants.
From [221] it follows that formulae (1.1.42) determine the most general

form of generators of groups of scale and special conformal transformations
from the group C(1, 3) if the generators of the group P (1, 3) are given in
covariant form (1.1.20).
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It will be shown in Section 2.2 that the representation (1.1.42) plays an
important role when constructing conformally-invariant solutions of spinor
equations.

1.2. Nonlinear spinor equations

This section is devoted to symmetry analysis of quasi-linear systems of PDEs
for the spinor field of the form

iγµ∂µψ − F (ψ̄, ψ) = 0, (1.2.1)

where F = (F 0, F 1, F 2, F 3)T , Fµ ∈ C1(C8,C1).
It is clear that an arbitrary equation of the type (1.2.1) cannot be taken

as a true nonlinear generalization of the Dirac equation. A natural restric-
tion on the choice of functions Fµ is the condition of invariance under the
Poincaré group. This condition provides independence of the choice of iner-
tial reference frame for physical processes described by equation (1.2.1) (i.e.,
nonlinear PDE (1.2.1) has to satisfy the Lorentz–Poincaré–Einstein relativity
principle). Mathematical expression of the above principle is a condition of
invariance under the group P (1, 3) with generators (1.1.20). In addition, it
is of interest to select subclasses of Poincaré-invariant equations of the form
(1.2.1) admitting wider symmetry groups – the extended Poincaré group and
the conformal group.

Theorem 1.2.1 [152, 155]. System of nonlinear PDEs (1.2.1) is invariant
under the Poincaré group P (1, 3) iff

F (ψ̄, ψ) = {f1(ψ̄ψ, ψ̄γ4ψ) + f2(ψ̄ψ, ψ̄γ4ψ)γ4}ψ, (1.2.2)

where {f1, f2} ⊂ C1(R2,C1) are arbitrary functions.

Proof. Without loss of generality equation (1.2.1) can be rewritten in the
following form:

{iγµ∂µ + Φ(ψ̄, ψ)}ψ = 0, (1.2.3)

where Φ(ψ̄, ψ) is a (4× 4)-matrix.
It is evident that equation (1.2.3) with an arbitrary matrix function Φ is

invariant under the 4-parameter group of translations (1.1.24). Consequently,
to prove the theorem it is enough to describe all Φ such that PDE (1.2.3)
admits the Lorentz transformations (1.1.26), whence due to the commutation
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relations of the algebra AO(1, 3) it follows that PDE in question is invariant
under the Poincaré group.

Acting with the first prolongation of the operator J0a on equation (1.2.3)
and passing to the set of its solutions we obtain a system of PDEs for an
unknown matrix function Φ(ψ̄, ψ)

Q0aΦ + (1/2)(Φγ0γa − γ0γaΦ) = 0. (1.2.4)

Let us expand the matrix Φ in the complete system of the Dirac matrices
I, γµ, Sµν , γ4γµ, γ4

Φ = A(ψ̄, ψ) + Bµ(ψ̄, ψ)γµ + Cµν(ψ̄, ψ)Sµν

+Dµ(ψ̄, ψ)γ4γµ + E(ψ̄, ψ)γ4.
(1.2.5)

Substituting expression (1.2.5) into (1.2.4) and taking into account the
identities

[γ4, γ0γa] = 0, [γµ, γ0γa] = 2(gµ0γa − gµaγ0),
[γµγν , γ0γa] = 2(gµ0γaγν − gµaγ0γν + gν0γµγa − gνaγµγ0),

where gµν is the metric tensor of the Minkowski space R(1, 3), with a subse-
quent equating to zero of coefficients of linearly independent matrices I, γµ,
. . ., γ4 one gets an over-determined system of PDEs for functions A, Bµ, . . . , E

Q0aA = 0, Q0aE = 0, (1.2.6)
Q0aBµ + Bα(gα0gµa − gαagµ0) = 0, (1.2.7)
Q0aDµ + Dα(gα0gµa − gαaγµ0) = 0, (1.2.8)
Q0aC

µν + (1/2)Cαβ(gαaδ
µν
β0 + gβ0δ

µν
αa

−gα0δ
µν
βa − gβaδ

µν
α0) = 0. (1.2.9)

In formulae (1.2.6)–(1.2.9) we use the following notations:

Qµν = (1/2){γµγνψ}α∂ψα − (1/2){ψ̄γµγν}α∂ψ̄α , µ < ν,

δµν
αβ = δµαδνβ − δµβδνα, a = 1, 2, 3, µ, ν, α, β = 0, 1, 2, 3.

Since [Q0a, Q0b] = Qab, functions A(ψ̄, ψ), B(ψ̄, ψ) satisfy the system of
PDEs

Qµνf(ψ̄, ψ) = 0, µ < ν. (1.2.10)
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According to [61], the general solution of this system is an arbitrary smooth
function of a complete set of its first integrals ω.

If we denote by r the rank of the (6 × 8)-matrix of coefficients of the
operators Qµν




− i
2ψ3 − i

2ψ2 − i
2ψ1 − i

2ψ0 i
2 ψ̄3 i

2 ψ̄2 i
2 ψ̄1 i

2 ψ̄0

−1
2ψ3 1

2ψ2 −1
2ψ1 1

2ψ0 −1
2 ψ̄3 1

2 ψ̄2 −1
2 ψ̄1 1

2 ψ̄0

− i
2ψ2 i

2ψ3 − i
2ψ0 i

2ψ1 i
2 ψ̄2 − i

2 ψ̄3 i
2 ψ̄0 − i

2 ψ̄1

−1
2ψ0 1

2ψ1 −1
2ψ2 1

2ψ3 1
2 ψ̄0 −1

2 ψ̄1 1
2 ψ̄2 −1

2 ψ̄3

−1
2ψ1 −1

2ψ0 −1
2ψ3 −1

2ψ2 1
2 ψ̄1 1

2 ψ̄0 1
2 ψ̄3 1

2 ψ̄2

i
2ψ1 − i

2ψ0 i
2ψ3 − i

2ψ2 i
2 ψ̄1 − i

2 ψ̄0 i
2 ψ̄3 − i

2 ψ̄2




(the representation of γ-matrices is given by formulae (1.1.5)), then a maximal
set of functionally-independent first integrals of system (1.2.10) consists of 8−r
integrals [61]. In the case considered r = 6, whence it follows that the general
solution is represented as an arbitrary smooth function of two functionally-
independent first integrals. As a rule, they are chosen in the form ψ̄ψ, ψ̄γ4ψ.
Thus, the general solution of system (1.2.6) is given by the formulae

A = Ã(ψ̄ψ, ψ̄γ4ψ), E = Ẽ(ψ̄ψ, ψ̄γ4ψ), (1.2.11)

where {Ã, Ẽ} ⊂ C1(R2,C1) are arbitrary functions.
We expand the four-component function with components Bµ in the system

of four linearly independent vectors e1, e2, e3, e4 having the components
ψ̄γµψ, ψ̄γ4γµψ, ψT γ0γ2γµψ, ψT γ0γ2γ4γµψ

Bµ = R1(ψ̄, ψ)ψ̄γµψ + R2(ψ̄, ψ)ψ̄γ4γµψ

+R3(ψ̄, ψ)ψT γ0γ2γµψ + R4(ψ̄, ψ)ψT γ0γ2γ4γµψ.

Let us prove that the functions Bµ = Bµ(ψ̄, ψ), µ = 0, . . . , 3 satisfy system
of PDEs (1.2.7) iff the conditions

Ri = B̃i(ψ̄ψ, ψ̄γ4ψ), B̃i ∈ C1(R2, C1), i = 1, . . . , 4

hold.
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Indeed, if we designate by Vµ(ψ̄, ψ) the components of one of the vectors
ei, then Vµ satisfy the equalities of the form

Q0aV0 = Va, a = 1, 2, 3 (1.2.12)

(the above fact is established by straightforward computation). Consequently,
we have

Q0aB0 = (Q0aR1)ψ̄γ0ψ + (Q0aR2)ψ̄γ4γ0ψ + (Q0aR3)
×ψT γ0γ2γ0ψ + (Q0aR4)ψT γ0γ2γ4γ0ψ + R1ψ̄γaψ (1.2.13)
+R2ψ̄γ4γaψ + R3ψ

T γ0γ2γaψ + R4ψ
T γ0γ2γ4γaψ.

Setting µ = 0 in (1.2.7) we find

Q0aB0 = Ba. (1.2.14)

Comparing (1.2.13) and (1.2.14) yields the following equality:

(Q0aR1)ψ̄γ0ψ + (Q0aR2)ψ̄γ4γ0ψ + (Q0aR3)ψT γ0γ2γ0ψ

+(Q0aR4)ψT γ0γ2γ4γ0ψ = 0.
(1.2.15)

In the same way we obtain equalities of the form

(Q0aR1)ψ̄γbψ + (Q0aR2)ψ̄γ4γbψ + Q0aR3)ψT γ0γ2γbψ

+(Q0aR4)ψT γ0γ2γ4γbψ = 0,
(1.2.16)

where a, b = 1, 2, 3.
Since four-vectors with components ψ̄γµψ, . . . , ψT γ0γ2γ4γµψ are linearly-

independent, from (1.2.15), (1.2.16) it follows that Q0aRi = 0, a = 1, 2, 3,
i = 1, . . . , 4 or Ri = B̃i(ψ̄ψ, ψ̄γ4ψ), i = 1, . . . , 4.

Taking into account that system of PDEs (1.2.8) coincides with system
(1.2.7) it is easy to write down its general solution

Dµ(ψ̄, ψ) = ψ̄γµψD̃1(ψ̄ψ, ψ̄γ4ψ) + ψ̄γ4γµψD̃2(ψ̄ψ, ψ̄γ4ψ)
+ψT γ0γ2γµψD3(ψ̄ψ, ψ̄γ4ψ) + ψT γ0γ2γ4γµψD̃4(ψ̄ψ, ψ̄γ4ψ),

where D̃i ∈ C1(R1,C1), i = 1, . . . , 4 are arbitrary functions.
Integration of equations (1.2.9) is carried out in the same way, as a result

we have

Cµν(ψ̄, ψ) = ψ̄γµγνψC̃1 + ψ̄γ4γµγνψC̃2

+ψT γ0γ2γµγνψC̃3 + ψT γ0γ2γ4γµγνψC̃4,
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where C̃i = C̃i(ψ̄ψ, ψ̄γ4ψ), i = 1, . . . , 4 are arbitrary smooth functions.
Thus, we have proved that equation (1.2.1) is invariant under the Poincaré

group iff

F (ψ̄, ψ) = Φ(ψ̄, ψ)ψ

≡
{

ÃI + B̃1γµ(ψ̄γµψ) + B̃2γµ(ψ̄γ4γ
µψ)

+B̃3γµ(ψT γ0γ2γ
µψ) + B̃4γµ(ψT γ0γ2γ4γ

µψ)
+C̃1Sµν(ψ̄Sµνψ) + C̃2Sµν(ψ̄γ4S

µνψ) (1.2.17)
+C̃3Sµν(ψT γ0γ2S

µνψ) + C̃4Sµν(ψT γ0γ2γ4S
µνψ)

+D̃1γ4γµ(ψ̄γµψ) + D̃2γ4γµ(ψ̄γ4γ
µψ)

+D̃3γ4γµ(ψT γ0γ2γ
µψ) + D̃4γ4γµ(ψT γ0γ2γ4γ

µψ) + Ẽγ4

}
ψ.

Here Ã, B̃1, . . . , Ẽ are arbitrary smooth functions of ψ̄ψ, ψ̄γ4ψ.
Let us show that formula (1.2.17) without loss of generality can be rewrit-

ten in the form (1.2.2). To this end, we need the following identity:

(ψ̄1γµψ2)γµψ2 = (ψ̄1ψ2)ψ2 + (ψ̄1γ4ψ2)γ4ψ2, (1.2.18)

where ψ1, ψ2 are arbitrary four-component functions.
The validity of (1.2.18) is checked by direct computation. Choosing γ-

matrices in the representation (1.1.5) we have

γ0ψ2 = (ψ0
2, ψ1

2, −ψ2
2, −ψ3

2)
T ,

γ1ψ2 = (ψ3
2, ψ2

2, −ψ1
2, −ψ0

2)
T ,

γ2ψ2 = (iψ3
2, −iψ2

2, −iψ1
2, iψ0

2)
T ,

γ3ψ2 = (ψ2
2, −ψ3

2, −ψ0
2, ψ1

2)
T ,

ψ̄1γ0ψ2 = ψ̄0
1ψ

0
2 + ψ̄1

1ψ
1
2 − ψ̄2

1ψ
2
2 − ψ̄3

1ψ
3
2,

ψ̄1γ1ψ2 = ψ̄0
1ψ

3
2 + ψ̄1

1ψ
2
2 − ψ̄2

1ψ
1
2 − ψ̄3

1ψ
0
2,

ψ̄1γ2ψ2 = i(ψ̄0
1ψ

3
2 − ψ̄1

1ψ
2
2 − ψ̄2

1ψ
1
2 + ψ̄3

1ψ
0
2),

ψ̄1γ3ψ2 = ψ̄0
1ψ

2
2 − ψ̄1

1ψ
3
2 − ψ̄2

1ψ
0
2 + ψ̄3

1ψ
1
2,

ψ̄1ψ2 = ψ̄0
1ψ

0
2 + ψ̄1

1ψ
1
2 + ψ̄2

1ψ
2
2 + ψ̄3

1ψ
3
2,

ψ̄1γ4ψ = −(ψ̄0
1ψ

2
2 + ψ̄1

1ψ
3
2 + ψ̄2

1ψ
0
2 + ψ̄3

1ψ
1
2),

whence it follows

(ψ̄1γµψ2)γµψ2 = (ψ̄0
1ψ

0
2 + ψ̄1

1ψ
1
2 + ψ̄2

1ψ
2
2 + ψ̄3

1ψ
3
2)
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×




ψ0
2

ψ1
2

ψ2
2

ψ3
2


− (ψ̄0

1ψ
2
2 + ψ̄1

1ψ
3
2 + ψ̄2

1ψ
0
2 + ψ̄3

1ψ
1
2)




ψ2
2

ψ3
2

ψ0
2

ψ1
2




= {ψ̄1ψ2 + (ψ̄1γ4ψ2)γ4}ψ2.

On making in (1.2.18) the change of variables ψ̄1 → ψ̄1γ4 we arrive at the
identity

(ψ̄1γ4γµψ2)γµψ2 = {ψ̄1γ4ψ2 − (ψ̄1ψ2)γ4}ψ2. (1.2.19)

Similarly, we obtain from (1.2.18) two other identities

(ψ̄1γ4γµψ2)γ4γ
µψ2 = {(ψ̄1γ4ψ2)γ4 + ψ̄1ψ2}ψ2, (1.2.20)

(ψ̄1Sµνψ2)Sµνψ2 = (1/2){ψ̄1ψ2 − (ψ̄1γ4ψ2)γ4}ψ2. (1.2.21)

In (1.2.19)–(1.2.21) ψ1, ψ2 are arbitrary four-component functions.
Choosing in (1.2.18), (1.2.19)–(1.2.21) functions ψ1, ψ2 in an appropriate

way we arrive at the following relations:

(ψ̄γµψ)γµψ = {ψ̄ψ + (ψ̄γ4ψ)γ4}ψ,

(ψ̄γ4γµψ)γµψ = {ψ̄γ4ψ − (ψ̄ψ)γ4}ψ,

. . .

(ψT γ0γ2γ4γµψ)γµψ = {ψT γ0γ2ψ + (ψT γ0γ2γ4ψ)γ4}ψ = 0,

whence the existence of such smooth functions f1(ψ̄ψ, ψ̄γ4ψ), f2(ψ̄ψ,
ψ̄γ4ψ) that Φ(ψ̄, ψ)ψ = (f1 + f2γ4)ψ follows. The theorem is proved. ¤

Note 1.2.1. If we choose in (1.2.17) D̃2 = λ = const, Ã = B̃1 = . . . = D̃1 =
D̃3 = D̃4 = Ẽ = 0, then equation (1.2.1) coincides with the nonlinear spinor
equation (0.1) suggested by Heisenberg.

Note 1.2.2. From formulae (1.2.18)–(1.2.21) the well-known Pauli–Fierz iden-
tities follow [62, 274, 275]

vµvµ = s2 + p2, wµwµ = s2 + p2, σµνσ
µν = (1/2)(s2 − p2),

where

s = ψ̄ψ, p = ψ̄γ4ψ, vµ = ψ̄γµψ,

wµ = ψ̄γ4γµψ, σµν = ψ̄Sµνψ, µ, ν = 0, . . . , 3.



1.2. Nonlinear spinor equations 31

Further we will select subclasses of equations of the form (1.2.1) which in
addition to the group P (1, 3) admit the one-parameter group of scale trans-
formations (1.1.27) with arbitrary non-zero k ∈ R1 and the 4-parameter group
of special conformal transformations.

Theorem 1.2.2 [152, 155]. Equation (1.2.1) is invariant under the extended
Poincaré group, iff the function F (ψ̄, ψ) has the form (1.2.2), where

fi = (ψ̄ψ)1/2kf̃i

(
ψ̄ψ(ψ̄ψγ4ψ)−1

)
, i = 1, 2. (1.2.22)

Proof. The necessity. Since PDE (1.2.1) is invariant under the group P̃ (1, 3),
it admits the group P (1, 3) ⊂ P̃ (1, 3). Applying Theorem 1.2.1 we conclude
that it is necessary to describe all functions f1(ψ̄ψ, ψ̄γ4ψ), f2(ψ̄ψ, ψ̄γ4ψ) such
that equation (1.2.1) with F of the form (1.2.2) is invariant under the group of
transformations (1.1.27). Acting by the first prolongation of the infinitesimal
generator of the group (1.1.27)

D = xµ∂µ − kψα∂ψα − kψ̄α∂ψ̄α

on equation (1.2.1) with F of the form (1.2.2) and passing to the set of its
solutions yield determining equations for f1, f2

(
ω1∂ω1 + ω2∂ω2 − (2k)−1

)
fi = 0, i = 1, 2, (1.2.23)

where ω1 = ψ̄ψ, ω2 = ψ̄γ4ψ.
The general solutions of the above equations are given by formulae (1.2.22).

The necessity is proved.
The sufficiency. Let us introduce a notation

G(ψ̄, ψ) = iγµ∂µψ − (f̃1 + f̃2γ4)(ψ̄ψ)1/2kψ. (1.2.24)

The direct computation yields the following identity:

G(ψ̄′, ψ′) = e(k+1)θG(ψ̄, ψ), θ ∈ R1,

where ψ′ is given by formulae (1.1.27).
In other words, the group of scale transformations leaves the set of solutions

of equation G = 0 invariant. Hence it follows that equation (1.2.1), where
the function F (ψ̄, ψ) is determined by (1.2.2), (1.2.22), admits the extended
Poincaré group. Theorem is proved. ¤
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Theorem 1.2.3 [152, 155]. Equation (1.2.1) is invariant under the conformal
group C(1, 3) iff

F (ψ̄, ψ) = (ψ̄ψ)1/3(f̃1 + f̃2γ4)ψ, (1.2.25)

where f1, f2 are arbitrary smooth functions of ψ̄ψ(ψ̄γ4ψ)−1.

Proof. The necessity. Since the group C(1, 3) contains the extended Poincaré
group, the function F (ψ̄, ψ) has the form (1.2.2), (1.2.22), the conformal degree
k being equal to 3/2.

The sufficiency is established by direct verification. Making the change
of variables (1.1.28) in equation G = 0, where G is given by (1.2.24) under
k = 3/2, we get the identity

G(ψ̄′, ψ′) = σ2(x)(1− γ · θγ · x)G(ψ̄, ψ),

whence it follows that equation G = 0 admits the 4-parameter group of special
conformal transformations. The theorem is proved. ¤

Note 1.2.3. If we choose in (1.2.25) f̃1 = λ = const, f̃2 = 0, then the
conformally-invariant spinor equation suggested by Gürsey [176]

{iγµ∂µ − λ(ψ̄ψ)1/3}ψ = 0 (1.2.26)

is obtained. In addition, by using formulae (1.2.18)–(1.2.21) it is not difficult
to become convinced of that the conformally-invariant spinor equation

i{γµ∂µ − λ[(ψ̄γ4γµψ)(ψ̄γ4γ
µψ)]−1/3(ψ̄γ4γµψ)γ4γ

µ}ψ = 0

suggested in [139, 140] is also included into the class of nonlinear PDEs (1.2.1),
(1.2.25).

Note 1.2.4. Applying the Lie method we can establish that Poincaré-invariant
equations (1.2.1), (1.2.2) admit the three-parameter Pauli-Gürsey group hav-
ing generators Q1, Q2, Q3 (1.1.21) iff the functions f1, f2 are real-valued
ones.

It should be noted that there exist nonlinear spinor equations which admit
infinite-parameter symmetry groups. As an example, we give the following
P (1, 3)-invariant spinor equation:

(ψ̄γµψ)∂µψ = 0 (1.2.27)

which is obtained from (1.1.17) by a formal change γµ → ψ̄γµψ. The maxi-
mal symmetry group of the above equation is generated by the infinitesimal
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operator [155, 160]

X = ξµ(x, ψ̄, ψ)∂µ + ηα(x, ψ̄, ψ)∂ψα + η̄α(x, ψ̄, ψ)∂ψ̄α ,

where

ξµ = fµ(w, ψ̄, ψ) + ψ̄γµψf(x, ψ̄, ψ) + ψ̄γ · xψ

×(R̄γµψ + ψ̄γµR){(ψ̄γνψ)(ψ̄γνψ)}−1,

ηα = Rα(w, ψ̄, ψ),
w = {xµ(ψ̄γνψ)(ψ̄γνψ)− (ψ̄γµψ)(ψ̄γ · xψ)},

f, fµ, Rα are arbitrary smooth functions and µ, ν, α = 0, . . . , 3.

1.3. Systems of nonlinear second-order equations

for the spinor field

As a rule, the spinor field is described by the first-order system of PDEs. Such
description is considered to be the most adequate to the nature of the spinor
field. But there exists another approach based on the second-order equations
[89, 91, 241, 242].

Each component of the Dirac spinor satisfies the second-order wave equa-
tion (see Section 1.1)

(∂µ∂µ + m2)ψ(x) = 0. (1.3.1)

The above equations form a system of splitting wave equations for four
functions ψ0, ψ1, ψ2, ψ3. That is why they can be used to describe particles
with different spins s = 0, 1/2, 1, 3/2, . . .. For system (1.3.1) to describe a field
(particle) with the spin s = 1/2 it is necessary to impose an additional con-
straint (equation) on the function ψ(x). Possible Poincaré-invariant additional
conditions

∂µ(ψ̄γµψ) = λ1ψ̄ψ + λ2ψ̄γ4ψ + λ3 (1.3.2)

and
ψ̄(iγµ∂µ −m)ψ = λ1ψ̄ψ + λ2ψ̄γ4ψ + λ3, (1.3.3)

where λ1, λ2, λ3 are constants, have been suggested in [91].
Nonlinear conditions (1.3.2), (1.3.3) select from the set of solutions of equa-

tion (1.3.1) the ones which correspond to a particle with the spin s = 1/2. On
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the set of solutions of the system of PDEs (1.3.1), (1.3.2) the spinor represen-
tation of the Poincaré group having the generators (1.1.20) is realized.

It is interesting to note that the system of nonlinear equations (1.3.1),
(1.3.2) with λ1 = λ2 = λ3 = 0 admits the group of nonlocal transformations

x′µ = xµ, ψ′(x′) = ψ(x) + θγ4(iγµ∂µ −m)ψ(x),

where θ ∈ R1 is a group parameter.
Another possibility of describing fields with spin s = 1/2 by the use of

second-order equations is to consider a nonlinear equation of the form

(∂µ∂µ + m2)ψ = R(ψ̄, ψ, ψ̄
1

, ψ
1

), (1.3.4)

where ψ
1

=
{
∂ψα/∂xµ, α, µ = 0, . . . , 3

}
, R is a four-component function.

The complete group-theoretical analysis of the above system can be carried
out in the same way as it is done in Section 1.2. We will investigate symmetry
properties of the important subclass of equations of the form (1.3.4)

∂µ∂µ + m2ψ =
{
F1

(
∂µ(ψ̄ψ), ∂µ(ψ̄γ4ψ), ψ̄ψ, ψ̄γ4ψ

)

×γµ∂µ + F2(ψ̄, ψ)
}
ψ.

(1.3.5)

In (1.3.5) F1, F2 are variable (4× 4)-matrices, m = const.

Theorem 1.3.1. System of PDE (1.3.5) is invariant under the Poincaré group
with the generators (1.1.20) iff

F1 = g1 + g2γ4 + (g3 + g4γ4)γ · v
+(g5 + g6γ4)γ · w + g7γ · vγw, (1.3.6)

F2 = f1 + f2γ4, (1.3.7)

where

gl = gl(ψ̄ψ, ψ̄γ4ψ, v · v, v · w, w · w), l = 1, . . . , 7,

vµ = ∂µ(ψ̄ψ), wµ = ∂µ(ψ̄γ4ψ), µ = 0, . . . , 3,

fi = fi(ψ̄ψ, ψ̄γ4ψ), i = 1, 2

and gl, fi are arbitrary smooth functions.
The proof is carried out with the help of the Lie method. First of all we

note that system (1.3.5) admits the 4-parameter group of translations (1.1.24).
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To obtain constraints on F1, F2 providing invariance of system (1.3.5) under
the Lorentz group O(1, 3) ⊂ P (1, 3) we act with the first prolongation of the
operator J0a given in (1.1.20) on the equation in question and pass to the set
of its solutions. This procedure yields a system of determining equations for
the matrix functions F1, F2. The system of PDEs for F2 coincides with system
(1.2.4) whose general solution is represented in the form (1.3.7).

On introducing the notations

Q0a = v0∂va + va∂v0 + w0∂wa + wa∂w0 , vµ = ∂µ(ψ̄ψ), wµ = ∂µ(ψ̄γ4ψ)

we rewrite the system of determining equations for F1 in the form (1.2.4).
Expanding the (4 × 4)-matrix F1 in the complete system of the Dirac

matrices
F1 = A + Bµγµ + CµνS

µν + Dµγ4γ
µ + Eγ4 (1.3.8)

and substituting the expression obtained into (1.2.4) we arrive at the system
of PDEs for the functions A, Bµ, . . . , E of the type (1.2.6)–(1.2.9). Its general
solution is given by the following formulae:

A = g1, E = g2, Bµ = g3vµ + g5wµ,

Dµ = g4vµ + g6wµ, Cµν = g7(vµwν − vνwµ),
(1.3.9)

where g1, g2, . . . , g7 are arbitrary smooth functions of the invariants of the
group O(1, 3) ψ̄ψ, ψ̄γ4ψ, v · v, v · w, w · w.

Substitution of (1.3.9) into (1.3.8) gives rise to formula (1.3.6). The theo-
rem is proved. ¤

Theorem 1.3.2. System of PDEs (1.3.5) is invariant under the conformal
group C(1, 3) with generators (1.1.22) iff

F1 = (1/3)γ · v(ψ̄ψ)−1 + (h1 + h2γ4)
{
γ · v(ψ̄ψ)−1

−γ · w(ψ̄γ4ψ)−1
}

+ γ4(ψ̄ψ)1/3(h3 + h4γ4), (1.3.10)

F2 = (ψ̄ψ)2/3(f̃1 + f̃2γ4), m = 0.

In (1.3.10) h1, . . . , h4 are arbitrary smooth complex-valued functions of the
invariants of the group C(1, 3) (ψ̄ψ)(ψ̄γ4ψ)−1, {(ψ̄ψ)2w ·w−2v ·w(ψ̄ψ)(ψ̄γ4ψ)
+(ψ̄γ4ψ)2v · v}(ψ̄ψ)−14/3 and f̃1, f̃2 are arbitrary smooth functions of (ψ̄ψ)
×(ψ̄γ4ψ)−1.

Proof. According to Theorem 1.3.1, the necessary and sufficient conditions
for equation (1.3.5) to be invariant under the group P (1, 3) ⊂ C(1, 3) are given
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by equalities (1.3.6), (1.3.7). Acting by the first prolongation of the generator
of the group of special conformal transformations θµKµ, θµ = const on system
of PDEs (1.3.5) with F1, F2 of the form (1.3.6), (1.3.7) and passing to the set
of its solutions we obtain the system of PDEs for A, B1, . . . , E, f1, f2

L1g1 = 2g1, L2g1 = L3g1 = 0,

L1g2 = 2g2, L2g2 = L3g2 = 0,

L1gj = −6gj , L2gj = L3gj = 0, j = 3, . . . , 6, (1.3.11)
z1g3 + z2g5 = 1/3, z1g4 + z2g6 = 0, g7 = 0,

(z1∂z1 + z2∂z2 − 2/3)fi = 0, i = 1, 2.

Here

L1 = 6(z1∂z1 + z2∂z2) + 16(z3∂z3 + z4∂z4 + z5∂z5),
L2 = z1∂z5 + 2z2∂z4 , L3 = z2∂z5 + 2z1∂z3 ,

z1 = ψ̄ψ, z2 = ψ̄γ4ψ, z3 = v · v, z4 = v · w, z5 = w · w.

System of the first-order PDEs (1.3.11) is integrated in a standard way, its
general solution having the form

g1 = z
1/3
1 h3, g2 = z

1/3
1 h4, g3 = (1/3)z−1

1 + h1z
−1
1 ,

g5 = −z−1
2 h1, g4 = z−1

1 h2, g6 = −z−1
2 h2,

f1 = z
2/3
1 f̃1(z1/z2), f2 = z

2/3
1 f̃2(z1/z2),

where h1, h2 are arbitrary smooth complex-valued functions of z1z
−1
2 , (z2

1z5

+z2
2z3 − 2z1z2z4)z

−14/3
1 ; f̃i ∈ C1(R1, C1).

Substitution of the above results into (1.3.6), (1.3.7) yields (1.3.10). The
theorem is proved. ¤

Consequence 1.3.1. System of PDEs

{∂µ∂µ − F (ψ̄, ψ)}ψ = 0, (1.3.12)

where F is a variable (4×4)-matrix, is not invariant with respect to the group
C(1, 3).

The proof follows from the fact that the class of conformally-invariant
equations (1.3.5), (1.3.10) does not contain equations of the form (1.3.12).

If we put in (1.3.10) h1 = h2 = h3 = h4 = 0, f̃1 = −λ2 = const, f̃2 = 0,
then the conformally-invariant second-order PDE

{
∂µ∂µ − (1/3)(ψ̄ψ)−1

(
γµ∂µ(ψ̄ψ)

)
γν∂ν + λ2(ψ̄ψ)2/3

}
ψ = 0 (1.3.13)
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suggested in [155] is obtained. The direct verification shows that any solution
of the Dirac-Gürsey equation satisfies PDE (1.3.13). That is why equation
(1.3.13) as well as the Dirac-Gürsey equation can be used in conformally-
invariant quantum field theories to describe a massless particle with the spin
s = 1/2.

1.4. Symmetry of systems of nonlinear equations

for spinor, vector and scalar fields

It is well-known (see, for example, [142]) that the classical electrodynamics
equations

(iγµ∂µ − eγµAµ)ψ = 0,

∂µ∂µAν − ∂ν∂µAµ = −eψ̄γνψ,
(1.4.1)

where Aµ(x) is the vector-potential of electro-magnetic field, e = const, µ, ν =
0, . . . , 3, are invariant under the conformal group C(1, 3) having the following
generators:

Pµ = ∂µ, Jµν = xµPν − xνPµ + Aµ∂Aν −Aν∂Aµ

− (1/2){γµγνψ}α∂ψα + (1/2){ψ̄γµγν}α∂ψ̄α , µ 6= ν,
(1.4.2)

D = xµ∂µ − (3/2)(ψα∂ψα + ψ̄α∂ψ̄α)−Aµ∂Aµ , (1.4.3)

Kµ = 2xµD − (x · x)∂µ − xµ(Aν∂Aν − ψα∂ψα − ψ̄α∂ψ̄α)

− {γµγ · xψ}α∂ψα − {ψ̄γ · xγµ}α∂ψ̄α + 2Aµxν∂Aν

− 2A · x∂Aµ .

(1.4.4)

In formulae (1.4.2)–(1.4.4) ∂Aµ = ∂/∂Aµ, ∂ψα = ∂/∂ψα, ∂ψ̄α = ∂/∂ψ̄α;
{Ψ}α means the α-th component of the spinor Ψ; µ, ν, α = 0, . . . , 3.

Let us note that the operators Kµ (1.4.4) generate a 4-parameter group of
special conformal transformations

x′µ = (xµ − θµx · x)σ−1(x),

ψ′(x′) = σ(x)(1− γ · θ γ · x)ψ(x),

A′µ(x′) = {σ(x)gµν + 2(xµθν − xνθµ + 2θ · xθµxν

− x · xθµθν − θ · θxµxν)}Aν(x),

(1.4.5)



38 Chapter 1. SYMMETRY OF NONLINEAR SPINOR EQUATIONS

where σ(x) = 1− 2θ · x + (θ · θ)(x · x).
In [133, 142] another conformally-invariant system of PDEs for spinor and

vector fields
(iγµ∂µ − eγµAµ)ψ(x) = 0,

∂µ∂µAν − ∂ν∂µAµ = λAν(A ·A)
(1.4.6)

was suggested. A conjecture arises that there exist more general systems of
nonlinear equations

iγµ∂µψ − F (ψ̄, ψ, A) = 0,

∂µ∂µAν − ∂ν∂µAµ = Rν(ψ̄, ψ, A)
(1.4.7)

invariant under the conformal group.
In the present section we solve the problem of group-theoretical classifi-

cation of systems of PDEs (1.4.7). Namely, we describe all functions F =
(F 0, F 1, F 2, F 3)T , Rµ such that system (1.4.7) is invariant with respect to
the groups P (1, 3), P̃ (1, 3), C(1, 3).

In addition, symmetry analysis of systems of nonlinear equations for spinor
and scalar fields

iγµ∂µψ − F (u∗, u, ψ̄, ψ) = 0,

∂µ∂µu−H(u∗, u, ψ̄, ψ) = 0;
(1.4.8)

vector and scalar fields

∂µ∂µu−H(u∗, u, A) = 0,

∂µ∂µAν − ∂ν∂µAµ = Rν(u∗, u, A)
(1.4.9)

is carried out.
In (1.4.8), (1.4.9) F = (F 0, F 1, F 2, F 3)T ; Fµ, H, Rµ are some smooth

functions; u(x) ∈ C2(R4,C1).

Theorem 1.4.1. System (1.4.8) is invariant under

1) the Poincaré group iff

F = (f1 + f2γ4)ψ, H = h(u∗, u, ψ̄ψ, ψ̄γ4ψ), (1.4.10)

where f1, f2 are arbitrary smooth complex-valued functions of u∗, u, ψ̄ψ,
ψ̄γ4ψ;

2) the extended Poincaré group P̃ (1, 3) = P (1, 3)⊂×D(1), where D(1) is the
one-parameter group of scale transformations

x′µ = xµeθ, u′ = ue−k2θ, ψ′ = ψe−k1θ, θ, k1, k2 = const, (1.4.11)
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iff F, H are given by (1.4.10) with

fi = (ψ̄ψ)1/2k1 f̃i(w1, w2, w3), h = (u∗u)1/k2uh̃(w1, w2, w3),
w1 = u/u∗, w2 = u2k1(ψ̄ψ)−k2 , w3 = u2k1(ψ̄γ4ψ)−k2 , (1.4.12)
{f̃i, h̃} ⊂ C1(C3,C1), i = 1, 2;

3) the conformal group C(1, 3) = P (1, 3)⊂×D(1)⊂×K(1, 3), where D(1) is given
by (1.4.11) with k1 = 3/2, k2 = 1 and the 4-parameter group of special con-
formal transformations K(1, 3) has the form

x′µ = (xµ − θµx · x)σ−1(x),
ψ′(x′) = σ(x)(1− γ · θγ · x)ψ(x), (1.4.13)
u′(x′) = σ(x)u(x),

iff F, H are given by formulae (1.4.10), (1.4.12) with k1 = 3/2, k2 = 1;

4) the group C(1, 3)⊗ U(1), where U(1) is the one-parameter group of gauge
transformations

x′µ = xµ, ψ′(x) = eiθψ(x), u′(x) = eiθu(x), θ ∈ R1,

iff

F = (ψ̄ψ)1/3{f̃1(z1, z2) + γ4f̃2(z1, z2)}ψ,

H = |u|2uh̃(z1, z2), {f̃1, f̃2, h̃} ⊂ C1(R2,C1), (1.4.14)
z1 = ψ̄ψ|u|−3, z2 = ψ̄γ4ψ|u|−3.

The proof is carried out with the help of the Lie method. Acting on
system of PDEs (1.4.8) by the first prolongation of the operator J0a (1.1.20)
and passing to the set of its solutions we get necessary and sufficient conditions
of Lorentz invariance of system (1.4.8) in the form

Q0aΦ− (1/2)[Φ, γ0γa] = 0, Q0aH = 0, a = 1, 2, 3, (1.4.15)

where Q0a = −(1/2){γ0γaψ}α∂ψα + (1/2){ψ̄γ0γa}α∂ψ̄α , Φ = Φ(u∗, u, ψ̄, ψ) is
a (4 × 4)-matrix (we have represented the four-component function F in the
form Φψ).

Since the first equation of system (1.4.15) coincides with (1.2.4) and the
second one with (1.2.6), we can write down their general solutions using the
results obtained in Section 1.2. According to (1.2.2), (1.2.11) the general so-
lution of system of PDEs (1.4.15) has the form (1.4.10). Taking into account
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the fact that system (1.4.8) is invariant under the 4-parameter group of trans-
lations (1.1.24) we arrive at the assertion 1 of Theorem 1.4.1.

Acting on system of PDEs (1.4.8), (1.4.10) by the first prolongation of the
generator of the group of scale transformations

D = xµ∂µ − k1ψ
α∂ψα − k1ψ̄

α∂ψ̄α − k2u∂u − k2u
∗∂u∗

and passing to the set of its solutions we get the following system of PDEs for
f1, f2, h:

k2(ρ1fiρ1 + ρ2fiρ2) + 2k1(ρ3fiρ3 + ρ4fiρ4) = 1, i = 1, 2,

k2(ρ1hρ1 + ρ2hρ2) + 2k1(ρ3hρ3 + ρ4hρ4) = 2,

fiρn = ∂fi/∂ρn, hρn = ∂h/∂ρn, n = 1, . . . , 4,

where ρ1 = u∗, ρ2 = u, ρ3 = ψ̄ψ, ρ4 = ψ̄γ4ψ is a complete system of
functionally-independent invariants of the group P (1, 3). General solution of
the above system is given by the formulae (1.4.12), w1, w2, w3 being a com-
plete system of functionally-independent invariants of the extended Poincaré
group. Since the conformal group contains the group P̃ (1, 3), the requirement
of C(1, 3)-invariance of system of PDEs (1.4.8) leads to formulae (1.4.10),
(1.4.12) under k1 = 3/2, k2 = 1. The sufficiency of assertion 3 is established
by direct verification.

To select from the class of conformally-invariant equations of the form
(1.4.8) the equations which admit the group U(1) we act with the first pro-
longation of the generator of this group on system (1.4.8) and pass to the set
of its solutions. As a result, we have

2w1f̃iw1 + 3w2f̃iw2 + 3w3f̃iw3 = 0, i = 1, 2,

2w1h̃w1 + 3w2h̃w2 + 3w3h̃w3 = 0.

General solution of the above equations is represented in the form

f̃i = f̃i(w
3/2
1 w−1

2 , w
3/2
1 w−1

3 ), h̃ = h̃(w3/2
1 w−1

2 , w
3/2
1 w−1

3 ).

Putting

w1 = u(u∗)−1, w2 = u3(ψ̄ψ)−1, w3 = u3(ψ̄γ4ψ)−1

yields formulae (1.4.14). The theorem is proved. ¤
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Note 1.4.1. In [90] a model for description of interaction of spinor and real-
valued scalar fields based on the relativistic Hamilton equation

iγµ∂µψ − F (u, ψ̄, ψ) = 0,

(∂µu)(∂µu) = H(u, ψ̄, ψ)
(1.4.16)

was suggested. Using the Lie method we can prove that system of PDEs
(1.4.16) admits the Poincaré group iff

F = {f1(u, ψ̄ψ, ψ̄γ4ψ) + γ4f2(u, ψ̄ψ, ψ̄γ4ψ)}ψ,

H = h(u, ψ̄ψ, ψ̄γ4ψ).
(1.4.17)

Provided

fi = (ψ̄ψ)1/2k1 f̃i(w1, w2), h = u2(k2+1)/k2 h̃(w1, w2), i = 1, 2,

where w1 = u2k1(ψ̄ψ)−k2 , w2 = u2k1(ψ̄γ4ψ)−k2 , system of PDEs (1.4.16) is
invariant with respect to the extended Poincaré group.

The next two theorems are given without proof.

Theorem 1.4.2. System of nonlinear equations (1.4.7) is invariant under

1) the Poincaré group with generators (1.4.2) iff

F (ψ̄, ψ, A) = {γ ·Af1 + γ4γ ·Af2 + f3 + γ4f4}ψ,

Rµ(ψ̄, ψ, A) = Aµg1 + ψ̄γµψg2 + ψ̄γ4γµψg3 + ψT γ0γ2γµψg4,
(1.4.18)

where fi are arbitrary complex-valued functions and hi are arbitrary real-valued
functions of

ψ̄ψ, ψ̄γ4ψ, ψ̄γ ·Aψ, ψ̄γ4γ ·Aψ, ψT γ0γ2γ ·Aψ, A ·A;

2) the extended Poincaré group P̃ (1, 3) with generators (1.4.2) and

D = xµ∂µ − k1ψα∂ψα − k1ψα∂ψα − k2Aµ∂aµ , {k1, k2} ⊂ R1

iff functions F, Rµ are given by formulae (1.4.18), where

fi = (A ·A)(1−k2)/2k2 f̃i, i = 1, 2,

fj = (ψ̄ψ)1/2k1 f̃j , j = 3, 4, g1 = (A ·A)1/k2 g̃1, (1.4.19)

gi = (ψ̄ψ)(k2−2k1+2)/2k1 g̃i, i = 2, 3, 4,
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f̃1, . . . , f̃4, g̃1, . . . , g̃4 being arbitrary smooth functions of

(ψ̄ψ)(ψ̄γ4ψ)−1, (ψ̄ψ)k2(A ·A)−k1 , (ψ̄ψ)2k1+k2(ψ̄γ ·Aψ)−2k1 ,

(ψ̄ψ)2k1+k2(ψ̄γ4γ ·Aψ)−2k1 , (ψ̄ψ)2k1+k2(ψT γ0γ2γ ·Aψ)−2k1 ;

3) the group C(1, 3) with generators (1.4.2)–(1.4.4) iff the functions F, Rµ

are given by (1.4.18), (1.4.19) under k1 = 3/2, k2 = 1;

4) the group C(1, 3)⊗U(1), where U(1) is the group of gauge transformations

x′µ = xµ, ψ′ = ψeiλθ(x),

A′µ = Aµ + ∂µθ(x), θ(x) ∈ C3(R4,R1),
(1.4.20)

iff

F (ψ̄, ψ, A) = {λγ ·A + f1(ψ̄ψ(ψ̄γ4ψ)−1) + γ4f2(ψ̄ψ(ψ̄γ4ψ)−1)}ψ,

Rµ(ψ̄, ψ, A) = ψ̄γµψg1(ψ̄ψ(ψ̄γ4ψ)−1) + ψ̄γ4γµψg2(ψ̄ψ(ψ̄γ4ψ)−1),
(1.4.21)

where fi ∈ C1(R1,C1), gi ∈ C1(R1,R1), i = 1, 2, λ = const.

Consequence 1.4.1. On the set of solutions of system of PDEs (1.4.7),
(1.4.21) an infinite-dimensional representation of the Lie algebra AC(1, 3) is
realized, basis elements of the algebra having the form

P̃µ = Pµ, J̃µν = Jµν , D̃ = D + iλ(ψα∂ψα − ψ̄α∂ψ̄α),

K̃µ = Kµ + ∂Aµ + iλxµ(ψα∂ψα − ψ̄α∂ψ̄α),
(1.4.22)

where the operators Pµ, Jµν , D, Kµ are given by (1.4.4).
The proof is reduced to verification of the commutation relations of the

algebra AC(1, 3) if we note that the operators

Q1 = iλ(ψα∂ψα − ψ̄α∂ψ̄α),

Q2µ = iλxµ(ψα∂ψα − ψ̄α∂ψ̄α) + ∂Aµ , µ = 0, . . . , 3
(1.4.23)

generate transformation groups of the form (1.4.20). ¤

Thus, system (1.4.7), (1.4.21) possesses a dual conformal symmetry. To
fix a definite representation of AC(1, 3) it is necessary to impose an additional
constraint on the vector field Aµ(x). In [82] the nonlinear equation

∂µ(AµA ·A) = 0 (1.4.24)
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invariant under the algebra (1.4.4) was suggested. Since PDE (1.4.24) is not
invariant under transformation groups generated by the operators Q2µ from
(1.4.23), it does not admit the 4-parameter group with generators K̃µ from
(1.4.22). Consequently, system of PDEs (1.4.7), (1.4.21), (1.4.24) is invariant
under the conformal algebra (1.4.22).

Analogously, using results obtained in the paper [142] we conclude that
system (1.4.7), (1.4.21) supplemented by the additional condition

∂µAµ − 2A ·A = 0 (1.4.25)

is invariant under the conformal algebra (1.4.22) and is not invariant under
the algebra (1.4.4).

Theorem 1.4.3. System of nonlinear PDEs (1.4.9) is invariant under

1) the Poincaré group iff

H = h(u∗, u, A ·A), Rµ = Aµg(u∗, u, A ·A),

where h ∈ C1(C2 × R1,C1), g ∈ C1(C2 × R1,R1);

2) the extended Poincaré group P̃ (1, 3) = P (1, 3)⊂×D(1), where D(1) is a one-
parameter group of scale transformations

x′µ = xµeθ, A′µ = Aµe−k1θ,

u′ = ue−k2θ, u∗′ = u∗e−k2θ, θ ∈ R1,
(1.4.26)

iff
H = |u|2/k2uh

(
u∗u−1, |u|−2k1(A ·A)k2

)
,

Rµ = (A ·A)1/k1g
(
u∗u−1, |u|−2k1(A ·A)k2

)
Aµ;

(1.4.27)

3) the conformal group C(1, 3) = P (1, 3)⊂×D(1)⊂×K(1, 3), where D(1) is the
group (1.4.26) with k1 = 1, k2 = 1 and K(1, 3) is the 4-parameter group of
special conformal transformations

x′µ = (xµ − θµx · x)σ−1(x), u′ = σ(x)u,

A′µ = {σ(x)gµν + 2(xµθν − xνθµ + 2θ · xθµxν (1.4.28)
−x · xθµθν − θ · θxµxν)}Aν ,

where s(x) = 1− 2θ · x + θ · θx · x, θµ = const, µ = 0, . . . , 3, iff H, Rµ are of
the form (1.4.27) under k1 = k2 = 1;
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4) the group C(1, 3)⊗U(1), where U(1) is the group of gauge transformations

x′µ = xµ, A′µ = Aµ, u′ = ueiθ, θ ∈ R1,

iff

H = |u|2uh(|u|−2A ·A), Rµ = AµA ·Ag(|u|−2A ·A),
h ∈ C1(R1,C1), g ∈ C1(R1,R1).

Thus, using the symmetry selection principle we narrow substantially clas-
ses of physically admissible nonlinear generalizations of the Maxwell-Dirac,
Dirac-d’Alembert and Maxwell-d’Alembert equations.

1.5. Conditional symmetry and reduction of partial

differential equations

Analyzing already known methods of construction of exact solutions of non-
linear partial differential equations we come to conclusion that a majority of
them is based on the idea of narrowing the set of solutions, i.e., selecting from
the whole set of solutions specific subsets which admit analytic description.
To implement this idea we have to impose some additional constraints (equa-
tions) on the set of solutions of the equation under consideration selecting
such subsets. Clearly, additional equations are supposed to be simpler than
the initial one. Supplementing the initial equation with additional conditions
we come, as a rule, to an over-determined system of PDEs. So there arises a
problem of investigating the matter of its compatibility.

To clarify the above points we will consider an instructive example. Let

U(x1, u, u
1
, u

2
) = 0 (1.5.1)

be a second-order PDE with two independent variables x0, x1 which does not
depend explicitly on x0.

Since coefficients of PDE (1.5.1) do not contain the variable x0, substitu-
tion of the expression

u = ϕ(x1) (1.5.2)

into (1.5.1) results in a differential equation containing x1, ϕ, ϕ̇, ϕ̈ only, i.e.,

Ũ(x1, ϕ, ϕ̇, ϕ̈) = 0. (1.5.3)
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Consequently, using the fact that PDE (1.5.1) does not contain the variable
x0 we reduce it to an ODE assuming that a particular solution also does not
depend on x0.

But from the group-theoretical point of view the independence of PDE
(1.5.1) of x0 means that it is invariant under the one-parameter translation
group with respect to the variable x0

x′0 = x0 + θ, x′1 = x1, u′ = u, θ ∈ R1 (1.5.4)

having the generator X = ∂x0 . And what is more, formula (1.5.2) defines the
most general manifold in the three-dimensional space of variables x0, x1, u
which is invariant with respect to the above group. Expression (1.5.2) is called
a solution (an Ansatz) invariant under the one-parameter group (1.5.4).

The above said can be summarized in the form of the following state-
ment: a solution invariant under the group of translations (1.5.4) reduces
PDE admitting the same group to ODE. When generalized to the case of an
arbitrary admissible one-parameter group, this statement plays a key role in
applications of Lie transformation groups to construction of exact solutions of
mathematical physics equations.

The way for obtaining an invariant solution is entirely algorithmic. Since
we are looking for a manifold u = f(x0, x1) which does not contain explicitly
the variable x0 (is invariant with respect to the group (1.5.4)) we should require
that ∂f/∂x0 = 0. Consequently, to find a solution of PDE (1.5.1) invariant
under the group (1.5.4) it is necessary to solve an over-determined system of
PDEs

U(x1, u, u
1
, u

2
) = 0, ux0 = 0.

We have paid so much attention to a very simple example, since it gives
an adequate illustration to ideas of the symmetry reduction method pioneered
by Sophus Lie. Moreover, a general case of PDE

U(x0, x1, u, u
1
, u

2
) = 0 (1.5.5)

invariant under a one-parameter transformation group having a generator X =
ξ0(x, u)∂x0 +ξ1(x, u)∂x1 +η(x, u)∂u is reduced to the particular case considered
above. Indeed, it is known from the general theory of PDEs that there is a
change of variables

x̃0 = F0(x, u), x̃1 = F1(x, u), ũ = G(x, u)
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transforming the operator X to the form X ′ = ∂x̃0 . Consequently, PDE
(1.5.5) after being rewritten in the variables x̃, ũ is invariant under the one-
parameter transformation group with the generator X ′ = ∂x̃0 , i.e., under the
group (1.5.4). According to the above proved a substitution ũ = ϕ(x̃1) reduces
the equation transformed to ODE for a function ϕ. Hence, we conclude that
the substitution F0(x, u) = ϕ

(
F1(x, u)

)
reduces the initial equation to ODE.

Thus, given a one-parameter transformation group admitted by partial
differential equation (1.5.5), we can reduce it to an ODE by means of a sub-
stitution of a special form (invariant solution or Ansatz)

u = f
(
x, ϕ(ω(x, u))

)
, (1.5.6)

where f, ω are some functions determined by the form of the generator of
the group. A natural question arises: do invariant solutions exhaust the set
of substitutions (1.5.6) reducing given PDE to an ODE? A negative answer
to this question has led us to the notion of conditional symmetry of partial
differential equations.

The notion and terminology of conditional symmetry of PDEs was intro-
duced for the first time in [91, 92, 116] and developed in a series of papers
and monographs [96, 97], [105]–[107], [120, 124, 108, 126, 127, 128, 137, 143],
[154]–[160], [246, 303, 308] (see also [32, 52, 211, 234]). The principal idea of
conditional symmetry of PDE is illustrated by the following example. The
equation

U(x1, u, u
1
, u

2
) + V (x0, x1, u, u

1
, u

2
)ux0 = 0, ∂V/∂x0 6= 0

is not invariant under the translations with respect to x0. Nevertheless, Ansatz
(1.5.2) invariant under the translation group (1.5.4) reduces it to an ODE. An
explanation for this phenomenon is quite simple. The matter is that the second
“non-invariant” term of the equation in question vanishes on the manifold
(1.5.2). Saying it in another way, the system of two PDEs

U(x1, u, u
1
, u

2
) + V (x0, x1, u, u

1
, u

2
)ux0 = 0, ux0 = 0 (1.5.7)

is invariant under the group (1.5.4).
Consequently, from the point of view of reducibility of PDE (1.5.5) by

means of the Ansatz invariant under the one-parameter transformation group
with the generator X = ξ0(x, u)∂x0 + ξ1(x, u)∂x1 + η(x, u)∂u it is enough to
require the invariance of a constrained system of PDEs

U(x0, x1, u, u
1
, u

2
) = 0, ξ0(x, u)ux0 + ξ1(x, u)ux1 − η(x, u) = 0.
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This is a source of the term conditional symmetry. Equation (1.5.5) is
non-invariant with respect to the group having the generator X but being
taken together with a condition Xu = 0 it admits the mentioned group. Con-
sequently, it is conditionally-invariant under the Lie group with the generator
X.

1. Reduction of PDEs. Consider an over-determined system of PDEs of
the form

UA(x, u, u
1
, . . . , u

r
) = 0, A = 1, . . . , M, (1.5.8)

ξaµ(x, u)uα
xµ
− ηα

a (x, u) = 0, a = 1, . . . , N, (1.5.9)

where x = (x0, x1, . . . , xn−1), u = (u0, u1, . . . , um−1),

u
s

= {∂suα/∂xµ1 . . . ∂xµs , 0 ≤ α ≤ m− 1, 0 ≤ µi ≤ n− 1},

UA, ξaµ, ηα are smooth enough functions, N ≤ n − 1. In the following, we
suppose that the condition

rank ‖ξaµ(x, u)‖N n−1
a=1µ=0 = N (1.5.10)

holds.

Definition 1.5.1. Set of the first-order differential operators

Qa = ξaµ(x, u)∂xµ + ηα
a (x, u)∂uα , (1.5.11)

where ξaµ, ηα
a are smooth functions, is called involutive if there exist such

smooth functions f c
ab(x, u) that

[Qa, Qb] = f c
abQc, a, b, c = 1, . . . , N. (1.5.12)

The simplest example of an involutive set of operators is given by first-
order differential operators forming a Lie algebra. In such a case f c

ab = const,
a, b, c = 1, . . . , N are called structure constants of the Lie algebra.

It is common knowledge that conditions (1.5.12) are necessary and suffi-
cient for the system of PDEs (1.5.9) to be compatible (the Frobenius theorem
[250]). Its general solution can be represented in the form

Fα(ω1, ω2, . . . , ωn+m−N ) = 0, α = 0, . . . , m− 1, (1.5.13)

where Fα ∈ C1(Cn+m−N ,C1) are arbitrary functions, ωi = ωi(x, u) are func-
tionally-independent first integrals of system of PDEs (1.5.9).
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Due to condition (1.5.10) we can choose m first integrals ωj1 , . . . , ωjm sat-
isfying the condition det ‖∂ωji/∂uα‖m m−1

i=1β=0 6= 0, since otherwise integrals ω1,
ω2, . . ., ωn+m−N would be functionally-dependent.

Changing, if necessary, numeration we can put ji = i and thus get m first
integrals ω1, . . . , ωm of the system of PDEs (1.5.9) satisfying the following
condition:

det‖∂ωi/∂uα‖m m−1
i=1β=0 6= 0. (1.5.14)

Resolving relations (1.5.13) with respect to ω1, . . . , ωm we have

ωi = ϕi(ωm+1, . . . , ωn+m−N ), (1.5.15)

where ϕi ∈ C1(Cn−N ,C1), i = 1, . . . , m are arbitrary functions.

Definition 1.5.2. Expression (1.5.15) is called an Ansatz for the field uα =
uα(x) invariant under the set of operators (1.5.11) provided (1.5.14) holds.

Formulae (1.5.15) take an especially simple and clear form provided

ξaµ = ξaµ(x), ηα
a = Aαβ

a (x)uβ, a = 1, . . . , N, α = 0, . . . , m− 1. (1.5.16)

Given the condition (1.5.16) operators (1.5.11) are rewritten in a non-Lie
form

Qa = ξaµ(x)∂xµ + ηa(x), a = 1, . . . , N, (1.5.17)

where ηa = ‖ − Aαβ
a (x)‖m−1

α,β=0 are (m × m)-matrices and system (1.5.9) is
rewritten as a system of linear PDEs

ξaµ(x)uxµ + ηa(x)u = 0, a = 1, . . . , N. (1.5.18)

Here u = (u0, . . . , um−1)T .

Lemma 1.5.1. Assume that conditions (1.5.10), (1.5.16) hold. Then, a set
of functionally-independent first integrals of system of PDEs (1.5.9) can be
chosen as follows

ωi = bα
i (x)uα, i = 1, . . . , m,

ωm+j = ωm+j(x), j = 1, . . . , n−N

and besides det ‖bα
i (x)‖m m−1

i=1α=0 6= 0.

Proof. Consider the following system of matrix PDEs:

ξaµ(x)Fxµ = Fηa(x), (1.5.19)
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where F = ‖fαβ(x)‖m−1
α,β=0 is an (m×m)-matrix and ξa, ηa = ‖−Aαβ

a (x)‖m−1
α,β=0

are coefficients of the operators Qa. Since the operators Qa form an involutive
set, the above system is compatible and its general solution has the form

F (x) = ΘB(x),

where Θ is an (m × m)-matrix whose elements are arbitrary functions of a
complete set of functionally-independent first integrals of the system

ξaµ∂µω = 0, a = 1, . . . , N (1.5.20)

and B(x) = ‖bα
i (x)‖m−1

i,α=0 is a particular solution of (1.5.19) with detB(x) 6= 0.
It is straightforward to check that from the involutivity of the set of op-

erators Qa it follows that the operators Q′
a = ξaµ∂µ form an involutive set.

Consequently, system (1.5.20) is compatible and what is more due to the condi-
tion (1.5.10) the number of its functionally-independent first integrals is equal
to n−N . We denote these as: ωm+1(x), ωm+2(x),. . .,ωn+m−N (x).

As det ‖bα
i (x)‖m−1

i,α=0 6= 0, the expressions bα
1 (x)uα, . . ., bα

m(x)uα, ωm+1(x),
. . ., ωm+n−N (x) are functionally-independent. If we prove that the functions
bα
i (x)uα, i = 1, . . . ,m are first integrals, the proof of the lemma will be com-

pleted.
Acting by the operators Qa on the functions bα

i (x)uα one has
(
ξaµ∂µ + Aγβ

a (x)uβ∂uγ

)(
bα
i (x)uα

)
=

(
ξaµ∂µbβ

i (x) + bα
i (x)Aαβ

a (x)
)
uβ = 0

(we have taken into account that the matrix B(x) = ‖bα
i (x)‖m−1

i,α=0 satisfies
(1.5.19)) the same which is required. The lemma is proved. ¤

Due to Lemma 1.5.1 we can resolve formulae (1.5.15) with respect to uα

and thus transform an Ansatz invariant under operators (1.5.17) to the form

uα = aαβ(x)ϕβ(ωm+1, . . . , ωm+n−N )

or (in the matrix notation)

u = A(x)ϕ(ωm+1, . . . , ωm+n−N ), (1.5.21)

where A(x) = ‖aαβ(x)‖m−1
α,β=0 is the inverse of the matrix B.

Since the matrix function B(x) satisfies the system of PDEs (1.5.19), the
following equalities hold

ξaµ∂µA(x) = ξaµ∂µB−1(x) = −B−1(x)
(
ξaµ∂µB(x)

)
B−1(x)

= −B−1(x)B(x)ηaB
−1(x) = −ηaA(x).



50 Chapter 1. SYMMETRY OF NONLINEAR SPINOR EQUATIONS

Consequently, we have established that the Ansatz invariant under the
involutive set of operators (1.5.17) satisfying condition (1.5.10) is represented
in the form (1.5.21), where A(x) is a nonsingular (m ×m)-matrix satisfying
the system of PDEs

ξaµ∂µA(x) + ηaA(x) = 0, a = 1, . . . , N (1.5.22)

and functions ωm+1(x), . . . , ωm+n−N (x) form a complete set of functionally-
independent first integrals of the system of PDEs (1.5.20).

We say that Ansatz (1.5.15) reduces system of PDEs (1.5.8) if the substi-
tution of formulae (1.5.15) into (1.5.8) gives rise to a system of PDEs which
is equivalent to one containing ”new” independent ωm+1, ωm+2, . . ., ωm+n−N

and dependent ϕ0, ϕ1, . . ., ϕm−1 variables only.
Let us recall the classical theorem about reduction of PDEs by means of

group-invariant solutions: a solution invariant under the N -dimensional Lie
algebra with basis elements (1.5.11) satisfying the condition (1.5.10), which
is a subalgebra of the symmetry algebra of PDE under study, reduces it to an
(n−N)-dimensional PDE [34, 190, 234, 235].

We will prove that for a given PDE to be reducible by means of the Ansatz
(1.5.15) it is enough to require conditional invariance with respect to the corre-
sponding involutive set of differential operators. Such a condition is essentially
weaker than a requirement of invariance in the Lie sense and makes it pos-
sible to obtain principally new reductions of PDEs as compared with those
obtainable within the framework of the classical Lie approach.

Definition 1.5.3. We say that the system of PDEs (1.5.8) is conditionally-
invariant under the involutive set of differential operators (1.5.11) if the system
of PDEs





UA(x, u, u
1
, . . . , u

r
) = 0, A = 1, . . . , M,

ξaµ(x, u)uα
xµ − ηα

a (x, u) = 0, a = 1, . . . , N,

D
(
ξaµ(x, u)uα

xµ − ηα
a (x, u) = 0

)
, a = 1, . . . , N,

. . .
Dr−1

(
ξaµ(x, u)uα

xµ − ηα
a (x, u) = 0

)
, a = 1, . . . , N,

(1.5.23)

where the symbol Ds(L = 0) denotes a set of all differential consequences of
the equation L = 0 of order s, is invariant in the Lie sense under the one-
parameter transformation groups having the generators Qa, a = 1, . . . , N .

Before formulating the reduction theorem we will prove two auxiliary as-
sertions.
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Lemma 1.5.2. Let us suppose that operators (1.5.11) form an involutive set.
Then the set of differential operators

Q′
a = λab(x)Qb, det ‖λab(x)‖N

a,b=1 6= 0 (1.5.24)

is also involutive.

Proof. The lemma is proved by direct computation. Indeed,

[Q′
a, Q′

b] = [λacQc, λbdQd] = λac(Qcλbd)Qd − λbd(Qdλac)Qc

+λacλbdf
d1
cd Qd1 = f̃ c

abQc = f̃ c
abλ

−1
cd Q′

d.

where λ−1
cd are elements of the matrix inverse to the matrix ‖λab(x)‖N

a,b=1. ¤

Lemma 1.5.3. Let system of PDEs (1.5.8) be conditionally-invariant under
the involutive set of differential operators (1.5.11). Then, it is conditionally-
invariant under the involutive set (1.5.24) with arbitrary smooth functions λab.

Proof. To prove the lemma we need the following identity for coefficients of
the s-th prolongation of the operator ξµ∂µ + ηα∂uα :

ζα
µ1...µi

= Dµ1 . . . Dµi(η
α − ξµuα

xµ
)− ξµuα

xµxµ1 ...xµi
, i = 1, 2, . . . , s, (1.5.25)

where

Dα = ∂xα + uβ
xα

∂

∂uβ
+

∞∑

n=1

uβ
xα1 ...xαnxα

∂

∂(uβ
xα1 ...xαn

)

is a total differentiation operator with respect to the variable xα. The above
identity is proved by the method of mathematical induction. First, we will
prove it under i = 1. From the prolongation formulae given in the introduction
we have

ζα
µ = Dµηα − uα

xβ
Dµξβ = Dµ(ηα − ξβuα

xβ
)− ξβuα

xβxµ
,

whence it follows that the identity (1.5.25) holds for i = 1. Consequently, the
base of induction is established.

Let us suppose now that the identity (1.5.25) holds for all i ≤ k − 1. We
will prove that hence its validity for i = k follows.

Indeed,

ζα
µ1...µk

= Dµk
ζα
µ1...µk−1

− uα
xµ1 ...xµk−1

xβ
Dµk

ξβ

= Dµk

(
Dµ1 . . . Dµk−1

(ηα − ξµuα
xµ

)− ξµuxµxµ1 ...xµk−1

)

−uα
xµ1 ...xµk−1

∂xβ
Dµk

ξβ = Dµ1 . . . Dµk
(ηα − ξµuα

xµ
)− ξµuα

xµxµ1 ...xµk
,
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the same which is required.
Due to the identity proved above the r-th prolongation of the operator Q′

a

being restricted to the set of solutions of system of PDEs (1.5.23) takes the
form

Q̃′
a = Q′

a + Dµ1 . . . Dµr(η
′α
a − ξ′aµuα

xµ
)

∂

∂(uα
xµ1 ...∂xµr

)

−ξ′aµuα
xµxµ1 ...xµr

∂

∂(uα
xµ1 ...xµr

)
.

Substituting the formulae η′αa = λabη
α
b , ξ′aµ = λabξbµ into the above equality

and taking into account that the relations

Dµ1 . . . Dµi(η
α
a − ξaµuα) = 0, i = 1, 2, . . . , r − 1

hold on the set of solutions of system (1.5.23) we get Q̃′
a = λab(x, u)Q̃b.

If we denote by the symbol Li one of the equations of system (1.5.23) and
by the symbol [L] the set of its solutions, then the following equalities hold

Q̃′
aL

i ∣∣∣∣
=

[L]
λab(x, u)Q̃bL

i ∣∣∣∣
=

[L]
λab(x, u)(Q̃bL

i ∣∣∣∣
) = 0,

[L]

whence it follows that the system of PDEs (1.5.8) is conditionally-invariant
under the involutive set of operators (1.5.24). The lemma is proved. ¤

Theorem1.5.1. Let the system of PDEs (1.5.8) be conditionally-invariant
under the involutive set of differential operators (1.5.11) satisfying condition
(1.5.10). Then, the Ansatz (1.5.15) invariant under the involutive set (1.5.11)
reduces system of PDEs (1.5.8).

Proof. Due to condition (1.5.10) there exists such a nonsingular (N × N)-
matrix ‖λab(x, u)‖N

a,b=1 that

Q′
a = λab(ξbµuα

µ − ηα
b ) = uα

xa−1
+

n−1∑

µ=N

ξ′aµuα
xµ
− η′αa , a = 1, . . . , N

and what is more the operators Q′
a form the involutive set (Lemma 1.5.1)

such that system of PDEs (1.5.8) is conditionally-invariant with respect to it
(Lemma 1.5.2).

Since the set of operators Q′
a, a = 1, . . . , N is involutive, there exist such

functions f c
ab(x, u) that

[Q′
a, Q′

b] = f c
abQ

′
c, a, b = 1, . . . , N. (1.5.26)
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Computing commutators on the left-hand sides of the above equalities and
equating coefficients of the linearly independent differential operators ∂x0 , ∂x1 ,
. . ., ∂xN−1 we have f c

ab = 0, a, b, c = 1, . . . , N . Consequently, operators Q′
a

form a commutative Lie algebra.
Furthermore, systems of PDEs Qaω(x, u) = 0, a = 1, . . . , N and λab(x, u)

× Qbω(x, u) = 0, a = 1, . . . , N with det ‖λab(x, u)‖N
a,b=1 6= 0 have the same

set of functionally-independent first integrals. Hence we conclude that the
involutive sets of operators Qa and Q′

a give rise to the same Ansatz (1.5.15).
From the definition of the conditional invariance it follows that the system

of PDEs



UA(x, u, u
1
, . . . , u

r
) = 0, A = 1, . . . , M,

uα
xa−1

+
∑n−1

µ=N ξ′aµuα
xµ
− η′αa = 0, a = 1, . . . , N,

D
(
uα

xa−1
+

∑n−1
µ=N ξ′aµuα

xµ
− η′αa = 0

)
, a = 1, . . . , N,

. . .
Dr−1

(
uα

xa−1
+

∑n−1
µ=N ξ′aµuα

xµ
− η′αa = 0

)
, a = 1, . . . , N

(1.5.27)

is invariant in Lie sense under the one-parameter groups generated by the mu-
tually commuting operators Q′

a. Consequently, the above system is invariant
in Lie sense under the commutative Lie algebra 〈Q′

1, Q′
2, . . . , Q′

N 〉.
Now we can apply the classical theorem about symmetry (group-theore-

tical) reduction of PDEs and conclude that the Ansatz invariant under the
involutive set of operators (1.5.11) (or, which is the same, under the commu-
tative Lie algebra 〈Q′

1, Q′
2, . . . , Q′

m〉) reduces system of PDEs (1.5.27). But
by construction all equations from the system (1.5.27) with the exception of
the first m equations (which form the initial system of PDEs (1.5.8)) vanish
identically on the manifold (1.5.11). Consequently, the Ansatz (1.5.11) reduces
system (1.5.8). The theorem is proved. ¤

Note 1.5.1. There exists a deep relation between reducibility of PDE (1.5.8)
conditionally-invariant under the involutive set of operators (1.5.11) and com-
patibility of the over-determined system of PDEs (1.5.8), (1.5.9). But as is
shown below from conditional invariance of PDE (1.5.8) with respect to the
involutive set of operators (1.5.11) it does not follow a compatibility of system
(1.5.8), (1.5.9) and vise versa.

The equation

(xaxa)(uxb
uxb

)− (xauxa)
2 = m2, m 6= 0,

where a, b = 1, 2, 3, is invariant with respect to the rotation group O(3) having
the generators Jab = xa∂xb

− xb∂xa , a < b, a, b = 1, 2, 3. However, the system
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of PDEs {
(xaxa)(uxb

uxb
)− (xauxa)2 = m2, m 6= 0,

Jabu = 0, a, b = 1, 2, 3
is incompatible, because substitution of the general solution of the last three
equations u = ϕ (xaxa) into the first one yields an inconsistent equality 0 =
m2.

On the other hand, system of PDEs
{

uxx + uyy − u + y(ux − u) = 0,
uy = 0

is compatible (it has a solution u = Cex, C = const) but the equation uxx +
uyy − u + y(ux − u) = 0 is not conditionally-invariant under the operator
Q = ∂y.

Note 1.5.2. We have proved Theorem 1.5.1 under assumption that the condi-
tion (1.5.10) holds. It is not difficult to prove that Theorem 1.5.1 is still valid,
provided

rank ‖ξaµ‖N n−1
a=1µ=0 = rank ‖ξaµ η1

a, . . . η
m−1
a ‖N n−1

a=1µ=0 = N ′ < N. (1.5.28)

Indeed, using transformation (1.5.24) we can reduce involutive set of op-
erators (1.5.11) satisfying (1.5.28) to the form Q′

1, . . ., QN ′ , QN ′+1 = 0, . . .,
QN = 0. Now, we can apply Theorem 1.5.1 with N = N ′. Consequently,
if the system of PDEs (1.5.8) is conditionally-invariant under the involutive
set of operators (1.5.11) satisfying (1.5.28), then the Ansatz (1.5.15) invariant
under the involutive set (1.5.11) reduces it to (n−N ′)-dimensional PDE.

In the case when the condition (1.5.28) is not satisfied, so-called partially-
invariant solutions (the term was introduced by Ovsjannikov [236]) are ob-
tained. Reduction of PDEs conditionally-invariant under the involutive set of
differential operators (1.5.11) not obeying the condition (1.5.28) is studied in
detail in our paper [159].

2.Symmetry and compatibility of over-determined systems of linear
PDEs. This subsection is devoted to the investigation of the following systems
of PDEs:

Bµν(x)∂xν + Bµ(x)u(x) = 0, µ = 0, . . . , n− 1, (1.5.29)

where x = (x0, x1, . . . , xn−1), u(x) =
(
u0(x), u1(x), . . . , um−1(x)

)T
, Bµν , Bµ

are variable (m×m)-matrices satisfying the condition

rank ‖Bµν(x)‖n−1
µ,ν=0 = n×m. (1.5.30)
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The problem of investigating compatibility of an over-determined system of the
form (1.5.30) is closely connected with the problem of separation of variables
in systems of linear PDEs (see [149, 227, 256] and Chapter 5).

Theorem 1.5.2. System of PDEs (1.5.29) is compatible iff

[Bµν∂ν + Bµ, Bαβ∂β + Bα] = Rµαβ(Bβν∂ν + Bβ), (1.5.31)

where Rµαβ are some linear first-order differential operators with matrix coef-
ficients, µ, α = 0, . . . , n− 1.

Proof. The necessity. Let system (1.5.30) be compatible. We will show that
hence it follows that (1.5.31) holds. Due to (1.5.30) the block (nm × nm)-
matrix ‖Bµν‖n−1

µ,ν=0 is invertible. That is why there exists such a block (nm×
nm)-matrix ‖Cµν‖n−1

µ,ν=0 that

Cµν(x)Bνα(x) = Bµν(x)Cνα(x) = δµαI, (1.5.32)

where I is the unit (m×m)-matrix.
Let us rewrite (1.5.29) in the equivalent form

∂µu = Fµ(x)u, (1.5.33)

where Fµ = −CµαBα.
It is well-known (see, for example, [43, 61, 261]) that the necessary and

sufficient compatibility conditions of system of PDEs (1.5.33) read

∂µFν − ∂νFµ + [Fµ, Fν ] = 0, µ, ν = 0, . . . , n− 1. (1.5.34)

Introducing notations Qµ = ∂µ − Fµ(x) we rewrite (1.5.34) in the form

[Qµ, Qν ] = 0.

Representing the operators Bµν∂ν + Bµ in the form Bµν∂ν + Bµ = BµνQν

we compute the commutator

[BµνQν , BαβQβ] = [Bµν , Bαβ]QνQβ + Bµν [Qν , Bαβ]Qβ

−Bαβ[Qν , Bµβ]Qβ.

Finally, substituting formulae Qµ = Cµα(Bαν∂ν + Bα) into the equality
obtained we arrive at (1.5.31) and besides

Rµαβ = {[Bµν , Bαβ1 ]Qν + Bµν [Qν , Bαβ1 ]−Bαν [Qν , Bµβ1 ]}Cβ1β.
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The sufficiency. Given (1.5.30), we will prove that there exist such linear
first-order operators R̃µνβ that the equality

[Qµ, Qν ] = R̃µνβQβ (1.5.35)

holds.
Indeed,

[Qµ, Qα] = [Cµα1(Bα1ν∂ν + Bα1), Cαβ(Bβν1∂ν1 + Bβ)]
= Cµα1 [Bα1ν∂ν + Bα1 , Cαβ ](Bβν1∂ν1 + Bβ)
+Cµα1Cαβ[Bα1ν∂ν + Bα1 , Bβν1∂ν1 + Bβ]
+[Cµα1 , Cαβ ](Bβ1ν∂ν + Bβ1)(Bαν1∂ν1 + Bα)
+Cαβ[Cµα1 , Bβν1∂ν1 + Bβ](Bα1ν∂ν + Bα1)
= Pµαβ(Bβν∂ν + Bβ) = PµαβBβνQν .

Choosing PµαβBβν = R̃µαν we arrive at (1.5.35).
Computing the commutator on the left-hand side of (1.5.35) and equating

coefficients of linearly independent operators ∂µ we get the equalities

R̃µαβ = 0.

Consequently, operators Qµ commute, i.e., conditions (1.5.34) hold iden-
tically. Hence it follows that system (1.5.33) is compatible. Since equations
(1.5.33) are equivalent to the initial system of PDEs (1.5.29), the sufficiency
is proved. ¤

Note 1.5.3. In the theory of non-Abelian gauge fields (Yang-Mills fields) con-
ditions (1.5.34) are called the zero curvature equations. The general solution
of the system of matrix PDEs (1.5.34) has the form

Fµ = VxµV −1, µ = 0, . . . , 3, (1.5.36)

where V (x) is an arbitrary nonsingular (m × m)-matrix which elements are
smooth functions of x. Formula (1.5.36) establishes an one-to-one correspon-
dence between over-determined systems (1.5.29) and solutions of the equation

B0µ(x)∂xµ + B0(x)u(x) = 0 (1.5.37)

of the form
u(x) = V (x)χ,
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where V (x) is a nonsingular (m×m)-matrix, χ = (χ0, χ1, χ2, χ3)T .
Thus, to construct particular solutions of the system of PDEs (1.5.37) it

is necessary to classify algebraic objects of the type (1.5.29), (1.5.31). Up to
now this problem is solved for a number of the Lie algebras and some simplest
superalgebras [9, 10], [14]–[17], [100, 237, 238].

The most simple is the case where in (1.5.31) Rµαβ = 0 i.e., the op-
erators Σµ = Bµν∂ν + Bµ commute. For many fundamental mathemati-
cal and theoretical physics equations (in particular, for the Dirac equation
[198, 256]) it is possible to obtain complete description of commuting opera-
tors Σµ, µ = 0, . . . , n− 1, where Σ0ψ = 0 is the equation under investigation,
and to construct solutions with separated variables. In this respect, we will
consider the following particular case of system (1.5.29):

Σµu ≡
(
Bµν(x)∂ν + Bµ(x)

)
u = λµu, µ = 0, . . . , n− 1, (1.5.38)

where (λ0, λ1, . . . , λn−1) ∈ Λ ⊂ Rn, matrices Bµν(x), Bµ(x) being independent
of λα.

When proving the principal assertion we will essentially use the following
lemma.

Lemma 1.5.4. If one of the systems of algebraic equations

PµαBµβ + PµβBµα = 0, (1.5.39)
PαµCµβ + PβµCµα = 0, (1.5.40)

where ‖Bµν(x)‖n−1
µ,ν=0 is a nonsingular block (nm×nm)-matrix, ‖Cµν(x)‖n−1

µ,ν=0

is its inverse and Pµα are some variable (m ×m)-matrices, holds true, then
Pµα = 0.

Proof. We prove the lemma under assumption that (1.5.39) holds. Let us
rewrite equalities (1.5.39) in the equivalent form

Pµµ1Cµ1ν1Tν1µαβ = 0. (1.5.41)

Here Tν1µαβ = Bν1αBµβ + Bν1βBµα.
Since the identities

CµνCµ1ν1Tν1ναβ = (δµ1αδµβ + δµ1βδµα)I

hold, the block matrix ‖Tν1µαβ‖ is invertible. Consequently, equation (1.5.41)
is equivalent to the relation

PµαCαν = 0. (1.5.42)
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Multiplying (1.5.42) by Bνβ and summing over ν we have

Pµβ = 0, µ, β = 0, . . . , n− 1.

In the case, where (1.5.40) holds, the proof is analogous. ¤

Theorem 1.5.3. Provided (1.5.30) holds the system of PDEs (1.5.38) is com-
patible iff

[Bµν∂ν + Bµ, Bαβ∂β + Bα] = 0, µ, α = 0, . . . , n− 1. (1.5.43)

Proof. According to Theorem 1.5.2, the compatibility criterion for the sys-
tem of PDEs (1.5.38) reads

[Bµν∂ν + Bµ − λµ, Bαβ∂β + Bα − λα]

= (Rµαβν∂ν + Rµαβ)(Bβν1∂ν1 + Bβ − λβ).
(1.5.44)

Computing the commutator in the left-hand side and equating coefficients
of the linearly independent operators ∂ν∂β, ∂β, I we get the system of PDEs
for matrix functions Bµν , Bµ, Rµαβν , Rµαβ

[Bµν , Bαβ ] + [Bµβ, Bαν ] = Rµαµ1νBµ1β + Rµαµ1βBµ1ν , (1.5.45)

Bµν∂νBαβ −Bαν∂νBµβ + [Bµβ, Bα]− [Bαβ, Bµ]

= Rµαµ1ν∂νBµ1β + Rµαµ1β(Bµ1 − λµ1) + Rµαµ1Bµ1β,
(1.5.46)

Bµν∂νBα −Bαν∂νBµ + [Bµ, Bν ] = Rµαµ1ν∂νBµ1

+Rµαµ1(Bµ1 − λµ1).
(1.5.47)

Differentiating (1.5.45) with respect to λα1 we arrive at the relations

∂Rµαµ1ν

∂λα1

Bµ1β +
∂Rµαµ1β

∂λα1

Bµ1ν = 0,

whence due to Lemma 1.5.4 it follows that

∂Rµαβν

∂λµ1

= 0, µ, α, β, ν, µ1 = 0, . . . , n− 1.

Differentiation of equality (1.5.46) with respect to λα1 yields

∂Rµαµ1

∂λα1

Bµ1β −Rµαα1β = 0.
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Multiplying the above equality by Cββ1 and summing over β we have

∂Rµαβ1

∂λα1

= Rµαα1βCββ1

or
Rµαβ1 = λα1Rµαα1βCββ1 + R̃µαβ1 , (1.5.48)

and besides ∂R̃µαβ1/∂λα1 = 0, α1 = 0, . . . , n− 1.
Substituting (1.5.48) into (1.5.47) and equating coefficients of λα1 , λµ1λα1

we come to the following relations:

Rµαα1βCββ1 + Rµαβ1βCβα1 = 0,

Rµαα1βCββ1Bβ1 − R̃µαα1 = 0. (1.5.49)

According to Lemma 1.5.4 Rµαα1β = 0, whence it follows that R̃µαα1 = 0.
Thus, the necessary and sufficient compatibility conditions for system

(1.5.38) are given by relations (1.5.44) with Rµαβν = Rµαβ = 0 or, which
is the same, by relations (1.5.43). The theorem is proved. ¤

Results obtained in the present section are applied in a sequel to reduce
multi-dimensional nonlinear partial differential equations to ODEs and to con-
struct their exact solutions in explicit form. In addition, Theorems 1.5.2, 1.5.3
form a basis of our approach to separation of variables in systems of linear
PDEs (see Chapter 5).

1.6. Conservation laws

One of the important properties of equations admitting a nontrivial symmetry
group is the existence of constants of motion (by a constant of motion we mean
some combination of solutions of the equation considered which preserves its
value in time). The well-known examples of constants of motion are the energy,
the momentum and the angular momentum.

Within the framework of the traditional approach to the problem of con-
struction of constants of motion, going back to Noether’s works, we have to
investigate symmetry of the Lagrangian of the equation in question and to con-
struct conservation laws with the help of the Noether theorem [35, 190]. This
theorem establishes correspondence between one-parameter subgroups of the
symmetry group of the Lagrangian and conservation laws. However the above
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approach has restricted applicability since there exist mathematical physics
equations which can not be derived via the Lagrange function. In addition,
there are examples of conservation laws which cannot be obtained with the
help of the Noether theorem even for equations derived in the framework of
the variational principle [115, 116, 118, 190, 280].

That is why we apply a method of construction of constants of motion
for the Dirac equation based on the direct calculation of a conserved quan-
tity as a zero component of the four-vector of current with components jµ =
jµ(x, ψ̄, ψ, ψ̄

1

, ψ
1

, . . .), µ = 0, . . . , 3 which satisfies the continuity condition

∂µjµ = 0 (1.6.1)

for each solution ψ = ψ(x) of the Dirac equation.

Lemma 1.6.1. Let us suppose that there exists the four-vector of current
satisfying the relation (1.6.1) and besides conditions

ja → 0, a = 1, 2, 3 under |~x| → +∞
hold true. Then, the quantity

I =
∫

R3

j0 d3x (1.6.2)

is conserved in time, i.e., ∂I/∂x0 = 0.

Proof. Differentiating (1.6.2) with respect to x0 yields

∂I/∂x0 =
∫

R3

(∂j0/∂x0) d3x,

whence it follows
∂I/∂x0 = −

∫

R3

(∂aja) d3x.

Applying the Gauss-Ostrogradski theorem we get ∂I/∂x0 = 0. The lemma
is proved. ¤

For brevity we will call the four-vector of current satisfying relation (1.6.1)
on the set of solutions of the Dirac equation the conservation law.

Up to now there is no effective algorithm making it possible to obtain all
conservation laws admitted by an arbitrary PDE. We will construct conserva-
tion laws for the Dirac equation following an approach suggested in [115, 116]
which utilizes its Lie and non-Lie symmetry.
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Lemma 1.6.2. Let Q be a symmetry operator of the Dirac equation (1.1.1).
Then, the four-vector with components

jµ = ψ̄γµQψ, (1.6.3)

where ψ = ψ(x) is an arbitrary solution of PDE (1.1.1) vanishing under |~x| →
+∞, is a conservation law.

The proof is carried out by direct verification

∂µjµ = ∂µ(ψ̄γµQψ) = (∂µψ̄γµ)Qψ + ψ̄γµ∂µQψ = imψ̄Qψ

−imψ̄Qψ = 0

(we use the fact that any symmetry operator Q transforms the set of solutions
of PDE (1.1.1) into itself, i.e., iγµ∂µQψ = mQψ). ¤

Let us find explicit expressions of conservation laws corresponding to the
symmetry operators of the Dirac equation which belong to the class M1

(see Section 1.1). Substituting the basis elements of the Poincaré algebra
AP (1, 3) Pµ, Jµν into (1.6.3) we get the well-known expressions of the energy-
momentum and angular-momentum tensors

Tµν = ψ̄γµ∂µψ, Ωµαβ = ψ̄γµJαβψ (1.6.4)

satisfying continuity equation (1.6.1) on the index µ.
A trivial identity operator I gives rise to the current of a probability density

Tµ = ψ̄γµψ. (1.6.5)

Substitution of zero components of currents (1.6.4), (1.6.5) into formula
(1.6.2) yields the following conserved quantities:

a) the energy

E =
∫

R3

ψ†∂0ψ d3x;

b) the momentum

Pa =
∫

R3

ψ†∂aψ d3x;

c) the angular momentum

ωαβ =
∫

R3

ψ†
(
xα∂β − xβ∂α − (1/2)γαγβ

)
ψ d3x, α 6= β;
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d) the probability

p =
∫

R3

ψ†ψ d3x.

Constants of motion corresponding to the non-Lie symmetry operators of
the Dirac equation (1.1.34) are obtained in the same way.

In the case of the massless Dirac equation (1.1.17) there arise additional
conserved quantities (for more detail see [118]). We restrict ourselves to ad-
ducing constants of motion which correspond to symmetry operators of equa-
tion (1.1.17) not belonging to an enveloping algebra of the conformal algebra
AC(1, 3)

I1
µν =

∫

R3

ψ†(γµ∂ν − γν∂
µ)ψ d3x, I1

µ =
∫

R3

ψ†Aµψd3x,

I2
µν =

∫

R3

ψ†
(
[Kµ, Aν ]− [Kν , Aµ]

)
ψd3x, I2

µ =
∫

R3

ψ†γ4Aµψd3x,

where Aµ = γµxν∂ν − xνγν∂
µ − 2γµ, µ, ν = 0, . . . , 3.



C H A P T E R 2

EXACT

SOLUTIONS

The present chapter is devoted to exact solutions of Poincaré-invariant
systems of nonlinear PDEs for spinor, vector and scalar fields. We estab-
lish the necessary and sufficient compatibility conditions and construct the
general solution of the system of nonlinear PDEs which consists of the nonlin-
ear d’Alembert and Hamilton equations. With the use of subgroup structure
of the groups P (1, 3), P̃ (1, 3), C(1, 3) we construct Ansätze reducing multi-
dimensional spinor and vector equations to PDEs of lower dimension. These
Ansätze enable us to obtain multi-parameter families of exact solutions of
the nonlinear Dirac, Maxwell-Dirac and Dirac-d’Alembert equations, some of
the families containing arbitrary functions. In particular, the exact solutions
of the nonlinear Dirac equation expressed via the Bessel, Weierstrass, Gauss
and Chebyshev-Hermite functions are constructed. In addition, a method of
constructing exact solutions of PDEs for scalar, vector and tensor fields via
solutions of a nonlinear spinor equation is suggested.

2.1. On compatibility and general solution

of the d’Alembert–Hamilton system

As shown in [123, 156, 165] the substitution

w(x) = ϕ
(
u(x)

)
, ϕ ∈ C2(R1,R1) (2.1.1)

reduces the n-dimensional nonlinear d’Alembert equation

2nw ≡ ∂2w

∂x2
0

−4n−1w = F0(w) (2.1.2)
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to ODE for a function ϕ(u) iff the scalar function u = u(x0, x1, . . . , xn−1)
satisfies the nonlinear d’Alembert and Hamilton equations

2nu = F1(u), (2.1.3)
(∂Au)(∂Au) = F2(u), (2.1.4)

simultaneously.
In the above formulae F1, F2 are arbitrary smooth functions depending

on u only. Hereafter in the present section we suppose that indices denoted
by A, B, C take the values 0, . . . , n − 1 and besides the summation con-
vention in the pseudo-Euclidean space M(1, n − 1) with the metric tensor
gAB = diag (1,−1, . . . ,−1) is implied.

Thus, to obtain all Ansätze of the form (2.1.1) reducing equation (2.1.2) to
an ODE one has to construct the general solution of system (2.1.3), (2.1.4). Let
us emphasize that such an approach to the problem of reduction of equation
(2.1.2) does not require the knowledge of a subgroup structure of the invariance
group.

Following [154, 156] we call the system of PDEs (2.1.3), (2.1.4) the d’Alem-
bert-Hamilton system.

The d’Alembert-Hamilton system plays an important role in the theory of
Poincaré-invariant equations for the scalar [137, 154, 156, 171], spinor [151,
155] and vector fields. In particular, any second-order P (1, n − 1)-invariant
scalar equation can be reduced to ODE with the use of solutions of system
(2.1.3), (2.1.4) (without applying the symmetry reduction technique).

The three-dimensional elliptic analogue of system of PDEs (2.1.3), (2.1.4)

ux1x1 + ux2x2 + ux3x3 = 0, u2
x1

+ u2
x2

+ u2
x3

= 0

with a complex-valued function u(~x) was studied by Jacobi [25], who con-
structed the following class of its exact solutions

C0(u) + C1(u)x1 + C2(u)x2 + C3(u)x3 = 0, (2.1.5)

where C0(u), . . . , C3(u) are arbitrary smooth complex-valued functions satis-
fying the equality

C1(u)2 + C2(u)2 + C3(u)2 = 0. (2.1.6)

Later on, Smirnov and Sobolev [263, 264] proved that the formulae (2.1.5),
(2.1.6) give the general solution of the above over-determined system of PDEs.
Some classes of exact solutions of the system of PDEs (2.1.3), (2.1.4) were
obtained by Bateman [27], Cartan [44] and Erugin [77].
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Recently, Collins [55] has obtained the general solution of the three-dimen-
sional d’Alembert-Hamilton system using the methods of differential geometry.
However approach cannot be applied to systems of PDEs (2.1.3), (2.1.4) having
n > 3 independent variables.

In the present section we will establish the necessary compatibility condi-
tions of system (2.1.3), (2.1.4) for arbitrary n ∈ N and obtain its compatibility
criterion in the case n = 4. Next, we will construct the general solution of the
four-dimensional d’Alembert-Hamilton system.

1. Compatibility of over-determined system of PDEs (2.1.3), (2.1.4).
We study the matter of compatibility of the d’Alembert-Hamilton system un-
der assumption that u(x) is a complex-valued function of n complex variables
x0, x1, . . . , xn−1. Provided F2(u) 6= 0, we can transform system (2.1.3), (2.1.4)
by means of changing the dependent variable

u → u′ =
u∫ (

F2(τ)
)−1/2

dτ (2.1.7)

as follows
2nu′ = F (u′), (∂Au′)(∂Au′) = 1.

Consequently, the problem of investigating compatibility of the d’Alem-
bert-Hamilton system is reduced to studying compatibility of the system of
PDEs

2nu = F (u), (∂Au)(∂Au) = λ, (2.1.8)

where λ is a discrete parameter taking the values 0, 1.
To solve the above problem we will need the following auxilliary results.

Lemma 2.1.1[171]. Solutions of the system (2.1.8) satisfy the identities

uABuAB = −λḞ (u),

uAB1
uB1B2uA

B2
= λ2

2! F̈ (u),
. . . ,

uAB1
uB1B2 · · · · · uBmA = (−λ)m

m! F (m)(u), m ≥ 1,

(2.1.9)

where uAB = ∂A∂Bu, uB
A = gBCuCA, A, B, C = 0, . . . , n− 1, F (m) = dmF/dum.

Proof. We prove the assertion by means of the mathematical induction
method by m. Differentiating the second equation of system (2.1.8) with
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respect to xB, xC we have

uABCuA + uABuA
C = 0. (2.1.10)

Convoluting (2.1.10) with the metric tensor gAB we arrive at the equality

uABuAB + uA2nuA = 0.

Since 2nuA = ∂AF (u) = uAḞ (u), the above expression is rewritten in the
form

uABuAB + λḞ (u) = 0.

Consequently, the base of induction is ensured. Let us assume that the
assertion holds for m = k ∈ N. We will prove that it holds for m = k + 1 as
well.

Convoluting (2.1.10) with the tensor

uBB2uB2B3
· · · · · uBkC ,

gives
uABuBB2uB2B3

· · · · · uBkCuA
C

+uAuABCuBB2uB2B3
· · · · · uBkC = 0.

(2.1.11)

Since, according to the assumption of the induction, the equalities

uAuABCuBB2uB2B3
· · · · · uBkC = (k + 1)−1uA∂A

×
(
uBCuBB2uB2B3

· · · · · uBkC
)

= (k + 1)−1uA∂A

×(k!)−1(−λ)kF (k)(u) = −
(
(k + 1)!

)−1
(−λ)k+1F (k+1)(u)

hold, from (2.1.11) it follows that

uAB1
uB1B2 · · · · · uBk+1A =

(
(k + 1)!

)−1
(−λ)k+1F (k+1)(u).

The lemma is proved. ¤

Lemma 2.1.2[171]. Solutions of the system of PDEs (2.1.8) satisfy the n-di-
mensional Monge-Ampère equation

det ‖uxAxB‖n−1
A,B=0 = 0. (2.1.12)

Proof. The assertion follows from the fact that (2.1.12) is a criterion of
functional dependence of functions ux0 , ux1 , . . . , uxn−1 . ¤
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Theorem 2.1.1. Let the d’Alembert-Hamilton system (2.1.8) be compatible.
Then

F (u) = λḟ(u)f−1(u), (2.1.13)

and what is more
dnf(u)

dun
= 0. (2.1.14)

Proof. The cases λ = 1 and λ = 0 have to be considered separately.
The case λ = 1. Due to the Hamilton-Cayley theorem [173] an arbitrary
(n× n)-matrix W = ‖WAB‖n−1

A,B=0 satisfies the following identity:

n−1∑

k=0

(−1)kΣ(Mk) tr (Wn−k) + (−1)nn detW = 0, (2.1.15)

where tr ‖WAB‖n−1
A,B=0 =

n−1∑
C=0

WCC is the trace of a matrix W .

In (2.1.15) we designate the sum of k-th order principal minors of the
matrix M by the symbol Σ(Mk). This sum is determined by the recurrent
formula

Σ(Mk) = k−1(−1)k−1

{
k−1∑
l=0

(−1)lΣ(Ml) tr (W k−l)

}
, k ≥ 1,

Σ(M0)
def= 1.

(2.1.16)

We choose the matrix elements WAB as follows

WAB = ∂A∂Bu(x), A,B = 0, . . . , n− 1,

whence due to Lemmas 2.1.1, 2.1.2 we conclude that

tr (W k) =
1

(k − 1)!
F (k−1), det W = 0. (2.1.17)

Substitution of the above formulae into (2.1.15) gives rise to an ODE for
F (u). Let us prove that this ODE is transformed to the form (2.1.14) by
means of a nonlocal change of the dependent variable (2.1.13).

Introducing the notation

YN =
N∑

k=0

(−1)kΣ(Mk)tr (WN−k+1),
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we rewrite formula (2.1.16) as follows

Σ(Mk) =
(−1)k−1

k
Yk−1, k ≥ 1,

whence

YN = tr (WN+1)−
N∑

k=1

1
k
Yk−1tr (WN−k+1) =

(−1)N

N !

(
ḟ

f

)(N)

+
N∑

k=1

(−1)N−k−1

k(n− k)!
Yk−1

(
ḟ

f

)(N−k)

, N ≥ 1, (2.1.18)

Y0 =
ḟ

f
.

Using the mathematical induction method we will prove the equalities

YN =
(−1)N

N !
f (N+1)

f
, N ≥ 1. (2.1.19)

Let us prove that (2.1.19) holds under N = 1. Due to (2.1.17) an expression
for Y1 can be rewritten in the following way:

Y1 = tr (W 2)− Σ(M1)trW = −Ḟ − F 2.

Substitution of F = ḟ/f into the above equality yields Y1 = −f̈/f . The
base of induction is established.

Let us assume that (2.1.19) holds for all m ≤ N − 1. We will prove that
(2.1.19) holds for m = N as well.

Indeed,

YN =
(−1)N

N !

(
ḟ

f

)(N)

+
N∑

k=1

(−1)N−k−1

k(N − k)!

(
ḟ

f

)(N−k)
(−1)k−1

(k − 1)!

(
f (k)

f

)

=
(−1)N

N !

(
ḟ

f

)(N)

+
N∑

k=1

(−1)N

k!(N − k)!

(
ḟ

f

)(N−k) (
f (k)

f

)

=
(−1)N

N !f

N∑

k=0

Ck
N

(
ḟ

f

)(N−k)

f (k) =
(−1)N

N !f
f (N+1)

f
.

Consequently, relation (2.1.19) holds for all N ∈ N. Putting N = n − 1
yields

Yn−1 =
(−1)n−1

(n− 1)!
f (n)

f
.
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On the other hand, using (2.1.15), (2.1.17) we come to the following rela-
tion:

Yn−1 = (−1)n+1n detW = 0,

whence f (n)(u) = 0.

The case λ = 0. Taking into account Lemmas 2.1.1, 2.1.2 yields

det W = 0, tr (W k) = 0, k = 2, . . . , n− 1.

Due to these equalities formulae (2.1.15), (2.1.16) take the form

(−1)n−1FΣ(Mn−1) = 0, (2.1.20)

Σ(M0) = 1, Σ(Mk) =
F

k
Σ(Mk−1). (2.1.21)

Resolving the recurrent relations (2.1.21) with respect to Σ(Mk) we get

Σ(Mk) =
F k

k!
, k ≥ 1.

Inserting Σ(Mn−1) =
(
(n− 1)!

)−1
Fn−1 into (2.1.20) we have

(−1)n−1

(n− 1)!
Fn = 0,

whence F = 0. The theorem is proved. ¤

Consequence 2.1.1. The over-determined system of PDEs

2nu = F (u), (∂Au)(∂Au) = 0 (2.1.22)

is compatible iff F (u) ≡ 0.

Proof. The necessity is a direct consequence of Theorem 2.1.1. To prove
the sufficiency we will show that system (2.1.19) with F (u) = 0 possesses
nontrivial solutions. It is straightforward to check that the function u(x) =
C1(x0+x3)+C2, where C1, C2 are constants, satisfies equations (2.1.19) under
F (u) = 0, the same as what was to be proved. ¤

Let us note that the compatibility criterion for the system of PDEs (2.1.19)
with a real-valued function u = u(x) has been established in [51].

Let us say a few words about geometrical interpretation of the d’Alembert-
Hamilton system. If we designate by Pk(u) a k-th order polynomial, then the
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necessary compatibility conditions (2.1.13), (2.1.14) can be represented in the
form

F (u) = λ
d

du
lnPk(u), 0 ≤ k ≤ n− 1.

Let α1, α2, . . . , αk be the roots of the polynomial Pk(u). Then, the above
relations read

F (u) = λ
k∑

i=1

1
u + αi

, 1 ≤ k ≤ n− 1 (2.1.23)

or
F (u) = 0, k = 0. (2.1.24)

According to [51, 165, 270] the parameters

κi = (αi)−1, i = 1, . . . , k,

κ̃j = 0, j = k + 1, . . . , n− 1

can be interpreted as the principal curvatures of the level surface of the so-
lution of system (2.1.8), (2.1.23) under λ = 1. Consequently, solutions of the
d’Alembert-Hamilton system have the remarkable geometrical property: their
level surfaces have all principal curvatures constant (for the first time this fact
was established by Cartan [44]).

Now we adduce an assertion giving the compatibility criterion of the non-
linear d’Alembert-Hamilton system (2.1.3), (2.1.4) in the case n = 4

2u = F1(u), (∂µu)(∂µu) = F2(u). (2.1.25)

Here u = u(x0, x1, x2, x3) ∈ C2(C4, C1), {F1, F2} ⊂ C(C1, C1).

Theorem 2.1.2. System of PDEs (2.1.25) is compatible iff the functions
F1, F2 have the form

1) F1(u) = F2(u) = 0, or
2) F1(u) = N(ḟf)−1 − f̈(ḟ)−3, F2(u) = (ḟ)−2, (2.1.26)

where f = f(u) ∈ C2(C1, C1) is an arbitrary function satisfying the condition
ḟ 6≡ 0, N is a discrete parameter taking the values 0, 1, 2, 3.

The proof can be found in [165].

Note 2.1.1. System of PDEs (2.1.25) with F1, F2 given by formulae (2.1.26)
is transformed to the form

2u = Nu−1, (∂µu)(∂µu) = 1 (2.1.27)
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by means of the change of the dependent variable

u → u′ = f(u). (2.1.28)

Theorem 2.1.3. Let u = u(x) be a real-valued function of four real variables
x0, x1, x2, x3. Then, system (2.1.25) is compatible iff the functions F1, F2

have the form

1) F1(u) = F2(u) = 0, or
2) F1(u) = εN(ḟf)−1 − εf̈(ḟ)−3, F2(u) = ε(ḟ)−2, (2.1.29)

where f = f(u) ∈ C2(R1,R1) is an arbitrary function satisfying the condition
ḟ 6≡ 0; N is a discrete parameter taking the values 0, 1, 2, 3; ε = ±1.

Note 2.1.2. System of PDEs (2.1.25) with F1, F2 given by formulae (2.1.29)
is transformed to the form

2u = εNu−1, (∂µu)(∂µu) = ε (2.1.30)

by means of the change of the dependent variable (2.1.28).

Note 2.1.3. It follows from Theorem 2.1.3 that the nonlinear differential
operator εu22 defined on the set of solutions of the PDE (∂µu)(∂µu) = ε has
a discrete spectrum, i.e.,

εu22u = Nu, N = 0, 1, 2, 3 (2.1.31)

and what is more, the spectrum is determined by the dimension of the space of
independent variables only. Consequently, the nonlinear additional constraint
(∂µu)(∂µu) = ε plays the same role as the boundary conditions in the Sturm-
Liouville problem [61].

It is natural to expect that an additional constraint changes the symme-
try properties of the d’Alembert equation. This conjecture is confirmed by
comparison of results given in the Tables 2.1.1, 2.1.2.

Table 2.1.1. Symmetry of the nonlinear d’Alembert
equation (2.1.1) with n = 4

N Invariance group F (u)
1. the Poincaré group P (1, 3) arbitrary smooth function
2. the extended Poincaré group C1(u + C2)k,

P̃ (1, 3) [123, 137] C1 exp{ku}
3. the conformal group C1(u + C2)3

C(1, 3) [123, 189]
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Here C1, C2, k are arbitrary constants.

Table 2.1.2. Symmetry of the system
2u = F (u), (∂µu)(∂µu) = λ

N Invariance group F (u) λ

1. the Poincaré group arbitrary smooth function λ ∈ R1

P (1, 3)
2. the extended Poincaré C1(u + C2)−1 λ ∈ R1

group P̃ (1, 3) [137]
3. the conformal group 3λ(u + C1)−1 λ ∈ R1

C(1, 3) [154, 156]
4. the generalized Poincaré 0 λ > 0

group P (1, 4)
5. the generalized Poincaré 0 λ < 0

group P (2, 3)
6. infinite-dimensional 0 0

group

Here C1, C2 are arbitrary constants.

Comparing Tables 2.1.1, 2.1.2 we come to the conclusion that the con-
formally non-invariant nonlinear d’Alembert equation 2u = 3u−1 after being
restricted to the set of solutions of the Hamilton equation (∂µu)(∂µu) = 1
admits the conformal group C(1, 3). Consequently, an additional constraint
(∂µu)(∂µu) = 1 “selects” a subset of solutions which is invariant under the
group C(1, 3). In other words, the nonlinear d’Alembert equation 2u = 3u−1

is conditionally-invariant with respect to the conformal group.
Such a definition of conditional invariance is much more general than that

introduced in Chapter 1. Indeed, when defining in Section 1.5 a conditional
invariance of a given PDE we restricted ourselves to considering additional
constraints which were first-order quasi-linear PDEs. It is straightforward
to verify that the nonlinear d’Alembert equation mentioned in the previous
paragraph is not conditionally-invariant with respect to conformal group in
the sense of Definition 1.5.3. Nevertheless, its generalized conditional invari-
ance can be used effectively to construct exact solutions. The peculiarity is
that Ansätze invariant under three-dimensional subalgebras of the conformal
algebra not belonging to the Lie algebra of the extended Poincaré group reduce
the equation 2u = 3u−1 to two ODEs.

But we are not going to apply the symmetry reduction procedure to con-
structing solutions of the d’Alembert-Hamilton system, since we have devel-
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oped a method enabling us to construct its general solution.

2. Integration of the d’Alembert-Hamilton system. It follows from
Theorem 2.1.2 that the compatible system of PDEs (2.1.3), (2.1.4) is equivalent
either to (2.1.27) or to the following system:

2u = 0, (∂µu)(∂µu) = 0. (2.1.32)

General solutions of systems of PDEs (2.1.27), (2.1.32) are given by the
following assertions.

Theorem 2.1.4. The general solution of system of PDEs (2.1.27) is given by
one of the following formulae:
1) N = 0,

u = Aµ(τ)xµ + R1(τ),

where τ = τ(x) is determined in implicit way

Bµ(τ)xµ + R2(τ) = 0

and Aµ(τ), Bµ(τ), R1(τ), R2(τ) are arbitrary smooth complex-valued func-
tions satisfying the conditions

AµAµ = 1, AµBµ = 0, ȦµBµ = 0, BµBµ = 0;

2) N = 1,
u2 = (aµxµ + G1)2 − (bµxµ + G2)2,

where Gi = Gi(θµxµ) ∈ C2(C1,C1) are arbitrary functions, aµ, bµ, θµ are
arbitrary complex parameters satisfying the conditions

aµaµ = −bµbµ = 1, aµbµ = aµθµ = bµθµ = θµθµ = 0;

3) N = 2,

a) u2 =
(
xµ +Aµ(τ)

)(
xµ +Aµ(τ)

)
+

{
Bµ(τ)

(
xµ + Aµ(τ)

)}2
, where τ = τ(x)

is determined in implicit way
(
xµ + Aµ(τ)

)
Ḃµ(τ) = 0,

Aµ(τ), Bµ(τ) are arbitrary smooth complex-valued functions satisfying the
conditions

BµBµ = −1, ḂµḂµ = 0, Ȧµ = R(τ)Ḃµ
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with arbitrary R(τ) ∈ C1(C1, C1);

b) u2 =
(
xµ + Aµ(τ)

)(
xµ + Aµ(τ)

)
+

{
bµ

(
xµ + Aµ(τ)

)}2
, where τ = τ(x) is

determined in implicit way
(
xµ + Aµ(τ)

)
Ȧµ(τ) +

(
xµ + Aµ(τ)

)
bµbνȦ

ν(τ) = 0,

Aµ(τ) are arbitrary smooth complex-valued functions satisfying the condition

ȦµȦµ + (bµȦµ)2 = 0,

bµ are arbitrary complex constants satisfying the condition bµbµ = −1;

4) N = 3,
u2 =

(
xµ + Aµ(τ)

)(
xµ + Aµ(τ)

)
, (2.1.33)

where τ = τ(x) is determined in implicit way
(
xµ + Aµ(τ)

)
Bµ(τ) = 0, (2.1.34)

Aµ(τ), Bµ(τ) are arbitrary smooth complex-valued functions satisfying the
conditions

ȦµBµ = 0, BµBµ = 0. (2.1.35)

Proof. We will give a detailed proof of the theorem for the case N = 3. In
the remaining cases only the schemes of the proofs will be outlined.

Our approach for integration of the d’Alembert-Hamilton system is based
on the generalization of the nonlocal transformation method [145, 146] to a
case of multi-dimensional PDEs suggested in [165]–[167].

By a nonlocal transformation of the order r we mean the transformation

x′µ = fµ(x, u, u
1
, . . . , u

k
),

u′ = f(x, u, u
1
, . . . , u

k
),

(2.1.36)

where {fµ, f} ⊂ Cr(Cn,C1), the symbol u
s

denotes the set of second-order
derivatives of the function u = u(x).

A principal idea of the mentioned method is to linearize a PDE under
study by means of the proper nonlocal transformation (2.1.36). If we succeed
in constructing a solution of the linear equation (general or particular), then a
solution of the initial equation is obtained by inverting transformation (2.1.36).
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Especially important are the contact transformations (first-order nonlocal
transformations)

x′µ = fµ(x, u, u
1
), u′ = f(x, u, u

1
), u′xµ

= gµ(x, u, u
1
), (2.1.37)

which preserve the first-order tangency condition

du− uxµdxµ = 0 ⇒ du′ − u′x′µdx′µ = 0.

This fact is explained by that any two first-order PDEs can be transformed
one into another by means of a proper contact transformation [190, 218].

According to Lemma 2.1.2 det ‖uxµxν‖3
µ,ν=0 = 0. Consequently, the rank

of the matrix U = ‖uxµxν‖3
µ,ν=0 = 0 takes the values 1,2,3. Each case listed

has to be considered separately.

Case 1. rankU = 3. With such a condition there is a non-vanishing third-
order minor of the matrix U . Making, if necessary, changes x0 → ixa, xa →
ix0 or xa → xb, xb → xa which leave system (2.1.27) invariant we can choose

det ‖uxaxb
‖3

a,b=1 6= 0. (2.1.38)

Performing the generalized Euler-Ampère transformation [165]:

y0 = x0, ya = uxa , H(y) = xauxa − u,

Hy0 = −ux0 , Hya = xa, a = 1, 2, 3,

H12 = −
∣∣∣∣
u12 u23

u13 u33

∣∣∣∣ ∆−1, H11 =
∣∣∣∣
u22 u23

u23 u33

∣∣∣∣ ∆−1,

H31 = −
∣∣∣∣
u12 u22

u13 u23

∣∣∣∣ ∆−1, H22 =
∣∣∣∣
u11 u13

u13 u33

∣∣∣∣ ∆−1,

H23 = −
∣∣∣∣
u11 u12

u13 u23

∣∣∣∣ ∆−1, H33 =
∣∣∣∣
u11 u12

u12 u22

∣∣∣∣ ∆−1, (2.1.39)

H01 = −
∣∣∣∣∣∣

u01 u02 u03

u12 u22 u23

u13 u23 u33

∣∣∣∣∣∣
∆−1,

H02 = −
∣∣∣∣∣∣

u11 u12 u13

u01 u02 u03

u13 u23 u33

∣∣∣∣∣∣
∆−1,

H03 = −
∣∣∣∣∣∣

u11 u12 u13

u12 u22 u23

u01 u02 u03

∣∣∣∣∣∣
∆−1,

H00 = −∆−1det ‖uµν‖3
µ,ν=0,
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where uµν = uxµxν , Hµν = Hyµyν , |W | = det ‖W‖, ∆ = det ‖uab‖3
a,b=1, in

(2.1.27) we get

det ‖Hyµyν‖3
µ,ν=0 + Σ2(H) + 3[T (H)]−1det ‖Hyayb

‖3
a,b=1 = 0,

Hy0 = −(1 + yaya)1/2.
(2.1.40)

Hereafter T (H) = yaHya −H, Σ2(H) is the sum of the second-order prin-
cipal minors of the matrix ‖Hyµyν‖3

µ,ν=0.
Thus, instead of the nonlinear Hamilton equation, we have a simple linear

PDE which is easily integrated

H = −y0(1 + yaya)1/2 −B(y1, y2, y3), (2.1.41)

where B ∈ C2(C3,C1) is an arbitrary function.
Inserting (2.1.41) into the first equation from (2.1.40) and multiplying by

T (H) we note that the equation obtained is rewritten in the following way:

a1y
2
0 + a2y0 + a3 = 0, (2.1.42)

where

a1 = 43B + yaybByayb
+ 3T (B),

a2 = Σ2(B) + yaybByayb
43B − yaybByaycBycyb

− 3[T (B)]2,
a3 = (1 + yaya)det ‖Byayb

‖3
a,b=1 + [T (B)]3.

Since a1, a2, a3 are independent of y0, from (2.1.42) it follows that a1 =
a2 = a3 = 0.

Thus, we reduce d’Alembert-Hamilton system (2.1.27) with rankU = 3 to
the system of three nonlinear PDEs with three independent variables

1) 43B + yaybByayb
= −3T (B),

2) Σ2(B) + yaybByayb
43B − yaybByaycBycyb

= 3[T (B)]2, (2.1.43)
3) det ‖Byayb

‖3
a,b=1 = −[T (B)]3(1 + yaya)−1.

The above system is simplified substantially by means of the following
change of variables:

za = ya(1 + ybyb)−1/2,

P (z1, z2, z3) = (1 + yaya)−1/2B(y1, y2, y3).
(2.1.44)
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In the new variables z, P (z) system (2.1.43) reads

1) 43P − zazbPzazb
= 0,

2) Σ2(P )− zazbPzazb
43P + zazbPzazcPzczb

= 0, (2.1.45)
3) det ‖Pzazb

‖3
a,b=1 = 0.

Since det P̃ = det ‖Pzazb
‖3

a,b=1 = 0, the rank of the (3 × 3)-matrix P̃ is
equal either to 1 or to 2.

Subcase 1.1. rank P̃ = 1. Hence, according to the theorem about an implicit
function, it follows that there are such functions {R1, R2} ⊂ C2(C1,C1) that

Pzk
= Rk(Pz3), k = 1, 2. (2.1.46)

Substitution of (2.1.46) into the second equation of system (2.1.45) shows
that its left-hand side vanishes under arbitrary R1, R2. The first equation
takes the form (

1 + ṘkṘk − (zkṘk + z3)2
)
Pz3z3 = 0,

whence
Pz3z3 = 0 (2.1.47)

or
1 + ṘkṘk − (zkṘk + z3) = 0, (2.1.48)

where Ṙk = dRk/dPz3 , k = 1, 2. Hereafter in this section, the summation over
the repeated indices denoted by the letters k, l, n from 1 to 2 is understood.

Let the equality (2.1.47) hold true. Then, differentiating (2.1.46) with
respect to z3 we have Pz1z3 = Pz2z3 = 0. Next, differentiating (2.1.46) with
respect to z1, z2 we conclude that Pzazb

= 0, a, b = 1, 2, 3, whence

P = Caza + C0, Cµ ∈ C1. (2.1.49)

Now we turn to the case Pz3z3 6= 0. Hence it follows that the equality
(2.1.48) holds. To integrate system of the first-order PDEs (2.1.46), (2.1.48)
we make the contact transformation

tk = zk, t3 = Pz3 , G(t1, t2, t3) = z3Pz3 − P,

Gtk = −Pzk
, Gt3 = z3, k = 1, 2.

As a result, we get

Gtk = −Rk(t3), k = 1, 2,

1 + Ṙk(t3)Ṙk(t3)−
(
tkṘk(t3) + Gt3

)2
= 0.

(2.1.50)
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Integration of the first two equations of system (2.1.50) yields

G = −tkRk(t3) + Q(t3), (2.1.51)

where Q ∈ C2(C1,C1) is an arbitrary function.
Substituting the result obtained into the third equation of system (2.1.50)

we have

1 + ṘkṘk −
(
tkṘk − tkṘk + Q̇

)2 ≡ 1 + ṘkṘk − Q̇2 = 0. (2.1.52)

Thus, formulae (2.1.51), (2.1.52) determine the general solution of system
of PDEs (2.1.50). Returning to the initial variables z, P (z) we obtain the
general solution of system (2.1.46), (2.1.48)

P = zkRk(t3) + t3z3 −Q(t3), 1 + ṘkṘk − Q̇2 = 0, (2.1.53)

where t3 = t3(z) is determined by the relation Gt3 = z3, whence

zkṘk(t3) + z3 − Q̇(t3) = 0. (2.1.54)

To represent formulae (2.1.53), (2.1.54) in a manifestly O(3)-invariant form
we re-determine the parametric function to be t3(z) = R̃3

(
τ(z)

)
and designate

R̃k(τ) = Rk

(
R̃3(τ)

)
, Q̃(τ) = −Q

(
R̃3(τ)

)
, k = 1, 2.

With such notations formulae (2.1.53), (2.1.54) read

P = zaR̃a(τ) + Q̃(τ), ˙̃
Ra

˙̃
Ra − ˙̃

Q2 = 0, (2.1.55)

where τ = τ(z) is a smooth function defined by the relation

za
˙̃
Ra(τ) + ˙̃

Q(τ) = 0. (2.1.56)

Thus, the general solution of system of PDEs (2.1.45) is given by one of
formulae (2.1.49) or (2.1.55), (2.1.56). Making the change of variables (2.1.44)
we obtain the general solution of the system of nonlinear PDEs (2.1.43)

B(y) = Caya + C0(1 + yaya)1/2, (2.1.57)

B(y) = yaR̃a(τ) + Q̃(τ)(1 + yaya)1/2,
˙̃
Ra

˙̃
Ra − ˙̃

Q2 = 0, (2.1.58)
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where τ = τ(y) is a smooth function determined in implicit way

ya
˙̃
Ra(τ) + ˙̃

Q(τ)(1 + yaya)1/2 = 0. (2.1.59)

Evidently, the solution (2.1.57) is contained in the class (2.1.58), (2.1.59).
Inserting the expression for the function B(y) from (2.1.58) into (2.1.41) we
have

H(y) = −(1 + yaya)1/2
(
y0 + Q̃(τ)

)
− yaR̃a(τ),

where the function τ = τ(y) is determined by (2.1.59).
At last, rewriting the expression obtained in the initial variables x, u(x)

we arrive at the following class of solutions of the d’Alembert-Hamilton system
(2.1.27):

u(x) = xaya −H =
(
xa + R̃a(τ)

)
ya + (1 + yaya)1/2

(
x0 + Q̃(τ)

)
, (2.1.60)

where ya = ya(x) are determined by the equalities

xa = Hya = −R̃a(τ)− ya(1 + ybyb)−1/2
(
x0 + Q̃(τ)

)
, a = 1, 2, 3.

Resolving the above equalities with respect to ya we get

ya = −(xa + R̃a)
(
(x0 + Q̃)2 − (xb + R̃b)(xb + R̃b)

)−1/2
.

Substitution of the expressions obtained into (2.1.60) yields

u(x) =
(
(x0 + Q̃)2 − (xb + R̃b)(xb + R̃b)

)1/2
,

where τ = τ(x) is a smooth function determined by the equality

ya
˙̃
Ra(τ) + ˙̃

Q(τ)(1 + yaya)1/2 ≡
(
x0 + Q̃(τ)

) ˙̃
Q(τ)−

(
xa + R̃a(τ)

) ˙̃
Ra(τ) = 0

and Q̃, R̃a are arbitrary smooth functions satisfying the relation ˙̃
Ra

˙̃
Ra− ˙̃

Q
2

=
0. Introducing the notations A0 = Q̃, Aa = R̃a we obtain formulae (2.1.33)–
(2.1.35) under Bµ ≡ Ȧµ, µ = 0, . . . , 3.

Subcase 1.2. rank P̃ = 2. Without loss of generality, we can assume that

det
∥∥∥∥

Pz1z1 Pz1z2

Pz1z2 Pz2z2

∥∥∥∥ 6= 0.
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Consequently, there is such a function R ∈ C3(C2,C1) that the relation
Pz3 = R(Pz1 , Pz2) holds. With account of this fact system (2.1.45) is rewritten
in the following way:

Pzkzk
+ (zk + z3Rk)(zn + z3Rn)Pzkzn = 0,

(1− zkzk − z2
3)(1 + RkRk) + (z3 − zkRk)2 = 0, (2.1.61)

Pz3 = R(Pz1 , Pz2).

Here Rk = ∂R/∂(Pzk
), k = 1, 2.

Let us perform in (2.1.61) the following contact transformation:

tk = Pzk
, t3 = z3, G(t1, t2, t3) = zkPzk

− P,

Gtk = zk, Gt3 = −Pz3 , k = 1, 2,

Gt1t1 = δ−1Pz2z2 , Gt1t2 = −δ−1Pz1z2 ,

Gt2t2 = δ−1Pz1z1 , Gt3t3 = −δ−1det ‖Pzazb
‖3

a,b=1,

Gt1t3 = δ−1(Pz1z2Pz2z3 − Pz2z2Pz1z3),
Gt2t3 = δ−1(Pz1z2Pz1z3 − Pz1z1Pz2z3),

where δ = Pz1z1Pz2z2 − P 2
z1z2

6= 0.
Being rewritten in the new variables t, G(t) system (2.1.61) takes the form

1)
(
1 + R2

t2 − (Gt2 + t3Rt2)
2
)
Gt1t1 − 2

(
Rt1Rt2 − (Gt1 + t3Rt1)

×(Gt2 + t3Rt2)
)
Gt1t2 +

(
1 + R2

t1 − (Gt1 + t3Rt1)
2
)
Gt2t2 = 0,

2) (1− t23 −GtkGtk)(1 + RtkRtk) + (t3 −RtkGtk)2 = 0, (2.1.62)
3) Gt3 = R(t1, t2).

Integrating equation 3 from (2.1.62) we have

G = −t3R(t1, t2) + iQ(t1, t2), (2.1.63)

where Q ∈ C3(C2,C1) is an arbitrary function.
Substituting the expression (2.1.63) into the equations 1,2 from (2.1.62)

and splitting with respect to the variable t3 we arrive at the two-dimensional
system of PDEs for the functions R(t1, t2), Q(t1, t2):

1) (1 + QtkQtk)(1 + RtnRtn)− (QtkRtk)2 = 0, (2.1.64)
2) (1 + QtkQtk + RtkRtk)42Q− (QtkQtn + RtkRtn)Qtktn = 0,

3) (1 + QtkQtk + RtkRtk)42R− (QtkQtn + RtkRtn)Rtktn = 0,
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where 42 = ∂2
t1 + ∂2

t2 .
We have succeeded in integrating the over-determined system (2.1.64).

Making use of formulae (2.1.41), (2.1.44), (2.1.63), we rewrite its general so-
lution in the initial variables x, u(x). After representing the result obtained
in a manifestly covariant form we arrive at formulae (2.1.33)–(2.1.35).

Case 2. rankU < 3. When studying the compatibility of the d’Alembert-
Hamilton system, we have established that system of PDEs (2.1.27) with N =
3 is incompatible provided rank ‖uxµxν‖3

µ,ν=0 < 3 [165].
Consequently, any solution of system (2.1.27) can be reduced by means of

one of the transformations x0 → ixa, xa → ix0 or xa → xb, xb → xa to the
form (2.1.33)–(2.1.35). Since the class of functions u(x) determined by for-
mulae (2.1.33)–(2.1.35) is invariant with respect to the above transformations,
hence it follows that any solution of the d’Alembert-Hamilton system (2.1.27)
with N = 3 is contained in it. To complete the proof for the case N = 3 it suf-
fices to check that any function u(x) determined by (2.1.33)–(2.1.35) satisfies
the d’Alembert-Hamilton system (2.1.27). The check is performed by direct
computation. Differentiating the equalities (2.1.33), (2.1.34) with respect to
xµ and excluding from the equalities obtained τxµ we get

uxµ =
(
(xν + Aν)(xν + Aν)

)−1/2(
xµ + Aµ − ρ(Ȧ · x + Ȧ ·A)Bµ

)
, (2.1.65)

where A · x = Aµxµ, ρ = (Ḃ · x + Ḃ ·A)−1.
Since

gµνuxµuxν =
(
(xν + Aν)(xν + Aν)

)−1(
xµ + Aµ − ρ(Ȧ · x + Ȧ ·A)Bµ

)

×
(
xµ + Aµ − ρ(Ȧ · x + Ȧ ·A)Bµ

)
= 1

(we have used the equalities (2.1.35)), the Hamilton equation is identically
satisfied.

Next, differentiating (2.1.65) with respect to xµ and excluding τxµ we get

uxµxν = −
(
(xα + Aα)(xα + Aα)

)−3/2(
xµ + Aµ − ρ(Ȧ · x + Ȧ ·A)Bµ

)

×
(
xν + Aν − ρ(Ȧ · x + Ȧ ·A)Bν

)(
(xα + Aα)(xα + Aα)

)−1/2

×
(
gµν − ρ(ȦµBν + ȦνBµ) + ρ2[Ä · x + Ä ·A + Ȧ · Ȧ

+(Ȧ · x + Ȧ ·A)(B̈ · x + B̈ ·A + Ḃ · Ȧ)]BµBν

+ρ2(Ȧ · x + Ȧ ·A)(ḂµBν + ḂνBµ)
)
.
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Convoluting uxµxν with the metric tensor gµν and taking into account the
equalities (2.1.34) we come to the following relation:

2u =
(
(xα + Aα)(xα + Aα)

)−1/2
(gµνgµν − 1) = 3u−1,

the same as what was to be proved.
Further, we will outline the scheme of the proof of the theorem provided

N = 0, 1, 2 in (2.1.27).
According to [165] system of PDEs (2.1.27) with N = 2 is compatible if

and only if rank ‖uxµxν‖3
µ,ν=0 = 2. Consequently, without loss of generality,

we can suppose that the condition

δ =
∣∣∣∣
ux1x1 ux1x2

ux1x2 ux2x2

∣∣∣∣ 6= 0

holds.
Since rank ‖uxµxν‖3

µ,ν=0 = 2 and δ 6= 0, there exists such a function
S ∈ C2(C4,C1) that solutions of the d’Alembert-Hamilton equation (2.1.27)
with N = 2 satisfy an additional constraint S(ux0 , ux1 , ux2 , ux3) = 0. Con-
sequently, in the case involved we have to solve the following over-determined
system of PDEs:

2u = 2u−1, (∂µu)(∂µu) = 1, S(ux0 , ux1 , ux2 , ux3) = 0.

Due to the condition δ 6= 0 we can resolve the last two equations with
respect to ux0 , ux3 and rewrite the above system as follows

ux0 =
(
1 + uxk

uxk
+ W 2(ux1 , ux2)

)1/2
,

ux3 = W (ux1 , ux2), 2u = 2u−1.
(2.1.66)

Let us apply to the system of PDEs (2.1.66) the contact transformation

x0 = y0, xk = Hyk
, x3 = y3,

u = ykHyk
−H,

ux0 = −Hy0 , uxk
= yk, ux3 = −Hy3 ,

H11 = u22δ
−1, H12 = −u12δ

−1, H22 = u11δ
−1,

H01 = −
∣∣∣∣
u01 u12

u02 u22

∣∣∣∣ δ−1, H23 = −
∣∣∣∣
u11 u13

u12 u23

∣∣∣∣ δ−1,

H13 = −
∣∣∣∣
u13 u12

u23 u22

∣∣∣∣ δ−1, H02 = −
∣∣∣∣
u11 u01

u12 u02

∣∣∣∣ δ−1, (2.1.67)
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H00 = −
∣∣∣∣∣∣

u00 u01 u02

u01 u11 u12

u02 u12 u22

∣∣∣∣∣∣
δ−1, H03 = −

∣∣∣∣∣∣

u01 u02 u03

u11 u12 u13

u12 u22 u23

∣∣∣∣∣∣
δ−1,

H33 = −
∣∣∣∣∣∣

u11 u12 u13

u12 u22 u23

u13 u23 u33

∣∣∣∣∣∣
δ−1.

Here Hµν = ∂2H/∂yµ∂yν , uµν = ∂2u/∂xµ∂xν , µ, ν = 0, . . . , 3.
The first two equations of system (2.1.67) are linearized by the transfor-

mation (2.1.67)

Hy0 = −
(
1 + ykyk + W 2(y1, y2)

)1/2
,

Hy3 = −W (y1, y2).

Integrating the above system, inserting the obtained expression for H(y)

H = −y0

(
1 + ykyk + W 2(y1, y2)

)1/2 − y3W (y1, y2)−B(y1, y2), (2.1.68)

where B ∈ C2(C2,C1) is an arbitrary function, into the last equation of system
(2.1.66) and splitting with respect to y0, y3 we come to the over-determined
system of five PDEs for two functions B(y1, y2), W (y1, y2)

1) (42W + ykynWykyn)
(
1 + Wyk

Wyk
+ T 2(W )

)

−
(
T (W )yk + Wyk

)(
T (W )yn + Wyn

)
Wykyn

= −2T (W )
(
1 + Wyk

Wyk
+ T 2(W )

)
,

2) det ‖Wykyn‖2
k,n=1 = T 2(W )

(
1 + Wyk

Wyk
+ T 2(W )

)−1

×(1 + ykyk + W 2)−1,

3) (42B + ykynBykyn)
(
1 + Wyk

Wyk
+ T 2(W )

)

−
(
T (W )yk + Wyk

)(
T (W )yn + Wyn

)
Bykyn

= −2T (B)
(
1 + Wyk

Wyk
+ T 2(W )

)
,

4) det ‖Bykyn‖2
k,n=1 = T 2(B)

(
1 + Wyk

Wyk
+ T 2(W )

)

×(1 + ykyk + W 2)−1,

5) (42W )(42B)−BykynWykyn = T (W )T (B)

×
(
1 + Wyk

Wyk
+ T 2(W )

)
(1 + ykyk + W 2)−1.
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Here the notations T (F ) = ykFyk
− F, 42F = Fykyk

are used.
Integrating the above system and returning to the initial variables x, u(x)

according to the formulae (2.1.67) we get the general solution of the d’Alem-
bert-Hamilton system (2.1.27) with N = 2 which is contained in the class of
functions u(x) determined by the formulae 3 from the statement of Theorem
2.1.4.

According to [165] system of PDEs (2.1.27) with N = 1 is compatible only
in the following cases

a) rank ‖uxµxν‖3
µ,ν=0 = 2;

b) rank ‖uxµxν‖3
µ,ν=0 = 1.

In the case a, we apply to the system under study the contact transforma-
tion (2.1.67). The general solution of the Hamilton equation being written in
the variables y, H(y) takes the form (2.1.68) with arbitrary smooth functions
B(y1, y2), W (y1, y2). Inserting (2.1.68) into the d’Alembert equation written
in the variables y, H(y) and splitting the equality obtained with respect to
y0, y3 we arrive at the following system of four PDEs:

1) 1 + Wyk
Wyk

+ T 2(W ) = 0,

2) det ‖Wykyn‖2
k,n=1 = 0,

3) (1 + ykyk + W 2)det ‖Bykyn‖2
k,n=1 = T (B)

×
(
T (W )yk + Wyk

)(
T (W )yn + Wyn

)
Bykyn ,

4) (1 + ykyk + W 2)
(
(42W )(42B)−BykynWykyn

)

= T (W )
(
T (W )yk + Wyk

)(
T (W )yn + Wyn

)
Bykyn .

Integrating these equations and returning to the initial variables x, u(x)
yield the general solution of system (2.1.27) with N = 1 provided the condition
a holds.

Let us turn now to the case b. Since rank ‖uxµxν‖3
µ,ν=0 = 1, there exist

such functions Wa = Wa(ux0) ∈ C1(C1,C1) that

uxa = Wa(ux0), a = 1, 2, 3.

With this remark system (2.1.27) is rewritten in the form

2u = u−1, uxa = Wa(ux0), (2.1.69)

where Wa(τ) are arbitrary smooth functions satisfying the equality τ2−Wa(τ)
×Wa(τ) = 1.
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Make in (2.1.69) the following contact transformation:

y0 = ux0 , ya = xa, H = x0ux0 − u,

Hy0 = x0, Hya = −uxa ,

H00 = u−1
00 , H0a = −u0au

−1
00 ,

Hab = (u0au0b − u00uab)u−1
00 .

(2.1.70)

Here uµν = uxµxν , Hµν = Hyµyν , a, b = 1, 2, 3.
The last three equations from (2.1.69) are linearized

Hya = −Wa(y0), a = 1, 2, 3.

Inserting the general solution of the above system

H = yaWa(y0)−B(y0), (2.1.71)

where B ∈ C2(C1,C1) is an arbitrary function, into the first equation of the
system of PDEs (2.1.69) and splitting with respect to y0 we come to the system
of ODEs for the functions Wa, B

1) Ẅa = (1− ẆbẆb)(y0Ẇa −Wa), a = 1, 2, 3,

2) B̈ = (1− ẆbẆb)(y0Ḃ −B)

and what is more WaWa = y2
0 − 1.

Integrating the system of ODEs obtained and returning to the initial vari-
ables x, u(x) we obtain a particular case of the formulae 2 from the statement
of Theorem 2.1.4.

Provided N = 0, the general solution of system of PDEs (2.1.27) splits
into two classes satisfying one of the conditions: rank ‖uxµxν‖3

µ,ν=0 = 1, 2.
If rank ‖uxµxν‖3

µ,ν=0 = 2, then we can apply the contact transformation
(2.1.67). The general solution of the d’Alembert-Hamilton system is given by
the formula (2.1.68), where B(y1, y2), W (y1, y2) are solutions of the system of
two PDEs

1) 1 + Wyk
Wyk

+ (ykWyk
−W )2 = 0,

2)
(
yk(ynWyn −W ) + Wyk

)(
yl(ynWyn −W ) + Wyl

)
Bykyl

= 0.

Integrating it and returning to the initial variables x, u(x) we arrive at
the formulae 1 from the statement of Theorem 2.1.4.
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Provided solutions of the d’Alembert-Hamilton system (2.1.27) with N =
0 satisfy the condition rank ‖uxµxν‖3

µ,ν=0 = 1, we can perform the contact
transformation (2.1.70). The general solution of the system obtained is of the
form (2.1.71), where Wa(y0), B(y0) are solutions of the system of two ODEs
ẆaẆa = 1, WaWa = y2

0−1. Rewriting (2.1.71) in the initial variables x, u(x)
according to the formulae (2.1.70) yields the formulae 1 from the statement of
Theorem 2.1.4 with Bµ ≡ Ȧµ, R2 = Ṙ1.

Thus, we have established that the general solutions of the system of PDEs
(2.1.27) with N = 0, 1, 2 are contained in the classes of functions given by the
formulae 1–3 from the statement of Theorem 2.1.4. To complete the proof we
have to check that the function u(x) determined by these formulae satisfies the
d’Alembert-Hamilton system. This check is carried out by direct computation.
The theorem is proved. ¤

Theorem 2.1.5. The general solution of system of PDEs (2.1.32) has the
form

Aµ(u, τ)xµ + A(u, τ) = 0, (2.1.72)

where τ = τ(x, u) is determined in implicit way

Bµ(u, τ)xµ + B(u, τ) = 0 (2.1.73)

and Aµ(u, τ), Bµ(u, τ), A(u, τ), B(u, τ) are arbitrary complex-valued func-
tions satisfying the conditions

AµAµ = AµBµ = BµBµ = 0, Bµ
∂Aµ

∂τ
= 0. (2.1.74)

Proof. If u(x) 6= const, then making, when necessary, the change of inde-
pendent variables

x0 → ixa, xa → ix0,

xb → xc, xc → xb

(2.1.75)

with some fixed a, b, c = 1, 2, 3 we can without loss of generality suppose
that ux3 6= 0. With this condition we can make in (2.1.32) the hodograph
transformation

yα = xα, α = 0, 1, 2, y3 = u, U = x3, (2.1.76)

where y0, . . . , y3 are new independent variables and U = U(y) is a new depen-
dent variable. As a result, the following system of PDEs

Uy0y0 − Uy1y1 − Uy2y2 = 0, U2
y0
− U2

y1
− U2

y2
= 1 (2.1.77)
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is obtained.
Therefore, the four-dimensional system of PDEs (2.1.32) is transformed to

the system with three independent variables (the fourth variable y3 is con-
tained in (2.1.77) as a parameter).

Equations (2.1.77) are obtained from the d’Alembert-Hamilton system
(2.1.27) with N = 0 by assuming that its solutions do not depend on x3

and by identifying xα with yα, α = 0, 1, 2 and u with U . Consequently, the
general solution of (2.1.77) is given by the formulae 1 from the statement
of Theorem 2.1.4 provided the indices take the values 0, 1, 2. And what is
more, all arbitrary functions included into the general solution contain y3 as
an argument.

Thus, the general solution of system of PDEs (2.1.77) is determined by the
formulae

U = a0(τ, y3)y0 − a1(τ, y3)y1 − a2(τ, y3)y2 + R1(τ, y3),
b0(τ, y3)y0 − b1(τ, y3)y1 − b2(τ, y3)y2 + R2(τ, y3) = 0,

where aα(τ, y3), bα(τ, y3), α = 0, 1, 2 are arbitrary complex-valued functions
satisfying the equalities

a2
0 − a2

1 − a2
2 = 1, b2

0 − b2
1 − b2

2 = 0,

a0b0 − a1b1 − a2b2 = 0, ∂a0
∂τ b0 − ∂a1

∂τ b1 − ∂a2
∂τ b2 = 0.

(2.1.78)

Rewriting the result obtained in the initial variables x, u(x) according to
(2.1.76) we arrive at the following representation of the general solution of
system (2.1.32):

x3 = a0(τ, u)x0 − a1(τ, u)x1 − a2(τ, u)x2 + R1(τ, u),

where τ = τ(x, u) is a complex-valued function defined implicitly

b0(τ, u)x0 − b1(τ, u)x1 − b2(τ, u)x2 + R2(τ, u) = 0

and aα(τ, u), bα(τ, u), α = 0, 1, 2 are arbitrary complex-valued functions
satisfying (2.1.78).

It is readily seen that the above formulae are obtained from (2.1.72)–
(2.1.74) under

Aα = aα, A3 = 1, A = R1,

Bα = bα, B3 = 0, B = R2,
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where α = 0, 1, 2.
We have proved that any solution of system (2.1.32) satisfying the relation

u(x) 6= const can be reduced to the form (2.1.72)–(2.1.74) by the change of the
independent variables (2.1.75). Since the class of functions F determined by
the relations (2.1.72)–(2.1.74) is invariant with respect to the transformations
(2.1.75) and contains the solution u(x) = const, hence it follows that G ⊂ F ,
where G is the class of functions u(x) determining the general solution of
system of PDEs (2.1.32). Let us prove the inverse inclusion G ⊂ F . This
assertion will be established if we show that any function u(x) determined by
the formulae (2.1.72)–(2.1.74) satisfies equations (2.1.32).

Differentiating equalities (2.1.72), (2.1.73) with respect to xµ we find uxµ

and τxµ as

uxµ = 1
∆

(
(x ·Bτ + R2τ )Aµ − (x ·Aτ + R1τ )Bµ

)
,

τxµ = 1
∆

(
(x ·Au + R1u)Bµ − (x ·Bu + R2u)Aµ

)
,

(2.1.79)

where ∆ = (x·Aτ +R1τ )(x·Bu+R2u)−(x·Au+R1u)(x·Bτ +R2τ ), x·A = xµAµ.
Since

uxµuxµ = ∆−2
(
(x ·Bτ + R2τ )2A ·A− 2(x ·Bτ + R2τ )

×(x ·Aτ + R1τ )A ·B + (x ·Aτ + R1τ )2B ·B
)

= 0

(we have used the identities (2.1.74)), the Hamilton equation is satisfied.
Differentiating the first equation from (2.1.79) with respect to xν we get

uxµxν = − 1
∆2

(
(x ·Bτ + R2τ )Aµ − (x ·Aτ + R1τ )Bµ

)

×
(

∂∆
∂τ

τxν +
∂∆
∂u

uxν

)
+

1
∆

(AµBν
τ −AνBµ

τ )

+
1
∆

{
τxν

∂

∂τ

(
(x ·Bτ + R2τ )Aµ − (x ·Aτ + R1τ )Bµ

)

+uxν

∂

∂u

(
(x ·Bτ + R2τ )Aµ − (x ·Aτ + R1τ )Bµ

)}
.

Convoluting uxµxν with the metric tensor gµν and taking into account
identities (2.1.74) we arrive at the equality 2u = 0.

Thus, we have established that the relations F ⊂ G, G ⊂ F hold, whence
it follows that F = G. In other words, formulae (2.1.72)–(2.1.74) (the class F )
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give the general solution of the d’Alembert-Hamilton equation (2.1.32) (the
class G). The theorem is proved. ¤

Note 2.1.4. Assuming that the functions Aµ, Bµ do not depend on τ and
excluding τ from the relations (2.1.72), (2.1.73) we get the following class of
the exact solutions of system (2.1.32):

g
(
Aµ(u)xµ, Bµ(u)xµ, u

)
= 0, (2.1.80)

where g ∈ C2(C3,C1) is an arbitrary function.
Provided Aµ, Bµ are constants, formula (2.1.80) gives the class of exact

solutions of the d’Alembert-Hamilton system obtained by Erugin [77].
Furthermore, if the function g does not depend on Bµ(u)xµ, we can resolve

(2.1.32) with respect to Aµ(u)xµ and thus get the generalization of the Jacobi-
Smirnov-Sobolev formula (2.1.5)

Aµ(u)xµ + A(u) = 0, AµAµ = 0. (2.1.81)

It has been proved in [168, 317] that formulae (2.1.81), where indices take
the values 0, 1, . . ., n−1, give the general solution of the d’Alembert-Hamilton
system 2nu = 0, (∂Au)(∂Au) = 0, provided u is a real-valued function of n
real variables x0, x1, . . ., xn−1.

Note 2.1.5. If we choose in (2.1.72)–(2.1.74)

Aµ = Cµ(τ), Bµ = Ċµ(τ), A = C(τ), B = Ċ(τ),

then we get the class of exact solutions

u = Cµ(τ)xµ + C(τ), Ċµ(τ)xµ + Ċ(τ) = 0, ĊµĊµ = 0

which was constructed by Bateman [27].

3. Explicit solutions of the d’Alembert-Hamilton system. Theorems
2.1.4, 2.1.5 give a description of the general solution of systems of nonlinear
PDEs (2.1.27), (2.1.32) in the parametric form. But for some special choices
of the arbitrary functions it is possible to obtain particular solutions in explicit
form which is very important for applications of the above results. Below we
will construct some real solutions of system (2.1.30) using Theorem 2.1.4.

Take, for example, system (2.1.30) with N = 3, ε = −1

2u = −3u−1, (∂µu)(∂µu) = −1. (2.1.82)
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To obtain the general solution of (2.1.82) it is necessary to make in (2.1.33),
(2.1.34), (2.1.35) the change u → iu. As a result, we get the following formulae:

u2 = −
(
xµ + Aµ(τ)

)(
xµ + Aµ(τ)

)
,

(
xµ + Aµ(τ)

)
Bµ(τ) = 0, (2.1.83)

BµȦµ = 0, BµBµ = 0.

Putting in the above formulae Aµ = 0, Bµ = 0 we get the well-known
O(1, 3)-invariant solution of system (2.1.27) with N = 3: u(x) = (xµxµ)1/2.
This solution can be obtained by means of the symmetry reduction of PDE
(2.1.27) with the use of the O(1, 3)-invariant Ansatz u(x) = ϕ(xµxµ).

A more interesting solution is obtained by putting

A0 = τ, A1 = C sin(τ/C), A2 = C cos(τ/C), A3 = 0,

Bµ = Ȧµ, µ = 0, . . . , 3,

where C ∈ R1, C 6= 0.
With the chosen Aµ, Bµ formulae (2.1.83) take the form

u2 = [x1 + C sin(τ/C)]2 + [x2 + C cos(τ/C)]2 + x2
3 − (x0 + τ)2,

x0 + τ − x1 cos(τ/C) + x2 sin(τ/C) = 0.

After making some simple algebraic manipulations we find an explicit form
of the parametric function τ

τ(x, u) = ±{2C(u2 − x2
3)

1/2 + xaxa − u2 − C2}1/2,

whence we conclude that the function u(x) is determined by the formula

x0 + τ(x, u) = x1 cos
(
τ(x, u)/C

)
− x2 sin

(
τ(x, u)/C

)
= 0.

This solution is new and cannot be in principle obtained within the frame-
work of the Lie approach.

In a similar way we have constructed other particular solutions of the
d’Alembert-Hamilton system (2.1.30) with different N, ε which are listed be-
low

1) N = 0, ε = 1
u(x) = x0; (2.1.84)
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2) N = 1, ε = 1
u(x) = ±(x2

0 − x2
3)

1/2; (2.1.85)

3) N = 2, ε = 1
u(x) = ±(x2

0 − x2
1 − x2

3)
1/2; (2.1.86)

4) N = 3, ε = 1
u(x) = ±(x2

0 − x2
1 − x2

2 − x2
3)

1/2; (2.1.87)

5) N = 0, ε = −1

u(x) = x1 cosW1(x0 + x3) + x2 sinW1(x0 + x3) + W2(x0 + x3),

x0 + x1 sinW1

(
u(x) + x3

)
+ x2 cosW1

(
u(x) + x3

)
(2.1.88)

+ W2

(
u(x) + x3

)
= 0;

6) N = 1, ε = −1

u(x) = ±
{(

x1 + W1(x0 + x3)
)2

+
(
x2 + W2(x0 + x3)

)2}1/2
; (2.1.89)

7) N = 2, ε = −1

±u(x) + C = x0 sinh(τ/C)− x1 cosh(τ/C),

τ = −x2 ±
{
x2

0 − x2
1 +

(
C ± u(x)

)2}1/2
;

±u(x)− C = x1 sin(τ/C) + x2 cos(τ/C),

τ = −x0 ±
{
x2

1 + x2
2 −

(
−C ± u(x)

)2}1/2
; (2.1.90)

x0 sinh τ − x3 cosh τ = 2−1/2{±(−u2(x)− xµxµ)1/2 ± u(x)},
τ = arcsin

{(√
2(x2

1 + x2
2)

1/2
)−1(±u(x)∓ (−u2(x)− xµxµ)

)1/2}

− arcsin
{
x2(x2

1 + x2
2)
−1/2

}
,

u(x) = ±(x2
1 + x2

2 + x2
3)

1/2;

8) N = 3, ε = −1

±
(
u2(x)− x2

3

)1/2
+ C = x0 sinh(τ/C)− x1 cosh(τ/C),

τ = −x2 ±
{
x2

0 − x2
1+

(
C ± [u2(x)− x2

3]
1/2

)2}1/2
;

±
(
u2(x)− x2

3

)1/2 − C = x1 sin(τ/C) + x2 cos(τ/C), (2.1.91)

τ = −x0 ±
{
x2

1 + x2
2 −

(
C ∓ [u2(x)− x2

3]
1/2

)2}1/2
.
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Here {W1,W2} ⊂ C2(R1,R1) are arbitrary functions, C is a real non-zero
constant.

4. Conditional symmetry of the nonlinear d’Alembert equation.
According to the remark made in the very beginning of the section substitution
of the Ansatz (2.1.1), where u(x) is an arbitrary solution of the d’Alembert-
Hamilton system (2.1.30), into the nonlinear d’Alembert equation

2w = F0(w), (2.1.92)

reduces it to an ODE for a function ϕ.
It occurs that the class of Ansätze obtained in this way is substantially

wider that the one obtainable by means of the symmetry reduction.
Indeed, within the framework of the symmetry reduction approach to re-

duce the nonlinear d’Alembert equation (2.1.92) to an ODE one has to con-
struct Ansätze invariant under the three-parameter subgroups of its symmetry
group. It is well-known that, provided F0 is an arbitrary function, the maxi-
mal symmetry group admitted by PDE (2.1.92) is the ten-parameter Poincaré
group P (1, 3) having the generators

Pµ = ∂µ, Jµν = xµPν − xνPµ. (2.1.93)

Furthermore, the general form of mentioned Ansätze is given by the for-
mula (2.1.1), where u(x) is an invariant of some three-parameter subgroup of
the group P (1, 3). An exhaustive description of the invariants of the Poincaré
group having the generators (2.1.93) is obtained in [239]. In particular, it
is established that any invariant of a three-parameter subgroup of the group
P (1, 3) can be reduced by an appropriate transformation from the Poincaré
group either to the forms (2.1.84)–(2.1.87) or to the forms

x0 + x3, x1 + θ ln(x0 + x3), x1 + θ(x0 + x3)2, x2
1 + x2

2, x2
1 + x2

2 + x2
3,

where θ is a constant.
But the invariants listed above are very special cases of the formulae

(2.1.88)–(2.1.90) which in its turn determine only particular solutions of the
d’Alembert-Hamilton system.

Such substantial extension of the class of the Ansätze reducing the nonlin-
ear d’Alembert equation is achieved at the expense of its conditional symmetry.

Consider, as an illustration, the Ansatz

w(x) = ϕ
(
x1 + ρ(x0 + x3)

)
, (2.1.94)
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where ρ is an arbitrary smooth function, obtained by substitution of the first
formula from (2.1.88) with W1 = 0, W2 = ρ into (2.1.1).

In spite of the fact that the Ansatz (2.1.94) is not Poincaré-invariant, it
reduces PDE (2.1.92) to the ODE −ϕ̈ = F0(ϕ). This phenomenon cannot be
in principle understood within the framework of the classical Lie approach be-
cause the existence of such Ansätze is a consequence of conditional invariance
of the nonlinear d’Alembert equation.

Indeed, the manifold (2.1.94) is invariant under the three-parameter Abe-
lian Lie group with the generators

Q1 = ∂0 − ∂3, Q2 = ∂0 + ∂3 − 2ρ̇∂1, Q3 = ∂2

(this fact is established by direct computation). Obviously, the operator Q2

cannot be represented as a linear combination of the operators Pµ, Jµν with
constant coefficients which means that equation (2.1.92) is not invariant under
the Lie algebra A = 〈Q1, Q2, Q2〉.

We will prove that PDE (2.1.92) is conditionally-invariant under the alge-
bra A. Acting by the second prolongations of the operators Qa on (2.1.92) we
have

Q̃1L = 0, Q̃2L = 4ρ̈∂1Q1u, Q̃3L = 0,

where L = 2u− F0(u).
Hence it follows that the system of PDEs

2u = F0(u), Qau = 0, a = 1, 2, 3

is invariant under the Lie algebra A, the same as what was to be proved.
All Ansätze obtained by substitution of the formulae for u(x) listed in

(2.1.88)–(2.1.91) (with the only exception of the last formula from (2.1.90))
into (2.1.1) correspond to the conditional invariance of the nonlinear d’Alem-
bert equation and give rise to the new (non-Lie) reductions of PDE (2.1.92).
Hence it follows, in particular, that the nonlinear d’Alembert equation admits
an infinite conditional symmetry. It will be shown that the nonlinear Dirac
and Yang-Mills equations have the same property (see Chapters 6,7).

2.2. Ansätze for the spinor field

We will apply the results given in Chapter 1 to construct Ansätze (1.5.15)
reducing Poincaré-invariant multi-dimensional PDEs for the spinor field to
equations having a lower dimension.
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According to Theorem 1.5.1 to construct an Ansatz (1.5.15) reducing a
given equation to PDE with the less number of independent variables we have
(see also [100, 155, 233, 236])

• to obtain operators Q1, Q2, . . . , QN of the form (1.5.11) satisfying con-
ditions of Theorem 1.5.1;

• to integrate the corresponding system of PDEs (1.5.9).

In the present section we consider the case when operators Qa form a basis
of the N -dimensional real Lie algebra which is a subalgebra of the Lie algebra
of the invariance group G of the equation under study.

Let Σ1, Σ2, . . . ,ΣM , M ≥ N be the basis elements of the Lie algebra AG.

Definition 2.2.1. Two sets of operators {Q1, Q2, . . . , QN} and {Q′
1, Q′

2, . . .,
Q′

N} are called G-conjugate if there exist such real parameters θ1, . . ., θM that

exp {θiΣi}Qj exp {−θiΣi} = Q′
j , j = 1, . . . ,M, (2.2.1)

summation over repeated indices being implied.
In other words, sets of operators {Q1, Q2, . . . , QN} and {Q′

1, Q′
2, . . . , Q

′
N}

are G-conjugate if there exists a group transformation from the Lie group G
having generators Σ1, Σ2, . . . ,ΣM which transforms Qj into Q′

j , j = 1, . . . , N .
Two Lie algebras with basis elements Qi, i = 1, . . . , N and Q′

i, i = 1, . . . , N
are called G-conjugate if the sets of the first-order differential operators {Q1,
. . ., QN} and {Q′

1, . . ., Q′
N} are G-conjugate. Two Lie transformation groups

are called G-conjugate if their Lie algebras are G-conjugate.
It is evident that Ansätze invariant under G-conjugate subgroups of the

Lie group G are equivalent in a sense that they can be transformed one into
another by a suitable group transformation from the group G. That is why
we will consider non-conjugate subgroups (subalgebras).

Since the group generated by operators Q1, . . . , QN is transformed by
(2.2.1) into the group having generators Q′

1, . . . , Q
′
N , Definition 2.2.1 intro-

duces some relation on the set of subgroups of the Lie group G. It is not
difficult to become convinced of the fact that this relation is the equivalence
relation on the set of subgroups of the group G and, consequently, it separates
this set into mutually disjoint classes. The problem of complete description of
such classes (called the problem of a subgroup classification of the group G)
has been solved for many important invariance groups of mathematical and
theoretical physics equations [9, 10], [14]–[17], [100, 209, 237, 238, 267]. In



2.2. Ansätze for the spinor field 95

particular, a complete description of non-conjugate subgroups of the Poincaré
group P (1, 3) [9, 10, 209, 237], extended Poincaré group P̃ (1, 3) [14, 100, 238]
and conformal group C(1, 3) [15, 100] is obtained.

We will construct Ansätze invariant under one- and three-parameter sub-
groups of the groups P (1, 3), P̃ (1, 3), C(1, 3).

1. P (1,3)-invariant Ansätze [150, 152]. The Lie algebra of the Poincaré
group has thirteen P (1, 3) non-conjugate one-dimensional subalgebras

A1 = 〈J03〉, A2 = 〈J12〉, A3 = 〈J03 + αJ12〉,
A4 = 〈J01 − J03〉, A5 = 〈P0〉, A6 = 〈P3〉,
A7 = 〈P0 + P3〉, A8 = 〈J03 + αP1〉,
A9 = 〈J12 + αP3〉, A10 = 〈J12 + αP0〉,
A11 = 〈J12 + α(P0 + P3)〉, A12 = 〈J01 − J13 + αP3〉,
A13 = 〈J01 − J13 + αP2〉,

(2.2.2)

where α ∈ R1, α 6= 0.
Thus, to construct all inequivalent Ansätze invariant under one-parameter

subgroups of the group P (1, 3) it suffices to integrate system (1.5.9) for each
of the operators listed in (2.2.2). The problem of integrating equations (1.5.9)
is substantially simplified by the fact that operators (1.1.22) realize a linear
representation of the algebra AP (1, 3).

At first, we adduce the Ansätze constructed and then consider an example
of integration of equations (1.5.9).

A general form of the Ansatz invariant under the group with generators
(2.2.2) is as follows

ψ(x) = A(x)ϕ(ω1, ω2, ω3), (2.2.3)

where ϕ = ϕ(~ω) is a new unknown four-component function. A (4 × 4)-
matrix A(x) and scalar functions ωa = ωa(x) are determined by the choice of
a subalgebra from A1, A2, . . ., A13 and are given below

1) ψ(x) = exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ (x2
0 − x2

3, x1, x2),
2) ψ(x) = exp{−(1/2)γ1γ2 arctan(x1/x2)}ϕ (x0, x2

1 + x2
2, x3),

3) ψ(x) = exp{(1/2)γ0γ3 ln(x0 + x3)− (1/2)γ1γ2 arctan(x1/x2)}
×ϕ

(
x2

0 − x2
3, x2

1 + x2
2, α ln(x0 + x3) + arctan(x1/x2)

)
,

4) ψ(x) = exp
{
x1

(
2(x0 + x3)

)−1
(γ0 + γ3)γ1

}
ϕ (x0 + x3, x2

0 − x2
1
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−x2
3, x2),

5) ψ(x) = ϕ (x1, x2, x3),
6) ψ(x) = ϕ (x0, x1, x2),
7) ψ(x) = ϕ (x0 + x3, x1, x2),

8) ψ(x) = exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ
(
x2

0 − x2
3, x2, α ln(x0 + x3)

−x1

)
,

9) ψ(x) = exp{−(1/2)γ1γ2 arctan(x1/x2)}ϕ
(
x0, x2

1 + x2
2, x3

+α arctan(x1/x2)
)
,

10) ψ(x) = exp{−(1/2)γ1γ2 arctan(x1/x2)}ϕ
(
x3, x2

1 + x2
2, x0

−α arctan(x1/x2)
)
,

11) ψ(x) = exp{−(1/2)γ1γ2 arctan(x1/x2)}ϕ
(
x0 + x3, x2

1 + x2
2, x0 − x3

−2α arctan(x1/x2)
)
,

12) ψ(x) = exp{(1/2α)(x0 + x3)(γ0 + γ3)γ1}ϕ
(
(x0 + x3)2 − 2αx1, x2,

(x0 + x3)3 − 3αx1(x0 + x3) + 3α2x0

)
,

13) ψ(x) = exp{x2(2α)−1(γ0 + γ3)γ1}ϕ
(
x0 + x3, x2

0 − x2
1 − x2

3, αx1

−(x0 + x3)x2

)
.

In the above formulae exp{R} =
∞∑

n=1
(n!)−1Rn + I, I is the unit (4 × 4)-

matrix.
We will construct the Ansatz invariant under the algebra A1. Since the

operator Q1 = J03 = −x0∂3−x3∂0+(1/2)γ0γ3 satisfies conditions (1.5.16), the
above Ansatz can be looked for in the form (1.5.21) with n = 4, m = 4, N = 1,
a (4× 4)-matrix A(x) and functions ω1(x), ω2(x), ω3(x) satisfying equations
(1.5.20), (1.5.22). Thus, to construct the Ansatz for the field ψ(x) we have to
find a particular solution of the matrix PDE

(
x0∂3 + x3∂0 − (1/2)γ0γ3

)
A(x) = 0 (2.2.4)

and to obtain a complete system of functionally-independent first integrals of
the PDE
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(x0∂3 + x3∂0)ω(x) = 0. (2.2.5)

Hereafter, when integrating a matrix PDEs of the type (2.2.4) we use the
following identity:

∂µ exp{Tf(x)} =
(
∂µf(x)

)
T exp{Tf(x)}, (2.2.6)

which holds true for an arbitrary constant (4 × 4)-matrix T and a smooth
scalar function f(x).

We look for a solution of (2.2.4) in the form

A(x) = exp{γ0γ3f(x)}.

Substituting the above expression into (2.2.4) and applying (2.2.6) we ar-
rive at the equality

{(x0∂3 + x3∂0)f − 1/2}γ0γ3 exp{γ0γ3f} = 0

or
(x0∂3 + x3∂0)f = 1/2.

A particular solution of the above PDE is of the form f(x) = (1/2) ln(x0 +
x3), whence it follows that A(x) = exp{(1/2) ln(x0 + x3)γ0γ3}.

PDE (2.2.5) is equivalent to the Euler-Lagrange system

dx0

x3
=

dx1

0
=

dx2

0
=

dx3

x0
,

whose first integrals can be chosen in the form ω1 = x2
0−x2

3, ω2 = x1, ω3 = x2.
Substituting the results obtained into the formula (2.2.3) we obtain an

Ansatz invariant under the one-dimensional Lie algebra A1. The remaining
algebras A2, . . . , A13 are treated in a similar way.

Now we give a complete list of P (1, 3) non-conjugate three-dimensional
subalgebras of the Lie algebra AP (1, 3) following [100, 237]:

A1 = 〈P0, P1, P2〉, A2 = 〈P1, P2, P3〉,
A3 = 〈P0 + P3, P1, P2〉, A4 = 〈J03, P1, P2〉,
A5 = 〈J03, P0 + P3, P1〉, A6 = 〈J03 + αP2, P0, P3〉,
A7 = 〈J03 + αP2, P0 + P3, P1〉, A8 = 〈J12, P0, P3〉,
A9 = 〈J12 + αP0, P1, P2〉, A10 = 〈J12 + αP3, P1, P2〉,
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A11 = 〈J12 + P0 + P3, P1, P2〉, A12 = 〈G1, P0 + P3, P2〉,
A13 = 〈G1, P0 + P3, P1 + αP2〉,
A14 = 〈G1 + P2, P0 + P3, P1〉,
A15 = 〈G1 + P0, P0 + P3, P2〉, (2.2.7)
A16 = 〈G1 + P0, P1 + αP2, P0 + P3〉,
A17 = 〈J03 + αJ12, P0, P3〉, A18 = 〈J03 + αJ12, P1, P2〉,
A19 = 〈J12, J03, P0 + P3〉, A20 = 〈G1, G2, P0 + P3〉,
A21 = 〈G1 + P2, G2 + αP1 + βP2, P0 + P3〉,
A22 = 〈G1, G2 + P1 + βP2, P0 + P3〉,
A23 = 〈G1, G2 + P2, P0 + P3〉, A24 = 〈G1, J03, P2〉,
A25 = 〈J03 + αP1 + βP2, G1, P0 + P3〉,
A26 = 〈J12 + P0 + P3, G1, G2〉, A27 = 〈J03 + αJ12, G1, G2〉,
A28 = 〈G1, G2, J12〉, A29 = 〈J01, J02, J12〉, A30 = 〈J12, J23, J31〉.

In (2.2.7) Gi = J0i − Ji3, i = 1, 2 and 〈Q1, Q2, Q3〉 designates the linear
span of operators Qa.

Ansätze invariant under the algebras (2.2.7) were constructed in [152, 155].
They can be represented in the form

ψ(x) = A(x)ϕ(ω), (2.2.8)

where ϕ(ω) is a new unknown four-component function, a (4×4)-matrix A(x)
and scalar function ω(x) being given below.

1) ψ(x) = ϕ (x3),
2) ψ(x) = ϕ (x0),
3) ψ(x) = ϕ (x0 + x3),
4) ψ(x) = exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ (x2

0 − x2
3),

5) ψ(x) = exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ (x2),
6) ψ(x) = exp{(x2/2α)γ0γ3}ϕ (x1),

7) ψ(x) = exp{(x2/2α)γ0γ3}ϕ
(
α ln(x0 + x3)− x2

)
,

8) ψ(x) = exp{−(1/2)γ1γ2 arctan(x1/x2)}ϕ (x2
1 + x2

2),
9) ψ(x) = exp{−(x0/2α)γ1γ2}ϕ (x3),

10) ψ(x) = exp{(x3/2α)γ1γ2}ϕ (x0),
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11) ψ(x) = exp{(1/4)(x3 − x0)γ1γ2}ϕ (x0 + x3),

12) ψ(x) = exp
{(

x1/2(x0 + x3)
)
(γ0 + γ3)γ1

}
ϕ (x0 + x3),

13) ψ(x) = exp
{(

(αx1 − x2)/2(x0 + x3)
)
(γ0 + γ3)γ1

}
ϕ (x0 + x3),

14) ψ(x) = exp{(x2/2)(γ0 + γ3)γ1}ϕ (x0 + x3),

15) ψ(x) = exp
{
−

(
(x0 + x3)/2

)
(γ0 + γ3)γ1

}
ϕ

(
2x1 + (x0 + x3)2

)
,

16) ψ(x) = exp
{
−

(
(x0 + x3)/2

)
(γ0 + γ3)γ1

}
ϕ

(
2(x2 − αx1)

−α(x0 + x3)2
)
,

17) ψ(x) = exp{−(1/2α)(γ0γ3 + αγ1γ2) arctan(x1/x2)}ϕ (x2
1 + x2

2),
18) ψ(x) = exp{(1/2)(γ0γ3 + αγ1γ2) ln(x0 + x3)}ϕ (x2

0 − x2
3),

19) ψ(x) = exp{(1/2)γ0γ3 ln(x0 + x3)− (1/2)γ1γ2 arctan(x1/x2)}
×ϕ (x2

1 + x2
2),

20) ψ(x) = exp
{(

1/2(x0 + x3)
)
(γ0 + γ3)(γ1x1 + γ2x2)

}
ϕ (x0 + x3),

21) ψ(x) = exp
{[

2
(
(x0 + x3)(x0 + x3 + β)− α

)]−1
(γ0 + γ3)

×
[
γ1

(
(x0 + x3 + β)x1 − αx2

)
+ γ2

(
(x0 + x3)x2 − x1

)]}

×ϕ (x0 + x3),

22) ψ(x) = exp
{(

2(x0 + x3)(x0 + x3 + β)
)−1

(γ0 + γ3)

×
[
γ1

(
(x0 + x3 + β)x1 − x2

)
+ γ2x2(x0 + x3)

]}
ϕ (x0 + x3),

23) ψ(x) = exp
{(

2(x0 + x3)(x0 + x3 + 1)
)−1

(γ0 + γ3)

×
(
γ1x1(x0 + x3 + 1) + γ2x2(x0 + x3)

)}
ϕ (x0 + x3),

24) ψ(x) = exp
{(

x1/2(x0 + x3)
)
(γ0 + γ3)γ1

}
exp{(1/2)γ0γ3

× ln(x0 + x3)}ϕ (x2
0 − x2

1 − x2
3),

25) ψ(x) = exp
{(

1/2(x0 + x3)
)(

x1 − α ln(x0 + x3)
)
(γ0 + γ3)γ1

}

× exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ
(
x2 − β ln(x0 + x3)

)
,

26) ψ(x) = exp
{(

1/2(x0 + x3)
)
(γ0 + γ3)(γ1x1 + γ2x2)

}

× exp
(
−

(
1/4(x0 + x3)

)
(x · x)γ1γ2

}
ϕ (x0 + x3),

27) ψ(x) = exp
{(

1/2(x0 + x3)
)
(γ0 + γ3)(γ1x1 + γ2x2)

}
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× exp{(1/2)(γ0γ3 + αγ1γ2) ln(x0 + x3)}ϕ (x · x).

Let us note that triplets of operators Qa which are basis elements of the
algebras A28–A30 do not satisfy condition (1.5.10). Consequently, they lead
to partially-invariant solutions which are not considered here.

As an example, we will carry out integration of equations (1.5.20), (1.5.22)
for the algebra A4 from (2.2.7). Choosing in (1.5.20), (1.5.22) n = 4, m =
4, N = 3, Q1 = −x0∂3 − x3∂0 + (1/2)γ0γ3, Q2 = ∂1, Q3 = ∂2 yields the
following system of PDEs for A(x), ω(x):

(x0∂3 + x3∂0 − (1/2)γ0γ3)A = 0, ∂1A = ∂2A = 0, (2.2.9)
(x0∂3 + x3∂0)ω = 0, ∂1ω = ∂2ω = 0. (2.2.10)

From the last two equations of system (2.2.9) it follows that A = A(x0, x3).
Substituting this expression into the first equation we get

(x3∂0 + x0∂3 − (1/2)γ0γ3)A(x0, x3) = 0,

whence
A(x) = exp{(1/2)γ0γ3 ln(x0 + x3)}.

It is easy to see that a complete set of functionally-independent first in-
tegrals of system (2.2.10) consists of one integral which can be chosen in the
form ω(x) = x2

0 − x2
3. Thus, we obtain the Ansatz numbered by 4.

2. P̃ (1,3)-invariant Ansätze [148, 150, 152, 155]. Subgroup classification of
the extended Poincaré group was carried out in [14, 100, 238]. One-dimensional
subalgebras of the algebra AP̃ (1, 3) which are P̃ (1, 3) non-conjugate to subal-
gebras of the algebra AP (1, 3) are equivalent to the following ones:

〈J01 − J13 + αD〉, 〈J12 + αD〉,
〈J03 + βJ12 + αD〉, 〈J03 + βJ12 −D + αP0〉, (2.2.11)

where {α, β} ⊂ R1, α 6= 0, D = xµ∂µ +k, k ∈ R1 is the infinitesimal operator
of the group of scale transformations (1.1.27).

Ansätze invariant under operators (2.2.11) are given by the formulae

ψ(x) = (x0 − x3)−k exp{(1/2α)(γ0 + γ3)γ1 ln(x0 + x3)}ϕ (~ω),
ω1 = (x2

0 − x2
1 − x2

3)x
−2
2 , ω2 = (x0 + x3)x−1

2 ,

ω3 = αx1(x0 + x3)−1 + ln(x0 + x3);
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ψ(x) = (x2
1 + x2

2)
−k/2 exp{−(1/2)γ1γ2 arctan(x1/x2)}ϕ (~ω),

ω1 = x0x
−1
3 , ω2 = 2α arctan(x1/x2)− ln(x2

1 + x2
2),

ω3 = (x2
0 − x2

3)(x
2
1 + x2

2)
−1;

ψ(x) = (x2
0 − x2

3)
−k/2 exp

{
(1/4)(γ0γ3 + βγ1γ2)

× ln
(
(x0 + x3)/(x0 − x3)

)}
ϕ (~ω), (2.2.12)

ω1 = (x2
0 − x2

3)
α−1(x0 + x3)2α, ω2 = (x2

0 − x2
3)

×(x2
1 + x2

2)
−1, ω3 = β ln(x2

1 + x2
2)

−2α arctan(x1/x2);

ψ(x) = (2x0 + 2x3 − α)−k/2 exp
{
(1/4)(γ0γ3 + βγ1γ2)

× ln
(
(x0 + x3)/(x0 − x3)

)}
ϕ (~ω),

ω1 = (2x0 + 2x3 − α) exp{(2/α)(x0 − x3)},
ω2 = (2x0 + 2x3 − α)(x2

1 + x2
2)
−1,

ω3 = β ln(x2
1 + x2

2) + 2 arctan(x1/x2).

Here ϕ = ϕ(ω1, ω2, ω3) is an arbitrary four-component function.
Three-dimensional subalgebras of the algebra AP̃ (1, 3) which are P̃ (1, 3)

non-conjugate to subalgebras of the Poincaré algebra are as follows

A1 = 〈−J03 + D + P0 + P3, P1, P2〉,
A2 = 〈−J03 + D + P0 + P3, P0 − P3, P1〉,
A3 = 〈J12 + α(−J03 + D + P0 + P3), P1, P2〉,
A4 = 〈−J03 + D + P0 + P3, J12 + α(P0 + P3), P0 − P3〉,
A5 = 〈−J03 + D, J12 + P0 + P3, P0 − P3〉,
A6 = 〈−J03 + 2D, G̃1 + P0 + P3, P0 − P3〉,
A7 = 〈−J03 + 2D, G̃1 + P0 + P3, P2〉,
A8 = 〈−J03 + D, G̃1 − P2, P0 − P3〉,
A9 = 〈−J03 −D + P0 − P3, G̃1, P2〉,
A10 = 〈−J03 + D, G̃1, G̃2 − P2〉,
A11 = 〈−J03 −D + P0 − P3, G̃1, G̃2〉,
A12 = 〈J12 − α(J03 + D − P0 + P3), G̃1, G̃2〉,
A13 = 〈J12 − αD, P0, P3〉, A14 = 〈J12 − αD, P1, P2〉,
A15 = 〈J03 + αD, P0, P3〉, A16 = 〈J03 + αD, P0 − P3, P1〉,
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A17 = 〈J03 + αD, P1, P2〉, A18 = 〈J12 − αJ03 − βD, P0, P3〉,
A19 = 〈J12 − αJ03 − βD, P1, P2〉,
A20 = 〈G̃1 − αD, P0 − P3, P2〉, (2.2.13)
A21 = 〈G̃1 − αD, P0 − P3, P1〉,
A22 = 〈G̃1 − αD, P0 − P3, P1 + βP2〉,
A23 = 〈G̃1 − αD, G̃2 − βD, P0 − P3〉,
A24 = 〈G̃1, J03 + αD, P0 − P3〉,
A25 = 〈G̃1, J03 + αD, P2〉,
A26 = 〈J12 − αD, J03 + βD, P0 − P3〉,
A27 = 〈J03, J12, D〉, A28 = 〈P0, P3, D〉,
A29 = 〈P1, P2, D〉, A30 = 〈P0 + P3, P1, D〉,
A31 = 〈P0, J12, D〉, A32 = 〈P3, J12, D〉,
A33 = 〈P0 + P3, J12, D〉, A34 = 〈P1, J03, D〉,
A35 = 〈P0 + P3, J03, D〉, A36 = 〈P0 + P3, J12 + αJ03, D〉,
A37 = 〈P0 + P3, G̃1, D〉, A38 = 〈P2, G̃1, D〉,
A39 = 〈G̃1, G̃2, D〉, A40 = 〈G̃1, J03, D〉,
A41 = 〈P0 + P3, G̃1, G̃2 + D〉, A42 = 〈G̃1, G̃2, J03 + αD〉,
A43 = 〈G̃1, G̃2, J12 + αD〉, A44 = 〈G̃1, G̃2, J12 + αJ03 + βD〉,

where G̃i = −J0i − Ji3, i = 1, 2; {α, β} ⊂ R1.
Without going into details of integration of equations (1.5.22), (1.5.20) we

list the Ansätze for the spinor field ψ(x) invariant under the three-dimensional
subalgebras (2.2.13).

1) ψ(x) = (x0 + x3)−k/2 exp{(1/4)γ0γ3 ln(x0 + x3)}ϕ
(
ln(x0 + x3)

−x0 + x3

)
,

2) ψ(x) = x−k
2 exp{(1/2)γ0γ3 lnx2}ϕ (x0 − x3 − 2 ln x2),

3) ψ(x) = (x0 + x3)−k/2 exp{(1/4α)(αγ0γ3 − γ1γ2) ln(x0 + x3)}
×ϕ

(
ln(x0 + x3)− x0 + x3

)
,

4) ψ(x) = (x2
1 + x2

2)
−k/2 exp{(1/2)γ1γ2 arctan (x2/x1) + (1/4)γ0γ3

× ln(x2
1 + x2

2)}ϕ
(
α arctan (x2/x1) + (1/2)(x0 − x3)

−(1/2) ln(x2
1 + x2

2)
)
,
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5) ψ(x) = (x2
1 + x2

2)
−k/2 exp{(1/2)γ1γ2 arctan(x2/x1) + (1/4)γ0γ3

× ln(x2
1 + x2

2)}ϕ
(
arctan(x2/x1) + (x0 − x3)/2

)
,

6) ψ(x) = x−k
2 exp{−(1/4)γ1(γ0 − γ3)(x0 − x3)} exp{(1/4)γ0γ3 ln x2}
×ϕ

(
x2[(x0 − x3)2 − 4x1]−1

)
,

7) ψ(x) =
(
(x0 − x3)2 − 4x1

)−k
exp{−(1/4)γ1(γ0 − γ3)(x0 − x3)}

× exp
{
(1/4)γ0γ3 ln

(
(x0 − x3)2 − 4x1

)}
ϕ

(
[(x0 − x3)2 − 4x1]3

×[(x0 − x3)3 − 6(x0 − x3)x1 + 6(x0 + x3)]−2
)
,

8) ψ(x) =
(
x1(x0 − x3)−1 − x2

)−k
exp{−(1/2)γ1(γ0 − γ3)x1(x0 − x3)−1}

× exp
{
(1/2)γ0γ3 ln

(
x1(x0 − x3)−1 − x2

)}
ϕ (x0 − x3),

9) ψ(x) = (x0 − x3)−k/2 exp{−(1/2)γ1(γ0 − γ3)x1(x0 − x3)−1}
× exp{−(1/4)γ0γ3 ln(x0 − x3)}ϕ

(
(x2

0 − x2
1 − x2

3)(x0 − x3)−1

+ ln(x0 − x3)
)
,

10) ψ(x) =
(
x · x + (x2

0 − x2
1 − x2

3)(x0 − x3)−1
)−k/2

exp{−(1/2)x1

×(x0 − x3)−1γ1(γ0 − γ3)} exp{−(1/2)x2(x0 − x3 + 1)−1

×γ2(γ0 − γ3)} exp
{
(1/4)γ0γ3 ln

(
x · x + (x2

0 − x2
1 − x2

3)

×(x0 − x3)−1
)}

ϕ (x0 − x3),

11) ψ(x) = (x0 − x3)−k/2 exp{(1/2)(x0 − x3)−1(γ0 − γ3)(γ1x1 + γ2x2)}
× exp{−(1/4)γ0γ3 ln(x0 − x3)}ϕ

(
(x · x)(x0 − x3)−1

+ ln(x0 − x3)
)
,

12) ψ(x) = (x0 − x3)−k/2 exp{(1/2)(x0 − x3)−1(γ0 − γ3)(γ1x1 + γ2x2)}
× exp{(1/4α)(γ1γ2 − αγ0γ3) ln(x0 − x3)}ϕ

(
(x · x)

×(x0 − x3)−1 + ln(x0 − x3)
)
,

13) ψ(x) = (x2
1 + x2

2)
−k/2 exp{(1/2)γ1γ2 arctan(x2/x1)}ϕ

(
α arctan(x2/x1)

−(1/2) ln(x2
1 + x2

2)
)
,

14) ψ(x) = x−k
3 exp{(1/2α)γ1γ2 lnx3}ϕ (x0/x3),
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15) ψ(x) = x−k
2 exp{−(1/2α)γ0γ3 lnx2}ϕ (x1/x2),

16) ψ(x) = x−k
2 exp{−(1/2α)γ0γ3 lnx2}ϕ

(
(x0 − x3)x

−(α+1)/α
2

)
,

17) ψ(x) = (x0 + x3)kα/2(x0 − x3)−kα/2 exp
{
(1/4)γ0γ3 ln

(
(x0 + x3)

×(x0 − x3)−1
)}

ϕ
(
(x0 + x3)(1+α)/2(x0 − x3)(1−α)/2

)
,

18) ψ(x) = (x2
1 + x2

2)
−k/2 exp{(1/2)(γ1γ2 − αγ0γ3) arctan(x2/x1)}

×ϕ
(
β arctan(x2/x1)− (1/2) ln(x2

1 + x2
2)

)
,

19) ψ(x) = (x0 + x3)kβ/2α(x0 − x3)−kβ/2α exp
{
(1/4α)(αγ0γ3

−γ1γ2) ln
(
(x0 + x3)(x0 − x3)−1

)}
ϕ

(
(x0 + x3)(α+β)/2

×(x0 − x3)(α−β)/2
)
,

20) ψ(x) = (x0 − x3)−k exp{−(1/2)x1(x0 − x3)−1γ1(γ0 − γ3)}
×ϕ

(
ln(x0 − x3) + αx1(x0 − x3)−1

)
,

21) ψ(x) = x−k
2 exp{(1/2α)γ1(γ0 − γ3) ln(x0 − x3)}ϕ

(
(x0 − x3)/x2

)
,

22) ψ(x) = (x0 − x3)−k exp{(1/2β)γ1(γ0 − γ3)(x2 − βx1)(x0 − x3)−1}
×ϕ

(
(x2 − βx1)(x0 − x3)−1 − (β/α) ln(x0 − x3)

)
,

23) ψ(x) = exp
{
(1/2)

(
2αk − γ1(γ0 − γ3)

)
x1(x0 − x3)−1

}
exp

{
(1/2)

×
(
2βk − γ2(γ0 − γ3)

)
x2(x0 − x3)−1

}
ϕ

(
exp{(αx1

+βx2)(x0 − x3)−1}(x0 − x3)
)
,

24) ψ(x) = x−k
2 exp{−(1/2)x1(x0 − x3)−1γ1(γ0 − γ3)} exp{−(1/2α)

×γ0γ3 ln x2}ϕ
(
(x0 − x3)x

−(α+1)/α
2

)
,

25) ψ(x) = (x2
0 − x2

1 − x2
3)
−k/2 exp{−(1/2)x1(x0 − x3)−1γ1(γ0 − γ3)}

× exp{−(1/4α)γ0γ3 ln(x2
0 − x2

1 − x2
3)}ϕ

(
(x0 − x3)

×(x2
0 − x2

1 − x2
3)
−(α+1)/2α

)
,

26) ψ(x) = (x2
1 + x2

2)
−k/2 exp

{
(1/2)γ1γ2 arctan(x2/x1) + (1/4)γ0γ3

×
(
ln(x2

1 + x2
2)− 2 ln(x0 − x3)

)}
ϕ

(
(1/2)(β + 1) ln(x2

1 + x2
2)

−β ln(x0 − x3)− α arctan(x2/x1)
)
,
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27) ψ(x) = (x · x)−k/2 exp
{
(1/4)γ0γ3 ln

(
(x0 + x3)(x0 − x3)−1

)}

× exp{−(1/2)γ1γ2 arctan(x1/x2)}ϕ
(
(x2

0 − x2
3)(x

2
1 + x2

2)
−1

)
,

28) ψ(x) = (x2
1 + x2

2)
−k/2ϕ (x1/x2),

29) ψ(x) = (x2
0 − x2

3)
−k/2ϕ (x0/x3),

30) ψ(x) = (x0 − x3)−kϕ
(
x2(x0 − x3)−1

)
,

31) ψ(x) = (x2
1 + x2

2)
−k/2 exp{(1/2)γ1γ2 arctan(x2/x1)}

×ϕ
(
(x2

1 + x2
2)

1/2x−1
3

)
,

32) ψ(x) = (x2
1 + x2

2)
−k/2 exp{(1/2)γ1γ2 arctan(x2/x1)}

×ϕ
(
(x2

1 + x2
2)

1/2x−1
0

)
,

33) ψ(x) = (x2
1 + x2

2)
−k/2 exp

{
(1/2)γ1γ2 arctan(x2/x1)}

×ϕ
(
(x2

1 + x2
2)

1/2(x0 − x3)−1
)
,

34) ψ(x) = (x2
0 − x2

3)
−k/2 exp

{
(1/4)γ0γ3 ln

(
(x0 + x3)/(x0 − x3)

)}

×ϕ
(
(x2

0 − x2
3)

1/2x−1
2

)
,

35) ψ(x) = x−k
1 exp

{
(1/2)γ0γ3 ln

(
x1(x0 − x3)−1

)}
ϕ (x2/x1),

36) ψ(x) = (x2
1 + x2

2)
−k/2 exp

{
(1/2)γ0γ3 ln

(
(x2

1 + x2
2)

1/2(x0 − x3)−1
)

+(1/2)γ1γ2 arctan(x2/x1)
}
ϕ

(
ln(x2

1 + x2
2)

1/2 − ln(x0 − x3)

+α arctan(x2/x1)
)
,

37) ψ(x) = (x0 − x3)−k exp{−(1/2)γ1(γ0 − γ3)x1(x0 − x3)−1}
×ϕ

(
x2(x0 − x3)−1

)
,

38) ψ(x) = (x0 − x3)−k exp{−(1/2)γ1(γ0 − γ3)x1(x0 − x3)−1}
×ϕ

(
(x2

0 − x2
1 − x2

3)(x0 − x3)−2
)
,

39) ψ(x) = (x0 − x3)−k exp{(1/2)(x0 − x3)−1(γ0 − γ3)(γ1x1 + γ2x2)}
×ϕ

(
x · x(x0 − x3)−2

)
,

40) ψ(x) = x−k
2 exp{−(1/2)γ1(γ0 − γ3)x1(x0 − x3)−1} exp{(1/2)γ0γ3

× ln
(
x2(x0 − x3)−1

)}
ϕ

(
(x2

0 − x2
1 − x2

3)x
−2
2

)
,

41) ψ(x) = (x0 − x3)−k exp
{
(1/2)(γ0 − γ3)

(
γ1x1(x0 − x3)−1
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−γ2 ln(x0 − x3)
)}

ϕ
(
ln(x0 − x3) + x2(x0 − x3)−1

)
,

42) ψ(x) = (x · x)−k/2 exp{(1/2)(x0 − x3)−1(γ0 − γ3)(γ1x1 + γ2x2)}
× exp

{
−(1/4α)γ0γ3 x · x

}
ϕ

(
(x · x)α+1(x0 − x3)−2α

)
,

43) ψ(x) = (x0 − x3)−k exp{(1/2)(x0 − x3)−1(γ0 − γ3)(γ1x1 + γ2x2)}
× exp{(1/2α)γ0γ3 ln(x0 − x3)}ϕ

(
x · x(x0 − x3)−2

)
,

44) ψ(x) = (x · x)−k/2 exp{(1/2)(x0 − x3)−1(γ0 − γ3)(γ1x1 + γ2x2)}
× exp{(1/4β)(γ1γ2 − αγ0γ3) ln(x · x)}ϕ

(
(x · x)α+β

×(x0 − x3)−2β
)
.

3. Conformally-invariant Ansätze. Complete classification of C(1, 3) non-
conjugate subgroups of the conformal group was obtained quite recently [15,
100]. We use this classification to construct Ansätze for the spinor field ψ(x)
invariant under one- and three-parameter subgroups of the group C(1, 3).

C(1, 3) non-conjugate one-parameter subgroups of the conformal group
which are not C(1, 3)-conjugate to subgroups of the group P̃ (1, 3) are gener-
ated by the following operators:

Q1 = Q, Q2 = Q + ε(P0 − P3),
Q3 = J12 + αQ, Q4 = Q + α(D − J03),
Q5 = βJ12 + αQ + ε(P0 − P3),
Q6 = αJ12 + Q− J01 − J13 − P2,

Q7 = δJ12 + αQ + β(D − J03), (2.2.14)
Q8 = P0 + K0, Q9 = α(P0 + K0) + J12,

Q10 = α(P0 + K0) + J12 + β(P3 −K3),
Q11 = J12 + β(P3 −K3).

Here Q = (1/2)(K0 −K3 + P0 + P3), {α, β} ⊂ R1, ε = ±1.
Operators (2.2.14) unlike generators of the extended Poincaré group P̃ (1, 3)

have quadratic dependence on xµ. That is why the corresponding system
(1.5.20), (1.5.22) is nonlinear with respect to the independent variables xµ (in
particular, equations (1.5.20) with Q of the form (2.2.14) lead to a Riccati-type
system of ODEs). To avoid a necessity to integrate a nonlinear Riccati-type
system of ODEs we will apply the trick used by Dirac when investigating
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conformal invariance of equation (1.1.17) [70]. Relying on the well-known
fact of isomorphism of Lie algebras of the groups C(1, 3) and O(2, 4) he ob-
tained a change of variables connecting the transformation group C(1, 3) of
the form (1.1.24)–(1.1.28) with the group of homogeneous linear transforma-
tions of some six-dimensional projective space preserving the quadratic form
z2
1 + z2

2 − z2
3 − z2

4 − z2
5 − z2

6 . And what is more, generators of the group O(2, 4)
were linear in the variables zA, A = 1, . . . , 6.

Consider the following representation of the Lie algebra AO(2, 4):

Ω1 2 = z1∂z2 − z2∂z1 + (i/2)γ4γ0,

Ω1 2+a = −z1∂z2+a − z2+a∂z1 + (i/2)γ4γa,

Ω2 2+a = −z2∂z2+a − z2+a∂z2 + (1/2)γ0γa,

Ω2+a 2+b = −z2+a∂z2+b
+ z2+b∂z2+a + (1/2)γaγb, (2.2.15)

Ω1 6 = z1∂z6 − z6∂z1 + (i/2)γ4,

Ω2 6 = z2∂z6 − z6∂z2 + (1/2)γ0,

Ω2+a 6 = −z2+a∂z6 + z6∂z2+a + (1/2)γa, a, b = 1, 2, 3

(the remaining elements of AO(2, 4) are obtained by the rule ΩAB = −ΩBA,
A,B = 1, . . . , 6, A 6= B).

It is straightforward to verify that operators (2.2.15) do satisfy commuta-
tion relations of the algebra AO(2, 4)

[ΩAB, ΩCD] = (ρADΩBC + ρBCΩAD − ρACΩBD − ρBDΩAC),

where ρAB = diag(1, 1,−1,−1,−1,−1) is the metric tensor of the pseudo-
Euclidean space R(2, 4). Next, the isomorphism of the algebras AO(2, 4) and
AC(1, 3) is established by the formulae

P0 = −Ω1 2 − Ω2 6, Pa = −Ω1 2+a − Ω2+a 6,

J0a = Ω2 2+a, Jab = Ω2+a 2+b,

D = −Ω16, K0 = −Ω1 2 + Ω2 6,

Ka = −Ω1 2+a + Ω2+a 6, a, b = 1, 2, 3, a 6= b.

(2.2.16)

The transformation relating the groups O(2, 4) and C(1, 3) can be repre-
sented in the form

xµ = zµ+2 (z6 − z1)−1,

ψ(x) = (z6 − z1)2
{
1− (1/2)(z6 − z1)−1(1 + iγ4) (2.2.17)

×(γ0z2 − γaz2+a)
}
Ψ(z),
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coordinates z1, . . . , z6 satisfying an additional constraint

zAzA ≡ z2
1 + z2

2 − z2
3 − z2

4 − z2
5 − z2

6 = 0.

It is important to note that the Lie groups O(2, 4) and C(1, 3) are not
isomorphic. Formulae (2.2.17) determine a projection of the group O(2, 4) on
the group C(1, 3).

On rewriting operators (2.2.16) in the variables x, ψ(x) according to
(2.2.17) we get the following expressions for the generators of the conformal
group C(1, 3):

Pµ = ∂µ, Jµν = xµPν − xνPµ + Sµν ,

D = xµ∂µ + 3/2 + (1/2)(1− iγ4), (2.2.18)
Kµ = 2xµD − (x · x)∂µ + 2Sµνx

ν + (1/2)(1− iγ4)γµ,

where Sµν = (1/4)(γµγν − γνγµ), µ, ν = 0, . . . , 3, µ < ν.
Hence we conclude that an Ansatz invariant under a subgroup of the group

O(2, 4) with generators (2.2.15) is transformed by (2.2.17) into an Ansatz
invariant under a subgroup of the group C(1, 3) with generators (2.2.18). But
the above arguments cannot be immediately applied to construct conformally-
invariant Ansätze reducing the massless Dirac equation (1.1.17). The matter is
that on the set of solutions of equation (1.1.17) a representation of the algebra
AC(1, 3) inequivalent to the representation (2.2.18) is realized (see Section
1.1). To avoid this difficulty we will modify the change of variables (2.2.17).
Let us consider the group O(2, 4) acting on the space of eight-component
spinors Ψ̃ which depend on six variables z1, . . . , z6. Its generators are chosen
as follows

Ω1 2 = z1∂z2 − z2∂z1 + (1/2)σΓ0,

Ω1 2+a = −z1∂z2+a − z2+a∂z1 + (1/2)σΓa,

Ω2 2+a = −z2∂z2+a − z2+a∂z2 + (1/2)Γ0Γa,

Ω2+a 2+b = −z2+a∂z2+b
+ z2+b∂z2+a + (1/2)ΓaΓb,

Ω1 6 = z1∂z6 − z6∂z1 + (1/2)σ, (2.2.19)
Ω2 6 = z2∂z6 − z6∂z2 + (1/2)Γ0,

Ω2+a 6 = −z2+a∂z6 + z6∂z2+a + (1/2)Γa,

ΩA B = −ΩBA, A 6= B.

Here Γµ, σ are (8× 8)-matrices of the form

Γµ =

(
0 γµ

γµ 0

)
, σ =

(
I 0
0 −I

)
.
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Using the relations

ΓµΓν + ΓνΓµ = 2gµνI, Γµσ = −σΓµ,

we can become convinced of the fact that operators (2.2.19) do form a basis
of the Lie algebra AO(2, 4).

The change of variables

xµ = zµ+2 (z6 − z1)−1,

ψ̃(x) = (z6 − z1)2
{
1− (1/2)(1 + σ) (2.2.20)

×(Γ0z2 − Γaz2+a)(z6 − z1)−1
}
Ψ̃(z),

where ψ̃(x) is an eight-component spinor, establishes a correspondence bet-
ween the group O(2, 4) having the generators (2.2.19) and the group C(1, 3)
having the generators

P̃µ = ∂µ, J̃µν = xµ∂ν − xν∂
µ + S̃µν ,

D̃ = xµ∂µ + 3/2 + (1/2)(1− σ),

K̃µ = 2xµD̃ − (x · x)∂µ + 2S̃µνx
ν + (1/2)(1− σ)Γµ,

(2.2.21)

where S̃µν = (1/4)[Γµ, Γν ].

Lemma 2.2.1. Let ψ̃(x) satisfy the equation

Q̃ψ̃(x) = (αµP̃µ + βµν J̃µν + δD̃ + θµK̃µ)ψ̃(x) = 0, (2.2.22)

where αµ, βµν , δ, θµ are some real parameters. Then, the four-component
spinor ψ = (ψ̃0, ψ̃1, ψ̃2, ψ̃3)T satisfies the following equation:

Qψ(x) = (αµPµ + βµνJµν + δD + θµKµ)ψ(x) = 0, (2.2.23)

the operators Pµ, . . . , Kµ being of the form (1.1.22).

Proof. We represent the eight-component function ψ̃(x) as follows

ψ̃(x) = (1/2)(1 + σ)ψ̃1(x) + (1/2)(1− σ)ψ̃2(x).

Substitution of the above expression into (2.2.22) yields

(1/2)(1 + σ)Q̃ψ̃1 + (1/2)(1− σ)Q̃ψ̃2 = 0,



110 Chapter 2. EXACT SOLUTIONS

whence it follows that
(1/2)(1 + σ)Q̃ψ̃1 = 0. (2.2.24)

Since

(1/2)(1 + σ)D̃ψ̃1(x) = (xµ∂µ + 3/2)(1/2)(1 + σ)ψ̃1(x),

(1/2)(1 + σ)K̃µψ̃1(x) = {2xµ(xν∂ν + 3/2)− (x · x)∂µ

+2S̃µνx
ν}(1/2)(1 + σ)ψ̃1,

S̃µν =

(
Sµν 0
0 Sµν

)
,

we conclude that due to (2.2.24) equality (2.2.23) holds true. ¤

The above arguments can be summarized in the form of the following
algorithm of constructing conformally-invariant Ansätze for the spinor field
ψ(x):

• using the isomorphism (2.2.16) we establish the correspondence between
C(1, 3) non-conjugate subalgebras of the algebra AC(1, 3) and O(2, 4)
non-conjugate subalgebras of the algebra AO(2, 4);

• integrating the systems of PDEs (1.5.20), (1.5.22) we construct Ansätze
invariant under non-conjugate subalgebras of the algebra AO(2, 4) hav-
ing the basis elements (2.2.19);

• using the change of variables (2.2.20) we rewrite the obtained Ansätze
in variables x, ψ(x);

• acting on the eight-component spinor ψ̃(x) by the projector P = (1/2)
× (1 + σ) we arrive at the conformally-invariant Ansätze for the spinor
field ψ(x).

We will realize the above algorithm for the operator Q2 from (2.2.14), the
remaining operators being treated in an analogous way.

Due to (2.2.16), (2.2.19) the operator Q2 takes the form

Q2 = z2∂z1 − z1∂z2 + z5∂z6 − z6∂z5 + ε(z6 − z1)(∂z2 + ∂z5)
+ε(z2 − z5)(∂z1 + ∂z6)− (1/2){Γ3 + σΓ0 + ε(1 + σ)(Γ0 − Γ3)}.

Consequently, to determine matrix function A(z) and scalar functions
ω1(z), . . ., ω5(z) it is necessary to integrate the equations

Q2A(z) = 0,
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{
z2∂z1 − z1∂z2 + z5∂z6 − z6∂z5 + ε(z6 − z1) (2.2.25)

×(∂z2 + ∂z5) + ε(z2 − z5)(∂z1 + ∂z6)
}
ωi(z) = 0,

where i = 1, . . . , 5.
It is convenient to rewrite (2.2.25) by introducing new independent vari-

ables

u1 = (z1 − z6)2 + (z2 − z5)2,
u2 = 2(z1 − z6)(z2 − z5), u3 = z3, u4 = z4,

u5 = (z1 − z6)(z1 + z6) + (z2 − z5)(z2 + z5),
u6 = (z1 − z6)(z2 + z5)− (z2 − z5)(z1 + z6).

As a result, equations (2.2.25) read
{
−2(u2

1 − u2
2)

1/2∂u2 − 2εu1∂u6

}
ωi(u) = 0,

{
−2(u2

1 − u2
2)

1/2∂u2 − 2εu1∂u6 − (1/2)
(
σΓ0 + Γ3 (2.2.26)

+ε(1 + σ)(Γ0 − Γ3)
)}

A(u) = 0.

The first equation of system (2.2.26) implies that ω1(u), . . . , ω5(u) are the
first integrals of the following Euler-Lagrange system:

du1

0
=

du2

−2(u2
1 − u2

2)1/2
=

du3

0
=

du4

0
=

du5

0
=

du6

−2εu1
.

A complete set of functionally-independent first integrals of the above sys-
tem can be chosen in the form

ω1 = arcsin(u2/u1)− ε(u6/u1), ω2 = u1,

ω3 = u2, ω4 = u3, ω5 = u4.

Using the identity (2.2.6) we get the following particular solution of the
second equation of system (2.2.26):

A(u) = exp{−(εu6/4u1)(σΓ0 + Γ3 + ε(1 + σ)(Γ0 − Γ3)}.
Rewriting the above expressions in the variables zA and substituting these

into Ansatz (1.5.21) we have

Ψ̃(z) = exp
{
−(ε/4)[(z1 − z6)(z2 + z5)− (z2 − z5)

×(z1 + z6)][(z1 − z6)2 + (z2 − z5)2]−1 (2.2.27)

×[Γ3 + σΓ0 + (1 + σ)(Γ0 − Γ3)]
}
ϕ̃(ω),
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where ϕ̃ is an arbitrary eight-component function of ω1, . . . , ω5 and

ω1 = arcsin
{
2(z1 − z6)(z2 − z5)

(
(z1 − z6)2 + (z2 − z5)2

)−1}

−ε{(z1 − z6)(z2 + z5)− (z2 − z5)(z1 + z6)}
×

(
(z1 − z6)2 + (z2 − z5)2

)−1
,

ω2 = (z1 − z6)2 + (z2 − z5)2, ω3 = z3, ω4 = z4,

ω5 = z2
1 + z2

2 − z2
3 − z2

4 − z2
5 − z2

6 .

In the initial variables x, ψ̃(x) Ansatz (2.2.27) reads

ψ̃(x) = x−2
1

{
1− (1/2)(1 + σ)Γ · x}

× exp
{
τ(x)

(
Γ3 + σΓ0 + (1 + σ)(Γ0 − Γ3)

)}
ϕ̃ (ω1, ω2, ω3),

ω1 = − arcsin
{
2(x0 − x3)

(
1 + (x0 − x3)2

)−1}

+ε
(
x0 + x3 + (x0 − x3)x · x

)(
1 + (x0 − x3)2

)−1
,

ω2 =
(
1 + (x0 − x3)2

)
x−2

1 , ω3 = (1 + (x0 − x3)2)x−2
2 ,

τ(x) = (ε/4)
(
x0 + x3 + (x0 − x3)x · x

)(
1 + (x0 − x3)2

)−1

(when deriving the above formulae we use the identities z1(z6 − z1)−1 =
(1/2)(x · x − 1), z6(z6 − z1)−1 = (1/2)(x · x + 1) which follow directly from
(2.2.20)).

Acting on the Ansatz obtained by the projector P = (1/2)(1 + σ) we get

ψ(x) = x−2
1 {cos2 τ + γ0γ3 sin2 τ + γ · x(γ0 − γ3) cos τ sin τ}ϕ(ω1, ω2, ω3),

where ϕ(ω) is a new four-component function, scalar functions τ(x), ωa(x)
are determined above.

Below we adduce Ansätze invariant under operators Q1, Q3, . . . , Q11.

the operator Q1

ψ(x) = R(x, τ, 1)x−2
1 ϕ (~ω),

ω1 = [(x · x− 1)2 + 4x2
0]x

−2
1 , ω2 = [(x · x− 1)2 + 4x2

0]x
−2
2 ,

ω3 = arctan{(x · x− 1)(2x0)−1} − arctan{(x · x + 1)(2x3)−1},
τ = (1/2) arctan{(x · x− 1)(2x0)−1}+ π/2;
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the operator Q3

ψ(x) = R(x, τ, α)(x2
1 + x2

2)
−1 exp{−τγ1γ2}ϕ (~ω),

ω1 = [(x · x− 1)2 + 4x2
0](x

2
1 + x2

2)
−1,

ω2 = arctan{(x · x− 1)(2x0)−1} − α arctan(x1/x2),
ω3 = arctan{(x · x− 1)(2x0)−1} − arctan{(x · x + 1)(2x3)−1},
τ = (1/2) arctan(x1/x2);

the operator Q4

ψ(x) = R(x, τ, 1)x−2
1 exp{τα(1 + γ0γ3)}ϕ (~ω),

ω1 = ln{x2
1[1 + (x0 − x3)2]−1}

−α arcsin{2(x0 − x3)[1 + (x0 − x3)2]−1},
ω2 = x−2

1 [x0 + x3 + (x0 − x3)x · x],
ω3 = x−2

2 [x0 + x3 + (x0 − x3)x · x],
τ = (1/4α) ln{x2

1[1 + (x0 − x3)2]−1};
the operator Q5

ψ(x) = R(x, τ, α)(x2
1 + x2

2)
−1 exp{−βτγ1γ2}ϕ (~ω),

ω1 = [1 + (x0 − x3)]2(x2
1 + x2

2)
−1,

ω2 = ε arcsin{2(x0 − x3)[1 + (x0 − x3)2]−1}
+α[x0 + x3 + (x0 − x3)x · x][1 + (x0 − x3)2]−1,

ω3 = −2ε arctan(x1/x2) + β[x0 + x3 + (x0 − x3)x · x]
×[1 + (x0 − x3)2]−1,

τ = (ε/2)[x0 + x3 + (x0 − x3)x · x][1 + (x0 − x3)2]−1;

the operator Q6

ψ(x) = [1 + (x0 − x3)2]−1{cos2(τ/2) + γ0γ3 sin2(τ/2)

+
2∑

j=1

(fj cos τ − gj sin τ)γj(γ0 − γ3) + γ · x(γ0 − γ3)

× cos(τ/2) sin(τ/2)} exp{−(ατ/2)γ1γ2}ϕ (~ω), j = 1, 2,

a) under α = 1

f1 = g2 = −τ/2, f2 = −g1 = 1,
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ω1 = [x2(x0 − x3)− x1][1 + (x0 − x3)2]−1,

ω2 = − arcsin{2(x0 − x3)[1 + (x0 − x3)2]−1}
+2[x1(x0 − x3) + x2][1 + (x0 − x3)2]−1,

ω3 = arcsin{2(x0 − x3)[1 + (x0 − x3)2]−1}
+

(
x0 + x3 + (x0 − x3)x · x

)(
(x0 − x3)x2 − x1

)−1
,

τ = arctan(x0 − x3);

b) under α 6= 1

f1 = g2 = sin(1− α)τ,
f2 = −g1 = [2(α− 1)]−1[2(α− 1) cos(α− 1)τ + 1],
ω1 = [2(x0 − x3)x2 − 2x1 − (1− α)(x2

1 + x2
2)][1 + (x0 − x3)2]−1,

ω2 = (α− 1)
{(

(x0 − x3)x2 − x1

)2
+

(
(x0 − x3)x1 + x2

)2}

×
(
1 + (x0 − x3)2

)−2
+ 2

(
(x0 − x3)x2 − x1

)(
1 + (x0 − x3)2

)−1
,

ω3 = 2arcsin
{[

(α− 1)
(
(x0 − x3)x2 − x1

)
+ 1 + (x0 − x3)2

]

×
{[

(α− 1)
(
(x0 − x3)x2 − x1

)
+ 1 + (x0 − x3)2

]2

+(α− 1)2[(x0 − x3)x1 + x2]2
}−1/2

}

+(α− 1) arcsin
{
2(x0 − x3)

(
1 + (x0 − x3)2

)−1}
,

τ = arctan(x0 − x3);

the operator Q7

ψ(x) = R(x, τ, α)(x2
1 + x2

2)
−1 exp{βτ(1 + γ0γ3)− δτγ1γ2}ϕ (~ω),

ω1 = (x2
1 + x2

2)
−1[x0 + x3 + (x0 − x3)x · x],

ω2 = δ ln{(x2
1 + x2

2)[1 + (x0 − x3)2]−1} − 2β arcsin {x1(x2
1 + x2

2)
−1},

ω3 = α ln{(x2
1 + x2

2)[1 + (x0 − x3)2]−1}
−β arcsin{2(x0 − x3)[1 + (x0 − x3)2]−1},

τ = (1/2δ) arctan(x1/x2);

the operator Q8

ψ(x) = x−2
1 (cos τ − γ · xγ0 sin τ)ϕ (~w),
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ω1 = x2/x1, ω2 = x3/x1, ω3 = (1 + x · x)2(x2
1 + x2

2 + x2
3)
−1,

τ = (1/2) arctan{(x · x− 1)(2x0)−1}+ π/2;

the operator Q9

ψ(x) = x−2
3 (cosατ − γ · xγ0 sinατ) exp{−τγ1γ2}ϕ (~ω),

ω1 = (x2
1 + x2

2)x
−2
3 , ω2 = (x · x + 1)x−1

3 ,

ω3 = arctan{(x · x− 1)(2x0)−1} − α arctan(x1/x2),
τ = (1/2) arctan{(x · x− 1)(2x0)−1}+ π/2;

the operator Q10

ψ(x) = (x2
1 + x2

2)
−1

(
cosατ cosβτ + γ0γ3 sinατ sinβτ

+γ · x(γ0 sinατ cosατ − γ3 cosατ sinατ)
)

exp{−τγ1γ2}ϕ (~ω),

ω1 = α arctan(x1/x2)− arctan{(x · x− 1)(2x0)−1},
ω2 = β arctan(x1/x2)− arctan{(x · x + 1)(2x0)−1},
ω3 = [(x · x− 1)2 + 4x2

0](x
2
1 + x2

2)
−1,

τ = (1/2) arctan(x1/x2);

the operator Q11

ψ(x) = (x2
1 + x2

2)
−1(cosβτ − γ · xγ3 sinβτ) exp{−τγ1γ2}ϕ (~ω),

ω1 = (x2
1 + x2

2)x
−2
0 ,

ω2 = −β arctan(x1/x2) + arctan{(x · x + 1)(2x3)−1},
ω3 = (x · x− 1)(x2

1 + x2
2)
−1/2, τ = (1/2) arctan(x1/x2).

In the above formulae we use the following notation:

R(x, τ, α) = cos2 ατ + γ0γ3 sin2 ατ + γ · x(γ0 − γ3) cos ατ sinατ,

ϕ = ϕ(~ω) is an arbitrary four-component function of ω1, ω2, ω3.
Three-dimensional C(1, 3) non-conjugate subalgebras of the conformal al-

gebra which are C(1, 3) inequivalent to subalgebras of the algebra AP̃ (1, 3)
are as follows

A1 = 〈Q + J12, −J01 − J12 − P2, D − J03〉,
A2 = 〈Q + αJ12, D − J03, P0 − P3〉,
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A3 = 〈Q + J12 − J01 − J13 − P2, −J02 − J23 + P1, P0 − P3〉,
A4 = 〈Q + J12 + α(D − J03), −J01 − J13 − P2, P0 − P3〉,
A5 = 〈J12 + α(D − J03), Q + β(D − J03), P0 − P3〉,
A6 = 〈J03 + D, (1/2)(K0 −K3), (1/2)(P0 + P3)〉,
A7 = 〈Q, D − J03, J12〉, A8 = 〈J12, Q, P0 − P3〉, (2.2.28)
A9 = 〈Q + J12, −J01 − J13 − P2, P0 − P3〉,
A10 = 〈J12, (1/2)(K0 + P0), (1/2)(P3 −K3)〉,
A11 = 〈J23 + (1/2)(P1 −K1), J31 + (1/2)(P2 −K2), J12

+ (1/2)(P3 −K3)〉,
A12 = 〈J12 + (1/2)(P3 −K3), −J03 − (1/2)(P1 + K1),

(1/2)(P0 −K0) + (1/2)(P2 + K2)〉,
A13 = 〈

√
3J01 − J02 −D, P0 + K0 + 2(K2 − P2), K0 − P0

−K2 − P2 −
√

3(K1 + P1)〉, A14 = 〈K0, P0, D〉.

Here Q = (1/2)(K0 −K3 + P0 + P3), {α, β} ⊂ R1.
The algorithm of constructing conformally-invariant Ansätze formulated

above proves to be very efficient when obtaining Ansätze invariant under
three-dimensional subalgebras of the algebra C(1, 3) listed in (2.2.28) but
computations are much more cumbersome. That is why we omit interme-
diate computations and write down the final result: the Ansätze for the eight-
component spinor field Ψ(x) invariant under three-parameter subgroups of the
group C(1, 3) with generators (2.2.28).

1) Ψ(x) =
(
1 + (x0 − x3)2

)(
x2(x0 − x3)− x1

)−2

×
(
1− (1/2)(1 + σ)Γ · x

)
exp

{
(1/2)(σΓ0 + Γ3

−Γ1Γ2)τ1 + (1/2)
(
Γ1(Γ0 − Γ3) + (1 + σ)Γ2

)
τ2

}

× exp{(1/2)(σ + Γ0Γ3)τ3}ϕ (ω),

ω = 2
(
x1(x0 − x3) + x2

)(
x2(x0 − x3)− x1

)−1
+

(
1 + (x0 − x3)2

)

×
(
x0 + x3 + (x0 − x3)x · x

)(
x2(x0 − x3)− x1

)−2
,

τ1 = arctan(x0 − x3),

τ2 = (1/2)
(
x0 + x3 + (x0 − x3)x · x

)(
x2(x0 − x3)− x1)

)−1
,
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τ3 = − ln
{(

1 + (x0 − x3)2
)(

x2(x0 − x3)− x1

)−1}
;

2) Ψ(x) = (x2
1 + x2

2)
−1

(
1− (1/2)(1 + σ)Γ · x

)
exp{(1/2)(σΓ0 + Γ3

−αΓ1Γ2)τ1} exp{(1/2)(1 + σ)(Γ0 − Γ3)τ3}
× exp{(1/2)(σ + Γ0Γ3)τ2}ϕ (ω),

ω = arctan(x1/x2)− α arctan(x0 − x3), τ1 = arctan(x0 − x3),

τ2 = −(1/2) ln
{(

1 + (x0 − x3)2
)
(x2

1 + x2
2)
−1

}
,

τ3 = (1/2)
(
x0 + x3 + (x0 − x3)x · x

)(
1 + (x0 − x3)2

)−1
;

3) Ψ(x) =
(
1 + (x0 − x3)2

)−1(
1− (1/2)(1 + σ)Γ · x

)

× exp
{
(1/2)

(
σΓ0 + Γ3 − Γ1Γ2 − Γ1(Γ0 − Γ3)− (1 + σ)Γ2

)
τ1

}

× exp{(1/2)(1 + σ)(Γ0 − Γ3)τ2} exp
{
(1/2)

(
(1 + σ)Γ1

−Γ2(Γ0 − Γ3)
)
τ3 − (1 + σ)(Γ0 − Γ3)ωτ3

}
ϕ (ω),

ω = − arctan(x0 − x3) +
(
x1(x0 − x3) + x2

)(
1 + (x0 − x3)2

)−1
,

τ1 = arctan(x0 − x3),

τ2 =
(
x1(x0 − x3) + x2

)(
x2(x0 − x3)− x1

)(
1 + (x0 − x3)2

)−2

+(1/2)
(
x0 + x3 + (x0 − x3)x · x

)(
1 + (x0 − x3)2

)−1
,

τ3 =
(
x2(x0 − x3)− x1

)(
1 + (x0 − x3)2

)−1
;

4) Ψ(x) =
(
1 + (x0 − x3)2

)(
x2(x0 − x3)− x1

)−2(
1− (1/2)(1 + σ)Γ · x

)

× exp
{
(1/2)

(
Γ3 + σΓ0 − Γ1Γ2 + α(σ + Γ0Γ3)

)
τ1

}

× exp
{
−(1/2)

(
Γ1(Γ0 − Γ3) + (1 + σ)Γ2

)
τ2

}

× exp{(1/2)(1 + σ)(Γ0 − Γ3)τ3}ϕ (ω),

ω = ln
{(

1 + (x0 − x3)2
)(

x2(x0 − x3)− x1

)−1}

+2α arctan(x0 − x3), τ1 = arctan(x0 − x3),

τ2 =
(
x1(x0 − x3) + x2

)(
1 + (x0 − x3)2

)−1

× exp{−α arctan(x0 − x3)},
τ3 =

{(
x1(x0 − x3) + x2

) (
x2(x0 − x3)− x1

)(
1 + (x0 − x3)2

)−2
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+(1/2)
(
x0 + x3 + (x0 − x3)x · x

)(
1 + (x0 − x3)2

)−1}

× exp{−α arctan(x0 − x3)};
5) Ψ(x) = (x2

1 + x2
2)
−1

(
1− (1/2)(1 + σ)Γ · x

)
exp

{
(1/2)

(
σΓ0 + Γ3

+β(σ + Γ0Γ3)
)
τ2

}
exp

{
(1/2)

(
Γ1Γ2 − α(σ + Γ0Γ3)

)
τ1

}

× exp{(1/2)(1 + σ)(Γ0 − Γ3)τ3}ϕ (ω),
ω = 2α arctan(x2/x1)− 2β arctan(x0 − x3)

+ ln
{
(x2

1 + x2
2)

(
1 + (x0 − x3)2

)−1}
,

τ1 = arctan(x2/x1), τ2 = arctan(x0 − x3),
τ3 = (1/2) exp{2α arctan(x2/x1)− 2β arctan(x0 − x3)}
×

(
x0 + x3 + (x0 − x3)x · x

)(
1 + (x0 − x3)2

)−1
;

6) Ψ(x) = x−2
1

(
1− (1/2)(1 + σ)Γ · x

)
exp{(1/2)(1− σ)(Γ0 − Γ3)τ1}

× exp{(1/2)(σ − Γ0Γ3)τ2} exp{(1/2)(1 + σ)(Γ0 + Γ3)τ3}ϕ (ω),

ω = x1/x2, τ1 = (1/2)(x0 + x3)(x · x)−1, τ2 = ln
(
(x · x)/x1

)
,

τ3 = (1/2)x2
1(x3 − x0)

(
(x2

1 + x2
2)x · x

)−1
;

7) Ψ(x) = (x2
1 + x2

2)
−1

(
1− (1/2)(1 + σ)Γ · x

)
exp{(1/2)(σΓ0 + Γ3)τ1

+(1/2)(σ + Γ0Γ3)τ2 − (1/2)Γ1Γ2τ3}ϕ (ω),

ω =
(
x0 + x3 + (x0 − x3)x · x

)
(x2

1 + x2
2)
−1,

τ1 = arctan(x0 − x3), τ2 = (1/4) ln
{(

(x · x)2 + (x0 + x3)2
)

×
(
1 + (x0 − x3)2

)−1}
, τ3 = arctan(x1/x2);

8) Ψ(x) = (x2
1 + x2

2)
−1

(
1− (1/2)(1 + σ)Γ · x

)
exp{−(1/2)Γ1Γ2τ1

+(1/2)(σΓ0 + Γ3)τ2 + (1/2)(1 + σ)(Γ0 − Γ3)τ3}ϕ (ω),

ω = (x2
1 + x2

2)
(
1 + (x0 − x3)2

)−1
,

τ1 = arctan(x1/x2), τ2 = arctan(x0 − x3),

τ3 = (1/2)
(
x0 + x3 + (x0 − x3)x · x

)(
1 + (x0 − x3)2

)−1
;

9) Ψ(x) =
(
1 + (x0 − x3)2

)−1(
1− (1/2)(1 + σ)Γ · x

)

× exp
{
(1/2)(σΓ0 + Γ3 − Γ1Γ2)τ1 − (1/2)

(
(1 + σ)Γ2



2.2. Ansätze for the spinor field 119

+Γ1(Γ0 − Γ3)
)
τ2 + (1/2)(1 + σ)(Γ0 − Γ3)τ3

}
ϕ (ω),

ω =
(
x2(x0 − x3)− x1

)(
1 + (x0 − x3)2

)−1
,

τ1 = arctan(x0 − x3), τ2 =
(
x1(x0 − x3) + x2

)(
1 + (x0 − x3)2

)−1
,

τ3 = (1/2)(x0 + x3)− (1/2)x2
1(x0 − x3)−1 + (1/2)

(
1− (x0 − x3)2

)
×

×
(
x2(x0 − x3)− x1

)2
(x0 − x3)−1

(
1 + (x0 − x3)2

)−2
;

10) Ψ(x) = (x2
1 + x2

2)
−1

(
1− (1/2)(1 + σ)Γ · x

)

× exp{−(1/2)Γ1Γ2τ1 + (1/2)σΓ0τ2 + (1/2)Γ3τ3}ϕ (ω),

ω =
(
4x2

0 + (x · x− 1)2
)
(x2

1 + x2
2)
−1,

τ1 = arctan(x1/x2), τ2 = arctan
(
(x · x− 1)(2x0)−1

)
+ π/2,

τ3 = arctan
(
(x · x + 1)(2x3)−1

)
;

11) Ψ(x) = x−2
0

(
1− (1/2)(1 + σ)Γ · x

)

×(R1B1C1 −R1B2C2 −R2B1C2 −R2B2C1)ϕ (ω),
R1 = 1 + (τ1/2)(Γ2Γ3 − Γ1)− (τ2/2)(Γ3Γ1 − Γ2),
R2 = (τ1/2)(Γ3Γ1 − Γ2)− (τ2/2)(Γ2Γ3 − Γ1),

B1 = (1/2)
{
1− Γ1Γ2Γ3 + (1/2)

(
x2

1 + x2
2 + (x · x− 1)2

)

×(x · x− 1)−1(x2
1 + x2

2)
−1

(
x1(1 + Γ1Γ2Γ3) + x2(Γ1Γ2 − Γ3)

)}
,

B2 = (1/4)
(
x2

1 + x2
2 − (x · x− 1)2

)
(x · x− 1)−1(x2

1 + x2
2)
−1

×
(
x2(1 + Γ1Γ2Γ3) + x1(Γ3 − Γ1Γ2)

)
,

C1 = 1 + (ρ1/2)(Γ2Γ3 − Γ1) + (ρ2/2)(Γ3Γ1 − Γ2),
C2 = (ρ1/2)(Γ2 − Γ3Γ1) + (ρ2/2)(Γ2Γ3 − Γ1),
ω = (x · x− 1)x−1

0 ,

τ1 = (1/4)
(
2x2x3 − x1(x · x + 1)

)
(x2

1 + x2
2)
−1,

τ2 = (1/4)
(
2x1x3 + x2(x · x + 1)

)
(x2

1 + x2
2)
−1,

ρ1 = −(x · x− 1)2
(
2x2x3 + x1(x · x + 1)

)
(x2

1 + x2
2)
−1

×
(
(x · x− 1)2 + 4x2

0

)−1
,
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ρ2 = −(x · x− 1)2
(
2x1x3 − x2(x · x + 1)

)
(x2

1 + x2
2)
−1 ×

×
(
(x · x− 1)2 + 4x2

0

)−1
;

12) Ψ(x) =
(
(x · x− 1)2 − 4x2

1 − 4x2
2

)−1(
1− (1/2)(1 + σ)Γ · x

)

× exp{(Γ1Γ2 − Γ3 + σΓ1 − Γ0Γ3)τ1} exp{(Γ0 + σΓ2)τ2}
× exp

{
(1/2)(Γ1Γ2 − Γ3 + σΓ1 + Γ0Γ3) arcsin

(
(2τ4 − ω)

×(ω2 + 4)−1/2
)}

ϕ (ω),

ω = τ−1
4 (τ2

3 + τ2
4 − 1), τ1 = x1(x · x− 1− 2x2)−1,

τ2 = −(1/2) ln
{
(1/2)(x · x− 1− 2x2)

(
(x · x− 1)2 − 4x2

1 − 4x2
2

)−1/2}
,

τ3 = 2
(
x3(x · x− 1− 2x2)− x1(x · x + 1− 2x0)

)

×(x · x− 1− 2x2)−1
(
(x · x− 1)2 − 4x2

1 − 4x2
2

)−1/2
,

τ4 = (2x0 − x · x− 1)(x · x− 1− 2x2)−1;

13) Ψ(x) = x−2
3 (1− (1/2)(1 + σ)Γ · x

)
exp{τ1q+} exp{τ2q}

× exp{τ3q+} exp{τ4q} exp{τ5q−}ϕ (ω),
q± = (1/2)(σ − Γ0Γ2 +

√
3Γ0Γ1)± (1/2)(2Γ2 − σΓ0),

q = (1/2)(γ0 + σΓ2 +
√

3σΓ1),
τ1 = (1/2)(x · x + 1 + 2x0)(x · x− 1 + x2 −

√
3x1)−1,

τ2 = (1/2) ln{2(x · x− 1 + x2 +
√

3x1)(x · x− 1)−1},
functions ω(y1, y2), τk(y1, y2), k = 3, 4, 5 being determined by the following
relations:

Qτ3 − τ2
3 + 3y1 = 0, Qτ4 + 2τ3 = 0,

Qτ5 + exp{−τ4} = 0, ω = y2
2 − 4y1(y2

1 + 1),

where

Q = 2y2∂y1 + 4(3y2
1 + 1)∂y2 ,

y1 = (
√

3x2 − x1)(
√

3x3)−1 + (1/4)(2x0 + x · x + 1)2

×x−1
3 (x · x− 1 + x2 +

√
3x1)−1,

y2 = (1/4)x−3/2
3 (x · x− 1 + x2 +

√
3x1)−3/2

×{(2x0 + x · x + 1)3 + 2
√

3(2x0 + x · x + 1)(
√

3x2 − x1)
×(x · x− 1 + x2 +

√
3x1) + 2(2x0 − x · x− 1)(x · x− 1 + x2 +

√
3x1)2}.
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Basis operators of the algebra A14 do not satisfy condition (1.5.10). Conse-
quently, they give rise to a partially-invariant solution which is not considered
here.

In the above formulae ϕ (ω) is an arbitrary eight-component complex-
valued function.

To obtain conformally-invariant Ansätze for the four-component Dirac field
we act with the projector P = (1/2)(1 + σ) on expressions 1–13. As a result,
we have

1) ψ(x) = [1 + (x0 − x3)2][x2(x0 − x3)− x1]−2R(τ1)
× exp{−(τ1/2)γ1γ2} exp{−(τ2/2)γ1(γ0 − γ3)}
× exp{(τ3/2)(1 + γ0γ3)}ϕ(ω),

2) ψ(x) = (x2
1 + x2

2)
−1R(τ1) exp{−(ατ1/2)γ1γ2}

× exp{(τ2/2)(1 + γ0γ3)}ϕ(ω),
3) ψ(x) = [1 + (x0 − x3)2]−1R(τ1) exp{−(τ1/2)γ1γ2}

× exp{−(1/2)(γ1τ1 + γ2τ3)(γ0 − γ3)}ϕ(ω),
4) ψ(x) = [1 + (x0 − x3)2][x2(x0 − x3)− x1]−2R(τ1)

× exp{−(τ1/2)γ1γ2 + (ατ1/2)(1 + γ0γ3)}
× exp{−(τ2/2)γ1(γ0 − γ3)}ϕ(ω),

5) ψ(x) = (x2
1 + x2

2)
−1R(τ2) exp{(βτ2/2)(1 + γ0γ3)} (2.2.29)

× exp{(τ1/2)[γ1γ2 − α(1 + γ0γ3)]}ϕ(ω),
6) ψ(x) = (x · x)−2(γ · x) exp{(1/2)(3− γ0γ3) ln[(x · x)/x1]}ϕ(ω),
7) ψ(x) = (x2

1 + x2
2)
−1R(τ1) exp{(τ2/2)(1 + γ0γ3)− (τ3/2)γ1γ2}ϕ(ω),

8) ψ(x) = (x2
1 + x2

2)
−1R(τ2) exp{−(τ1/2)γ1γ2}ϕ(ω),

9) ψ(x) = [1 + (x0 − x3)2]−1R(τ1) exp{−(τ1/2)γ1γ2}
× exp{−(τ2/2)γ1(γ0 − γ3)}ϕ(ω),

10) ψ(x) = {x2
1 + x2

2)
−1(cos(τ2/2) cos(τ3/2) + γ0γ3 sin(τ2/2) sin(τ3/2)

+γ · x[γ0 sin(τ2/2) cos(τ3/2)− γ3 cos(τ2/2) sin(τ3/2)]}
× exp{−(τ1/2)γ1γ2}ϕ(ω).

Ansätze invariant under the algebras A11, A12, A13 are given by very
cumbersome formulae. Therefore they are not adduced here.

In (2.2.29) ϕ(ω) is an arbitrary four-component function; ω, τ1, τ2, τ3 are
real-valued functions defined above in the formulae 1–13;

R(τ) = cos2(τ/2) + γ0γ3 sin2(τ/2) + (1/2)γ · x(γ0 − γ3) sin τ.
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Thus, the problem of construction of Ansätze for the spinor field invari-
ant under the C(1, 3) non-conjugate one- and three-parameter subgroups of
the conformal group is completely solved. It is important to note that these
Ansätze can be applied to reduction of any spinor equation invariant under
the groups P (1, 3), P̃ (1, 3), C(1, 3) in representation (1.1.24)–(1.1.28).

Now we will say a few words about Ansätze reducing Poincaré-invariant
equations for particles with arbitrary spins. Suppose that on the set of so-
lutions of the PDE under study a covariant representation of the Poincaré
algebra

Pµ = ∂µ, Jµν = xµ∂ν − xν∂
µ + Sµν , (2.2.30)

where Sµν are constant matrices fulfilling the commutation relations of the
Lie algebra of the Lorentz group O(1, 3), is realized. Then Ansätze invariant
under the P (1, 3) non-conjugate one- and three-dimensional subalgebras of the
algebra with basis elements (2.2.30) are obtained by making in the P (1, 3)-
invariant Ansätze for the spinor field the following replacement:

γ0γa → 2S0a, γaγ0 → −2Sa0, γaγb → 2Sab, a 6= b.

On applying the same trick to the P̃ (1, 3) Ansätze for the spinor field we
get the Ansätze invariant under the P̃ (1, 3) non-conjugate subalgebras of the
algebra AP̃ (1, 3) having generators (2.2.30) and D = xµ∂µ + k (k may be a
constant matrix commuting with Sµν).

Another method of constructing Poincaré and conformally-invariant An-
sätze for fields with spins s = 0, 1, 3/2 via Ansätze for the Dirac field is sug-
gested in Section 2.6.

In conclusion we mention nonlocal Ansätze for the Dirac equation. As
established in [153] the real eight-component Dirac equation (1.1.14) admits
the Poincaré algebra having the following basis elements:

Pµ = ∂µ + θ(Γ̃4 + Γ̃5)(∂µ + imΓ̃µ),
Jµν = xµ∂ν − xν∂

µ + (1/4)(Γ̃µΓ̃ν − Γ̃νΓ̃µ).
(2.2.31)

Here Γ̃µ are (8× 8)-matrices defined in Section 1.1, ν = 0, . . . , 3, θ = const.
Let us emphasize that the operators Pµ are non-Lie operators because the

coefficients of ∂µ are matrices not proportional to the unit matrix.
We have succeeded in solving systems of PDEs (1.5.20), (1.5.22) for each

inequivalent subalgebra of the algebra AP (1, 3) listed in (2.2.7). As a result
we get P (1, 3)-inequivalent Ansätze for the spinor field

Ψ(x) = A(x)ϕ(ω),



2.3. Reduction of Poincaré-invariant spinor equations 123

where A(x) is an (8 × 8)-matrix and ω = ω(x) is a scalar function, reducing
(1.1.14) to systems of ODEs for ϕ = ϕ(ω). These Ansätze cannot be, in
principle, obtained within the framework of the traditional Lie approach (for
more details, see [153]).

2.3. Reduction of Poincaré-invariant spinor equations

According to Consequence 1.5.1, substitution of P (1, 3)-invariant Ansätze
(2.2.3) obtained in the previous section into the Poincaré-invariant equation

{iγµ∂µ − f1 − f2γ4}ψ(x) = 0, (2.3.1)

where fi = fi(ψ̄ψ, ψ̄γ4ψ), yields a three-dimensional system of PDEs for a
four-component function ϕ = ϕ(ω1, ω2, ω3). As a direct computation shows
these Ansätze satisfy the relations

ψ̄ψ = ϕ̄ϕ, ψ̄γ4ψ = ϕ̄γ4ϕ,

A−1(x){iγµ∂µ − f1 − f2γ4}A(x)ϕ(ω) (2.3.2)
= {γµfµa∂ωa + (gµ + hµg4)γµ + f1 + f2γ4}ϕ(ω),

where fi = fi(ϕ̄ϕ, ϕ̄γ4ϕ); fµa, gµ, hµ are rational functions of ω1, ω2, ω3.
Omitting intermediate computations we adduce a final result: reduced

equations for four-component functions ϕ(~ω)

1) (1/2)(γ0 + γ3)ϕ +
(
ω1(γ0 + γ3) + γ0 − γ3

)
ϕω1 + γ1ϕω2

+γ2ϕω3 = R,

2) (1/2)ω−1/2
2 γ2ϕ + γ0ϕω1 + 2ω

1/2
2 γ2ϕω2 + γ3ϕω3 = R,

3) (1/2)
(
γ0 + γ3 + ω

−1/2
2 γ2

)
ϕ +

(
ω1(γ0 + γ3) + γ0 − γ3

)
ϕω1

+2ω1/2
2 γ2ϕω2 +

(
α(γ0 + γ3) + ω

−1/2
2 γ1

)
ϕω3 = R,

4) (1/2ω1)(γ0 + γ3)ϕ + (γ0 + γ3)ϕω1 +
(
ω1(γ0 − γ3)

+(ω2/ω1)(γ0 + γ3)
)
ϕω2 + γ2ϕω3 = R,

5) γ1ϕω1 + γ2ϕω2 + γ3ϕω3 = R,

6) γ0ϕω1 + γ1ϕω2 + γ2ϕω3 = R,

7) (γ0 + γ3)ϕω1 + γ1ϕω2 + γ2ϕω3 = R, (2.3.3)
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8) (1/2)(γ0 + γ3)ϕ +
(
ω1(γ0 + γ3) + γ0 − γ3

)
ϕω1 + γ2ϕω2

+
(
α(γ0 + γ3)− γ1

)
ϕω3 = R,

9) (1/2)ω−1/2
2 γ2ϕ + γ0ϕω1 + 2ω

1/2
2 γ2ϕω2 + (γ3 + αω

−1/2
2 γ1)ϕω3 = R,

10) (1/2)ω−1/2
2 γ2ϕ + γ3ϕω1 + 2ω

1/2
2 γ2ϕω2 + (γ0 − αω

−1/2
2 γ1)ϕω3 = R,

11) (1/2)ω−1/2
2 γ2ϕ + (γ0 + γ3)ϕω1 + 2ω

1/2
2 γ2ϕω2 +

+(γ0 − γ3 − 2αω
−1/2
2 γ1)ϕω3 = R,

12) −2αγ1ϕω1 + γ2ϕω2 + (3/2)
(
2α2γ0 + ω1(γ0 + γ3)

)
ϕω3 = R,

13) (2α)−1γ4(γ0 + γ3)ϕ + (γ0 + γ3)ϕω1 +
(
ω1(γ0 + γ3)− 2α−1ω3γ1

+(ω2 + α−2ω2
3)ω

−1
1 (γ0 + γ3)

)
ϕω2 + (αγ1 − ω1γ2)ϕω3 = R.

In (2.3.3) ϕωa = ∂ωaϕ, R = −if1(ϕ̄ϕ, ϕ̄γ4ϕ)ϕ− if2(ϕ̄ϕ, ϕ̄γ4ϕ)γ4ϕ.
P (1, 3)-invariant Ansätze (2.2.8) also satisfy conditions of the form (2.3.2)

ψ̄ψ = ϕ̄ϕ, ψ̄γ4ψ = ϕ̄γ4ϕ,

A−1(x)(iγµ∂µ − f1 − f2γ4)A(x)ϕ(ω) (2.3.4)

=
(
ρµγµ∂ω + (gµ + hµγ4)γµ − f1 − f2γ4

)
ϕ(ω),

where fi = fi(ϕ̄ϕ, ϕ̄γ4ϕ); ρµ, γµ, hµ are rational functions of ω. Using this re-
sult we get the following set of reduced equations for four-component functions
ϕ:

1) γ3ϕ̇ = R,

2) γ0ϕ̇ = R,

3) (γ0 + γ3)ϕ̇ = R,

4) (1/2)(γ0 + γ3)ϕ +
(
ω(γ0 + γ3) + γ0 − γ3

)
ϕ̇ = R,

5) (1/2)(γ0 + γ3)ϕ + γ2ϕ̇ = R,

6) −(1/2α)γ1γ4ϕ + γ1ϕ̇ = R,

7) −(1/2α)γ1γ4ϕ +
(
α exp{−ω/α}(γ0 + γ3)− γ2

)
ϕ̇ = R,

8) (1/2)ω−1/2γ2ϕ + 2ω1/2γ2ϕ̇ = R,

9) −(1/2α)γ3γ4ϕ + γ3ϕ̇ = R,

10) (1/2α)γ0γ4ϕ + γ0ϕ̇ = R,

11) (1/4)(γ0 − γ3)γ4ϕ + (γ0 + γ3)ϕ̇ = R,
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12) (1/2ω)(γ0 + γ3)ϕ + (γ0 + γ3)ϕ̇ = R,

13) (1/2αω)(α + γ4)(γ0 + γ3)ϕ + (γ0 + γ3)ϕ̇ = R,

14) (1/2)(γ0 + γ3)γ4ϕ + (γ0 + γ3)ϕ̇ = R, (2.3.5)
15) 2γ1ϕ̇ = R,

16) 2(γ2 − αγ1)ϕ̇ = R,

17) (1/2α)ω−1/2γ2(α− γ4)ϕ + 2ω1/2γ2ϕ̇ = R,

18) (1/2)(γ0 + γ3)(1 + αγ4)ϕ +
(
ω(γ0 + γ3) + γ0 − γ3

)
ϕ̇ = R,

19) (1/2)(γ0 + γ3 + ω−1/2γ2)ϕ + 2ω1/2γ2ϕ̇ = R,

20) ω−1(γ0 + γ3)ϕ + (γ0 + γ3)ϕ̇ = R,

21) (1/2)
(
ω(ω + β)− α

)−1(
(1− α)γ4 + 2ω + β

)
(γ0 + γ3)ϕ

+(γ0 + γ3)ϕ̇ = R,

22) (1/2)
(
ω(ω + β)

)−1
(2ω + β − γ4)(γ0 + γ3)ϕ + (γ0 + γ3)ϕ̇ = R,

23) (1/2)
(
ω(ω + 1)

)−1
(2ω + 1)(γ0 + γ3)ϕ + (γ0 + γ3)ϕ̇ = R,

24) (γ0 + γ3)ϕ +
(
ω(γ0 + γ3) + γ0 − γ3

)
ϕ̇ = R,

25) (γ0 + γ3)ϕ +
(
γ2 − β(γ0 + γ3)

)
ϕ̇ = R,

26)
(
ω−1(γ0 + γ3) + (1/4)(γ0 − γ3)γ4

)
ϕ + (γ0 + γ3)ϕ̇ = R,

27) (1/2)(γ0 + γ3)(3 + αγ4)ϕ +
(
ω(γ0 + γ3) + γ0 − γ3

)
ϕ̇ = R.

Here ϕ̇ = dϕ/dω, R = −if1(ϕ̄ϕ, ϕ̄γ4ϕ)ϕ− if2(ϕ̄ϕ, ϕ̄γ4ϕ)γ4ϕ.
Formulae (2.3.2), (2.3.4) can be applied to reduce the equation

∂µ∂µψ(x) = 0 (2.3.6)

by means of P (1, 3)-invariant Ansätze for the spinor field ψ(x). To this end
we make use of the identity

∂µ∂µ = γµ∂µA(x)A−1(x)γµ∂µ (2.3.7)

which holds for each invertible (4 × 4)-matrix A(x). By force of (2.3.7), we
have

A−1(x)∂µ∂µA(x)ϕ(~ω) = A−1(x)γµ∂µA(x)A−1(x)γµ∂µA(x)ϕ(~ω)

= A−1(x)γµ∂µA(x)
{
γµfµa(~ω)ϕωa + γµ

(
gµ(~ω) + hµ(~ω)γ4

)
ϕ

}

= A−1(x)
{
γµfµa(~ω)∂ωa + γµ

(
gµ(~ω) + hµ(~ω)γ4

)}2
ϕ,
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the forms of functions fµa, gµ, hµ being determined by (2.3.3).
In the same way we establish that P (1, 3)-invariant Ansätze (2.2.8) reduce

equation (2.3.6) to ODE

{
ρµ(ω)γµ∂ω +

(
gµ(ω) + hµ(ω)γ4

)
γµ

}2
ϕ = 0,

where functions ρµ(ω), gµ(ω), hµ(ω) are determined by (2.3.5).
Provided reduced equations (2.3.3), (2.3.5) possess nontrivial symmetry,

their dimension can also be decreased with the use of Theorem 1.5.1. But
direct application of the infinitesimal Lie method to investigation of the sym-
metry of systems of PDEs with variable coefficients (2.3.3), (2.3.5) is, in many
cases, impossible without applying symbolic computation packages [108, 109,
202, 252] (for multi-component systems of PDEs with n > 2 independent
variables these packages are also of little help).

In the papers [152, 155] we suggested a purely algebraic method of in-
vestigation of invariance properties of reduced equations. It is based on the
following assertion.

Theorem 2.3.1. Let G be a Lie invariance group of some PDE and H be a
normal divisor in G. Then an equation obtained via reduction with the help
of an H-invariant Ansatz admits the group G/H (here the symbol / means
factorization).

Proof can be found in [236]. ¤

We use an equivalent formulation of the above theorem: if there is a PDE
admitting a Lie algebra AG whose subalgebra Q is an ideal in AG, then an
equation obtained by reduction with the help of a Q-invariant Ansatz is invari-
ant under the Lie algebra AG/Q.

To apply Theorem 2.3.1 to algebras (2.2.2), (2.2.7) we have have to select
the maximal subalgebras of the algebra AP (1, 3) such that algebras (2.2.2),
(2.2.7) are ideals in these.

From the general theory of Lie algebras (see, e.g. [19, 194, 236]) it follows
that the algebra AG̃ = 〈Q1, . . . , QN 〉 is an ideal in the Lie algebra AG = 〈Σ1,
Σ2, . . ., ΣM 〉, M ≥ N iff

[Qi, Σj ] = λk
ijQk, λk

ij = const, (2.3.8)

the summation over repeated indices being implied.
Given an explicit form of the elements Qi, we compute with the aid of

(2.3.8) the maximal subalgebra of the algebra AG such that the algebra AG̃
is an ideal in it. Next, we compute a factor-algebra whose basis elements
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according to Theorem 2.5.1 generate an invariance group of the corresponding
reduced equation.

The above scheme will be realized for the algebra A5 from (2.2.2). Sub-
stituting Q = P0 into (2.3.8) and putting N = 1 we arrive at the following
relations for Σj = θµν

j Jµν + θµ
j Pµ:

[P0, θµν
j Jµν + θµ

j Pµ] = λjP0, j = 1, . . . ,M. (2.3.9)

Computing the commutators and equating coefficients of the linearly-in-
dependent operators Pµ, Jµν yield the system of linear algebraic equations for
constants θµν

j , θµ
j

θ0a
j = θa0

j = 0, a = 1, 2, 3,

θab
j , θµ

j are arbitrary real constants.
Consequently, the basis of a maximal subalgebra of the algebra AP (1, 3)

containing the algebra A5 = 〈P0〉 as an ideal consists of the operators

Pµ, J12, J23, J31. (2.3.10)

The basis of the factor-algebra 〈Pµ, Jab〉 /〈P0〉 is formed by those operators
from (2.3.10) which are linearly independent of P0. As a result, we come to
the Lie algebra

Ã5 = 〈P1, P2, P3, J12, J23, J31〉 (2.3.11)

which, according to Theorem 2.3.1, is the invariance algebra of the system 5
from (2.3.3). The explicit form of symmetry operators is obtained by passing
from the ”old ” variables x, ψ(x) to the ”new” ones ω, ϕ(ω) according to
formula (2.2.3).

Below we write down the invariance algebras of equations (2.3.3)

Ã1 = 〈−ω2∂ω3 + ω3∂ω2 + (1/2)γ1γ2, ∂ω2 , ∂ω3〉,
Ã2 = 〈ω3∂ω1 + ω1∂ω3 − (1/2)γ0γ3, ∂ω1 , ∂ω3〉, Ã3 = 〈∂ω3〉,
Ã4 = 〈2ω1ω3∂ω2 + ω1∂ω3 − (1/2)(γ0 + γ3)γ1,−ω1∂ω1 + (1/2)γ0γ3,

ω1∂ω2 , ∂ω3〉,
Ã5 = 〈−ω1∂ω2 + ω2∂ω1 + (1/2)γ1γ2, −ω2∂ω3 + ω3∂ω2 + (1/2)γ2γ3,

− ω3∂ω1 + ω1∂ω3 + (1/2)γ3γ1, ∂ω1 , ∂ω2 , ∂ω3〉,
Ã6 = 〈ω1∂ω2 + ω2∂ω1 − (1/2)γ0γ1, ω1∂ω3 + ω3∂ω1 − (1/2)γ0γ2,

− ω2∂ω3 + ω3∂ω2 + (1/2)γ1γ2, ∂ω1 , ∂ω2 , ∂ω3〉, (2.3.12)
Ã7 = 〈ω1∂ω2 − (1/2)(γ0 + γ3)γ1, ω1∂ω3 − (1/2)(γ0 + γ3)γ2, −ω1∂ω1
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+ (1/2)γ0γ3, −ω2∂ω3 + ω3∂ω2 + (1/2)γ1γ2, ∂ω1 , ∂ω2 , ∂ω3〉,
Ã8 = 〈∂ω2 , ∂ω3〉, Ã9 = 〈∂ω1 , ∂ω3〉, Ã10 = 〈∂ω1 , ∂ω3〉,
Ã11 = 〈∂ω1 , ∂ω3〉, Ã12 = 〈∂ω2 , ∂ω3〉,
Ã13 = 〈2αω1∂ω3 − (γ0 + γ3)γ1, 2ω3∂ω2 + (ω2

1 − α2)∂ω3

+ (1/2α)(γ0 + γ3)(αγ2 − γ1ω1), ω1∂ω2〉.
The invariance algebras of systems of ODEs listed in (2.3.5) are obtained

in a similar way

Ã1 = 〈∂ω, γ0γ1, γ0γ2, γ1γ2〉, Ã2 = 〈∂ω, γ1γ2, γ2γ3, γ3γ1〉,
Ã3 = 〈γ1(γ0 + γ3), γ2(γ0 + γ3), γ1γ2, ω∂ω − (1/2)γ0γ3, ∂ω〉,
Ã4 = 〈γ1γ2〉, Ã5 = 〈∂ω〉, Ã6 = 〈∂ω, γ0γ3〉, Ã7 = 〈2α∂ω − γ0γ3〉,
Ã8 = 〈γ0γ3〉, Ã9 = 〈∂ω, γ1γ2〉, Ã10 = 〈∂ω, γ1γ2〉, Ã11 = 〈∂ω, γ1γ2〉,
Ã12 = 〈γ2(γ0 + γ3), ω−1γ1(γ0 + γ3), ω∂ω − (1/2)γ0γ3〉,
Ã13 = 〈(γ1 + αγ2)(γ0 + γ3), ω−1γ1(γ0 + γ3), ω∂ω − (1/2)γ0γ3〉,
Ã14 = 〈γ1(γ0 + γ3), γ2(γ0 + γ3), ∂ω〉, Ã15 = 〈∂ω, γ2(γ0 + γ3)〉,
Ã16 = 〈∂ω〉, Ã17 = 〈γ0γ3〉, Ã18 = 〈γ1γ2〉, Ã19 = ®, (2.3.13)
Ã20 = 〈ω∂ω − (1/2)γ0γ3, ω−1γ1(γ0 + γ3), ω−1γ2(γ0 + γ3), γ1γ2〉,
Ã21 = 〈[ω(ω + β)− α]−1(γ0 + γ3)[(ω + β)γ1 − γ2], [ω(ω + β)

− α]−1(γ0 + γ3)(ωγ2 − αγ1)〉,
Ã22 = 〈ω−1γ1(γ0 + γ3), [ω(ω + β)− α]−1(γ0 + γ3)(ωγ2 − γ1)〉,
Ã23 = 〈ω−1γ1(γ0 + γ3), (ω + 1)−1γ2(γ0 + γ3)〉, Ã24 = 〈γ1γ2〉,
Ã25 = 〈∂ω, γ1(γ0 + γ3)〉, Ã26 = 〈γ1γ2〉, Ã27 = 〈γ1γ2〉.

It is worth noting that any Poincaré-invariant spinor PDE after being
reduced by means of the P (1, 3)-invariant Ansätze (2.2.3), (2.2.2) is invariant
under Lie algebras (2.3.12), (2.3.13). But for the specific reduced equations
these algebras are not, generally speaking, the maximal ones. We will consider
in more detail symmetry properties of the systems 5–7 from (2.3.3).

By the Lie method we can prove the following assertions.

Theorem 2.3.2. Equation 5 from (2.3.3) is invariant under the conformal
group C(3) iff

fj = (ψ̄ψ)1/2f̃j

(
ψ̄ψ(ψ̄γ4ψ)−1

)
, j = 1, 2. (2.3.14)

Theorem 2.3.3. Equation 6 from (2.3.3) is invariant under the conformal
group C(1, 2) iff (2.3.14) holds.
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Theorem 2.3.4. Equation 7 from (2.3.3) admits an infinite-parameter in-
variance group with the following generators:

a) with arbitrary f1, f2

Q1 = ∂ω1 , Q2 = −ω2∂ω3 + ω3∂ω2 + (1/2)γ1γ2,

Q3 = w1∂ω2 + w2∂ω3 + (1/2)(ẇ1γ1 + ẇ2γ2)(γ0 + γ3), (2.3.15)
Q4 = ω1∂ω1 − (1/2)γ0γ3;

b) with f1 = f1(ψ̄ψ), f2 = 0

Q1 = ∂ω1 , Q2 = −ω2∂ω3 + ω3∂ω2 + (1/2)γ1γ2,

Q3 = w1∂ω2 + w2∂ω3 + (1/2)(ẇ1γ1 + ẇ2γ2)(γ0 + γ3),
Q4 = w3γ4(γ0 + γ3), Q5 = ω1∂ω1 − (1/2)γ0γ3;

c) with fi = (ψ̄ψ)1/2kf̃i

(
ψ̄ψ(ψ̄γ4ψ)−1

)
, i = 1, 2

Q1 = ∂ω1 , Q2 = −ω2∂ω3 + ω3∂ω2 + (1/2)γ1γ2,

Q3 = w1∂ω2 + w2∂ω3 + (1/2)(ẇ1γ1 + ẇ2γ2)(γ0 + γ3),
Q4 = ωa∂ωa + k, Q5 = ω1∂ω1 − (1/2)γ0γ3;

d) with fi = (ψ̄ψ)1/2f̃i

(
ψ̄ψ(ψ̄γ4ψ)−1

)
, i = 1, 2

Q1 = w1∂ω2 + w2∂ω3 + (1/2)(ẇ1γ1 + ẇ2γ2)(γ0 + γ3),
Q2 = −ω2∂ω3 + ω3∂ω2 + (1/2)γ1γ2,

Q3 = w0∂ω1 + ẇ0(ω2∂ω2 + ω3∂ω3) + ẇ0 + (1/2)ẅ0

×(γ1ω2 + γ2ω3)(γ0 + γ3), Q4 = ω1∂ω1 − (1/2)γ0γ3.

Here wµ = wµ(ω1) are arbitrary smooth real-valued functions, an overdot
means differentiation with respect to ω1.

Consequently, the invariance algebras of PDEs 5–7 from (2.3.3) are sub-
stantially wider than the algebras Ã5 − Ã7 adduced in (2.3.12).

Using the above results we have constructed the Ansätze for field ψ(x)
reducing PDE (2.3.1) with f1 = f1(ψ̄ψ), f2 = 0 which cannot be obtained
within the framework of the Lie approach:

1) f1 ∈ C(R1,R1) is an arbitrary function

ψ(x) = exp{w3γ4(γ0 + γ3)− (1/2)(ẇ1γ1 + ẇ2γ2)(γ0 + γ3)}

×





ϕ(x1 + w1),
exp{−(1/2)γ1γ2 arctan[(x1 + w1)(x2 + w2)−1]}
×ϕ [(x1 + w1)2 + (x2 + w2)2];
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2) f1 = λ(ψ̄ψ)1/2, λ ∈ R1

ψ(x) = w−1
0 exp {w3γ4(γ0 + γ3)− (1/2)(ẇ1γ1 + ẇ2γ2)(γ0 + γ3)
−(ẇ0/2w0)[γ1(x1 + w1) + γ2(x2 + w2)](γ0 + γ3)} (2.3.16)

×





ϕ [w−1
0 (x1 + w1)],

exp{−(1/2) arctan[(x1 + w1)(x2 + w2)−1]}
×ϕ [(x1 + w1)2w−2

0 + (x2 + w2)2w−2
0 ];

ψ(x) = (γ0x0 − γ1x1 − γ2x2)(x2
0 − x2

1 − x2
2)
−3/2

×





ϕ [x0(x2
0 − x2

1 − x2
2)
−1],

ϕ [x1(x2
0 − x2

1 − x2
2)
−1],

exp{−(1/2) arctan(x1/x2)}
×ϕ [(x2

1 + x2
2)(x

2
0 − x2

1 − x2
2)
−2];

ψ(x) = (γ1x1 + γ2x2 + γ3x3)(x2
1 + x2

2 + x2
3)
−3/2

×





ϕ [x1(x2
1 + x2

2 + x2
3)
−1],

exp{−(1/2)γ1γ2 arctan(x1/x2)}
×ϕ [(x2

1 + x2
2)(x

2
1 + x2

2 + x2
3)
−2].

In (2.3.16) w0, . . . , w3 are arbitrary smooth functions of x0 +x3; ϕ = ϕ (ω)
are unknown four-component functions.

Substitution of Ansätze (2.3.16) into PDE (2.3.1) with corresponding f1, f2

gives rise to the following systems of ODEs:

iγ1ϕ̇ = f1(ϕ̄ϕ)ϕ,

(i/2)ω−1/2γ2ϕ + 2iω1/2γ2ϕ̇ = f1(ϕ̄ϕ)ϕ,

iγ1ϕ̇ = λ(ϕ̄ϕ)1/2ϕ,

(i/2)ω−1/2γ2ϕ + 2iω1/2γ2ϕ̇ = λ(ϕ̄ϕ)1/2ϕ,

iγ0ϕ̇ = −λ(ϕ̄ϕ)1/2ϕ, (2.3.17)
iγ1ϕ̇ = −λ(ϕ̄ϕ)1/2ϕ,

(i/2)ω−1/2γ2ϕ + 2iω1/2γ2ϕ̇ = −λ(ϕ̄ϕ)1/2ϕ,

iγ1ϕ̇ = −λ(ϕ̄ϕ)1/2ϕ,

(i/2)ω−1/2γ2ϕ + 2iω1/2γ2ϕ̇ = −λ(ϕ̄ϕ)1/2ϕ.

From Theorem 2.3.4 it follows that the Dirac equation (1.1.1) is conditi-
onally-invariant under an infinite-parameter Lie group. As established in [152,
155] a broad class of Poincaré-invariant equations (the Bhabha-type equations)

(iβs∂s −m)Ψ(x) = 0, m = const (2.3.18)
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possess such a property.
In (2.3.18) Ψ = (Ψ1, Ψ2, . . . ,Ψn)T ; x = (x0, x1, . . . , xN ), N ≥ 2; β0, β1, . . . ,

βN are (n× n)-matrices satisfying the conditions

[βs, Sτρ] = (gsτβρ − gsρβτ ), (2.3.19)

where Sτρ = (βτβρ − βρβτ ), gsτ = diag (1,−1,−1, . . . ,−1).
It is well-known that the Bhabha equation is invariant under the Poincaré

group P (1, N) having the generators [30]

Pτ = gτρ∂xρ , Jτρ = xτPρ − xρPτ + Sτρ.

Imposing an additional condition (∂x0 − ∂xN )Ψ(x) = 0 on Ψ(x) we get the
following system of PDEs for Ψ(ω) = Ψ(x0 + xN , x1, . . . , xN−1):

{
i(β0 + βN )∂ω0 +

N−1∑

j=1

βj∂ωj −m

}
Ψ(ω) = 0. (2.3.20)

Theorem 2.3.5. Equation (2.3.20) is invariant under the infinite-parameter
Lie group having the generators

Q1 = ∂ω0 , Qjk = −ωj∂ωk
+ ωk∂ωj + Sjk,

Q2 =
N−1∑
k=1

{Wk(ω0)∂ωk
− Ẇk(ω0)(S0k − SkN )},

(2.3.21)

where W1, W2, . . . , WN−1 are arbitrary smooth functions, Ẇk = dWk/dω0, j,
k = 1, . . . , N − 1.

Proof. It is evident that the operators Q1, Qjk belong to the invariance
algebra of equation (2.3.20). Let us prove that the operator Q2 commutes
with the operator of equation (2.3.21)

L = i(β0 + βN )∂ω0 + i
N−1∑

j=1

βj∂ωj −m.

Computing the commutator [L, Q] we have

[L, Q] = i
N−1∑

k=1

{
−Ẅk(β0 + βN )(S0k − SkN )

−Ẇk[β0 + βN , S0k − SkN ]∂ω0

}
.
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Resulting from relations (2.3.19), the equalities

[β0 + βN , S0k − SkN ] = 0,
(β0 + βN )(S0k − SkN ) = (β0 + βN )(β0βk − βkβ0 − βkβN

+βNβk) = (β0β0βk − β0βkβ0) + (βNβNβk − βNβkβN )
+(β0βNβk − βNβkβ0) + (βNβ0βk − β0βkβN )
= βk − βk = 0, k = 1, . . . , N − 1

hold, whence it follows that [L,Q] = 0. The theorem is proved. ¤

P̃ (1, 3)-invariant Ansätze for the spinor field ψ = ψ(x) (2.2.8) obtained in
the previous section reduce a P̃ (1, 3)-invariant spinor equation

iγµ∂µψ − (ψ̄ψ)1/2k
{
f̃1

(
ψ̄ψ(ψ̄γ4ψ)−1

)
+ f̃2

(
ψ̄ψ(ψ̄γ4ψ)−1

)
γ4

}
ψ = 0

to systems of ODEs of the form

1) 2iγ3ϕ̇ + (i/4)(γ0 + γ3)(γ0γ3 − 2k)ϕ = R,

2) i(γ0 − 2γ2 − γ3)ϕ̇ + (i/2)γ2(γ0γ3 − 2k)ϕ = R,

3) 2iγ3ϕ̇ + (i/4α)(γ0 + γ3)(αγ0γ3 − γ1γ2 − 2kα)ϕ = R,

4) (i/2)(γ0 − γ3 − 2γ1 + 2αγ2)ϕ̇ + (i/2)(1− 2k + γ0γ3)ϕ = R,

5) (i/2)(γ0 − γ3 + 2γ2)ϕ̇ + (i/2)γ1(1− 2k + γ0γ3)ϕ = R,

6) iω(4ωγ1 + γ2)ϕ̇ + (1/4)γ2(γ0γ3 − 4k)ϕ = R,

7) −iω
(
12γ1 + ω1/2(15γ0 + 9γ3)

)
ϕ̇− iγ1(γ0γ3 − 4k)ϕ = R,

8) i(γ0 − γ3)ϕ̇ + (i/2ω)
(
γ0 − γ3 + (γ1 − ωγ2)

×(γ0γ3 − 2k)
)
ϕ = R,

9) 2iγ0ϕ̇ + (i/4)(γ0 − γ3)(2− 2k − γ0γ3)ϕ = R,

10) i(γ0 − γ3)ϕ̇ + (i/2)(γ0 − γ3)
(
ω−1 + (ω + 1)−1

)
ϕ + (i/4)

×
(
(γ0 + γ3)(1 + ω) + (γ0 − γ3)(1 + ω)−1

)
(γ0γ3 − 2k)ϕ = R,

11) 2iγ0ϕ̇ + (i/4)(γ0 − γ3)(4− 2k − γ0γ3)ϕ = R,

12) 2iγ0ϕ̇ + (i/4α)(γ0 − γ3)
(
(4− 2k)α− αγ0γ3 + γ1γ2

)
ϕ = R,

13) i(αγ2 − γ1)ϕ̇ + (i/2)(1− 2k)γ1ϕ = R,

14) i(γ0 − γ3ω)ϕ̇ + (i/2α)γ3(γ1γ2 − 2kα)ϕ = R,

15) i(γ1 − γ2ω)ϕ̇− (i/2α)γ2(2kα + γ0γ3)ϕ = R,
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16) (i/α)
(
α(γ0 − γ3)− (α + 1)ωγ2

)
ϕ̇− (i/2α)γ2(2kα + γ0γ3)ϕ = R,

17) iω2(γ0 + αγ3)ϕ̇ + (i/2α)ω(γ0 + 2kαγ3)ϕ = R,

18) i(βγ2 − γ1)ϕ̇ + (i/2β)γ1

(
(1− 2k)β − αγ0γ3

)
ϕ = R,

19) iω(α+1)/α(αγ0 + βγ3)ϕ̇ + (i/2α)ω1/αγ3(αγ0γ3 − γ1γ2

+2βk)ϕ = R,

20) i(γ0 − γ3 + αγ1)ϕ̇ + (i/2)(1− 2k)(γ0 − γ3)ϕ = R,

21) i(γ0 − γ3 − ωγ2)ϕ̇− ikγ2ϕ = R,

22) (i/α)
(
α(γ2 − βγ1) + β(γ3 − γ0)

)
ϕ̇− (i/2β)(γ0 − γ3)(2kβ + γ1γ2)ϕ

= R,

23) i(αγ1 + βγ2 + γ0 − γ3)ϕ̇ + (i/ω)(γ0 − γ3)ϕ = R,

24) (i/α)
(
α(γ0 − γ3)− (α + 1)ωγ2

)
ϕ̇ + (i/2ω)(γ0 − γ3)ϕ

−(i/2α)γ2(γ0γ3 + 2kα)ϕ = R,

25) (i/2α)
(
(α− 1)(γ0 − γ3)− (α + 1)ω2(γ0 + γ3)

)
ϕ̇ + (i/2ω)(γ0 − γ3)ϕ

−(i/4αω)
(
(γ0 − γ3) + (γ0 + γ3)ω2

)
(γ0γ3 + 2kα)ϕ = R,

26) i
(
(β + 1)γ1 − β(γ0 − γ3)− αγ2

)
ϕ̇ + (i/2)γ1(1− 2k + γ0γ3)ϕ

+(i/2)(γ0 − γ3)ϕ = R, (2.3.22)

27) (i/2)(1− ω)−1(ω−1/2γ0 − γ2)ϕ̇ + i
(
(1/2)(ω−1/2γ0 + γ2)

+k(ω − 1)−1(ω1/2γ0 − γ1)
)
ϕ = R(ω − 1)−1/2,

28) i(γ1 − ωγ2)ϕ̇− ik(ω2 + 1)−1(ωγ1 + γ2)ϕ = R(ω2 + 1)−1/2,

29) (iγ0 − ωγ3)ϕ̇− ik(ω2 − 1)−1(ωγ0 − γ3) = R(ω2 − 1)−1/2,

30) i
(
γ2 − ω(γ0 − γ3)

)
ϕ̇− ik(γ0 − γ3)ϕ = R,

31) i(ωγ1 − ω2γ3)ϕ̇ + (i/2)(1− 2k)γ1ϕ = R,

32) i(ωγ1 − ω2γ0)ϕ̇ + (i/2)(1− 2k)γ1ϕ = R,

33) i
(
ωγ1 − ω2(γ0 − γ3)

)
ϕ̇ + (i/2)(1− 2k)γ1ϕ = R,

34) i(ωγ0 − ω2γ2

)
ϕ̇ + (i/2)(1− 2k)γ1ϕ = R,

35) i(γ2 − ωγ1)ϕ̇ + (i/2)(γ0 − γ3 + γ2γ4 − 2kγ1)ϕ = R,

36) i(γ1 + αγ2 − γ0 + γ3)ϕ̇ + (i/2)
(
γ0 − γ3 + γ2γ4 + (1− 2k)γ1

)
ϕ = R,

37) i
(
γ2 − ω(γ0 − γ3)

)
ϕ̇ + (i/2)(1− 2k)(γ0 − γ3)ϕ = R,
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38) i
(
γ0 + γ3 − ω(γ0 − γ3)

)
ϕ̇ + (i/2)(1− 2k)(γ0 − γ3)ϕ = R,

39) i
(
γ0 + γ3 − ω(γ0 − γ3)

)
ϕ̇ + i(1− k)(γ0 − γ3)ϕ = R,

40) i
(
ω(γ0 − 2γ2 − γ3) + γ0 + γ3

)
ϕ̇ + (i/2)

(
2(γ0 − γ3)− γ1γ4 − 2kγ2

)
ϕ

= R,

41) i
(
(1− ω)(γ0 − γ3) + γ2

)
ϕ̇ + (i/2)(1− 2k)(γ0 − γ3)ϕ = R,

42) iω
(
(1− α)ω1/2α(γ0 − γ3) + (1 + α)ω−1/2α(γ0 + γ3)

)
ϕ̇

+(i/4α)
[(

1 + 2α(2− k)
)
ω1/2α(γ0 − γ3)− (1 + 2kα)ω−1/2α

×(γ0 + γ3)
]
ϕ = R,

43) i
(
γ0 + γ3 − ω(γ0 − γ3)

)
ϕ̇ + (i/2α)

(
2α(1− k) + γ4

)
(γ0 − γ3)ϕ = R,

44) iω
(
(α− β)ω1/2β(γ0 − γ3) + (α + β)ω−1/2β(γ0 + γ3)

)
ϕ̇

+(i/4β)
[(

α + 4β(1− k)− γ4

)
ω1/2β(γ0 − γ3)

−(α + 4kβ − γ4)ω−1/2β(γ0 + γ3)
]
ϕ = R,

where R = (ϕ̄ϕ)1/2k{f̃1(ϕ̄ϕ(ϕ̄γ4ϕ)−1) + f̃2(ϕ̄ϕ(ϕ̄γ4ϕ)−1)γ4}ϕ.
At last, Ansätze (2.2.29) invariant under C(1, 3) non-conjugate three-

dimensional subalgebras of the algebra AC(1, 3) listed in (2.2.29) after being
substituted into a conformally-invariant spinor equation

iγµ∂µψ − (ψ̄ψ)1/3
{
f̃1

(
ψ̄ψ(ψ̄γ4ψ)−1

)
+ f̃2

(
ψ̄ψ(ψ̄γ4ψ)−1

)
γ4

}
ψ = 0

give rise to the following systems of ODEs for ϕ = ϕ(ω) :

1) i
(
−(3/4)(ω2 + 4)(γ0 − γ3) + γ0 + γ3 + ωγ1 + 2γ2

)
ϕ̇

+i
(
γ1 − ω(γ0 − γ3) + (1/2)γ1γ2(γ0 − γ3)

)
ϕ = R,

2) i
(
γ1 cosω − γ2 sinω − α(γ0 − γ3)

)
ϕ̇− (i/2)(3− γ0γ3)

×(γ1 sinω + γ2 cosω)ϕ− (iα/2)(γ0 − γ3)γ1γ2ϕ = R,

3) i(γ2 − γ0 + γ3)ϕ̇ = R,

4) i
(
γ1 + α(γ0 − γ3)e−ω

)
ϕ̇ + 2iγ1ϕ = Reω/3,

5) i
(
γ1 + αγ2 − β(γ0 − γ3)eω

)
ϕ̇− (i/2)

(
3γ1 (2.3.23)

+2αγ2(1 + γ0γ3)
)
ϕ = Re−ω/3,
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6) i(ω2γ2 − ωγ1)ϕ̇− iω(1 + ω2)−1γ2(1 + γ0γ3)ϕ + (i/2)(ω2 + 3)
×(ω2 + 1)−1γ1ϕ− (i/2)(3ω2 + 1)(ω2 + 1)−1γ2γ4ϕ = R,

7) i
(
(ω2 + 1)1/4(γ0 + γ3) + (ω2 + 1)−1/4(γ0 − γ3)− 2ωγ2

)
ϕ̇

+i
(
ω(ω2 + 1)−3/4(γ0 + γ3)− (ω2 + 1)−1(1 + γ0γ3)γ2

−(3/2)γ2

)
ϕ = R(ω2 + 1)1/4,

8) 2iωγ2ϕ̇− (3i/2)γ2ϕ = Rω−1/6,

9) −iγ1ϕ̇ = R,

10) −2iω(ω − 4)γ2ϕ̇− i
(
(1/2)ω1/2(ω − 4)1/2 + ω − 2

)
γ2ϕ

= Rω1/2(ω − 4)1/2
(
(1/2)

[
ω1/2 + (ω − 4)1/2

])1/3
,

where R = (ϕ̄ϕ)1/3
{
f̃1

(
ϕ̄ϕ(ϕ̄γ4ϕ)−1

)
+ f̃2

(
ϕ̄ϕ(γ4ϕ)−1

)
γ4

}
ϕ.

2.4. Exact solutions of nonlinear spinor equations

Using the results obtained in Sections 2.2, 2.3 we will construct in explicit
form multi-parameter families of exact solutions of the following systems of
nonlinear PDEs:

{iγµ∂µ − λ(ψ̄ψ)1/2k}ψ = 0, (2.4.1)

{iγµ∂µ −m− λ(ψ̄ψ)k}ψ = 0, (2.4.2)

which are obtained from (2.3.1) by putting f1 = λ(ψ̄ψ)1/2k, f2 = 0 and
f1 = m + λ(ψ̄ψ)k, f2 = 0, respectively.

In (2.4.1), (2.4.2) m, λ, k are real constants, m 6= 0, k 6= 0.
Equation (2.4.1) with k = 1/2 was considered by Heisenberg [180]–[74] (see

also [184]) and equation (2.4.2) with k = 1 was suggested by Ivanenko as a
possible basic model for the unified field theory [192].

According to Theorem 1.2.1 equations (2.4.1), (2.4.2) are invariant under
the Poincaré group. In addition, system of PDEs (2.4.1) admits the one-
parameter group of scale transformations (1.1.28).

To reduce equations (2.4.1), (2.4.2) we apply P (1, 3)-, P̃ (1, 3)- and C(1, 3)-
invariant Ansätze constructed in Section 2.2.
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1. Poincaré-invariant solutions of system of PDEs (2.4.1).
1.1. Integration of reduced ODEs. Substitution of the P (1, 3)-invariant Ansätze
(2.2.8) into (2.4.1) gives rise to systems of ODEs (2.3.5) with R = −iλ(ϕ̄ϕ)1/2k

×ϕ. When integrating these we will use essentially the following assertions.

Lemma 2.4.1. Solutions of equations 3, 12–14, 20–23 from (2.3.5) satisfy the
relation ϕ̄ϕ = 0.

Proof. Multiplication of the ODE 3 from (2.3.5) by the matrix γ0 + γ3 on
the left yields the following consistency condition:

−iλ(ϕ̄ϕ)1/2k(γ0 + γ3)ϕ = 0,

whence ϕ̄ϕ = 0 or (γ0 + γ3)ϕ = 0. The general solution of the algebraic
equation (γ0 + γ3)ϕ = 0 is represented in the form

ϕ = (γ0 + γ3)ϕ1,

where ϕ1 is an arbitrary four-component function-column.
Since ϕ̄ = {ϕ1(γ0 + γ3)}†γ0 = ϕ̄1(γ0 + γ4), an identity ϕ̄ϕ = ϕ̄1(γ0 +

γ4)2ϕ1 = 0 holds. Other equations are treated in the same way. ¤

Lemma 2.4.2. The quantity ϕ̄ϕ is the first integral of systems of ODEs 1, 2,
5, 15, 16, 25 from (2.3.5).

We prove the assertion for the system 1. Multiplying it by −γ3 yields

ϕ̇ = iλ(ϕ̄ϕ)1/2kγ3ϕ. (2.4.3)

The conjugate spinor satisfies the following equation:

˙̄ϕ = −iλ(ϕ̄ϕ)1/2kϕ̄γ3. (2.4.4)

Multiplying (2.4.3) by ϕ̄ on the left, (2.4.4) by ϕ on the right and summing
the expressions obtained we arrive at the relation

˙̄ϕϕ + ϕ̄ϕ̇ = 0,

whence d(ϕ̄ϕ)/dω = ˙̄ϕϕ + ϕ̄ϕ̇ = 0. The lemma is proved. ¤

Due to Lemma 2.4.1 we conclude that the Ansätze numbered by 3, 12–14,
20–23 give rise to the solutions of equation (2.4.1) which satisfy the condition
ψ̄ψ = ϕ̄ϕ = 0. Consequently, a factor λ(ψ̄ψ)1/2k determining the nonlinear
self-coupling of the spinor field ψ(x) vanishes. Such solutions are of low interest
and are not considered here.
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According to Lemma 2.4.2 the system of ODEs 1 from (2.3.5) is equivalent
to the linear equation

ϕ̇ = iλC1/2kγ3ϕ (2.4.5)

with a nonlinear additional constraint

ϕ̄ϕ = C = const. (2.4.6)

Integrating ODE (2.4.5) we get

ϕ(ω) = exp{iλC1/2kγ3ω}χ, ϕ̄(ω) = χ̄ exp{−iλC1/2kγ3ω}. (2.4.7)

Hereafter χ is an arbitrary constant four-component column.
Substitution of expressions (2.4.7) into (2.4.6) yields

χ̄ exp{−iλC1/2kγ3ω} exp{iλC1/2kγ3ω}χ = C,

whence χ̄χ = C. Thus, the general solution of the system of nonlinear ODEs
1 from (2.3.5) is given by the formula

ϕ(ω) = exp{iλ(χ̄χ)1/2kγ3ω}χ.

The general solutions of equations 2, 5, 15, 16, 25 are constructed in the
same way. As a result, we have

ϕ(ω) = exp{−iλ(χ̄χ)1/2kγ0ω}χ,

ϕ(ω) = exp{iγ2

(
(χ̄χ)1/2k − (i/2)(γ0 + γ3)

)
ω}χ,

ϕ(ω) = exp{(iλ/2)(χ̄χ)1/2kγ1ω}χ, (2.4.8)
ϕ(ω) = exp{(iλ/2)(1 + α2)−1(χ̄χ)1/2k(γ2 − αγ1)ω}χ,

ϕ(ω) = exp
{[

γ2(γ0 + γ3) + iλ(χ̄χ)1/2k
(
γ2 − β(γ0 + γ3)

)]
ω

}
χ.

To integrate systems of ODEs 6, 9–11 from (2.3.5) we will use their sym-
metry properties. As established in Section 2.3 the equation 6 is invariant
under the Lie algebra with the basis elements ∂ω, γ0γ3. We seek for a solu-
tion which is invariant under the one-dimensional subalgebra of this algebra
〈∂ω − θγ0γ3〉, θ ∈ R1.

In other words, a four-component function ϕ = ϕ(ω) has to satisfy the
additional constraint

Qϕ = (∂ω − θγ0γ3)ϕ = 0.
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The general solution of the above equation reads

ϕ(ω) = exp{θγ0γ3ω}χ′, (2.4.9)

where χ′ is an arbitrary constant four-component column. Substituting (2.4.9)
into the system of ODEs 6 from (2.3.5) we have

(
θγ1γ0γ3 − (1/2α)γ1γ4

)
exp{θγ0γ3ω}χ′ = −iλτ exp{θγ0γ3ω}χ′,

where τ = (χ̄′χ′)1/2k.
Multiplying both parts of the above equality by exp{−θγ0γ3ω} on the left

we arrive at the system of algebraic equations for χ′
{(

θγ2 − (1/2α)γ1

)
γ4 + iλτ

}
χ′ = 0. (2.4.10)

Consequently, substitution (2.4.9) reduces the system 6 to algebraic equa-
tions (2.4.10). Making in (2.4.10) the transformation

χ′ =
(
[θγ2 − (1/2α)γ1]γ4 − iλτ

)
χ

yields
[λ2τ2 − θ2 − (2α)−2]χ = 0.

As χ 6= 0, the equality

θ = (ε/2α)(4λ2τ2α2 − 1)1/2, ε = ±1 (2.4.11)

has to be satisfied.
The condition τ = (χ̄′χ′)1/2k gives rise to the nonlinear algebraic equation

for τ

τ2k = 2λ2τ2(χ̄χ) + 2iλτθ(χ̄γ2γ4χ)− iλτα−1(χ̄γ1γ4χ). (2.4.12)

Thus, we have constructed a particular solution of the system of ODEs 6
from (2.3.5)

ϕ(ω) = exp{θγ0γ3ω}
(
[θγ2 − (1/2α)γ1]γ4 − iλτ

)
χ,

where θ, τ are determined by (2.4.11), (2.4.12).
Particular solutions of systems of ODEs 9–11 from (2.3.5) are obtained in

an analogous way

ϕ(ω) = exp{θγ1γ2ω}
(
[θγ0 − (1/2α)γ3]γ4 − iλτ

)
χ, (2.4.13)
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parameters θ, τ being defined by the formulae

τ2k = 2λ2τ2(χ̄χ) + 2iλτθ(χ̄γ0γ4χ)− iλτα−1(χ̄γ3γ4χ),

θ = (ε/2α)(1− 4α2λ2τ2)1/2;
(2.4.14)

ϕ(ω) = exp{θγ1γ2ω}
(
[θγ3 + (1/2α)γ0]γ4 − iλτ

)
χ, (2.4.15)

parameters θ, τ being defined by the formulae

τ2k = 2λ2τ2(χ̄χ) + 2iλτθ(χ̄γ3γ4χ) + iλτα−1(χ̄γ0γ4χ),

θ = (ε/2α)(1 + 4α2λ2θ2)1/2;
(2.4.16)

ϕ(ω) = exp{θγ1γ2ω}
(
4θ(γ0 + γ3)γ4 + (γ0 − γ3)γ4 − 4iλτ

)
χ, (2.4.17)

parameters θ, τ being defined by the formulae

τ2k = 32λ2τ2(χ̄χ)− 8iλτ [χ̄(γ0 − γ3)χ]
−32iλ3τ3[χ̄(γ0 + γ3)γ4χ], θ = −λ2τ2.

(2.4.18)

Equation 8 from (2.3.5) by virtue of the change of variables

ϕ(ω) = ω−1/4φ(ω),

where φ(ω) is a new unknown four-component function, is reduced to the
following system of ODEs:

2iω1/2γ2φ̇ = λω−1/4k(φ̄φ)1/2kφ.

Multiplying both parts of the above equality by (i/2)γ2ω
−1/2 we come to

the equation
φ̇ = (iλ/2)ω−(1+2k)/4kγ2(φφ)1/2kφ, (2.4.19)

the conjugate spinor satisfying the following equation:

˙̄φ = −(iλ/2)ω−(1+2k)/4kγ2(φ̄φ)1/2kφ. (2.4.20)

Multiplying (2.4.19) by φ̄ on the left, (2.4.20) by φ on the right and sum-
ming the equalities obtained we get

˙̄φφ + φ̄φ̇ = 0,

whence φ̄φ = C = const. Consequently, equation (2.4.19) is equivalent to the
linear ODE

φ̇ = (iλ/2)ω−(2k+1)/4kC1/2kγ2φ (2.4.21)
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which is supplemented by the additional constraint φ̄φ = C.
Integration of (2.4.21) yields

k 6= 1/2, φ(ω) = exp{2iλk(1− 2k)−1C1/2kγ2ω
(2k−1)/4k}χ,

k = 1/2, φ(ω) = exp{(iλ/2)Cγ2 ln ω}.
Since C = φ̄φ = χ̄χ, the general solution of the initial equation 8 is given

by the formulae

k 6= 1/2, ϕ(ω) = ω−1/4 exp{2iλk(1− 2k)−1(χ̄χ)1/2k

×γ2ω
(2k−1)/4k}χ, (2.4.22)

k = 1/2, ϕ(ω) = ω−1/4 exp{(iλ/2)(χ̄χ)γ2 lnω}χ.

To integrate the system of ODEs 19 from (2.3.5) we make the change of
variables ϕ(ω) = ω−1/4φ(ω) transforming it to the form

2ω1/2γ2φ̇ + (1/2)(γ0 + γ3)φ = −iλω−1/4k(φ̄φ)1/2kφ. (2.4.23)

Solutions of the above system of ODEs satisfy the condition φ̄φ = C =
const, whence it follows that equation (2.4.23) is linearized

2ω1/2γ2φ̇ + (1/2)(γ0 + γ3)φ = −iλC1/2kω−1/4kφ. (2.4.24)

A general solution of (2.4.24) is looked for in the form

φ(ω) = {f1(ω) + γ2f2(ω) + (γ0 + γ3)f3(ω)

+γ2(γ0 + γ3)f4(ω)}χ,
(2.4.25)

where fi(ω) are some real-valued scalar functions.
Substituting (2.4.25) into (2.4.24) we arrive at the following system of four

linear ODEs:

2ω1/2ḟ1 = −iλC1/2kω−1/4kf2,

2ω1/2ḟ2 = iλC1/2kω−1/4kf1,

2ω1/2ḟ3 = (1/2)f2 − iλC1/2kω−1/4kf4,

2ω1/2ḟ4 = (1/2)f1 + iλC1/2kω−1/4kf3.

Integration of the above system is carried out by standard methods. As a
result, we have

f1 = cosh f(ω), f2 = i sinh f(ω),
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f3 = (i/4)

{
cosh f(ω)

ω∫
z−1/2 sinh[2f(z)]dz

− sinh f(ω)
ω∫

z−1/2 cosh[2f(z)]dz

}
, (2.4.26)

f4 = (1/4)

{
cosh f(z)

ω∫
z−1/2 cosh[2f(z)]dz

− sinh f(ω)
ω∫

z−1/2 sinh[2f(z)]dz

}
,

where

f(ω) =





(λC/2) lnω, k = 1/2,

2λk(1− 2k)−1C1/2kω(2k−1)/4k, k 6= 1/2.
(2.4.27)

From (2.4.26), (2.4.27) it follows that φ̄φ = χ̄χ, whence we conclude that
C = χ̄χ. Thus, the general solution of the system of ODEs 19 from (2.3.5) is
given by the formula

ϕ(ω) = ω−1/4{f1 + γ2f2 + (γ0 + γ3)f3 + γ2(γ0 + γ3)f4}χ,

functions f1(ω), . . . , f2(ω) being defined by (2.4.26), (2.4.27) with C = χ̄χ.
In addition, we have succeeded in integrating the systems of ODEs num-

bered by 4, 24, 27 (with α = 0). These systems can be written as follows:

(N/2)(γ0 + γ3)ϕ +
(
ω(γ0 + γ3) + γ0 − γ3

)
ϕ̇ = −iλ(ϕ̄ϕ)1/2kϕ,

where cases N = 1, 2, 3 correspond to equations 4, 24, 27 (with α = 0) from
(2.3.5).

Multiplying both parts of the above equality by the matrix ω(γ0 + γ3) +
γ0 − γ3 on the left yields

4ωϕ̇ = −
{
N(1 + γ0γ3) + iλ(ϕ̄ϕ)1/2k

(
ω(γ0 + γ3) + γ0 − γ3

)}
ϕ, (2.4.28)

the equation for the conjugate spinor taking the form

4ω ˙̄ϕ = −ϕ̄
{
N(1− γ0γ3)− iλ(ϕ̄ϕ)1/2k

(
ω(γ0 + γ3) + γ0 − γ3

)}
. (2.4.29)
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Multiplying (2.4.28) by ϕ̄, (2.4.29) by ϕ and summing we arrive at the
relation

ϕ̇ϕ + ϕ̄ϕ̇ = −2Nϕ̄ϕ,

whence it follows that ϕ̄ϕ = Cω−N/2, C = const.
Substitution of the result obtained into (2.4.28) gives rise to a linear equa-

tion for ϕ(ω)

4ωϕ̇ = {−N(1 + γ0γ3) + iτωθ(ω(γ0 + γ3) + γ0 − γ3)}ϕ,

where τ = −λC1/2k, θ = −N/4k.
Writing this equation component-wise (we assume that γ-matrices are of

the form (1.1.8)) we get a system of four ODEs

2ωϕ̇0 = iτωθ+1ϕ2, 2ωϕ̇1 = −Nϕ1 + iτωθϕ3,

2ωϕ̇3 = iτωθ+1ϕ2, 2ωϕ̇2 = −Nϕ2 + iτωθϕ0,
(2.4.30)

which is equivalent to the following second-order system of ODEs:

ω2ϕ̈0 + (1/2)(N − 2θ)ωϕ̇0 + (τ2/4)ω2θ+1ϕ0 = 0,

ω2ϕ̈3 + (1/2)(N − 2θ)ωϕ̇3 + (τ2/4)ω2θ+1ϕ3 = 0,

ϕ1 = −(2i/τ)ω−θϕ̇3, ϕ2 = −(2i/τ)ω−θϕ̇0.

The first two equations of the above system are the Bessel-type equations
[26, 197, 282]. Provided θ 6= −1/2, their general solutions are given by the
formulae

ϕ0 = ω(2+2θ−N)/4
(
χ0Jν(z) + χ2Yν(z)

)
,

ϕ3 = ω(2+2θ−N)/4
(
χ1Yν(z) + χ3Jν(z)

)
,

(2.4.31)

where Jν , Yν are the Bessel functions, z = τ(2θ + 1)−1ω(2θ+1)/2, ν = (θ + 1
−N/2)(1 + 2θ)−1, χ0, . . . , χ3 are arbitrary complex constants. Consequently,
the general solution of system of ODEs (2.4.30) is given by (2.4.31) and by
the following formulae:

ϕ2 = ω(2+2θ−N)/4
{
(i/2τ)(N − 2θ − 2)ω−θ−1

×
(
χ0Jν(z) + χ2Yν(z)

)
− iω−1/2

(
χ0J̇ν(z) + χ2Ẏν(z)

)}
,

ϕ1 = ω(2+2θ−N)/4
{
(i/2τ)(N − 2θ − 2)ω−θ−1

×
(
χ3Jν(z) + χ1Yν(z)

)
− iω−1/2

(
χ3J̇ν(z) + χ1Ẏν(z)

)}
.

(2.4.32)
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Formulae (2.4.31), (2.4.32) determine the general solution of nonlinear
equations (2.4.28), (2.4.29) provided

ϕ̄ϕ = ϕ0∗ϕ2 + ϕ0ϕ2∗ + ϕ3∗ϕ1 + ϕ3ϕ1∗ = Cω−N/2.

Substitution of expressions (2.4.31), (2.4.32) into this formula gives rise to
the following equality:

2i (2θ + 1)(τπ)−1(χ0χ2∗ − χ2χ0∗ + χ3χ1∗

−χ1χ3∗)ω−N/2 = Cω−N/2

(we have used a well-known identity for the Bessel functions Jν(z)Ẏν(z) −
Yν(z)J̇ν(z) = 2(πz)−1 [282]).

Comparing the both parts of the above equality yields

C = 2i (2θ + 1) (τπ)−1(χ0χ2∗ − χ2χ0∗ + χ3χ1∗ − χ1χ3∗),

whence

C = {i (2k −N) (πkλ)−1(χ0∗χ2 − χ0χ2∗ + χ3∗χ1 − χ3χ1∗)}2k/(2k+1).

System (2.4.30) with θ = −1/2 (⇔ k = −N/2) is integrated in elementary
functions. Omitting intermediate calculations we present the final result

1) τ2 6= N − 1, N = 2, 3

ϕ0 = χ0ωθ+ + χ2ωθ− ,

ϕ1 = −(2i/τ)ω−1/2(θ+χ3ωθ+ + θ−χ1ωθ−),

ϕ2 = −(2i/τ)ω−1/2(θ+χ0ωθ+ + θ−χ2ωθ−),

ϕ3 = χ3ωθ+ + χ1ωθ− ,

(2.4.33)

where θ± = (1/4)
(
1 − N ± [(N − 1)2 − 4τ2]1/2

)
, χ0, . . . , χ3 are arbitrary

constants; τ satisfies the equality

i(χ0∗χ2 − χ0χ2∗ + χ3∗χ1 − χ3χ1∗)
(
(N − 1)2 − 4τ2

)1/2

= (−1)N+1τN+1λ−N ;
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2) τ 6= 0, N = 1

ϕ0 = χ0 cos[(τ/2) lnω] + χ2 sin[(τ/2) ln ω],

ϕ1 = −iω−1/2
(
χ1 cos[(τ/2) lnω]− χ3 sin[(τ/2) ln ω]

)
,

ϕ2 = −iω−1/2
(
χ2 cos[(τ/2) lnω]− χ0 sin[(τ/2) ln ω]

)
,

ϕ3 = χ3 cos[(τ/2) lnω] + χ1 sin[(τ/2) ln ω],

(2.4.34)

where χ0, . . . , χ3 are arbitrary complex constants; τ is determined by the
equality

τ = −iλ(χ0χ2∗ − χ0∗χ2 + χ3χ1∗ − χ1χ3∗);

3) τ = ε(N − 1)/2, ε = ±1

ϕ0 = ω(1−N)/4(χ0 + χ2 ln ω),

ϕ1 = (i/2τ)(N − 1)ω−1/2ϕ3 + 4iε(1−N)−1ω−(N+1)/4χ1,

ϕ2 = (i/2τ)(N − 1)ω−1/2ϕ0 + 4iε(1−N)−1ω−(N+1)/4χ2,

ϕ3 = ω(1−N)/4(χ3 + χ1 ln ω),

(2.4.35)

where χ0, . . . , χ3 are complex constants satisfying the equality

2i(χ0χ2∗ − χ0∗ − χ0∗χ2 + χ3χ1∗ − χ3∗χ1) = (−1)N
(
(N − 1)/2ελ

)N+1
.

Thus, the general solution of system (2.4.28) is given by formulae (2.4.31),
(2.4.32) under k 6= N/2 and by formulae (2.4.33)–(2.4.35) under k = N/2.

Now we turn to Ansätze (2.3.16) which were obtained by reducing the non-
linear Dirac equation (2.2.1) by means of the one-parameter subgroups of the
group P (1, 3) and then by means of symmetry groups of the reduced equations
5–7 from (2.3.3). As established in Section 2.3 Ansätze (2.3.16) reduce system
of PDEs (2.4.1) to systems of ODEs (2.3.17) with f1 = λ(ψ̄ψ)1/2k. Up to the
sign at the nonlinear term λ(ϕ̄ϕ)1/2kϕ, they coincide with systems of ODEs
1, 2, 8 from (2.3.5). Using this fact it is not difficult to construct their general
solutions

ϕ(ω) = exp{iλγ1(χ̄χ)1/2kω}χ,

ϕ(ω) = ω−1/4





exp
{
2iλk(1− 2k)−1(χ̄χ)1/2kγ2

× ω(2k−1)/4k
}

χ, k 6= 1/2,

exp {(iλ/2)(χ̄χ)γ2 lnω}χ, k = 1/2,
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ϕ(ω) = exp{iλ(χ̄χ)1/2γ1ω}χ,

ϕ(ω) = ω−1/4 exp{−2iλ(χ̄χ)1/2γ2ω
1/4}χ, (2.4.36)

ϕ(ω) = exp{iλ(χ̄χ)1/2γ0ω}χ,

ϕ(ω) = exp{−iλ(χ̄χ)1/2γ1ω}χ,

ϕ(ω) = ω−1/4 exp{2iλ(χ̄χ)1/2γ2ω
1/4}χ,

ϕ(ω) = exp{−iλ(χ̄χ)1/2γ1ω}χ,

ϕ(ω) = ω−1/4 exp{2iλ(χ̄χ)1/2γ2ω
1/4}χ.

Here χ is an arbitrary constant four-component column.
The fact that many of nonlinear systems (2.3.5) are integrable in quadra-

tures is closely connected with their nontrivial symmetry. The last property,
in its turn, is the consequence of the broad symmetry admitted by the initial
PDE (Theorem 2.3.1). Therefore, the wider the symmetry group of the equa-
tion under study the more effective is the application of the group-theoretical
methods for construction of its exact solutions.

1.2. Exact solutions of equation (2.4.1). Substitution of formulae (2.4.8),
(2.4.9), (2.4.13), (2.4.15), (2.4.17), (2.4.22), (2.4.25)–(2.4.27), (2.4.31)–(2.4.36)
into the corresponding P (1, 3)-invariant Ansätze (2.2.8) and (2.3.16) yields the
following classes of exact solutions of nonlinear spinor equation (2.4.1):

the case k ∈ R1

ψ1(x) = exp{−iλ(χ̄χ)1/2kγ0x0}χ,

ψ2(x) = exp{iλ(χ̄χ)1/2kγ3x3}χ,

ψ3(x) = exp{(1/2)γ0γ3 ln(x0 + x3)}
× exp{iγ2[(χ̄χ)1/2k − (i/2)(γ0 + γ3)]x2}χ,

ψ4(x) = exp{−(1/2)(γ0 + γ3)γ1(x0 + x3)}
× exp{(iλ/2)(χ̄χ)1/2kγ1[2x1 + (x0 + x3)2]}χ,

ψ5(x) = exp{−(1/2)(γ0 + γ3)γ1(x0 + x3)} exp{(iλ/2)(1 + α2)−1

×(χ̄χ)1/2k(γ2 − αγ1)[2(x2 − αx1)− α(x0 + x3)2]}χ,

ψ6(x) = exp{(1/2)[x1 − α ln(x0 + x3)](x0 + x3)−1(γ0 + γ3)γ1}
× exp{(1/2)γ0γ3 ln(x0 + x3)} exp

{(
γ2(γ0 + γ3) + iλ(χ̄χ)1/2k

×[γ2 − β(γ0 + γ3)]
)
[x2 − β ln(x0 + x3)]

}
χ,

ψ7(x) = exp{(2α)−1(x2 + 2αθx1)γ0γ3}[(θγ2 − (2α)−1γ1)γ4 − iλτ ]χ,

α ∈ R1, θ, τ are determined by (2.4.11), (2.4.12);
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ψ8(x) = exp{(2α)−1(2αθx3 − x0)γ1γ2}[(θγ0 − (2α)−1γ3)γ4 − iλτ ]χ,

α ∈ R1; θ, τ are determined by (2.4.14);
ψ9(x) = exp{[(1/4)(x3 − x0) + θ(x0 + x3)]γ1γ2}

×[4θ(γ0 + γ3)γ4 + (γ0 − γ3)γ4 − 4iλτ ]χ,

θ, τ are determined by (2.4.18);
ψ10(x) = exp{[−(1/2)(ẇ1γ1 + ẇ2γ2) + w3γ4](γ0 + γ3)}

× exp{iλ(χ̄χ)1/2kγ1(x1 + w1)}χ;

the case k ∈ R1, k 6= 1/2

ψ11(x) = exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ(x2
0 − x2

3),
ϕ(ω) is determined by (2.4.31), (2.4.32) under N = 1;

ψ12(x) = [(x1 + w1)2 + (x2 + w2)2]−1/4 exp{[−(1/2)(ẇ1γ1

+ẇ2γ2) + w3γ4](γ0 + γ3)} exp{−(1/2)γ1γ2

× arctan[(x1 + w1)/(x2 + w2)]} exp{2iλk(1− 2k)−1

×(χ̄χ)1/2kγ2[(x1 + w1)2 + (x2 + w2)2](2k−1)/4k}χ,

ψ13(x) = (x2
1 + x2

2)
−1/4 exp{(1/2)γ0γ3 ln(x0 + x3)− (1/2)γ1γ2

× arctan(x1/x2)}{f1 + γ2f2 + (γ0 + γ3)f3 + γ2(γ0 + γ3)f4}χ,

fi = fi(x2
1 + x2

2) are determined by (2.4.26), (2.4.27)
under k 6= 1/2;

the case k ∈ R1, k 6= 1

ψ14(x) = exp{(1/2)x1(x0 + x3)−1(γ0 + γ3)γ1}
× exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ(x2

0 − x2
1 − x2

3),
ϕ(ω) is determined by (2.4.31), (2.4.32) under N = 2;

the case k ∈ R1, k 6= 3/2

ψ15(x) = exp{(1/2)(x0 + x3)−1(γ0 + γ3)(γ1x1 + γ2x2)}
× exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ(x · x),
ϕ(ω) is determined by (2.4.31), (2.4.32) under N = 3;
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the case k = 1/2

ψ16(x) = exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ(x2
0 − x2

3),
ϕ(ω) is determined by (2.4.34);

ψ17(x) = (x2
1 + x2

2)
−1/4 exp{(1/2)γ0γ3 ln(x0 + x3)− (1/2)γ1γ2

× arctan(x1/x2)}[f1 + γ2f2 + (γ0 + γ3)f3 + γ2(γ0 + γ3)f4]χ,

fi = fi(x2
1 + x2

2) are determined by (2.4.26), (2.4.27)
under k = 1/2;

ψ18(x) = [(x1 + w1)2 + (x2 + w2)2]−1/4

× exp{[−(1/2)(ẇ1γ1 + ẇ2γ2) + w3γ4](γ0 + γ3)}
× exp{−(1/2)γ1γ2 arctan[(x1 + w1)/(x2 + w2)]}
× exp{(iλ/2)(χ̄χ)γ2 ln[(x1 + w1)2 + (x2 + w2)2]}χ;

the case k = 1

ψ19(x) = w−1
0 exp

{(
−(1/2)(ẇ1γ1 + ẇ2γ2) + w3γ4

−(1/2)ẇ0w
−1
0 [γ1(x1 + w1) + γ2(x2 + w2)]

)
(γ0 + γ3)

}

× exp{iλw−1
0 (χ̄χ)1/2γ1(x1 + w1)}χ;

ψ20(x) = w
−1/2
0 [(x1 + w1)2 + (x2 + w2)2]−1/4

× exp
{(
−(1/2)(ẇ1γ1 + ẇ2γ2) + w3γ4 − (1/2)ẇ0w

−1
0

×[γ1(x1 + w1) + γ2(x2 + w2)](γ0 + γ3)
}

× exp{−(1/2)γ1γ2 arctan[(x1 + w1)/(x2 + w2]}
× exp{−2iλ(χ̄χ)1/2γ2[(x1 + w1)2 + (x2 + w2)2]1/4w

−1/2
0 }χ,

ψ21(x) = (γ0x0 − γ1x1 − γ2x2)(x2
0 − x2

1 − x2
2)
−3/2

× exp{iλ(χ̄χ)1/2γ0x0(x2
0 − x2

1 − x2
2)
−1}χ;

ψ22(x) = (γ0x0 − γ1x1 − γ2x2)(x2
0 − x2

1 − x2
2)
−3/2

× exp{−iλ(χ̄χ)1/2γ1x1(x2
0 − x2

1 − x2
2)
−1}χ;

ψ23(x) = (γ0x0 − γ1x1 − γ2x2)(x2
0 − x2

1 − x2
2)
−1(x2

1 + x2
2)
−1/4

× exp{−(1/2)γ1γ2 arctan(x1/x2)} exp{2iλ(χ̄χ)1/2

×γ2(x2
1 + x2

2)
1/4(x2

0 − x2
1 − x2

2)
−1/2}χ;

ψ24(x) = γaxa(xbxb)−3/2 exp{−iλ(χ̄χ)1/2γ1x1(xaxa)−1}χ;
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ψ25(x) = γaxa(xaxa)−1(x2
1 + x2

2)
−1/4 exp{−(1/2)γ1γ2

× arctan(x1/x2)} exp{2iλ(χ̄χ)1/2(x2
1 + x2

2)
1/4(xaxa)−1/2}χ;

ψ26(x) = exp{(1/2)x1(x0 + x3)−1(γ0 + γ3)γ1}
× exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ(x2

0 − x2
1 − x2

3),
ϕ(ω) is determined by (2.4.33) or (2.4.35)
under N = 2;

the case k = 3/2

ψ27(x) = exp{(1/2)(γ0 + γ3)(γ1x1 + γ2x2)(x0 + x3)−1}
× exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ(x · x),
ϕ(ω) is determined by (2.4.33) or (2.4.35)
under N = 3.

In the above formulae w0, w1, w2, w3 are arbitrary smooth functions of
x0 + x3, an overdot denotes differentiation with respect to x0 + x3.

In addition, in [152, 155] we have constructed two other classes of exact
solutions of system of PDEs (2.4.1)

the case k = 1/2

ψ28(x) = ω−1 exp{(1/2)γ1(γ0 + γ3)(x0 + x3)}
{
[γ2 + β(γ0 + γ3)]

×[x2 + β(x0 + x3)] + (1/2)γ1[2x1 + (x0 + x3)2]
}

× exp
{
iλ(χ̄χ)(β2

1 + β2
2)−1ω−1

(
β1[γ2 + β(γ0 + γ3)] + β2γ1

)

(
β1[x2 + β(x0 + x3)] + (β2/2)[2x1 + (x0 + x3)2]

)}
χ;

the case k ∈ R1, k < 0

ψ29(x) = exp{(1/2)γ1(γ0 + γ3)(x0 + x3)}
{(

[γ2 + β(γ0 + γ3)][x2 + β

×(x0 + x3)] + (1/2)γ1[2x1 + (x0 + x3)2]
)
f(ω) + ig(ω)

}
χ.

Here α, β, β1, β2 are arbitrary constants,

ω = [x2 + β(x0 + x3)]2 + (1/4)[2x1 + (x0 + x3)2]2,

f(ω) = |k|1/2
(
ε(1− k)1/2λ−1(χ̄χ)−1/2k

)k
ω−(k+1)/2,

g(ω) = −ε(1− k)1/2
(
ε(1− k)1/2λ−1(χ̄χ)−1/2k

)k
ω−k/2, ε = ±1.
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Thus, we have constructed wide classes of exact solutions of the nonlinear
Dirac equation (2.41), some of them containing arbitrary functions. By a
special choice of these functions we can select subclasses of exact solutions
possessing important additional properties.

For example, if we put

w0 = exp{θ2(x0 + x3)2}, θ ∈ R1, w1 = w2 = w3 = 0

in the solution ψ19(x), then it takes the form

ψ(x) = exp{−θ2(x0 + x3)2}
(
1 + θ2(x0 + x3)(γ1x1 + γ2x2) (2.4.37)

×(γ0 + γ3)
)

exp
{
iλ(χ̄χ)1/2kγ1x1 exp{−θ2(x0 + x3)2}

}
χ.

This solution is localized inside the infinite cylinder having the generatix
parallel to the coordinate axis Ox3. In addition, it decreases exponentially as
x0 → +∞.

It is worth noting that (2.4.37) under θ = 0 becomes the plane-wave solu-
tion

ψ(x) = exp{iλ(χ̄χ)1/2γ1x1}χ. (2.4.38)

Consequently, (2.4.37) can be considered as a perturbation of the stationary
state (2.4.38).

1.3. Generation of solutions. Solutions ψ1(x)−ψ29(x) depend on the variables
xµ in asymmetrical way, while in equation (2.4.1) all independent variables
are enjoying equal rights. Using the language of physics we can say that
system of PDEs (2.4.1) is solved in some fixed reference frame. To obtain
solutions (more precisely, families of solutions) not depending on the choice of
a reference frame it is necessary to apply the procedure of generating solutions
by transformations from the Poincaré group [137, 139, 140, 155].

Let the equation under study be invariant under the Lie group of trans-
formations of the form

x′µ = fµ(x, θ), ψ′(x′) = A(x, θ)ψ(x), (2.4.39)

where A(x, θ) is an invertible (m ×m)-matrix, θ = (θ1, θ2, . . . , θr) are group
parameters. In addition, there is some particular solution ψI(x) of the equation
considered.

Theorem 2.4.1. The m-component function ψII(x) determined by the equality

ψII = A−1(x, θ)ψI

(
f(x, θ)

)
(2.4.40)
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is a solution of PDE admitting the Lie group (2.4.39).

Proof. According to the definition of the invariance group, the Lie group
(2.4.39) transforms the set of solutions of the equation under study into itself.
In other words, provided ψ = ψ(x) is a solution of the equation written in
coordinates x, ψ(x) the function constructed by means of formulae (2.4.39) is
a solution of the same equation written in coordinates x′, ψ′(x′). Resolving
(2.4.39) with respect to ψ(x) we have

ψ(x) = A−1(x, θ)ψ′(x′),

whence due to (2.4.39) we get

ψ(x) = A−1(x, θ)ψ′
(
f(x, θ)

)
.

Denoting ψ = ψII , ψ′ = ψI yields (2.4.40). ¤

Using Theorem 2.4.1 it is possible to obtain a r-parameter family of exact
solutions starting from a single solution.

Definition 2.4.1. Formula (2.4.40) is called the formula for generating solu-
tions by transformations from the group (2.4.39).

Definition 2.4.2. A family of solutions of the form

ψ(x) = ψ0(x, τ), τ = (τ1, τ2, . . . , τs) ∈ Rs,

Ri(τ) = 0, i = 1, . . . , s− n + 1, 1 ≤ n ≤ s

is called G-ungenerable (or ungenerable) provided the equality

A−1(x, θ)ψ0

(
f(x, θ), τ

)
= ψ0

(
x, τ ′(τ, θ)

)

holds and what is more Ri(τ ′(τ, θ)) = 0, i = 1, . . . , s− n + 1.
Using the final transformations from the group C(1, 3) (1.1.24)–(1.1.28)

and Theorem 2.4.1 we obtain formulae of generating solutions by transforma-
tions from the conformal group C(1, 3).

1) the group of translations

ψII(x) = ψI(x′), x′µ = xµ + θµ; (2.4.41)

2) the Lorentz group O(1, 3)
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a) the group of rotations O(3)

ψII(x) = exp{(1/2)εabcθaSbc}ψI(x′),
x′0 = x0, x′a = xa cos θ − θ−1εabcθbxc sin θ (2.4.42)

+θ−2θa(θbxb)(1− cos θ);

b) the Lorentz transformations

ψII(x) = exp{−(θ0/2)γ0γa}ψI(x′),
x′0 = x0 cosh θ0 + xa sinh θ0, (2.4.43)
x′a = xa cosh θ0 + x0 sinh θ0, x′b = xb, b 6= a;

3) the group of scale transformations

ψII(x) = ekθ0ψI(x′), x′µ = xµeθ0 ; (2.4.44)

4) the group of special conformal transformations

ψII(x) = σ−2(x)(1− γ · xγ · θ)ψI(x′),

x′µ = (xµ − θµx · x)σ−1(x).
(2.4.45)

Here θ0, . . . , θ3 are real constants, θ = (θaθa)1/2, σ(x) = 1−2θ ·x+θ ·θx ·x.
As an example, we will consider the procedure of generating the solution

ψ1(x). Let us apply formula (2.4.43) with a = 3 to ψ1(x)

ψII(x) = exp{−(θ0/2)γ0γ3} exp{−iλ(χ̄χ)1/2k(x0 cosh θ0 + x3 sinh θ0)γ0}χ.

We rewrite this expression as follows

ψII(x) = exp{−(θ0/2)γ0γ3}
{
cos

(
λ(χ̄χ)1/2k(x0 cosh θ0

+x3 sinh θ0)
)
− iγ0 sin

(
λ(χ̄χ)1/2k(x0 cosh θ0 + x3 sinh θ0)

)}

× exp{−(θ0/2)γ0γ3}χ.

Taking into account the identities

V γµV −1 =





γ0 cosh θ0 + γ3 sinh θ0, µ = 0,
γ3 cosh θ0 + γ0 sinh θ0, µ = 3,
γµ, µ = 1, 2,
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where V = exp{−(θ0/2)γ0γ3}, which are proved with the help of the Campbell-
Hausdorff formula [41, 179] we have

ψII(x) =
{
cos

(
λ(χ̄′χ′)1/2k(x0 cosh θ0 + x3 sinh θ0)

)
− i(γ0 cosh θ0

+γ3 sinh θ0) sin
(
λ(χ̄′χ′)1/2k(x0 cosh θ0 + x3 sinh θ0)

)}
χ′,

where χ′ = exp{−(θ0/2)γ0γ3}.
Using formula (2.4.42) yields the following family of exact solutions:

ψII(x) =
{
cos

(
λ(χ̄χ)1/2ka · x

)
− iγ · a sin

(
λ(χ̄χ)1/2ka · x

)}
χ

= exp{−iλ(χ̄χ)1/2k(γ · a)(a · x)}χ,
(2.4.46)

where aµ are arbitrary real parameters satisfying the condition a · a = 1.
It is not difficult to verify that family (2.4.46) is invariant with respect to

transformations (2.4.41), (2.4.44).
The family of solutions (2.4.46) depends on the variables xµ in symmet-

rical way. Let us show that it is invariant under the Lorentz group O(1, 3).
Applying, for example, formula (2.4.42) to (2.4.46) and grouping terms in a
proper way we arrive at the following family of solutions of PDE (2.4.1):

ψII(x) = exp{−iλ(χ̄′χ′)1/2k(γ · a′)(a′ · x)}χ′,

where

a′0 = a0, a′b = ab cos θ − θ−1εbcdacθd + θ−2θb(θcac)(1− cos θ),
χ′ = exp{(1/2)εabcθaSbc}χ.

Since a′ ·a′ = 1, the obtained family coincides with (2.4.46). Thus, we have
constructed the P̃ (1, 3)-ungenerable family of exact solutions of the nonlinear
Dirac equation. The transition from ψ1(x) to (2.4.46) seems to be of principal
importance because we obtain the class of exact solutions having the same
invariance group as the initial equation (2.4.1). In other words, the family of
solutions (2.4.46) contains complete information about the Lie symmetry of
the nonlinear Dirac equation (2.4.1).

Generating in the same way solutions ψ2(x)−ψ6(x) we obtain the following
P̃ (1, 3)-ungenerable families of exact solutions of system of nonlinear PDEs
(2.4.1):

ψ2(x) = exp{iλ(χ̄χ)1/2k(γ · b)(b · x)}χ,
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ψ3(x) = exp{(1/2)(γ · a)(γ · d) ln[θ(a · z + d · z)]}
× exp{iγ · c[(χ̄χ)1/2k − (i/2)(γ · a + γ · d)]c · z}χ,

ψ4(x) = exp{−(θ/2)(γ · a + γ · d)(γ · b)(a · z + d · z)}
× exp{(iλ/2)(χ̄χ)1/2k(γ · b)[2b · z + θ(a · z + d · z)2]}χ,

ψ5(x) = exp{−(θ/2)(γ · a + γ · d)(γ · b)(a · z + d · z)}
× exp{(iλ/2)(1 + α2)−1(χ̄χ)1/2k(γ · c− αγ · b)
×[2(c · z − αb · z)− αθ(a · z + d · z)2]}χ,

ψ6(x) = exp
{
(2θ)−1

(
θb · z − α ln[θ(a · z + d · z)]

)
(a · z + d · z)−1

×(γ · a + γ · d)γ · b
}

exp{(1/2)(γ · a)(γ · d) ln[θ(a · z + d · z)]
}

× exp
{(

γ · c(γ · a + γ · d) + iλ(χ̄χ)1/2k[γ · c− β(γ · a + γ · d)]
)

×
(
c · z − βθ−1 ln[θ(a · z + d · z)]

)}
χ,

where zµ = xµ + θµ; α, β, θ, θµ are arbitrary constants.
Hereafter we denote by aµ, bµ, cµ, dµ, µ = 0, . . . , 3 arbitrary real constants

satisfying the following conditions:

a · a = −b · b = −c · c = −d · d = 1,
a · b = a · c = a · d = b · c = b · d = c · d = 0.

(2.4.47)

Evidently, the four-vectors with components aµ, bµ, cµ, dµ form a basis
in the Minkowski space R(1, 3) with the scalar product x · y = xµyµ.

Provided the parameter k in (2.4.1) is equal to 3/2, this equation ad-
mits the conformal group C(1, 3). Consequently, we can generate solutions by
transformations (2.4.45). Let us give an example of the C(1, 3)-ungenerable
family of exact solutions of the conformally-invariant Dirac-Gürsey equation

ψ(x) = σ−2(x)(1− γ · xγ · θ) exp{−iλ(χ̄χ)1/2k(γ · a)
×(a · x− a · θx · x)σ−1(x)}χ.

2. P̃ (1,3)-invariant solutions of the nonlinear Dirac equation (2.4.1).
Now we turn to reduced equations (2.3.22) putting R = λ(ϕ̄ϕ)1/2kϕ. To
integrate these we need some well-known facts from the general theory of
systems of linear ODEs.

Definition 2.4.3. By a normalized solution of the system of linear ODEs

ϕ̇(ω) = B(ω)ϕ(ω) (2.4.48)
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we mean the (4× 4)-matrix Ωω
ω0

(B) satisfying the following conditions:

dΩω
ω0

dω
= B(ω)Ωω

ω0
, Ωω0

ω0
= I,

where ω0 = const, I is the unit (4× 4)-matrix.
The normalized solution of system (2.4.48) is given by the following infinite

series [197]:

Ωω
ω0

= I +
ω∫

ω0

B(τ)dτ +
ω∫

ω0

B(τ)
τ∫

ω0

B(τ1)dτ1dτ + . . . (2.4.49)

If we succeed in constructing the normalized solution of system of ODEs
(2.4.48) in explicit form, then its general solution is given by the formulae

ϕ(ω) = Ωω
ω0

(B)χ, ϕ(ω0) = χ,

where χ is an arbitrary constant four-component column.
We will consider in detail a procedure of integration of system of ODEs 1

from (2.3.22). On multiplying it by the matrix (i/2)γ3 on the left we get

ϕ̇ = (1/8)(2k − 1)(1 + γ0γ3)ϕ + (iλ/2)γ3(ϕ̄ϕ)1/2kϕ, (2.4.50)

while the conjugate spinor ϕ̄(ω) satisfies system of ODEs of the form

˙̄ϕ = (1/8)(2k − 1)ϕ̄(1− γ0γ3)− (iλ/2)ϕ̄γ3(ϕ̄ϕ)1/2k. (2.4.51)

Multiplying (2.4.50) by ϕ̄ on the left, (2.4.51) by ϕ on the right and summing
we come to the linear ODE for ϕ̄ϕ

ϕ̄ϕ̇ + ˙̄ϕϕ = (ϕ̄ϕ). = (1/4)(2k − 1)ϕ̄ϕ,

which general solution reads

ϕ̄ϕ = C exp{(1/4)(2k − 1)ω}, C ∈ R1. (2.4.52)

Substitution of (2.4.52) into (2.4.50) gives rise to the system of linear ODEs

ϕ̇ =
{
(1/8) (2k − 1) (1 + γ0γ3) + (iλ/2)C1/2k

× exp{(2k − 1)(8k)−1ω}γ3

}
ϕ.

(2.4.53)
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Let Ωω
0 be a normalized solution of system (2.4.52). Then the general

solution of (2.4.52) is given by the formula

ϕ(ω) = Ωω
0 χ. (2.4.54)

Substituting (2.4.54) into (2.4.52) we have

χ̄Ω̄ω
0 Ωω

0 χ = C exp{(1/4)(2k − 1)ω},

where Ωω
0 = γ0(Ωω

0 )†γ0. As Ωω
0 |ω=0 = I and Ω̄ω

0 |ω=0 = I, from the above
relation it follows that χ̄χ = C. Inserting C = χ̄χ into (2.4.54) we obtain the
general solution of the initial system of nonlinear ODEs (2.4.50).

Substitution of the result obtained into the corresponding P̃ (1, 3)-invariant
Ansatz gives rise to the exact solution of the nonlinear spinor equation (2.4.1)

ψ(x) = exp{(1/4)(γ0γ3 − 2k) ln(x0 + x3)}Ωω
0 χ, (2.4.55)

where ω = ln(x0 + x3)− x0 + x3.
In a similar way we can integrate systems of ODEs 2, 4, 7, 9, 11, 13, 16,

17, 20, 23–25 from (2.3.22) (a detailed analysis of these equations has been
performed in [8]). Here only the cases, when infinite series (2.4.49) can be
summed up, are considered.

If we put in (2.4.53) k = 1/2, then a system of linear ODEs with constant
coefficients is obtained. Its general solution has the form (2.4.54), where

Ωω
0 = I +

ω∫

0

Bdτ +
ω∫

0

B

τ∫

0

Bdτ1dτ + . . .

= I + ωB + (2!)−1ω2B2 + (3!)−1ω3B3 + . . . (2.4.56)
= exp{Bω}.

In (2.4.56) B = (iλ/2)(χ̄χ)γ3.
Substitution of (2.4.56) into (2.4.55) gives rise to the exact solution of

system of nonlinear PDEs (2.4.1) with k = 1/2

ψ(x) = exp{(1/4)(γ0γ3 − 1) ln(x0 + x3)}
× exp{(iλ/2)(χ̄χ)γ3[ln(x0 + x3)− x0 + x3]}χ.

(2.4.57)

Similarly, computing the normalized solutions of systems of ODEs 4 (under
α = 0, k = 1/2), 9 (under k = 3/2), 11 (under k = 5/2), 13 (under k = 1/2),
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20, 22 from (2.3.22) we get their general solutions in the form (2.4.54)

ϕ(ω) = exp{(iλ/2)(χ̄χ)(γ3 − γ0 + 2γ1)ω}χ,

ϕ(ω) = exp{−(iλ/2)(χ̄χ)1/3γ0ω}χ,

ϕ(ω) = exp{−(iλ/2)(χ̄χ)1/5γ0ω}χ,

ϕ(ω) = exp{iλ(1 + α2)−1(αγ2 − γ1)(χ̄χ)ω}χ,

ϕ(ω) = exp{[(1/2α)(2k − 1)(γ0 − γ3)γ1

−iλα−2(γ0 − γ3 + αγ1)(χ̄χ)1/2k]ω}χ,

ϕ(ω) = exp
{(

(1/2β)(1 + β2)−1[(2kβ2 − 1)γ1

−β(2k + 1)γ2](γ0 − γ3)− iλ(1 + β2)−1

×[γ2 − βγ1 − (β/α)(γ0 − γ3)](χ̄χ)1/2k]ω
}
χ.

We have also succeeded in integrating systems of ODEs 30, 37, 41. They
can be represented in the following unified form:

i
(
γ2 − (γ0 − γ3)z

)dϕ

dz
=

(
iθ(γ0 − γ3) + λ(ϕ̄ϕ)1/2k

)
ϕ, (2.4.58)

where the case θ = k, z = ω corresponds to the system 30, the case θ =
(1/2)(1 − 2k), z = ω to the system 37 and the case θ = k, z = ω − 1 to the
system 41.

Rewrite equation (2.4.58) in the equivalent form

ϕ̇ =
{
θγ2(γ0 − γ3)− iλ(ϕ̄ϕ)1/2k

(
γ2 − (γ0 − γ3)z

)}
ϕ.

Since ϕ̄ϕ ≡ τ = const, the above equation is linearized

ϕ̇ =
{
θγ2(γ0 − γ3)− iλτ1/2k

(
γ2 − (γ0 − γ3)z

)}
ϕ. (2.4.59)

The general solution of the system of ODEs (2.4.59) can be represented in
the form

ϕ =
(
f1(z) + f2(z)γ2 + f3(z)(γ0 − γ3) + f4(z)γ2(γ0 − γ3)

)
χ, (2.4.60)

where χ is an arbitrary four-component constant column and functions f1, . . . ,
f4 satisfy the following system of ODEs:

ḟ1 = iλτ1/2kf2, ḟ2 = −iλτ1/2kf1,

ḟ3 = iλτ1/2kf4 + θf2 + iλτ1/2kzf1,

ḟ4 = −iλτ1/2kf3 + θf1 − iλτ1/2kzf2.
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The above system is integrated by the standard methods, its particular
solution reads

f1 = cosh(λτ1/2kz), f2 = −i sinh(λτ1/2kz), (2.4.61)

f3 = −
(
(2θ + 1)i/4λ

)
τ−1/2k cosh(λτ1/2kz) + (i/2)(1 + z) sinh(λτ1/2kz),

f4 =
(
(2θ + 1)/4λ

)
τ−1/2k sinh(λτ1/2kz) + (1/2)(1− z) cosh(λτ1/2kz).

As a direct computation shows, the function (2.4.60) satisfies an identity

ϕ̄ϕ = χ̄
(
|f1|2 − |f2|2 + (f1f

∗
2 + f∗1 f2)γ2 + (f∗1 f3 + f1f

∗
3 − f∗2 f4

−f2f
∗
4 )(γ0 − γ3) + (f∗1 f4 − f1f

∗
4 + f∗2 f3 − f2f

∗
3 )γ2(γ0 − γ3)

)
χ.

Substituting into its right-hand side formulae (2.4.61) we get

τ = ϕ̄ϕ = χ̄χ. (2.4.62)

Consequently, we have established that the general solution of the system
of nonlinear ODEs (2.4.58) is given by the formulae (2.4.60)–(2.4.62).

Substitution of the expressions obtained above into the corresponding
P̃ (1, 3)-invariant Ansätze (2.2.8) yields the following exact solutions of the
nonlinear Dirac equation (2.4.1):

the case k = 1/2

ψ(x) = exp{(1/2)γ1γ2 arctan(x2/x1) + (1/4)(γ0γ3 − 1) ln(x2
1 + x2

2)}
× exp{(iλ/4)(γ3 − γ0 + 2γ1)(χ̄χ)[x0 − x3 − ln(x2

1 + x2
2)]}χ;

ψ(x) = exp{(1/2)γ1γ2 arctan(x2/x1)− (1/4) ln(x2
1 + x2

2)}
× exp{iλ(1 + α2)−1(χ̄χ)(αγ2 − γ1)[α arctan(x2/x1)
−(1/2) ln(x2

1 + x2
2)]}χ;

the case k = 3/2

ψ(x) = exp{−(1/2)γ1(γ0 − γ3)x1(x0 − x3)−1}
× exp{−(1/4)(γ0γ3 + 3) ln(x0 − x3)} exp{−(iλ/2)(χ̄χ)1/3

×γ0[(x2
0 − x2

1 − x2
3)(x0 − x3)−1 + ln(x0 − x3)]}χ,

the case k = 5/2

ψ(x) = exp{−(1/2)γ1(γ0 − γ3)x1(x0 − x3)−1 − (1/2)γ2(γ0 − γ3)
×x2(x0 − x3)−1} exp{−(1/4)(γ0γ3 + 5) ln(x0 − x3)}
× exp{−(iλ/2)(χ̄χ)1/5γ0[x · x(x0 − x3)−1 + ln(x0 − x3)]}χ;
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the case of arbitrary k

ψ(x) = exp{−(1/2)γ1(γ0 − γ3)x1(x0 − x3)−1 − k ln(x0 − x3)}
× exp{[(1/2α)γ1(γ0 − γ3)(1− 2k)− iλα−2(γ0 − γ3

+αγ1)(χ̄χ)1/2k][ln(x0 − x3) + αx1(x0 − x3)−1])}χ;
ψ(x) = exp{(1/2β)γ1(γ0 − γ3)(x2 − βx1)(x0 − x3)−1

−k ln(x0 − x3)} exp
{(

(1/2β)(1 + β2)−1[(2β2k + 1)γ1

−β(2k + 1)γ2](γ0 − γ3)− iλ(1 + β2)−1[γ2 − βγ1

−(β/α)(γ0 − γ3)](χ̄χ)1/2k
)
[(x2 − βx1)(x0 − x3)−1

−(β/α) ln(x0 − x3)]}χ;

ψ(x) = (x0 − x3)−k
(
f1 + f2γ2 + f3(γ0 − γ3) + f4γ2(γ0 − γ3)

)
χ,

where fi = fi[x2(x0 − x3)−1] are determined by (2.4.61),
(2.4.62) with θ = k;

ψ(x) = (x0 − x3)−k exp{−(1/2)γ1(γ0 − γ3)x1(x0 − x3)−1}
×

(
f1 + f2γ2 + f3(γ0 − γ3) + f4γ2(γ0 − γ3)

)
χ,

where fi = fi[x2(x0 − x3)−1] are determined by (2.4.61),
(2.4.62) with θ = (2k − 1)/2;

ψ(x) = (x0 − x3)−k exp{(1/2)(γ0 − γ3)[γ1x1(x0 − x3)− γ2

× ln(x0 − x3)]}
(
f1 + f2γ2 + f3(γ0 − γ3) + f4γ2(γ0 − γ3)

)
χ,

where fi = fi[ln(x0 − x3) + x2(x0 − x3)−1 − 1] are determined
by (2.4.61), (2.4.62) with θ = (2k − 1)/2.

3. Conformally-invariant solutions of the nonlinear Dirac-Gürsey
equation. Substitution of the C(1, 3)-invariant Ansätze for spinor field listed
in (2.2.29) into the Dirac-Gürsey equation yields systems of ODEs (2.3.23)
with R = λ(ϕ̄ϕ)1/3.

In spite of the extremely complicated structure of equations (2.3.23) some
of them can be integrated in quadratures within the framework of the above
described approach.

Lemma 2.4.3. The quantities

I3 = ϕ̄ϕ, I4 = ϕ̄ϕ exp{4ω},
I8 = ϕ̄ϕω−3/2, I9 = ϕ̄ϕ,

I10 = ϕ̄ϕω1/2(ω − 4)1/2[ω1/2 + (ω − 4)1/2]
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are the first integrals of the systems of ODEs 3, 4, 8–10 from (2.3.23).
We will prove the lemma for the system of ODEs 8, other systems are

treated in the same way.
Multiplying the mentioned system by the matrix −(i/2ω)γ2 on the left

yields
ϕ̇ = (3/4)ω−1ϕ− (iλ/2)ω−7/6(ϕ̄ϕ)1/3γ2ϕ, (2.4.63)

the conjugate spinor satisfying the equation

˙̄ϕ = (3/4)ω−1ϕ̄ + (iλ/2)ω−7/6(ϕ̄ϕ)1/3ϕ̄γ2. (2.4.64)

Multiplying (2.4.63) by ϕ̄ on the left, (2.4.64) by ϕ on the right and sum-
ming we come to the ODE for ϕ̄ϕ

(ϕ̄ϕ). = (3/2ω)ϕ̄ϕ,

whence ϕ̄ϕ = Cω3/2 or ϕ̄ϕω−3/2 = C = const. The assertion is proved. ¤

Applying the above lemma we can construct general solutions of nonlinear
systems of ODEs 3, 4, 8–10 from (2.3.23) with the help of normalized solutions
of their linearized versions. And what is more, normalized solutions of the
linearized systems of ODEs 3, 8–10 can be obtained in explicit form. This fact
enables us to integrate in quadratures the systems of nonlinear ODEs 3, 8–10
from (2.3.23).

ϕ(ω) = exp{iλ(χ̄χ)1/3(γ2 + γ3 − γ0)ω}χ,

ϕ(ω) = ω3/4 exp{(3iλ/2)(χ̄χ)1/3γ2ω
1/3}χ,

ϕ(ω) = exp{−iλ(χ̄χ)1/3γ1ω}χ,

ϕ(ω) = ω−1/4(ω − 4)−1/4
(
ω1/2 + (ω − 4)1/2

)−1/2

× exp
{
−i2−4/3λ(χ̄χ)1/3γ2

∫ ω

z−2/3(z − 4)−2/3dz

}
χ,

where χ is an arbitrary constant four-component column.
Substitution of the above expressions into the corresponding Ansätze for

the spinor field ψ(x) listed in (2.2.29) yields four classes of exact solutions of
the conformally-invariant nonlinear Dirac-Gürsey equation (1.2.26)

ψ(x) = [1 + (x0 − x3)2]−1R[arctan(x0 − x3)] exp{−(1/2)γ1γ2

× arctan(x0 − x3)} exp{−(1/2)γ1(γ0 − γ3) arctan(x0 − x3)}
× exp{−(1/2)γ2(γ0 − γ3)[x2(x0 − x3)− x1]
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×[1 + (x0 − x3)2]−1} exp
{
iλ(χ̄χ)1/3(γ2 + γ3 − γ0)

×
(
− arctan(x0 − x3) + [x1(x0 − x3) + x2][1 + (x0 − x3)2]−1

)}
χ,

ψ(x) = (x2
1 + x2

2)
−1/4[1 + (x0 − x3)2]−3/4R[arctan(x0 − x3)]

× exp{−(1/2)γ1γ2 arctan(x1/x2)} exp{(3iλ/2)(χ̄χ)1/3γ2

×(x2
1 + x2

2)
1/3[1 + (x0 − x3)2]−1/3}χ,

ψ(x) = [1 + (x0 − x3)2]−1R[arctan(x0 − x3)] exp{−(1/2)γ1γ2

× arctan(x0 − x3)} exp{−(1/2)γ1(γ0 − γ3)[x1(x0 − x3) + x2]
×[1 + (x0 − x3)2]−1} exp{−iλ(χ̄χ)1/3γ1[x2(x0 − x3)− x1]
×[1 + (x0 − x3)2]−1}χ,

ψ(x) = (x2
1 + x2

2)
−1{cos(τ2/2) cos(τ3/2) + γ0γ3 sin(τ2/2) sin(τ3/2)

+γ · x[γ0 sin(τ2/2) cos(τ3/2)− γ3 cos(τ2/2) sin(τ3/2)]}
× exp{−(1/2)γ1γ2 arctan(x1/x2)}ω−1/4(ω − 4)−1/4

×[ω1/2 + (ω − 4)1/2]−1/2 exp
{
−i2−4/3λ(χ̄χ)1/3γ2

∫ ω

z−2/3

×(z − 4)−2/3dz

}
χ,

where the following notations are used

R(τ) = cos2(τ/2) + γ0γ3 sin2(τ/2) + (1/2)γ · x(γ0 − γ3) sin τ,

τ2 = arctan[(x · x− 1)(2x0)−1] + π/2,

τ3 = arctan[(x · x + 1)(2x3)−1]− π/2,

ω = [4x2
0 + (x · x− 1)2](x2

1 + x2
2)
−1.

4. Exact solutions of equation (2.4.2). To construct exact solutions of
system of nonlinear PDEs (2.4.2) we use P (1, 3)-invariant Ansätze for the
spinor field (2.2.8) and Ansätze (2.3.16). Omitting intermediate computations
we give the P (1, 3)-ungenerable families of exact solutions of the nonlinear
spinor equation (2.4.2) (see, also, [135, 137]):

ψ1(x) = exp{−iθ(γ · a)(a · x)}χ,

ψ2(x) = exp{iθ(γ · b)(b · x)}χ,

ψ3(x) = exp{(1/2)(γ · a)(γ · d) ln(a · z + d · z)}
× exp{iγ · c[θ − (i/2)(γ · a + γ · d)]c · z}χ,
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ψ4(x) = exp{−(1/2)(γ · a + γ · d)(γ · b)(a · z + d · z)}
× exp{(iθ/2)(γ · b)[2b · z + (a · z + d · z)2]}χ,

ψ5(x) = exp{−(1/2)(γ · a + γ · d)(γ · b)(a · z + d · z)}
× exp{(iθ/2)(1 + α2)−1(γ · c− αγ · b)
×[2(c · z − αb · z)− α(a · z + d · z)2]}χ,

ψ6(x) = exp{(1/2)[b · z − ln(a · z + d · z)](a · z + d · z)−1

×(γ · a + γ · d)γ · b} exp{(1/2)(γ · a)(γ · d) ln(a · z + d · z)}
× exp

{(
γ · c(γ · a + γ · d) + iθ[γ · c− β(γ · a + γ · d)]

)

×(c · z − β ln[a · z + d · z])
}
χ,

ψ7(x) = exp{[−(1/2)(ẇ1γ · b + ẇ2γ · c) + w3γ4](γ · a + γ · d)}
× exp{iθγ · b(b · z + w1)}χ,

ψ8(x) = [(b · z + w1)2 + (c · z + w2)2]−1/4

× exp{(−(1/2)[ẇ1γ · b + ẇ2γ · c) + w3γ4](γ · a + γ · d)}
× exp{−(1/2)(γ · b)(γ · c) arctan[(b · z + w1)/(c · z + w2)]}
× exp{iγ · cf [(b · z + w1)2 + (c · z + w2)2]}χ.

Here we use the following notations:

f(ω) =
{

mω1/2 + λ(1− k)−1(χ̄χ)kω(1−k)/2, k 6= 1,
mω1/2 + (λ/2)(χ̄χ) lnω, k = 1;

zµ = xµ + θµ; θ = m + λ(χ̄χ)k; wa = wa(d · z + d · z) are arbitrary smooth
real-valued functions; α, β, θµ are real constants.

As earlier, we denote by aµ, bµ, cµ, dµ arbitrary real parameters satisfying
(2.4.47).

2.5. Nonlinear spinor equations and special functions

Here we will establish a rather unexpected fact: there exists a correspondence
between exact solutions of the nonlinear Dirac equation

{iγµ ∂µ − F (ψ̄ψ)}ψ(x) = 0, (2.5.1)

where F ∈ C1 (R1, R1), and special functions satisfying a second-order ODE
of the form

Ü + a1(ω)U̇ + a2(ω)U = 0. (2.5.2)
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The above facts enable us to construct exact solutions of equation (2.5.1)
in terms of the Weierstrass, Gauss and Chebyshev-Hermite functions.

To obtain exact solutions of PDE (2.5.1) we use the following Ansätze:

ψ(x) = exp{(1/2)x1(x0 + x3)−1(γ0 + γ3)γ1}
× exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ (x2

0 − x2
1 − x2

3),
(2.5.3)

ψ(x) = exp{(1/2) (x0 + x3)−1(γ0 + γ3)(γ1x1 + γ2x2)}
× exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ (x · x).

(2.5.4)

Substituting (2.5.3), (2.5.4) into the initial equation (2.5.1) we get systems
of ODEs for the four-component functions ϕ = ϕ (ω)

4ωϕ̇ = −
{
n(1 + γ0γ3) + iF (ϕ̄ϕ)

(
ω(γ0 + γ3) + γ0 − γ3

)}
ϕ, (2.5.5)

where the cases n = 2 and n = 3 correspond to Ansätze (2.5.3) and (2.5.4)
accordingly.

The equation for the conjugate spinor ϕ̄ has the form

4ω ˙̄ϕ = −ϕ̄
{
n(1− γ0γ3)− iF (ϕ̄ϕ)

(
ω(γ0 + γ3) + γ0 − γ3

)}
. (2.5.6)

Multiplying equation (2.5.5) by ϕ̄, equation (2.5.6) by ϕ and summing
yield the ODE for a scalar function ϕ̄ϕ

4ω(ϕ̄ϕ). = −2nϕ̄ϕ,

which general solution reads

ϕ̄ϕ = Cω−n/2, C = const. (2.5.7)

Thus, equation (2.5.5) is reduced to the linear ODE

4ωϕ̇ = −
{
n(1 + γ0γ3) + iF (Cω−n/2)

(
ω(γ0 + γ3) + γ0 − γ3

)}
ϕ (2.5.8)

with the nonlinear additional condition (2.5.7).
If we choose γ-matrices in the representation (1.1.8), then equation (2.5.8)

in component-wise notation takes the form

2ϕ̇0 = −iF (Cω−n/2)ϕ2, 2ωϕ̇1 = −iF (Cω−n/2)ϕ3 − nϕ1,

2ϕ̇3 = −iF (Cω−n/2)ϕ1, 2ωϕ̇2 = −iF (Cω−n/2)ϕ0 − nϕ2.
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On making the change of the independent variable

t = Cω−n/2, ω = (t/C)−2/n, (2.5.9)

we get

nC−2/nt(n+2)/nϕ0
t = iF (t)ϕ2, ntϕ1

t = iF (t)ϕ3 + nϕ1,

nC−2/nt(n+2)/nϕ3
t = iF (t)ϕ1, ntϕ2

t = iF (t)ϕ0 + nϕ2.
(2.5.10)

System of ODEs (2.5.10) by means of the change of the independent vari-
able

ξ =
t∫

a

F (τ)τ−n/2dτ (2.5.11)

is reduced to the form

nC−2/nϕ0
ξ = it−1ϕ2, nt(n−2)/nϕ1

ξ = iϕ3 + nF−1(t)ϕ1,

nC−2/nϕ3
ξ = it−1ϕ1, nt(n−2)/nϕ2

ξ = iϕ0 + nF−1(t)ϕ2.
(2.5.12)

Differentiating the first equation with respect to ξ we get a second-order
ODE of the form

Rξξ + C2/nn−2t2(1−n)/nR = 0, (2.5.13)

where the function t = t(ξ) is determined by (2.5.11).
Consequently, system (2.5.12) is equivalent to the following second-order

system of ODEs:

ϕ0
ξξ + C2/nn−2

(
t(ξ)

)2(1−n)/n
ϕ0 = 0, ϕ1 = −in t(ξ)C−2/nϕ3

ξ ,

ϕ3
ξξ + C2/nn−2

(
t(ξ)

)2(1−n)/n
ϕ3 = 0, ϕ2 = −in t(ξ)C−2/nϕ0

ξ .
(2.5.14)

Let u(ξ), v(ξ) be a fundamental system of solutions of equation (2.5.13).
Then, the general solution of system (2.5.14) is represented in the form

ϕ0 = χ0u(ξ) + χ2v(ξ),

ϕ1 = −in t(ξ)C−2/n
(
χ3u̇(ξ) + χ1v̇(ξ)

)
,

ϕ2 = −in t(ξ)C−2/n
(
χ0u̇(ξ) + χ2v̇(ξ)

)
,

ϕ3 = χ3u(ξ) + χ1v(ξ),

(2.5.15)
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where χ0, χ1, χ2, χ3 are arbitrary complex constants.
Formulae (2.5.15) give the general solution of system of nonlinear ODEs

(2.5.5) if equality (2.5.7) holds. Substitution of (2.5.15) into (2.5.7) gives rise
to the following relation for C, χµ:

ψ̄ψ = ψ0∗ψ2 + ψ2∗ψ0 + ψ1∗ψ3 + ψ3∗ψ1 = intC−2/n

×(χ0χ2∗ − χ2χ0∗ + χ3χ1∗ − χ1χ3∗)w(u, v) = t = Cω−n/2.

Here w(u, v) = uv̇ − u̇v is the Wronskian of the fundamental system of
solutions of equation (2.5.13) which is constant for any u, v satisfying (2.5.13).

The above relation is rewritten in the form

C = {in(χ0χ2∗ − χ2χ0∗ + χ3χ1∗ − χ1χ3∗)w(u, v)}n/2. (2.5.16)

It is well-known that each ODE of the form (2.5.2) is transformed to equa-
tion (2.5.13) by an appropriate change of variables (one has to take into ac-
count that the function t = t(ξ) depends on arbitrary function F ). Con-
sequently, choosing the function F (ϕ̄ϕ) in an appropriate way we can obtain
exact solutions of the nonlinear Dirac equation in terms of any special function
described by equation (2.5.2).

We will consider several particular cases of equation (2.5.13). First of
all, we recall that solutions of equation (2.5.13) (and, consequently, solutions
of the nonlinear Dirac equation (2.5.1) of the form (2.5.3), (2.5.4)) under
F = λ(ϕ̄ϕ)1/2k are expressed in terms of the Bessel functions (see Section
2.4).

1. Choosing
n−2C2/nt2(1−n)/n = 2N + 1− ξ2, N ∈ N, (2.5.17)

in (2.5.13) yields the Weber equation

R̈ + (2N + 1− ξ2)R = 0.

The fundamental system of solutions of the above equation reads [197]

u(ξ) = exp
{
−(1/2)ξ2

}
HN (ξ),

v(ξ) = u(ξ)
ξ∫
a

(
u(τ)

)−2
dτ, a = const,

(2.5.18)

where

HN (ξ) = (−1)N exp{ξ2} dN

dξN
exp{−ξ2}



2.5. Nonlinear spinor equations and special functions 165

is the Chebyshev-Hermite polynomial.
It is not difficult to verify that functions (2.5.18) satisfy the identity

w(u, v) = 1.

Thus, substitution of formulae (2.5.15), (2.5.18) into (2.5.3), (2.5.4) with
account of (2.5.16) under w(u, v) = 1 gives rise to a class of the exact so-
lutions of the nonlinear Dirac equation in terms of the Chebyshev-Hermite
polynomials and what is more

ξ2 = 2N + 1− n−2C(4−2n)/nωn−1. (2.5.19)

To obtain an explicit form of F = F (t) we differentiate equality (2.5.17)
with respect to t

2(1− n)n−3C2/nt(2−3n)/n = −2ξ
dξ

dt
,

whence it follows that

F (t) = (n− 1)n−3C2/nt(4−3n)/n
(
2N − n−2C2/nt2(1−n)/n

)−1/2
.

Let us note that under n = 3, i(χ0χ2∗ − χ2χ0∗ + χ3χ1∗ − χ1χ3∗) < 0 the
solution obtained is localized in the Minkowski space with exception of the
hyperplane x3 = −x0, where it has a non-integrable singularity.

2. If we choose
n−2C2/nt2(1−n)/n = −(3/4)We(ξ), (2.5.20)

where We(ξ) is the Weierstrass function having the invariants ω1, ω2, in
(2.5.13), then the Lamé equation is obtained

R̈− (3/4)We(ξ)R = 0. (2.5.21)

The fundamental system of solutions of ODE (2.5.21) is as follows [197]

u(ξ) = {Ẇe(ξ/2)}−1/2,

v(ξ) = We(ξ/2){Ẇe(ξ/2)}−1/2
(2.5.22)

and what is more w(u, v) = 1/2. Hence, using formulae (2.5.3), (2.5.4),
(2.5.15), (2.5.16) (under w(u, v) = 1/2) we obtain the exact solutions of the
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initial PDE (2.5.1) in terms of the Weierstrass function, the equalities

ξ =

(4/3)n−2C(4−2n)/nωn−1∫

−∞
(−4τ3 + ω1τ − ω2)−1/2dτ,

F (t) = (4/3)(n− 1)n−2C2/nt(2−3n)/n
{
−4

(
(4/3)n−2C2/n

×t2(1−n)/n
)3

+ (4/3)ω1n
−2C2/nt2(1−n)/n − ω2

}−1/2

holding.

3. Choosing in (2.5.13)

n−2C2/nt2(1−n)/n = (1/4)ξ−2{2(a + b + 1)− (a + b + 1)2} − ab

we get the hypergeometric equation

R̈ +
(
(1/4)ξ−2[1− (a + b)2]− ab

)
R = 0.

The fundamental system of solutions of this equation is as follows [197]

u(ξ) = ξ(1+a+b)/2F (a, b, a + b + 1, ξ),
v(ξ) = ξ(1−a−b)/2F (−b, −a , 1− a− b, ξ),

(2.5.23)

where F = F (a, b , c, ξ) is the hypergeometric Gauss function and besides

w(u, v) = (a + b)Γ(1 + a + b)Γ(1− a− b)

×
{
Γ(1 + a)Γ(1 + b)Γ(1− a)Γ(1− b)

}−1
.

(2.5.24)

Here Γ = Γ(a) is the Euler γ-function.
Substitution of formulae (2.5.15), (2.5.16), (2.5.23), (2.5.24) into the An-

sätze (2.5.3), (2.5.4) yields the exact solutions of the nonlinear Dirac equation
(2.5.1), the relations

ξ = (1/2)
(
1− (a + b)2

)1/2(
n−2C(4−2n)/nωn−1 + ab

)−1/2
,

F (t) = (1/2)n−3(n− 1)C2/n
(
1− (a + b)2

)1/2
t(4−3n)/n

×
(
n−2C2/nt2(1−n)/n + ab

)−3/2

holding.
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Let us note that solutions of equation (2.5.1) of the form (2.5.3), (2.5.4)
can be treated as solutions of the linear Dirac equation

{iγµ∂µ − U(x)}ψ(x) = 0 (2.5.25)

with potentials U(x) = F [C(x2
0−x2

1−x2
3)
−1] and U(x) = F [C(x·x)−3/2]. That

is why there exists an analogy between equations (2.5.1) and (2.5.25). The
principal difference is that in the case of a linear equation the potential char-
acterizes interaction of the spinor field with some external field (for example,
with the scalar field u(x) = U(x)), while in the nonlinear case the ”potential”
is determined by self-interaction of the spinor field ψ(x).

2.6. Construction of fields with spins s = 0, 1, 3/2

via the Dirac field

In [152] we have suggested a purely algebraic method of construction of Ans-
ätze for scalar, vector and tensor fields by the use of Ansätze for the spinor
field ψ(x). The method is based on the following well-known fact: provided
the spinor field ψ(x) transforms according to formulae (1.1.24)–(1.1.26), then
the quantities

u(x) = ψ̄ψ, (2.6.1)
Aµ(x) = ψ̄γµψ, (2.6.2)
Fµν(x) = iψ̄γµγνψ, (2.6.3)

transform with respect to the Poincaré group as the scalar, vector and second-
rank tensor correspondingly. Consequently, substitution of the P (1, 3)-invari-
ant Ansätze for ψ(x) obtained in Section 2.2 into formulae (2.6.1)–(2.6.3) with
subsequent replacement ϕ̄ϕ → B(ω), ϕ̄γµϕ → Bµ(ω), iϕ̄γµγνϕ → Bµν(ω)
yields the Ansätze for the scalar, vector and tensor fields invariant under the
one- and three-dimensional subalgebras of the algebra AP (1, 3).

It is worth noting that the above described procedure of construction of
invariant Ansätze is much simpler than integration of system of PDEs (1.5.22),
(1.5.20).

Furthermore, if we substitute Ansätze for ψ(x) invariant under one- and
three-dimensional subalgebras of the Lie algebra of the extended Poincaré
group AP̃ (1, 3) into formulae (2.6.1)–(2.6.3), then P̃ (1, 3)-invariant Ansätze
for fields u(x), Aµ(x), Fµν(x) are obtained.
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To construct conformally-invariant Ansätze for the scalar, vector and ten-
sor fields we introduce into formulae (2.6.1)–(2.6.3) the normalizing factors of
the form (ψψ̄)α

u(x) = (ψ̄ψ)1/3, (2.6.4)
Aµ(x) = ψ̄γµψ(ψ̄ψ)−2/3, (2.6.5)

Fµν(x) = iψ̄γµγνψ(ψ̄ψ)−1/3 (2.6.6)

(it is not difficult to ascertain that the fields u(x), Aµ(x) transform according to
formulae (1.4.5), (1.4.13) provided the spinor field ψ(x) transforms according
to (1.1.28)).

We apply the procedure described to obtain Poincaré-invariant Ansätze for
the vector field Aµ(x) which reduce the corresponding P (1, 3)-invariant system
of PDEs to ODEs. Before substituting Ansätze for ψ(x) into formula (2.6.2) we
generate them by transformations from the Poincaré group (formulae (2.4.41)–
(2.4.43)). Substitution of P (1, 3)-ungenerable Ansätze for the spinor field ψ(x)
into (2.6.2) yields P (1, 3)-ungenerable Ansätze for the vector field Aµ(x) that
can be represented in the following unified form:

Aµ(x) =
{
(aµaν − dµdν) cosh θ0 + (dµaν − dνaµ) sinh θ0

+2(aµ + dµ)[(θ1 cos θ3 + θ2 sin θ3)bν + (θ2 cos θ3

−θ1 sin θ3)cν + (θ2
1 + θ2

2)e
−θ0(aν + dν)] + (bµcν (2.6.7)

−bνcµ) sin θ3 − (cµcν + bµbν) cos θ3 − 2e−θ0

×(θ1bµ + θ2cµ)(aν + dν)
}
Bν(ω),

where aµ, bµ, cµ, dµ are arbitrary real constants satisfying equalities (2.4.47)
and Bν are arbitrary smooth functions. Explicit forms of the functions θµ, ω
depend on the choice of a three-dimensional subalgebra of the Poincaré algebra
(2.2.7) and are given below

1) θµ = 0, ω = d · z;
2) θµ = 0, ω = a · z;
3) θµ = 0, ω = k · z;
4) θ0 = − ln(k · z), θ1 = θ2 = θ3 = 0, ω = (a · z)2 − (d · z)2;
5) θ0 = − ln(k · z), θ1 = θ2 = θ3 = 0, ω = b · z;
6) θ0 = −α−1(c · z), θ1 = θ2 = θ3 = 0, ω = b · z, α 6= 0;
7) θ0 = −α−1(c · z), θ1 = θ2 = θ3 = 0, ω = α ln(k · z)− c · z, α 6= 0;
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8) θ0 = θ1 = θ2 = 0, θ3 = − arctan(b · z/c · z), ω = (b · z)2 + (c · z)2;
9) θ0 = θ1 = θ2 = 0, θ3 = −α−1(a · z), ω = d · z, α 6= 0;
10) θ0 = θ1 = θ2 = 0, θ3 = α−1(d · z), ω = a · z, α 6= 0;
11) θ0 = θ1 = θ2 = 0, θ3 = (d · z − a · z)/2, ω = k · z;
12) θ0 = θ2 = θ3 = 0, θ1 = b · z/2k · z, ω = k · z;
13) θ0 = θ2 = θ3 = 0, θ1 = (αb · z − c · z)(2αk · z)−1, ω = k · z,

α 6= 0;
14) θ0 = θ2 = θ3 = 0, θ1 = (c · z)/2, ω = k · z; (2.6.8)
15) θ0 = θ2 = θ3 = 0, θ1 = −(k · z)/2, ω = 2b · z + (k · z)2;
16) θ0 = θ2 = θ3 = 0, θ1 = −(k · z)/2, ω = 2(c · z − αb · z)− α(k · z)2;
17) θ0 = α−1 arctan(b · z/c · z), θ1 = θ2 = 0,

θ3 = − arctan(b · z/c · z), ω = (b · z)2 + (c · z)2, α 6= 0;
18) θ0 = − ln(k · z), θ1 = θ2 = 0, θ3 = α ln(k · z),

ω = (a · z)2 − (d · z)2;
19) θ0 = − ln(k · z), θ1 = θ2 = 0, θ3 = − arctan(b · z/c · z),

ω = (b · z)2 + (c · z)2;
20) θ0 = θ3 = 0, θ1 = b · z/2k · z, θ2 = c · z/2k · z, ω = k · z;
21) θ0 = θ3 = 0, θ1 = (1/2)[(k · z + β)b · z − αc · z][k · z(k · z + β)

−α]−1, θ2 = (1/2)(k · zc · z − b · z)[k · z(k · z + β)− α]−1,

ω = k · z;
22) θ0 = θ3 = 0, θ1 = (1/2k · z)(b · z − c · z(k · z + β)−1),

θ2 = (1/2)c · z(k · z + β)−1, ω = k · z;
23) θ0 = θ3 = 0, θ1 = b · z/2k · z, θ2 = (1/2)c · z(k · z + 1)−1,

ω = k · z;
24) θ0 = − ln(k · z), θ1 = b · z/2k · z,

θ2 = θ3 = 0, ω = (a · z)2 − (b · z)2 − (d · z)2;
25) θ0 = − ln(k · z), θ1 = [b · z − α ln(k · z)]/2k · z,

θ2 = θ3 = 0, ω = c · z − β ln(k · z);
26) θ0 = 0, θ1 = b · z/2k · z, θ2 = c · z/2k · z,

θ3 = −z · z/4k · z, ω = k · z;
27) θ0 = − ln(k · z), θ1 = b · z/2k · z, θ2 = c · z/2k · z,

θ3 = α ln(k · z), ω = z · z.
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where kµ = aµ + bµ, zµ = xµ + τµ, τµ = const, µ = 0, . . . , 3.
Let us consider an example of construction of an Ansatz for the vector field

Aµ(x) by taking as ψ(x) the Ansatz

ψ(x) = exp{(1/2)γ0γ3 ln(x0 + x3)}ϕ (x2
0 − x2

3)

invariant under the three-dimensional algebra 〈J03, P1, P2〉 ∈ AP (1, 3).
It is not difficult to check that a P (1, 3)-ungenerable Ansatz for the spinor

field is obtained by making the following change:

γ0 → γ · a, γ1 → γ · b, γ2 → γ · c, γ3 → γ · d,

x0 → a · z, x1 → b · z, x2 → c · z, x3 → d · z

in the above Ansatz.
As a result, we have

ψ(x) = exp{(1/2)γ · aγ · d ln(k · z)}ϕ
= {cosh[(1/2) ln(k · z)] + γ · aγ · d sinh[(1/2) ln(k · z)]}ϕ,

ψ̄(x) = ϕ̄ exp{−(1/2)γ · aγ · d ln(k · z)}
= {cosh[(1/2) ln(k · z)]− γ · aγ · d sinh[(1/2) ln(k · z)]},

where ϕ is an arbitrary complex-valued four-component function of (a · z)2 −
(d · z)2. Substitution of the formulae obtained into (2.6.2) yields

Aµ(x) = ϕ̄{cosh θ − γ · aγ · d sinh θ}γµ{cosh θ + γ · aγ · d sinh θ}ϕ
= ϕ̄γµϕ− (sinh θ)ϕ̄[γ · aγ · d, γµ](cosh θ + γ · aγ · d sinh θ)ϕ
= ϕ̄γµϕ + 2aµϕ̄(γ · d cosh θ + γ · a sinh θ)ϕ sinh θ − 2dµ

×ϕ̄(γ · a cosh θ + γ · d sinh θ)ϕ sinh θ = {(aµaν − dµdν)
× cosh 2θ + (aµdν − dµaν) sinh 2θ − bµbν − cµcν}ϕ̄γνϕ,

where θ = (1/2) ln(k · z). Designating the real-valued functions ϕ̄γµϕ by
Bµ, µ = 0, . . . , 3 we arrive at the Ansatz 4 from (2.6.7).

To obtain from (2.6.7) Ansätze for the vector field invariant under the
three-dimensional subalgebras of the Poincarè algebra (2.2.7) we put

τµ = 0, aµ = δµ0, bµ = −δµ1, cµ = −δµ2, dµ = −δµ3.

Let us emphasize that the above procedure of construction of Ansätze for
the vector, scalar and tensor fields is based on transformational properties of
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the spinor field with respect to the Poincarè group only and the explicit form of
the function ψ(x) is not used. There arises a natural question: what equations
are satisfied by functions u(x), Aµ(x), Fµν(x) defined by formulae (2.6.1)–
(2.6.3) provided ψ = ψ(x) is a solution of the nonlinear Dirac equation? In
other words, is it possible to construct exact solutions of equations describing
fields with spins s = 0, 1, 3/2, . . . with the help of exact solutions of a nonlinear
PDE for the field with the spin s = 1/2?

It occurs that for some classes of fields the answer to this question is
positive [155].

We look for solutions of the complex nonlinear d’Alembert equation

∂µ∂µu = λ1|u|k1u, (2.6.9)

where λ1, k1 are constants, in the form

u(x) = ψ̄ψ eiθ(x). (2.6.10)

Here ψ = ψ(x) is a solution of nonlinear spinor equation (2.4.1) and θ(x) ∈
C2(R2,R1) is a phase of the field u(x). With the use of exact solutions of the
nonlinear Dirac equation listed in Section 2.4 we have obtained a number of
exact solutions of the nonlinear d’Alembert equation which are adduced in the
Table 2.6.1.

Thus, spinors ψ = ψ(x) satisfying nonlinear PDE (2.4.1) give rise to com-
plex scalar fields u = u(x) which are described by the nonlinear d’Alembert
equation (2.6.9). It is interesting to note that the inverse procedure is also
possible. Namely, starting from a special subclass of exact solutions of the
nonlinear d’Alembert equation we can obtain exact solutions of the nonlinear
Dirac equation (see Section 2.1).

As straightforward computation shows, the vector field constructed with
the help of formula (2.6.2), where ψ(x) is a solution of the nonlinear spinor
equation (2.4.1), satisfies the following system of PDEs:

(
∂µ∂µ + M2(x)

)
Aµ(x) = jν(x),

∂µAµ(x) = 0,
(2.6.11)

functions M(x), jµ(x) depending on the choice of ψ(x).
For example, if we take ψ = ψ1(x), then

M(x) = λ(χ̄χ)1/2k = const,
jµ(x) = λχ̄(cosλx0 − iγ0 sinλx0)γµ(cosλx0 + iγ0 sinλx0)χ.
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Consequently, the nonlinear spinor field gives rise to a field Aµ(x) which
can be interpreted as the vector field with a variable mass M(x).

Table 2.6.1. Exact solutions of the nonlinear
d’Alembert equation

N u(x) k1

1–10 C exp{iα · x} k1 ∈ R1

11 C(x2
1 + x2

2)
−1/2 exp{iw0} 2

12 C[(x1 + w1)2 + (x2 + w2)2]−1/2 exp{iw0} 2

13 C(x2
1 + x2

2)
−1/2 exp{iw0} 2

14 C(x2
0 − x2

1 − x2
3)
−1 1

15 C(x · x)−3/2 2/3

16 C(x2
0 − x2

3)
−1/2 2

17 C(x2
1 + x2

2)
−1/2 exp{iw0} 2

18 C[(x1 + w1)2 + (x2 + w2)2]−1/2 exp{iw0} 2

19 Cw−2
0 exp{i(x1 + w1)} 0

21 C(x2
0 − x2

1 − x2
2)
−2 1/2

22 C(x2
0 − x2

1 − x2
2)
−2 1/2

24 C(x2
1 + x2

2 + x2
3)
−2 1/2

26 C(x2
0 − x2

1 − x2
3)
−1 1

27 C(x · x)−3/2 2/3

28 C{[x2 + β(x0 + x3)]2 + [x1 + (1/2)(x0 + x3)2]2}−k 1/k, k < 0

29 C{[x2 + β(x0 + x3)]2 + [x1 + (1/2)(x0 + x3)2]2}−1 1

Here N denotes the number of the corresponding solution of the nonlinear
Dirac equation, w0, w1, w2 are arbitrary smooth functions of x0+x3; C, αµ, β
are constants.

Let us adduce an example of a tensor field with the spin s = 1 constructed
with the use of an exact solution of nonlinear PDE (2.4.1). Substituting the
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four-component function ψ(x) = exp{−iλγ0x0} into the formulae

Ea = iψ̄γ0γaψ, Ha = (i/2)εabcψ̄γbγcψ

we get the exact solution of the Maxwell equations with the current

j0 = 0, ja = −2iλ(χ†γaχ) sin 2λx0 − 2λ(χ̄γaχ) cos 2λx0.

In conclusion of this section we give the formula for construction of Poinca-
rè-invariant Ansätze for the field with the spin s = 3/2

Λµ(x) = (ψ̄γµψ)ψ, µ = 0, . . . , 3. (2.6.12)

Substitution of the P (1, 3)-invariant Ansätze (2.2.8) into (2.6.12) gives rise
to Ansätze for the field Λµ(x) with the spin s = 3/2 reducing the corresponding
Poincaré-invariant equation to systems of ODEs.

2.7. Exact solutions of the Dirac-d’Alembert equation

Few works containing exact solutions of systems of nonlinear PDEs of the form
(1.4.8) [20, 21, 287] use essentially the Ansatz for the spinor field

ψ(x) = {γ · xf(x · x) + ig(x · x)}χ (2.7.1)

suggested by Heisenberg [180]. In (2.7.1) {f, g} ⊂ C1(R1,R1) are arbitrary
real-valued functions.

The scalar field u = u(x) is looked for in the form

u(x) = ϕ(x · x), ϕ ∈ C2(R1,C1). (2.7.2)

Substitution of (2.7.1), (2.7.2) into (1.4.8) under

F = R2(uu∗, ψ̄ψ)ψ, H = R1(uu∗, ψ̄ψ)u, Ri ∈ C(R2,R1) (2.7.3)

gives rise to a system of three ordinary differential equations for functions
f, g, ϕ. Consequently, a reduction of PDE (1.4.8) both by the number of
independent variables and by the number of dependent variables takes place.
We recall that Ansätze constructed in Section 2.2 reduce Poincaré-invariant
spinor equations by the number of independent variables only.
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In [148] we have suggested a generalization of the Heisenberg Ansatz which
made it possible to obtain broad classes of the exact solutions of the multi-
dimensional Dirac and Dirac-d’Alembert equations.

Following [151] we look for a solution of system of PDEs (1.4.8), (2.7.3) of
the form

ψ(x) = {f(ω)γµ∂µω + ig(ω)}χ, u(x) = ϕ(ω), (2.7.4)

where {f, g} ⊂ C1(R1,R1), ϕ ∈ C2(R1,R1), ω = ω(x) is an arbitrary smooth
real-valued function.

Since

iγµ∂µψ(x) = {−ġγµ∂µω + if∂µ∂µω + iḟ(∂µω)(∂µω)}χ,

∂µ∂µu(x) = ϕ̈(∂µω)(∂µω) + ϕ̇∂µ∂µω,

ψ̄ψ = χ̄χ
(
g2 + f2(∂µω)(∂µω)

)
,

substitution of formulae (2.7.4) into (1.4.8) yields the system of PDEs for
f, g, ϕ, ω:

ϕ̈(∂µω)(∂µω) + ϕ̇∂µ∂µω = R1ϕ,

ḟ(∂µω)(∂µω) + f∂µ∂µω = R2g, (2.7.5)
ġ = −R2f,

where Ri = Ri(ϕϕ∗, g2 + f2(∂µω)(∂µω)), i = 1, 2.
If we resolve two last equations with respect to (∂µω)(∂µω) and ∂µ∂µω,

then the following necessary compatibility conditions arise

∂µ∂µω = F1(ω), (∂µω)(∂µω) = F2(ω).

In other words, the scalar function ω = ω(x) has to satisfy the d’Alembert-
Hamilton system (2.1.25) and besides the functions F1, F2 do not vanish
simultaneously. Since functions f(ω), g(ω) are arbitrary, we can choose them
in such a way that ω = ω(x) satisfies system of PDEs (2.1.30), equations
(2.7.5) taking the form

εϕ̈ + F (ω)ϕ̇ = R1(ϕϕ∗, g2 + εf2)ϕ,

εḟ + F (ω)f = R2(ϕϕ∗, g2 + εf2)g, (2.7.6)
ġ = −R2(ϕϕ∗, g2 + εf2)f,

where F (ω) = εNω−1, N = 0, . . . , 3, ε = ±1.
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Thus, the problem of constructing particular solutions of the multi-dimen-
sional system of five PDEs (1.4.8) is reduced to integration of a system of
three ODEs. If we succeed in integrating system (2.7.6), then substitution of
the obtained results into Ansatz (2.7.4), where ω = ω(x) is the solution of
the d’Alembert-Hamilton system (2.1.30), gives rise to exact solutions of the
initial system of PDEs (1.4.8), (2.7.3).

Let us note that Ansatz (2.7.4) can be interpreted as the formula for con-
struction of the nonlinear spinor field ψ(x) satisfying the Dirac-d’Alembert
system with the help of the nonlinear scalar field ω(x) satisfying the nonlinear
d’Alembert-Hamilton system.

It is clear that the P (1, 3)-invariant Ansätze obtained in Section 2.2 can
also be applied to reduce the Poincaré-invariant equation (1.4.8) but the re-
sulting systems of ODEs prove to be much more complicated than system
(2.7.6).

We will construct exact solutions of system of PDEs (1.4.8), (2.7.3) having
the following nonlinearities:

R1 = −{µ1|u|k1 + µ2(ψ̄ψ)k2}2,

R2 = λ1|u|k1 + λ2(ψ̄ψ)k2 ,
(2.7.7)

where |u|2 = uu∗; λ1, λ2, µ1, µ2, k1, k2 are constants.
Substitution of Ansatz (2.7.4) into system of PDEs (1.4.8), (2.7.7) yields

the following equations for unknown functions f, g, ϕ:

λϕ̈ + F (ω)ϕ̇ = −{µ1|ϕ|k1 + µ̃2(g2 + λf2)k2}2ϕ,

λḟ + F (ω)f = {λ1|ϕ|k1 + λ̃2(g2 + λf2)k2}g, (2.7.8)
ġ = −{λ1|ϕ|k1 + λ̃2(g2 + λf2)k2}f.

Here µ̃2 = µ2(χ̄χ)k2 , λ̃2 = λ2(χ̄χ)k2 ; F (ω) = Nλω−1, N = 0, 1, 2, 3, λ =
ε = ±1.

We have succeeded in constructing the general solution of system (2.7.8)
provided N = 0. Under N 6= 0 some particular solutions are obtained.

1) N = 0, λ = 1
Multiplying the second equation of system (2.7.8) by f , the third by g and

summing we have fḟ + gġ = 0 ⇒ f2 + g2 = C2
1 = const. Due to this fact
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equations for g, f are easily integrated

f(ω) = C1 sin

{
λ1

ω∫
|ϕ(z)|k1dz + λ̃2C

2k2
1 ω + C2

}
,

g(ω) = C1 cos

{
λ1

ω∫
|ϕ(z)|k1dz + λ̃2C

2k2
1 ω + C2

}
,

(2.7.9)

where C2 = const.
Substituting (2.7.9) into the first equation of system (2.7.8) we come to

the following ODE for ϕ(ω):

ϕ̈ = −{µ1|ϕ|k1 + µ̃C2k2
1 }2ϕ.

On representing the complex-valued function ϕ in the form

ϕ(ω) = ρ(ω)eiθ(ω), (2.7.10)

where ρ(ω), θ(ω) are real-valued functions, we rewrite this ODE as follows

ρ̈− ρθ̇2 = −{µ1ρ
k1 + µ̃2C

2k2
1 }2ρ, 2θ̇ρ̇ + θ̈ρ = 0. (2.7.11)

The second equation of the above system implies that θ̇ = C3ρ
−1/2, C3 =

const. Substitution of this result into the first equation of system (2.7.11)
yields the ODE for ρ = ρ(ω)

ρ̈ = C2
3 − µ2

1ρ
2k1+1 − 2µ1µ̃2C

2k2
1 ρk1+1 − µ̃2

2C
4k2
1 ρ ≡ a+(ρ),

whose general solution is given by the implicit formula

ρ(ω)∫ (
2

∫
a+(z)dz + C4

)−1/2

dz = ω. (2.7.12)

Thus, the general solution of system of ODEs (2.7.8) under N = 0, λ = 1
has the form

f(ω) = C1 sin

{
λ1

ω∫
ρk1(z)dz + λ̃2C

2k2
1 ω + C2

}
,

g(ω) = C1 cos

{
λ1

ω∫
ρk1(z)dz + λ̃2C

2k2
1 ω + C2

}
,

ϕ(ω) = ρ(ω) exp

{
iC3

ω∫
ρ−1/2(z)dz

}
,
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where C1, C2, C3 are constants, ρ(ω) is defined by (2.7.12).

2) N = 2, 3, λ = 1.
We look for particular solutions of system (2.7.8) in the form of power

functions
f(ω) = Cωα1 , g(ω) = Dωα2 , ϕ(ω) = Eωα3 .

Substituting these expressions into (2.7.8) and equating exponents of ω
yield

α1 = α2, α1 − 1 = α2(1 + 2k2), α3k1 = 2α2k2,

whence α1 = α2 = −1/2k2, α3 = 1/k1.
Consequently,

f(ω) = Cω−1/2k2 , g(ω) = Dω−1/2k2 , ϕ(ω) = Eω−1/k1 , (2.7.13)

parameters C, D, E satisfying the system of nonlinear algebraic equations

k−2
1 (Nk1 − k1 − 1) = {µ1|E|k1 + µ̃2(C2 + D2)k2}2,

(2k2)−1D = {λ1|E|k1 + λ̃2(C2 + D2)k2}C, (2.7.14)
(2k2)−1(2Nk2 − 1)C = {λ1|E|k1 + λ̃2(C2 + D2)k2}D.

From the second and the third equations we get the equality

D2C−2 = 1− 2Nk2. (2.7.15)

The first equation of system (2.7.14) and equality (2.7.15) yield the follow-
ing restrictions on the choice of parameters k1, k2: k1 > (N − 1)−1, k2 >
(2N)−1.

Therefore, relations (2.7.14) can be rewritten in the form

D = ε(2Nk2 − 1)1/2C,

{µ1|E|k1 + µ̃2(2Nk2C
2)k2}2 = (1 + k1 −Nk1)k−2

1 , (2.7.16)
{λ1|E|k1 + λ̃2(2Nk2C

2)k2} = ε(2Nk2 − 1)1/2(2k2)−1,

where ε = ±1, k1 > (N − 1), k2 > (2N)−1.
Under k1 = 2(N − 1)−1, k2 = N−1 system (2.7.8) possesses the following

class of particular solutions:

f(ω) = θω(1 + θ2ω2)−(N+1)/2,

g(ω) = (1 + θ2ω2)−(N+1)/2,

ϕ(ω) = E(1 + θ2ω2)(1−N)/2,
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parameters θ, E being determined by the system of nonlinear algebraic equa-
tions

θ2(N2 − 1) = {µ1|E|2/(N−1) + µ̃2}2

(N + 1)θ = {λ1|E|2/(N−1) + λ̃2}.
(2.7.17)

3) N = 0, λ = −1.
Multiplying the second equation of system (2.7.8) by f , the third by g and

summing we have f2− g2 = −C2
1 = const. Due to this fact equations for g, f

are easily integrated

f(ω) = C1 sinh

{
−λ1

ω∫
|ϕ(z)|k1dz − λ̃2C

2k2
1 ω + C2

}
,

g(ω) = C1 cosh

{
−λ1

ω∫
|ϕ(z)|k1dz − λ̃2C

2k2
1 ω + C2

}
,

where C2 = const.
Substitution of the above formulae into the first equation of system (2.7.8)

gives rise to the ODE for ϕ(ω)

ϕ̈ = {µ1|ϕ|k1 + µ̃2C
2k2
1 }2ϕ.

Representing ϕ(ω) in the form (2.7.10) we come to the following system of
ODEs for ρ(ω), θ(ω):

ρ̈− ρθ̇2 = {µ1ρ
k1 + µ̃2C

2k2
1 }2ρ, θ̈ρ + 2θ̇ρ̇ = 0.

The general solution of the above system is given implicitly

θ = C3

ω∫
ρ−1/2(z)dz,

ρ(ω)∫ (
2

∫
a−(z)dz + C4

)−1/2

dz = ω, (2.7.18)

where a−(z) = µ2
1z

2k1+1 + 2µ1µ̃2C
2k2
1 zk1+1 + µ̃2

2C
4k1
1 z + C2

3 , C3, C4 are cons-
tants.

Consequently, the general solution of system of ODEs (2.7.8) under N = 0,
λ = 1 has the form

f(ω) = C1 sinh

{
−λ1

ω∫
ρk1(z)dz − λ̃2C

2k2
1 ω + C2

}
,
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g(ω) = C1 cosh

{
−λ1

ω∫
ρk1(z)dz − λ̃2C

2k2
1 ω + C2

}
,

ϕ(ω) = ρ(ω) exp

{
iC3

ω∫
ρ−/2(z)dz

}
,

function ρ(ω) being determined by (2.7.18).

4) N = 1, 2, 3, λ = −1.
Solutions of equations (2.7.8) are looked for in the form (2.7.13), whence

we get the following system of nonlinear algebraic equations for C, D, E:

k−2
1 (k1N − k1 − 1) = −{µ1|E|k1 + µ̃2(D2 − C2)k2}2,

(2k2)−1(1− 2Nk2) = {λ1|E|k1 + λ̃2(D2 − C2)k2}DC−1, (2.7.19)
(2k2)−1 = {λ1|E|k1 + λ̃2(D2 − C2)k2}CD−1.

Analysis of the above equations yields the restriction on the choice of C, D:
D2C−2 = 1 − 2Nk2. Due to this fact equations (2.7.19) are rewritten in the
form

D = εC(1− 2Nk2)1/2,

(1 + k1 −Nk1)k−2
1 = {µ1|E|k1 + µ̃2(−2Nk2C

2)k2}2, (2.7.20)
ε(1− 2Nk2)1/2(2k2)−1 = {λ1|E|k1 + λ̃2(−2Nk2C

2)k2},

where ε = ±1, k1 < (N − 1)−1, k2 < (2N)−1.
Substitution of the results obtained into Ansatz (2.7.4) gives the following

classes of exact solutions of the nonlinear Dirac-d’Alembert equations (1.4.8),
(2.7.7) :

the case of arbitrary k1 ∈ R1, k2 ∈ R1

ψ1(x) =

{
i cos

(
λ1

x0∫
ρk1(z)dz + λ2(χ̄χ)k2x0 + C2

)

+γ0 sin

(
λ1

x0∫
ρk1(z)dz + λ2(χ̄χ)k2x0 + C2

)}
χ,

u1(x) = ρ(x0) exp

{
iC3

x0∫ (
ρ(z)

)−1/2
dz

}
,
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where C2, C3 are arbitrary real constants, function ρ = ρ(ω) is determined by
formula (2.7.12) under C1 = 1:

ψ2(x) =

{
i cosh

(
−λ1

ω∫
ρk1(z)dz − λ2(χ̄χ)k

2ω + C2

)

+(γµ∂µω) sinh

(
−λ1

ω∫
ρk1(z)dz − λ2(χ̄χ)k2ω + C2

)}
χ,

u2(x) = ρ(ω) exp

{
iC3

ω∫ (
ρ(z)

)−1/2
dz

}
,

where C2, C3 are arbitrary real constants, function ρ = ρ(ω) is determined by
formula (2.7.18) under C1 = 1, ω = ω(x) is given by one of the formulae listed
in (2.1.88);

the case k1 > 1/2, k2 > 1/6

ψ3(x) = ω−1/4k2{εi(6k2 − 1)1/2 + γµ∂µω}χ,

u3(x) = Eω−1/2k1 ,

where E, χ are defined by (2.7.16) under C = 1, N = 3, ω = ω(x) is given
by (2.1.87);

the case k1 > 1, k2 > 1/4

ψ4(x) = ω−1/4k2{εi(4k2 − 1)1/2 + γµ∂µω}χ,

u4(x) = ω−1/2k1 ,

where E, χ are defined by (2.7.16) under C = 1, N = 2, ω = ω(x) is given
by (2.1.86);

the case k1 < 1/2, k2 < 1/6

ψ5(x) = ω−1/4k2{εi(1− 6k2)1/2 + γµ∂µω}χ,

u5(x) = Eω−1/2k1 ,

where E, χ are defined by (2.7.20) under C = 1, N = 3, ω = ω(x) is given
by (2.1.91);

the case k1 < 1, k2 < 1/4

ψ6(x) = ω−1/4k2{εi(1− 4k2)1/2 + γµ∂µω}χ,

u6(x) = Eω−1/2k1 ,
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where E, χ are defined by (2.7.20) under C = 1, N = 2, ω = ω(x) is given
by (2.1.90);

the case k1 ∈ R1, k2 < 1/2

ψ7(x) = ω−1/4k2{εi(1− 2k2)1/2 + γµ∂µω}χ,

u7(x) = Eω−1/2k1 ,

where E, χ are defined by (2.7.20) under C = 1, N = 1, ω = ω(x) is given
by (2.1.89);

the case k1 = 2, k2 = 1/2

ψ8(x) = (1 + θ2ω2)−3/2{i + θωγµ∂µω}χ,

u8(x) = E(1 + θ2ω2)−1/2,

where θ, E, χ are defined by (2.7.17) under N = 2, ω = ω(x) is given by
(2.1.86);

the case k1 = 1, k2 = 1/3

ψ9(x) = (1 + θ2ω2)−2{i + θωγµ∂µω}χ,

u9(x) = E(1 + θ2ω2)−1,

where θ, E, χ are defined by (2.7.17) under N = 3, ω = ω(x) is given by
(2.1.87).

According to Theorem 1.4.1 system of PDEs (1.4.8), (2.7.7) under k1 =
1, k2 = 1/3 admits the conformal group C(1, 3). Therefore we can apply
to solutions {ψ1(x), u1(x)}, {ψ2(x), u2(x)}, {ψ3(x), u3(x)}, {ψ7(x), u7(x)},
{ψ9(x), u9(x)} with k1 = 1, k2 = 1/3 the procedure of generating solutions by
means of the four-parameter group of special conformal transformations

ψII(x) = σ−2(x)(1− γ · θγ · x)ψI(x′),
uII(x) = σ−1(x)uI(x′), (2.7.21)
x′µ = (xµ − θµx · x)σ−1(x),

where σ(x) = 1− 2θ · x + θ · θx · x, θµ are constants.
The above formulae are obtained from (1.4.13) with the help of Theorem

2.4.1.
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The nonlinear functions λ1|u|k1 + λ2(ψ̄ψ)k2 , µ1|u|k1 + µ2(ψ̄ψ)k2 can be
interpreted as ”masses” of the spinor (M(ψ)) and scalar (M(u)) particles cre-
ated because of interaction of these particles. As straightforward computation
shows, the following relations hold

(
M(ψ)/M(u)

)2
= (1/4)k2

1(2Nk2 − 1)k−2
2 (Nk1 − k1 − 1)−1,

where the cases N = 2, N = 3 correspond to the solutions {ψ4, u4}, {ψ3, u3};
(
M(ψ)/M(u)

)2
= (1/4)k2

1(2Nk2 − 1)k−2
2 (Nk1 − k1 − 1)−1,

where the cases N = 1, N = 2, N = 3 correspond to the solutions {ψ7, u7},
{ψ6, u6}, {ψ5, u5};

(
M(ψ)/M(u)

)−2
= (N + 1)(N − 1)−1,

where the cases N = 2, N = 3 correspond to the solutions {ψ8, u8}, {ψ9, u9}.
Consequently, in spite of the fact that ”masses” of the spinor and scalar

particles described by equations (1.4.8), (2.7.7) are variable their ratio is the
constant determined by the exponents k1, k2 and by some discrete parameter
N . Thus, the above relations can be interpreted as the formulae for the mass
spectrum of the spinor and scalar fields. It is worth noting that the discrete
parameter N arises because of the fact that the nonlinear differential operator
±ω22 has the discrete spectrum N = 0, 1, 2, 3 on the set of solutions of the
equation (∂µω)(∂µω) = ±1 (see Section 2.1).

The solutions {ψ3(x), u3(x)}−{ψ9(x), u9(x)} vanish at the infinity under
positive k1, k2 and besides they have a non-integrable singularity [151].

Using the fact that system (1.4.8), (2.7.7) under λ1 = µ2 = 0 splits into the
nonlinear Dirac and d’Alembert equations we can get from {ψ1(x), u1(x)} −
{ψ9(x), u9(x)} their exact solutions by putting λ1 = 0, µ2 = 0. In particular,
the solutions {ψ2(x), u2(x)}, {ψ5(x), u5(x)}, {ψ6(x), u6(x)} give rise to new
solutions of the nonlinear Dirac equation which differ from those constructed
in Section 2.4.

In conclusion we will say a few words about exact solutions of the conforma-
lly-invariant system of PDEs

∂µ∂µu = λ3u
3 − λ1ψ̄ψ,

iγµ∂µψ = {λ1u + λ2(ψ̄ψ)1/3}ψ,
(2.7.22)

where λ1, λ2, λ3 are constants, obtained in [20, 21] with the help of Heisenberg
Ansatz (2.7.1), (2.7.2). Since Ansatz (2.7.1) is a particular case of Ansatz
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(2.7.4) (under ω(x) = x ·x), the above mentioned solutions can be constructed
within the framework of our approach. In particular, functions {ψ3(x), u3(x)},
{ψ9(x), u9(x)} with k1 = 1, k2 = 1/3 satisfy system of PDEs (2.7.22) provided
the constants E, χµ, θ satisfy the algebraic relations

λ1E + λ221/3(χ̄χ)1/3 = 3ε/2, −2λ1(χ̄χ) + λ3E
3 = 3

and
λ1E + λ2(χ̄χ)1/3 = 4θ, λ1(χ̄χ)− λ3E

3 = 8θ2,

correspondingly.

2.8. Exact solutions of the nonlinear electrodynamics equations

Let us carry out reduction of Poincaré-invariant equations (1.4.7) for the spinor
and vector fields using Ansätze constructed in Section 2.6. Substitution of
P (1, 3)-ungenerable Ansätze for the spinor field (we recall that these are ob-
tained by making the change

γ0 → γ · a, γ1 → γ · b, γ2 → γ · c, γ3 → γ · d,

x0 → a · z, x1 → b · z, x2 → c · z, x3 → d · z
(2.8.1)

in P (1, 3)-invariant Ansätze (2.2.8)) and P (1, 3)-ungenerable Ansätze for the
vector field (2.6.7), (2.6.8) into system of PDEs (1.4.7), (1.4.18) yields after
rather cumbersome computations 27 systems of ODEs for functions ϕ(ω),
Bµ(ω). Systems of ODEs for ϕ(ω) are obtained from (2.3.5) if we replace
γµ, xµ by the expressions given in (2.8.1) and put

R = {γ ·B(f1 + f2γ4) + f3 + f4γ4}ϕ,

wheref1, . . . , f4 are arbitrary smooth functions of

ϕ̄ϕ, ϕ̄γ4ϕ, ϕ̄γ ·Bϕ, ϕ̄γ4γ ·Bϕ, ϕT γ0γ2γ ·Bϕ, B ·B. (2.8.2)

Reduced systems of ODEs for the vector field are written in the following
unified form:

kµγB̈γ + lµγḂγ + mµγBγ = g1Bµ + g2ϕ̄γµϕ + g3ϕ̄γ4γµϕ

+g4ϕ
T γ0γ2γµϕ, µ = 0, . . . , 3,

(2.8.3)
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where g1, . . . , g4 are arbitrary smooth functions of the variables (2.8.2) and
kµγ , lµγ , mµγ are functions of ω listed below

1) kµγ = −gµγ − dµdγ , lµγ = mµγ = 0;
2) kµγ = gµγ − aµaγ , lµγ = mµγ = 0;
3) kµγ = kµkγ , lµγ = mµγ = 0;
4) kµγ = 4gµγω − aµaγ(ω + 1)2 − (aµdγ + dµaγ)(ω2 − 1)− dµdγ(ω − 1)2,

lµγ = 4[gµγ + (aµdγ − aγdµ)]− 2[aµ(ω + 1) + dµ(ω − 1)]kγ ,

mµγ = 0;
5) kµγ = −gµγ − bµbγ , lµγ = −bµkγ , mµγ = 0;
6) kµγ = −gµγ − bµbγ , lµγ = 0, mµγ = −(aµaγ − dµdγ)/α2;

7) kµγ = −gµγ − (αkγe−ω/α − cγ)(αkµe−ω/α − cµ), lµγ = (2/α)(aµdγ

−aγdµ) + (αkµe−ω/α − cµ)kγe−ω/α, mµγ = −(aµaγ − dµdγ)/α2;
8) kµγ = −4ω(gµγ + cµcγ), lµγ = −4(gµγ + cµcγ), mµγ = −(bµbγ)/ω;
9) kµγ = −gµγ − dµdγ , lµγ = 0, mµγ = (bµbγ + cµcγ)/α2;
10) kµγ = gµγ − aµaγ , lµγ = 0, mµγ = −(bµbγ + cµcγ)/α2;
11) kµγ = −kµkγ , lµγ = 2(cµbγ − bµcγ), mµγ = 0;
12) kµγ = −kµkγ , lµγ = −(kµkγ)/ω, mµγ = 0;
13) kµγ = −kµkγ , lµγ = −(kµkγ)/ω, mµγ = −(kµkγ)/(α2ω2);
14) kµγ = −kµkγ , lµγ = 0, mµγ = −kµkγ ;
15) kµγ = −4gµγ − 4bµbγ , mµγ = lµγ = 0;
16) kµγ = −4(1 + α2)gµγ − 4(cµ − αbµ)(cγ − αbγ), mµγ = lµγ = 0;
17) kµγ = −4ω(gµγ + cµcγ), lµγ = −4(gµγ + cµcγ),

mµγ = −(1/ω)[(aµaγ − dµdγ)α−2 + bµbγ ];
18) kµγ = 4[gµγω − (aµ − dµ)(aγ − dγ)], lµγ = 4[gµγ + (aµdγ − aγdµ)

+α(bµcγ − cµbγ)]− 2(aµ − dµ)kγ , mµγ = 0;

19) kµγ = −4ω(gµγ + cµcγ), lµγ = −4gµγ − 4cµcγ − 2cµkγω1/2;
mµγ = −(bµbγ)ω−1;

20) kµγ = −kµkγ , lµγ = −(2kµkγ)/ω, mµγ = 0;
21) kµγ = −kµkγ , lµγ = −kµkγ(2ω + β)[ω(ω + β)− α]−1,

mµγ = −kµkγ(α− 1)2[ω(ω + β)− α]−2;
22) kµγ = −kµkγ , lµγ = −kµkγ(2ω + β)[ω(ω + β)]−1,
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mµγ = −kµkγ [ω(ω + β)]−2;
23) kµγ = −kµkγ , lµγ = −kµkγ(2ω + 1)[ω(ω + β)]−1, mµγ = 0;
24) kµγ = 4ωgµγ − (kµω + aµ − dµ)(kγω + aγ − dγ), lµγ = 6gµγ

+4(aµdγ − aγdµ)− 3(kµω + aµ − dµ)kγ , mµγ = −kµkγ ;
25) kµγ = −gµγ − (cµ − βkµ)(cγ − βkγ), lµγ = 2(βkµ − cµ)kγ ,

mµγ = −kµkγ ;
26) kµγ = −kµkγ , lµγ = (cµbγ − bµcγ + 2kµkγ)/ω,

mµγ = (cµbγ − bµcγ)/ω;
27) kµγ = 4ωgµγ − (aµ − dµ + kµω)(aγ − dγ + kγω), lµγ = 4[2gµγ

+α(bµcγ − cµbγ)− kµkγω − (aµaγ − dµdγ)], mµγ = −2kµkγ .

Integration of the above systems of ODEs even under specific F, Rµ is
an extremely hard problem. So it is not surprising that up to now there is
practically no papers devoted to construction of exact solutions of the Maxwell-
Dirac equations (1.4.1).

The fact that ODEs obtained are integrable with some specific F, Rµ is a
consequence of their nontrivial symmetry. Using Theorem 2.3.1 we can prove
that these systems admit invariance algebras which are isomorphic to algebras
(2.3.13).

In the present section we will construct multi-parameter families of exact
solutions of classical electrodynamics equations (1.4.1) and of the system of
nonlinear PDEs

(iγµ∂µ − eγµAµ)ψ(x) = 0,

∂ν∂
νAµ − ∂µ∂νAν = −eψ̄γµψ + λAµAνA

ν ,
(2.8.4)

where e, λ are constants.

1. Exact solutions of the classical electrodynamics equations. We
have made an observation that integrable cases of the systems of ODEs ob-
tained by means of reduction of (2.4.1) with the help of P (1, 3)-ungenerable
Ansätze for the spinor and vector fields give rise to the exact solutions of
system of nonlinear PDEs (1.4.1) of the form

ψ(x) = (γ · a + γ · d)ϕ(ω1, ω2, ω3),

Aµ(x) = (aµ + dµ)u(ω1, ω2, ω3),
(2.8.5)

where ϕ(~ω) is a four-component complex-valued function, u(~ω) is a scalar
real-valued function; ω1 = b · x, ω2 = c · x, ω3 = a · x + d · x.
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Formulae (2.8.5) imply the following method of constructing particular
solutions of equation (1.4.1): not to fix a priori the functions ϕ, u in (2.8.5)
but to consider them as the new dependent variables. Such an approach
proved to be very efficient because it enabled us to obtain exact solutions of
the classical electrodynamics equations containing arbitrary functions [155].
Substituting Ansatz (2.8.5) into (1.4.1) and taking into account the identities

(γ · a + γ · d)2 = a · a + d · d = 0,

ϕ̄(γ · a + γ · d)γµ(γ · a + γ · d)ϕ = 2(aµ + dµ)ϕ̄(γ · a + γ · d)ϕ

we come to the system of two-dimensional PDEs for ϕ(~ω), u(~ω)

γ · b ϕω1 + γ · c ϕω2 − imϕ = 0, (2.8.6)
uω1ω1 + uω2ω2 = 2eϕ̄(γ · a + γ · d)ϕ, (2.8.7)

where ϕωi = ∂ϕ/∂ωi, uωiωi = ∂2u/∂ω2
i , i = 1, 2.

Let us emphasize that in the above equations there is no differentiation
with respect to the variable ω3. Consequently, functions ϕ, u contain ω3 as a
parameter.

The general solution of PDE (2.8.7) is given by the d’Alembert formula
for the two-dimensional Poisson equation [61]

u(~ω) = w(z, ω3) + w(z∗, ω3)

−ie

ω2∫ ω1 + i(ω2 − τ)∫

ω1 − i(ω2 − τ)

ϕ̄(ξ, η)(γ · a + γ · d)ϕ(ξ, η)dξdη,
(2.8.8)

where w is an arbitrary analytical with respect to the variable z = ω1 + iω2

function.
Consequently, the problem of construction of exact solutions of system of

nonlinear PDEs (1.4.1) is reduced via Ansatz (2.8.5) to integration of the two-
dimensional linear Dirac equation (2.8.6). Using the Fourier transform we can
obtain its general solution in the form of the Fourier integral [35, 61] but we
restrict ourselves to the cases when it is possible to construct exact solutions
in explicit form.

Choosing the eigenfunction of the Hermitian operator −i∂ω1 as a particular
solution of equation (2.8.6) yields

ϕ(~ω) = exp{iλω1 + iγ · c(λγ · b−m)ω2}ϕ0 (ω3), (2.8.9)
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where ϕ0 ∈ C1(R1,C4). Imposing on solution (2.8.9) the condition of 2π-
periodicity with respect to ω1 we get

λ = λn = 2πn, n ∈ Z. (2.8.10)

Substituting formulae (2.8.9), (2.8.10) into (2.8.8) and computing the in-
tegral we arrive at the explicit expression for u(~ω)

u(~ω) = (1/2)(m2 + λ2
n)−1{τ1 cosh[2(m2 + λ2

n)1/2ω2]

+τ2 sinh[2(m2 + λ2
n)1/2ω2]}+ w(z, ω3) + w(z∗, ω3).

(2.8.11)

Here z = ω1 + iω2, τ1 = eϕ̄0(γ · a + γ · d)ϕ0, τ2 = ie(m2 + λ2
n)−1/2 ϕ̄0

×(γ · a + γ · d) (λnγ · b−m)ϕ0.
Substitution of formulae (2.8.9), (2.8.11) into Ansatz (2.8.5) gives a multi-

parameter family of the exact solutions of the classical electrodynamics equa-
tions (1.4.1) containing three arbitrary functions:

ψ(x) = (γ · k) exp{iλnb · x + iγ · c(λnγ · b−m)c · x}ϕ0(k · x)
≡ ψ(n)(x),

Aµ(x) = kµ

{
w(z, k · x) + w(z∗, k · x) (2.8.12)

+(1/2)(m2 + λ2
n)−1{τ1 cosh[2(m2 + λ2

n)1/2c · x]

+τ2 sinh[2(m2 + λ2
n)1/2c · x]}

}
≡ A(n)

µ (x),

where kµ = aµ + dµ.
Similarly, if we choose a particular solution of equation (2.8.6) in the form

ϕ(~ω) = (ω2
1 + ω2

2)
−1/4 exp{−(1/2)(γ · b)(γ · c) arctan(ω1/ω2)}

× exp{−im(γ · c)(ω2
1 + ω2

2)
1/2}ϕ0 (ω3),

where ϕ0 ∈ C1(R1,C4), then formulae (2.8.5), (2.8.8) give rise to the following
family of exact solutions:

ψ(x) = |z|−1/2(γ · k) exp{−(1/2)(γ · b)(γ · c) arctan[(b · x)

×(c · x)−1]} exp{−imγ · c |z|}ϕ0 (k · x),

Aµ(x) = kµ

{
w(z, k · x) + w(z∗, k · x)

+

|z|∫
[τ1 sinh(2my) + τ2 cosh(2my)]y−1dy

}
.

(2.8.13)
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In the above formulae w is an arbitrary analytic with respect to z =
b · x + ic · x function, |z|2 = zz∗ and

τ1 = −2eϕ̄0(γ · k)ϕ0, τ2 = 2ieϕ̄0(γ · k)(γ · c)ϕ0.

We will consider the solution (2.8.12) in more detail putting w = 0, ϕ0 =
exp{−α2(k · x)2}χ, where χ is an arbitrary constant four-component column,
α = const. A direct check shows that the identities

−∂µ∂µA
(n)
ν = 4(m2 + 4π2n2)A(n)

ν , ∂µA
(n)
µ = 0,

−∂µ∂µψ(n) = m2ψ(n),
(2.8.14)

where n ∈ Z, ∂µ = ∂/∂xµ, µ = 0, . . . , 3, hold. The operator −∂µ∂µ is one of
the Casimir operators of the Poincaré algebra (see the Appendix 1). Its eigen-
values are interpreted as masses of particles described by the corresponding
motion equations. If such an interpretation is extended to a nonlinear case,
then relations (2.8.14) can be treated as follows: interaction of the spinor and
vector fields according to nonlinear equations (1.4.1) gives rise to the massive
vector field A

(n)
µ (x) with the mass Mn = 2(m2 + 4π2n2)1/2, n ∈ Z (in other

words, the nonlinear interaction of the fields ψ(x), Aµ(x) generates the mass
spectrum). Let us emphasize that the effect described is nonlinear because in
the case of the linear Maxwell equations the Casimir operator ∂µ∂µ has the
zero eigenvalue (this is seen from (2.8.12), where A

(n)
µ = 0 under e = 0).

Since solutions (2.8.12), (2.8.13) depend analytically on m, solutions of
the massless classical electrodynamics equations are obtained from (2.8.12),
(2.8.13) by putting m = 0.

This case deserves a special consideration because the invariance group of
equations (1.4.1) under m = 0 is the 15-parameter conformal group (Theorem
1.4.2). The general solution of the two-dimensional Dirac equation under
m = 0 has been constructed in [155]

ϕ(~ω) = (γ · b + iγ · c)ϕ1(z, ω3) + (γ · b− iγ · c)ϕ2(z∗, ω3), (2.8.15)

where ϕ1, ϕ2 are arbitrary four-component functions whose components are
analytical functions of z = b · x + ic · x and z∗ = b · x− ic · x, respectively.

Substitution of (2.8.15) into (2.8.8) yields the following expression for u(~ω):

u(~ω) = w(z, ω3) + w(z∗, ω3)

+e

{
z∗

∫
g1(z, ω3)dz + z

∫
g2(z∗, ω3)dz∗

}
,
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where g1 = ϕ̄1(γ · k)(1− iγ · bγ · c)ϕ2, g2 = ϕ̄2(γ · k)(1 + iγ · bγ · c)ϕ1.
Substituting the above formulae into the Ansatz (2.8.5) we come to the

multi-parameter family of the exact solutions which contains five arbitrary
complex-valued functions

ψ(x) = (γ · k){(γ · b + iγ · c)ϕ1(z, k · x) + (γ · b− iγ · c)
×ϕ2(z∗, k · x)},

Aµ(x) = kµ

{
w(z, k · x) + w(z∗, k · x) (2.8.16)

+e

(
z∗

∫
g1(z, k · x)dz + z

∫
g2(z∗, k · x)dz∗

)}
.

To obtain C(1, 3)-ungenerable family of solutions of system of PDEs (1.4.1)
with m = 0 we employ the solution generation procedure. The formulae for
generating solutions of the classical electrodynamics equations (1.4.1) by the
four-parameter special conformal transformation group have been obtained in
[133]

ψII(x) = σ−2(x)(1− γ · xγ · θ)ψI(x′),
AIIµ(x) = σ−2(x){gµνσ(x) + 2(xνθµ − xµθν) (2.8.17)

+2θ · xxµθν − x · xθµθν − θ · θxµxν)}Aν
I (x

′), (2.8.18)

where x′µ = (xµ− θµx ·x)σ−1(x), σ(x) = 1− 2θ ·x +θ · θ x ·x, θµ are arbitrary
real constants.

Substitution of expressions (2.8.16) into (2.8.17) gives rise to the C(1, 3) -
ungenerable family of exact solutions of system (1.4.1) with m = 0. We omit
the corresponding formulae because of their awkwardness.

2. Exact solutions of system of nonlinear PDEs (2.8.4). To obtain
exact solutions of equations (2.8.4) we apply the Ansatz

ψ(x) = (γ · a− γ · d) exp{if(k · x)}χ,

Aµ(x) = (aµ − dµ)g1(k · x) + kµg2(k · x).
(2.8.19)

Here {f, g1, g2} ⊂ C1(R1,R1), χ is an arbitrary four-component constant
column.

The Ansatz (2.8.19) reduces equations (2.8.4) to the system of three ODEs
for f(ω), g1(ω), g2(ω)

ḟ = −eg2, g̈1 = −2λg1g
2
2, g2

1g2 = (e/2λ)χ̄(γ · a− γ · d)χ. (2.8.20)
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On eliminating the function g2 from the second equation we get the second-
order ODE for g1

g̈1 = −(τ2/λ)g−3
1 , (2.8.21)

where τ = 2−1/2eχ̄(γ · a− γ · d)χ.
The above equation is integrated in elementary functions, its general solu-

tion having the form [197]

g1(ω) = εC
−1/2
1

(
(C1ω + C2)− τ2/λ

)1/2
. (2.8.22)

In addition, ODE (2.8.21) with λ > 0 possesses the one-parameter family
of singular solutions

g1(ω) = ε(2|τ ||λ|−1/2ω + C2)1/2. (2.8.23)

In (2.8.22), (2.8.23) C1, C2 are real constants, ε = ±1.
Substituting formulae (2.8.22), (2.8.23) into the second equation of system

(2.8.20) yields

g2(ω) = C1τλ−1
(
(C1ω + C2)2 − τ2/λ

)−1
,

g2(ω) = −τ |λ|−1(2|τ ||λ|−1/2ω + C2)−1.

Integrating the first equation of system (2.8.20) we get the explicit form
of the function f(ω)

f(ω) = e(−λ)1/2 arctan
(
τ−1(−λ)1/2(C1ω + C2)

)
,

f(ω) = −e|λ|−1/2 ln(2τ |λ|−1/2ω + C2).

Substitution of the above formulae into the Ansatz (2.8.19) gives rise to
the multi-parameter families of the exact solutions of system (2.8.4)

the case λ ∈ R1, λ 6= 0

ψ(x) = (γ · a− γ · d) exp
{
−ie(−λ)1/2 arctan

(
τ−1(−λ)−1/2

×[C1(k · x) + C2]
)
}χ,

Aµ(x) = ε(aµ − dµ)C−1/2
1

{
(C1k · x + C2)2 − τ2λ−1

}−1/2

+C1τλ−1kµ

{
(C1k · x + C2)2 − τ2λ−1

}−1
;
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the case λ < 0

ψ(x) = (γ · a− γ · d) exp
{
−ie|λ|−1/2 ln

(
2τ |λ|−1/2k · x + C2

)}
χ,

Aµ(x) = ε(aµ − dµ)
{
2|τ ||λ|−1/2k · x + C2

}1/2 − τ |λ|−1kµ

×
{
2|τ ||λ|−1/2k · x + C2

}−1
,

where τ = 2−1/2eχ̄(γ · a− γ · d)χ, C1, C2 are real constants.
Let us note that the solutions obtained are singular with respect to the

coupling constant λ. That is why they cannot be obtained in the framework
of the perturbation theory by expanding with respect to a small parameter λ.

5. Exact solutions of the Maxwell-Born-Infeld equations. By the
Maxwell-Born-Infeld equations we mean the Maxwell equations

∂t
~D = rot ~H, div ~D = 0,

∂t
~B = −rot ~E, div ~B = 0

(2.8.24)

supplemented by the constitutive equations suggested by Born and Infeld (see,
e.g. [142])

~D = τ ~E + τ1
~B, ~H = τ ~B − τ1

~E. (2.8.25)

Here ~E, ~H are field intensities, ~B, ~D are inductions,

τ = {1 + ~B2 − ~E2 − ( ~B ~E)2}−1/2,

τ1 = ( ~B ~E)τ.

Till now, up to our knowledge, there are no papers containing exact so-
lutions of system (2.8.24), (2.8.25) in explicit form. We will construct multi-
parameter families of exact solutions of system of nonlinear PDEs (2.8.24),
(2.8.25) using the following simple assertion.

Lemma 2.8.1. The general solution of system of PDEs (2.8.24) is given by
the formulae

~B = rot ~u, ~D = rot ~w,

~H = ∂t ~w, ~E = −∂t~u,
(2.8.26)

where ~u = (u1, u2, u3), ~w = (w1, w2, w3) are arbitrary smooth vector-functions.
To prove the lemma we make use of the well-known fact that the general

solutions of equations
div~r = 0, rot ~ρ = ~0
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are given by the formulae

~r = rot ~R, ~ρ = gradR0,

where Ra, R0 are arbitrary twice differentiable functions. ¤

According to Lemma 2.8.1, the Maxwell-Born-Infeld equations are repre-
sented in the form (2.8.26), where ~u, ~w are smooth vector-functions satisfying
the first-order system of nonlinear PDEs

rot ~w = −τ{∂t~u + [(∂t~u)(rot ~u)]rot ~u},
∂t ~w = τ{rot ~u− [(∂t~u)(rot ~u)]∂t~u},

(2.8.27)

with τ = {1 + (rot ~u)2 − (∂t~u)2 − [(∂t~u)(rot ~u)]2}−1/2.
Thus, the over-determined system of fourteen equations (2.8.24), (2.8.25)

for twelve functions Ea, Ha, Da, Ba is reduced to the system of six nonlinear
PDEs for six functions ua, wa.

To construct exact solutions of (2.8.27) we apply the Ansatz [170]

~u = ~aϕ(t, ~b ~x, ~c ~x) ≡ ~aϕ(ω0, ω1, ω2). (2.8.28)

Here ϕ ∈ C2(R3,R1); ~a, ~b, ~c are arbitrary constant vectors satisfying the
conditions

~a 2 = ~b 2 = ~c 2 = 1,

~a~b = ~b~c = ~c~a = 0.

Since rot ~u = −~cϕω1 + ~bϕω2 , the equality (∂t~u)(rot ~u) = 0 holds. Conse-
quently, system (2.8.27) takes the form

rot ~w = −τ~aϕω0 ,

∂t ~w = τ(−~cϕω1 +~bϕω2),
(2.8.29)

where
τ = (ϕ2

ω1
+ ϕ2

ω2
− ϕ2

ω0
+ 1)−1/2.

The compatibility condition ∂t(rot ~w) = rot (∂t ~w) when applied to (2.8.29)
yields

∂t(−τ~aϕω0) = rot [τ(−~cϕω1 +~bϕω2)]

or
~a(1− ϕωµϕωµ)−3/2{(1− ϕωµϕωµ)2ϕ + ϕωµωνϕωµϕων} = ~0.
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Here summation over the repeated indices in the pseudo-Euclidean space
R(1, 2) is used.

Consequently, provided ϕ(ω) satisfies the nonlinear scalar PDE

(1− ϕωµϕωµ)2ϕ + ϕωµωνϕωµϕων = 0 (2.8.30)

with 1 − ϕωµϕωµ 6= 0, formulae (2.8.26), (2.8.28), (2.8.29) give a particular
solution of system of nonlinear PDEs (2.2.22), (2.8.25).

Wide classes of exact solutions of nonlinear equation (2.8.30) were con-
structed in [137]. Inserting these into formulae (2.2.24) and (2.2.26) we get
the following multi-parameter families of exact solutions of the Maxwell-Born-
Infeld equations:

~E = −~a(ḣ1~c ~x + ḣ2),
~H = (1 + h2

1)
−1/2[h1

~b− (ḣ1~c ~x + ḣ2)~c ],
~B = h1

~b− ~c(ḣ1~c ~x + ḣ2),
~D = −~a(1 + h2

1)
−1/2(ḣ1~c ~x + ḣ2),

~E = −(C1t/ω)~a(1 + C2ω
4)−1/2,

~H = (C1/ω)[−~b(~c ~x) + ~c(~b ~x)](1 + C2ω
4 − C2

1 )−1/2;
~B = (C1/ω)[−~b(~c ~x) + ~c(~b ~x)](1 + C2ω

4)−1/2,

~D = −(C1t/ω)~a(1 + C2ω
4 − C2

1 )−1/2,

~E = ∓(1/4)~a{C−1
1 (t−~b ~x)−1 coth[C1(t +~b ~x) + C2]}1/2

×{2C1(t−~b ~x) + sinh 2[C1(t +~b ~x) + C2]}
× cosh−2[C1(t +~b ~x) + C2],

~H = ∓2−3/2~c{2C1(t−~b ~x)− sinh 2[C1(t +~b ~x) + C2]}
×C

−1/2
1 (t−~b ~x)−1/2{sinh 2[C1(t +~b ~x) + C2]}−1/2,

~B = ∓(1/4)~c{C−1
1 (t−~b ~x)−1 coth[C1(t +~b ~x) + C2]}1/2

×{2C1(t−~b ~x)− sinh 2[C1(t +~b ~x) + C2]}
× cosh−2[C1(t +~b ~x) + C2],

~D = ∓2−3/2~a{2C1(t−~b ~x) + sinh 2[C1(t +~b ~x) + C2]}
×C

−1/2
1 (t−~b ~x)−1/2{sinh 2[C1(t +~b ~x) + C2]}−1/2,

~E = ∓(1/2)~a
{
2C−1

3 + C2C3 exp{C3(t−~b ~x)}
}
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×
{
C2 exp{C3(t−~b ~x)}+ 2C−1

3 (t +~b ~x)
}−1/2

,

~H = ∓(1/2)~c
{
2C−1

3 − C2C3 exp{C3(t−~b ~x)}
}

×
{
C2 exp{C3(t−~b ~x)}+ 2C−1

3 (t +~b ~x)
}−1/2

,

~B = ∓(1/2)~c
{
2C−1

3 − C2C3 exp{C3(t−~b ~x)}
}

×
{
C2 exp{C3(t−~b ~x)}+ 2C−1

3 (t +~b ~x)
}−1/2

,

~D = ∓(1/2)~a
{
2C−1

3 + C2C3 exp{C3(t−~b ~x)}
}

×
{
−C2 exp{C3(t−~b ~x)}+ 2C−1

3 (t +~b ~x)
}−1/2

,

where hi = hi(t +~b ~x) ∈ C2(R1,R1) are arbitrary functions; C1, C2, C3 are
arbitrary real constants; ω2 = ω2

0 − ω2
1 − ω2

2 ≡ t2 − (~b ~x)2 − (~c ~x)2.
Other classes of exact solutions of system of PDEs (2.8.24), (2.8.25) are

obtained by putting
rot~u = ~0, ~utt = ~0 (2.8.31)

in (2.8.27).
Resulting from (2.8.31) equations (2.8.27) take the form

rot~w = −{1− (gradϕ)2}−1/2gradϕ,

~u = grad(tϕ + v),
(2.8.32)

where {ϕ(~x), v(~x)} ⊂ C2(R3,R1) are arbitrary functions.
Since div (rot~w) = 0, from (2.8.32) it follows that

div {[1− (gradϕ)2]−1/2gradϕ} = 0,

whence

[1− (gradϕ)2]−3/2{[1− (gradϕ)2]∆ϕ + ϕxaxb
ϕxaϕxb

} = 0.

The above equation with (gradϕ)2 6= 1 is equivalent to the elliptic analogue
of PDE (2.8.30)

(1− (gradϕ)2)∆ϕ + ϕxaxb
ϕxaϕxb

= 0. (2.8.33)



2.8. Exact solutions of the nonlinear electrodynamics equations 195

In [137] the following two classes of exact solutions of nonlinear PDE
(2.8.33) were constructed

ϕ(~x) = C1 ln
{(

(~a~x + C2)2 + (~b ~x + C3)2
)1/2

+
(
(~a~x + C2)2 + (~b ~x + C3)2 + C2

1

)1/2}
,

ϕ(~x) =

(~x2)1/2∫

ω0

(1 + C2
1τ4)−1/2dτ,

where Ca, a = 1, 2, 3, ω0 are arbitrary real constants.
Inserting the above formulae into (2.8.26), (2.8.32) we get two multi-

parameter families of exact solutions of the Maxwell-Born-Infeld equations

~B = 0, ~H = ~0,

~D = C1{~a(~a~x + C2) +~b(~b ~x + C3)}[(~a~x + C2)2 + (~b ~x + C3)2]−1,

~E = C1{~a(~a~x + C2) +~b(~b ~x + C3)}[(~a~x + C2)2

+(~b ~x + C3)2]−1/2[(~a~x + C2)2 + (~b ~x + C3)2 + C2
1 ]−1/2;

~B = ~0, ~H = ~0,

~D = −(1/C1)~x(~x 2)−3/2,

~E = −~x(~x 2)−1/2{1 + C2
1 (~x 2)2}−1/2,

where C1, C2, C3 are arbitrary real constants, C1 6= 0.
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C H A P T E R 3

TWO-DIMENSIONAL

SPINOR MODELS

In this chapter nonlinear spinor PDEs with two independent variables x0,
x1 invariant under infinite-parameter groups are considered. Such a broad
symmetry makes it possible to obtain changes of variables which linearize equa-
tions considered and to construct their general solutions. Partial linearization
of the nonlinear Thirring system of PDEs is carried out.

3.1. Two-dimensional spinor equations invariant

under infinite-parameter groups

Invariance of PDEs under study with respect to some infinite-parameter Lie
groups makes it possible to construct their exact solutions containing arbitrary
functions. Of special interest are two-dimensional equations possessing such a
property since many of them can be integrated in closed form. Methods used
to construct the general solutions of the two-dimensional d’Alembert [123],
Liouville [145], Born-Infeld [145], Monge-Ampère [145, 146], gas dynamics
[129], massless Thirring [249, 277] equations are, in fact, based on the unique
symmetry of the equations enumerated.

It is worth noting that most of the equations which are integrable by the
inverse scattering method also possess broad symmetry. They are invariant
under infinite-parameter Lie-Bäcklund groups [7, 190, 233].

We will show that the list of integrable two-dimensional PDEs can be
supplemented by the following equations:

(
iγµ∂µ − λγµ(ψ̄γµψ)

)
ψ = 0; (3.1.1)
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{
(iγµ∂µ − eγµAµ)ψ = 0,

∂ν∂
νAµ − ∂µ∂νAν = −eψ̄γµψ;

(3.1.2)

(
i(γ0 + γ4)∂0 + iγ1∂1 − λ(ψ†ψ + ψ̄γ4ψ)1/2k

)
ψ = 0. (3.1.3)

In (3.1.1)–(3.1.3) ψ = ψ(x0, x1) is a four-component complex-valued func-
tion-column; A0(x0, x1), A1(x0, x1) are real-valued functions; µ, ν = 0, 1;
λ, e are constants.

Dirac matrices are chosen in the form

γ0 =




0 iσ2

−iσ2 0


 , γ1 =




0 σ1

−σ1 0


 .

Let us note that PDE (3.1.1) is a two-dimensional analogue of the Dirac-
Heisenberg equation [180, 184], system (3.1.2) is a two-dimensional system of
massless classical electrodynamics equations, PDE (3.1.3) is a two-dimensional
Galilei-invariant equation for a massless particle with the spin s = 1/2 (see
also the Section 4.1).

Symmetry properties of equations (3.1.1)–(3.1.3) are described by the fol-
lowing assertions.

Theorem 3.1.1[146, 293]. System of PDEs (3.1.1) is invariant under the
infinite-parameter transformation group

G∞ = (Oξ ⊗Oη)⊂×G̃,

where Oξ is the group of linear transformations of the space (ψ0, ψ0∗, ψ2, ψ2∗)
preserving the quadratic form |ψ0|2 + |ψ2|2, its parameters being arbitrary
smooth functions of ξ = x0 + x1, |ψ0|, |ψ2|; Oη is the group of linear
transformations in the space (ψ1, ψ1∗, ψ3, ψ3∗) preserving the quadratic form
|ψ1|2 + |ψ3|2, its parameters being arbitrary smooth functions of η = x0 −
x1, |ψ1|, |ψ3|; the group G̃ is given by the formulae

x′0 =
1
2

( x0 + x1∫
f−2
0 (z)dz +

x0 − x1∫
f−2
1 (z)dz

)
,

x′1 =
1
2

( x0 + x1∫
f−2
0 (z)dz −

x0 − x1∫
f−2
1 (z)dz

)
,

ψ′0 = f0(x0 + x1)ψ0, ψ′1 = f1(x0 − x1)ψ1,

ψ′2 = f0(x0 + x1)ψ2, ψ′3 = f1(x0 − x1)ψ3,

(3.1.4)



3.1. Two-dimensional spinor equations 199

In (3.1.4) f0, f1 are arbitrary smooth real-valued functions.

Proof. After writing component-wise we represent (3.1.1) in the form

i(∂0 − ∂1)ψ0 = 2λ(|ψ1|2 + |ψ3|2)ψ0,

i(∂0 + ∂1)ψ1 = 2λ(|ψ0|2 + |ψ2|2)ψ1,

i(∂0 − ∂1)ψ2 = 2λ(|ψ1|2 + |ψ3|2)ψ2,

i(∂0 + ∂1)ψ3 = 2λ(|ψ0|2 + |ψ2|2)ψ3.

In the cone variables ξ = x0 + x1, η = x0 − x1 the above system reads

i∂ηψ
0 = λ(|ψ1|2 + |ψ3|2)ψ0,

i∂ξψ
1 = λ(|ψ0|2 + |ψ2|2)ψ1,

i∂ηψ
2 = λ(|ψ1|2 + |ψ3|2)ψ2,

i∂ξψ
3 = λ(|ψ0|2 + |ψ2|2)ψ3,

(3.1.5)

the group G̃ being given by the formulae

ξ′ =

ξ∫
f−2
0 (z)dz, η′ =

η∫
f−2
1 (z)dz,

ψ′0 = f0(ξ)ψ0, ψ′1 = f1(η)ψ1,

ψ′2 = f0(ξ)ψ2, ψ′3 = f1(η)ψ3.

(3.1.6)

Applying to both parts of the first equation of system (3.1.5) the operation
of complex conjugation we have

−i∂ηψ
∗0 = λ(|ψ1|2 + |ψ3|2)ψ∗0,

whence
ψ0∂ηψ

∗0 + ψ∗0∂ηψ
0 = 0

or
∂η|ψ0| = 0.

Similarly,
∂ξ|ψ1| = 0, ∂η|ψ2| = 0, ∂ξ|ψ3| = 0.

From the equalities obtained it follows that system of PDEs (3.1.5) is invariant
under the group Oξ ⊗Oη.
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Let us prove that system (3.1.5) admits transformation group (3.1.6). To
this end we make in (3.1.5) the change of variables according to formulae
(3.1.6) thus obtaining the following equations:

i∂η′ψ
′0 − λ(|ψ′1|2 + |ψ′3|2)ψ′0 = f0f

2
1

(
i∂ηψ

0 − λ(|ψ1|2 + |ψ3|2)ψ0
)
,

i∂ξ′ψ
′1 − λ(|ψ′0|2 + |ψ′2|2)ψ′1 = f1f

2
0

(
i∂ξψ

1 − λ(|ψ0|2 + |ψ2|2)ψ1
)
,

i∂η′ψ
′2 − λ(|ψ′1|2 + |ψ′3|2)ψ′2 = f0f

2
1

(
i∂ηψ

2 − λ(|ψ1|2 + |ψ3|2)ψ2
)
,

i∂ξ′ψ
′3 − λ(|ψ′0|2 + |ψ′2|2)ψ′3 = f1f

2
0

(
i∂ξψ

3 − λ(|ψ0|2 + |ψ2|2)ψ2
)
,

whence the validity of the theorem follows. ¤

Theorem 3.1.2. System of PDEs (3.1.2) is invariant under the infinite-
parameter transformation group of the form

G∞ = (Oξ ⊗Oη)⊂×P̃ (1, 1)⊂×U(1),

where P̃ (1, 1) is the extended Poincaré group, U(1) is the group of gauge trans-
formations

ψ′α = ψα exp{−ief},
A′µ = Aµ + ∂µf

with f = f(x0, x1) ∈ C3(R2,R1).

Theorem 3.1.3. System of PDEs (3.1.3) is invariant under the infinite-
parameter transformation group having the following generators:

under k 6= 1/2

P0 = ∂0, P1 = ∂1,

D1 = x0∂0 + x1∂1 + k,

D2 = 2x0∂0 + x1∂1 + k + (1/2)(1− γ0γ4),
G = w1(x0)∂1 − (1/2)ẇ1(x0)(γ0 + γ4)γ1,

Q = (γ0 + γ4)
(
γ2w2(x0) + γ3w3(x0)

)
;

under k = 1/2

Ã = w0(x0)∂0 + ẇ0(x0)x1∂1 + (1/2)ẇ0(x0)
−(1/2)ẅ0(x0)x1(γ0 + γ4)γ1,
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G = w1(x0)∂1 − (1/2)ẇ1(x0)(γ0 + γ4)γ1,

Q = (γ0 + γ4)
(
γ2w2(x0) + γ3w3(x0)

)
,

D = 2x0∂0 + x1∂1 + 1− (1/2)γ0γ4.

Here w0, . . . , w3 are arbitrary smooth real-valued functions.
Theorem 3.1.2 is proved in the same way as Theorem 3.1.1. To prove

Theorem 3.1.3 it is necessary to apply the Lie method.
Let us note that symmetry properties of equations (3.1.1)–(3.1.3) are not

exhausted by the invariance under the local symmetry groups described above.
As shown in [146] system of PDEs (3.1.1) is invariant under the group of
nonlocal (integral) transformations

ψ′0 = θ0ψ
0 exp

{
−iλ

x0 − x1∫ (
(|θ1|2 − 1)|ψ1|2 + (|θ3|2 − 1)|ψ3|2

)
dη

}
,

ψ′1 = θ1ψ
1 exp

{
−iλ

x0 + x1∫ (
(|θ0|2 − 1)|ψ0|2 + (|θ2|2 − 1)|ψ2|2

)
dξ

}
,

ψ′2 = θ2ψ
2 exp

{
−iλ

x0 − x1∫ (
(|θ1|2 − 1)|ψ1|2 + (|θ3|2 − 1)|ψ3|2

)
dη

}
,

ψ′3 = θ3ψ
3 exp

{
−iλ

x0 + x1∫ (
(|θ0|2 − 1)|ψ0|2 + (|θ2|2 − 1)|ψ2|2

)
dξ

}
,

where {θ0, . . . , θ3} ⊂ C1.

3.2. Nonlinear two-dimensional Dirac-Heisenberg equations

In this section we will construct the general solution of system (3.1.1) with
the help of the nonlocal linearization method [145, 146]. In other words, a
nonlocal change of variables reducing (3.1.1) to a system of linear PDEs will
be suggested.

The form of the change of variables is implied by the structure of the
group of integral transformations given at the end of the previous section. We
introduce new dependent variables ϕ0(ξ, η), . . . , ϕ3(ξ, η) in the following way:

ψ0 = ϕ0 exp

{
−iλ

∫ (
|ϕ1|2 + |ϕ3|2

)
dη

}
,
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ψ1 = ϕ1 exp

{
−iλ

∫ (
|ϕ0|2 + |ϕ2|2

)
dξ

}
,

ψ2 = ϕ2 exp

{
−iλ

∫ (
|ϕ1|2 + |ϕ3|2

)
dη

}
, (3.2.1)

ψ3 = ϕ3 exp

{
−iλ

∫ (
|ϕ0|2 + |ϕ2|2

)
dξ

}
.

Substituting (3.2.1) into (3.1.5) we get a system of linear equations for
ϕ0, . . . , ϕ3

∂ηϕ
0 = 0, ∂ξϕ

1 = 0,

∂ηϕ
2 = 0, ∂ξϕ

3 = 0.
(3.2.2)

Integration of the above equations yields the following expressions for
ϕµ, µ = 0, . . . , 3:

ϕ0 = U0(ξ), ϕ1 = U1(η),

ϕ2 = U2(ξ), ϕ3 = U3(η),
(3.2.3)

where Uµ ∈ C1(R1,C1) are arbitrary functions.
Substitution of formulae (3.2.3) into (3.2.1) with subsequent change of

independent variables ξ → x0 + x1, η → x0 − x1 gives the general solution of
the nonlinear Dirac-Heisenberg equation (3.1.1)

ψ0(x) = U0(x0 + x1) exp

{
−iλ

x0 − x1∫ (
|U1|2 + |U3|2

)
dτ

}
,

ψ1(x) = U1(x0 − x1) exp

{
−iλ

x0 + x1∫ (
|U0|2 + |U2|2

)
dτ

}
,

ψ2(x) = U2(x0 + x1) exp

{
−iλ

x0 − x1∫ (
|U1|2 + |U3|2

)
dτ

}
,

ψ3(x) = U3(x0 − x1) exp

{
−iλ

x0 + x1∫ (
|U0|2 + |U2|2

)
dτ

}
.

(3.2.4)

The result obtained enables us to construct in explicit form solution of the
classical Cauchy problem for system of PDEs (3.1.1)

(
iγµ∂µ − λγµ(ψ̄γµψ)

)
ψ = 0,

ψα(0, x1) = fα(x1), x1 ∈ R1,
(3.2.5)
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where fα ∈ C1(R1,C1), α = 0, . . . , 3.
Imposing on the solution (3.2.4) the initial conditions of the Cauchy prob-

lem (3.2.5) we get functional relations for determination of Uµ, µ = 0, . . . , 3

f0(z) = U0(z) exp

{
−iλ

−z∫ (
|U1|2 + |U3|2

)
dτ

}
,

f1(z) = U1(−z) exp

{
−iλ

z∫ (
|U0|2 + |U2|2

)
dτ

}
,

f2(z) = U2(z) exp

{
−iλ

−z∫ (
|U1|2 + |U3|2

)
dτ

}
,

f3(z) = U3(−z) exp

{
−iλ

z∫ (
|U0|2 + |U2|2

)
dτ

}
,

whence it follows

U0(z) = f0(z) exp

{
iλ

−z∫ (
|f1(−τ)|2 + |f3(−τ)|2

)
dτ

}
,

U1(−z) = f1(z) exp

{
iλ

z∫ (
|f0(τ)|2 + |f2(τ)|2

)
dτ

}
,

U2(z) = f2(z) exp

{
iλ

−z∫ (
|f1(−τ)|2 + |f3(−τ)|2

)
dτ

}
,

U3(−z) = f3(z) exp

{
iλ

z∫ (
|f0(τ)|2 + |f2(τ)|2

)
dτ

}
.

Substitution of the above equalities into (3.2.4) gives the solution of the
Cauchy problem (3.2.5)

ψ0(x) = f0(x1 + x0) exp

{
iλ

x1 − x0∫

x1 + x0

(
|f1|2 + |f3|2

)
dτ

}
,

ψ1(x) = f1(x1 − x0) exp

{
−iλ

x1 + x0∫

x1 − x0

(
|f0|2 + |f2|2

)
dτ

}
,
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ψ2(x) = f2(x1 + x0) exp

{
iλ

x1 − x0∫

x1 + x0

(
|f1|2 + |f3|2

)
dτ

}
,

ψ3(x) = f3(x1 − x0) exp

{
−iλ

x1 + x0∫

x1 − x0

(
|f0|2 + |f2|2

)
dτ

}
.

Thus, the Cauchy problem (3.2.5) with fα ∈ C1(R1,C1), α = 0, . . . , 3 has
the unique solution.

In the case involved we have succeeded in integrating a nonlinear system
of PDEs due to the fact that it is equivalent to the linear system (3.2.2). In
some cases the nonlocal linearization method makes it possible to construct
wide classes of exact solutions of essentially nonlinear PDEs. This is achieved
by imposing such additional constraints on the equation under study that the
system obtained is linearizable. A peculiar example is the generalized Thirring
model

iuy = mv + λ1|v|2u,

ivx = mu + λ2|u|2v,
(3.2.6)

where u = u(x, y), v = v(x, y) are complex-valued functions, m, λ1, λ2 are
real constants.

Provided λ1 = λ2 = λ, system of PDEs (3.2.6) coincides with the classical
Thirring model that is integrable by means of the inverse scattering method
[249, 277]. As established by David [66] the generalized Thirring model (3.2.6)
is also integrable by the mentioned method and, therefore, has soliton solu-
tions.

Here we restrict ourselves to the case

λ1 = λ, λ2 = −λ

and consider the following system:

iuy = mv + λ|v|2u,

ivx = mu− λ|u|2v.
(3.2.7)

We will show that there exists a map of the set of solutions of the linear
Klein-Gordon equation

wxy + m2w = 0 (3.2.8)

into the set of solutions of system of PDEs (3.2.7).
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To this end we apply the following Ansatz [299]:

u = F1 exp{iG + (iπ/4)},
v = F2 exp{iG− (iπ/4)}

(3.2.9)

where F1, F2, G are some real-valued functions.
Substitution of (3.2.9) into (3.2.7) yields an over-determined system of four

nonlinear PDEs for F1, F2, G

F1y = −mF2, F2x = mF1,

Gx = λF 2
1 , Gy = −λF 2

2 .

Since

(Gx)y = 2λF1F1y = −2λmF1F2 = −2λF2F2x = (Gy)x,

the above system is compatible and its general solution can be represented in
the form

F1 = w(x, y), F2 = −m−1wy(x, y),

G = λ

x∫

A

w2(τ, y)dτ − λm−2

y∫

B

w2
y(A, τ)dτ,

where A, B are some real constants and w(x, y) is an arbitrary solution of
(3.2.8).

Thus, each solution of the linear Klein-Gordon equation (3.2.8) gives rise
to the exact solution of the nonlinear system (3.2.7) of the form

u = w exp

{
(iπ/4) + iλ

x∫

A

w2(τ, y)dτ − iλm−2

y∫

B

w2
y(A, τ)dτ

}
,

v = −m−1wy exp

{
(−iπ/4) + iλ

x∫

A

w2(τ, y)dτ − iλm−2

y∫

B

w2
y(A, τ)dτ

}
.

Due to invariance of system (3.2.7) under the one-parameter group of gauge
transformations

u′ = u exp{iθ}, v′ = v exp{iθ}, θ ∈ R1
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the solution obtained can be rewritten in the following equivalent form:

u = w exp

{
iλ

x∫

A

w2(τ, y)dτ − iλm−2

y∫

B

w2
y(A, τ)dτ

}
,

v = im−1wy exp

{
iλ

x∫

A

w2(τ, y)dτ − iλm−2

y∫

B

w2
y(A, τ)dτ

}
.

(3.2.10)

The above formulae can be interpreted as a linearizing nonlocal transfor-
mation, since functions (3.2.10) satisfy system of PDEs (3.2.7) iff the function
w(x, y) satisfies the linear Klein-Gordon equation (3.2.8). However in this way
only a part of solutions of system under study is obtained. Therefore, we can
speak about partial linearization of the generalized Thirring model (another
example of partial linearization is considered in Section 2.8).

3.3. Two-dimensional classical electrodynamics equations

The change of variables (3.2.1) proves to be efficient when constructing the
general solution of the system of nonlinear PDEs (3.1.2).

Writing the first equation (3.1.2) component-wise and passing to the cone
variables ξ, η we come to the following system of PDEs for the functions
ψ0(ξ, η), . . . , ψ3(ξ, η):

i∂ηψ
0 = (e/2)(Ã0 + Ã1)ψ0,

i∂ξψ
1 = (e/2)(Ã0 − Ã1)ψ1,

i∂ηψ
2 = (e/2)(Ã0 + Ã1)ψ2,

i∂ξψ
3 = (e/2)(Ã0 − Ã1)ψ3,

(3.3.1)

where
Ãµ = Aµ

(
(1/2)(ξ + η), (1/2)(ξ − η)

)
.

On making the change of variables

ψ0 = ϕ0(ξ, η) exp

{
−(ie/2)

∫
(Ã0 + Ã1)dη

}
,

ψ1 = ϕ1(ξ, η) exp

{
−(ie/2)

∫
(Ã0 − Ã1)dξ

}
,
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ψ2 = ϕ2(ξ, η) exp

{
−(ie/2)

∫
(Ã0 + Ã1)dη

}
, (3.3.2)

ψ3 = ϕ3(ξ, η) exp

{
−(ie/2)

∫
(Ã0 − Ã1)dξ

}
,

we rewrite (3.3.1) in the following way:

∂ηϕ
0 = 0, ∂ξϕ

1 = 0,

∂ηϕ
2 = 0, ∂ξϕ

3 = 0.

The general solution of the above system is given by formulae (3.2.3).
Consequently, the general solution of equations (3.3.1) is of the form

ψ0 = U0(ξ) exp

{
−(ie/2)

∫
(Ã0 + Ã1)dη

}
,

ψ1 = U1(η) exp

{
−(ie/2)

∫
(Ã0 − Ã1)dξ

}
,

ψ2 = U2(ξ) exp

{
−(ie/2)

∫
(Ã0 + Ã1)dη

}
,

ψ3 = U3(η) exp

{
−(ie/2)

∫
(Ã0 − Ã1)dξ

}
,

(3.3.3)

where Uµ ∈ C1(R1,C1), µ = 0, . . . , 3 are arbitrary functions.
Substituting expressions (3.3.3) into the remaining equations of system

(3.1.2) we get an over-determined system of PDEs for A0, A1

∂1(∂1A0 + ∂0A1) = e
(
|U0|2 + |U1|2 + |U2|2 + |U3|2

)
,

∂0(∂1A0 + ∂0A1) = e
(
|U0|2 − |U1|2 + |U2|2 − |U3|2

)
.

(3.3.4)

Introducing the new dependent variable

w = ∂1A0 + ∂0A1

we rewrite equations (3.3.4) as follows

∂ξw = e
(
|U0(ξ)|2 + |U2(ξ)|2

)
, ∂ηw = e

(
|U1(η)|2 + |U3(η)|2

)
,
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whence

w = e

ξ∫ (
|U0(z)|2 + |U2(z)|2

)
dz + e

η∫ (
|U1(z)|2 + |U3(z)|2

)
dz.

Consequently, to determine A0(x0, x1), A1(x0, x1) it is necessary to inte-
grate PDE

A0x1 + A1x0 = e

x0 + x1∫ (
|U0(z)|2 + |U2(z)|2

)
dz

+e

x0 − x1∫ (
|U1(z)|2 + |U3(z)|2

)
dz,

whose general solution is of the form

A0 = e

x0 + x1∫ z∫ (
|U0(ξ)|2 + |U2(ξ)|2

)
dξdz + ∂0f,

A1 = e

x0 − x1∫ z∫ (
|U1(η)|2 + |U3(η)|2

)
dηdz − ∂1f

(3.3.5)

with an arbitrary function f = f(x0, x1) ∈ C3(R2,R1).
Substitution of (3.3.5) into (3.3.3) gives rise to the final expressions for the

functions ψ0(x), . . . , ψ3(x)

{
ψ0(x)
ψ2(x)

}
=

{
U0(x0 + x1)
U2(x0 + x1)

}
exp

{
−ief + (ie2/2)

×
(

(x1 − x0)
x0 + x1∫ z∫ (

|U0(ξ)|2 + |U2(ξ)|2
)
dξdz

−
x0 − x1∫ z2∫ z1∫ (

|U1(η)|2 + |U3(η)|2
)
dηdz1dz2

)}
,

{
ψ1(x)
ψ3(x)

}
=

{
U1(x0 − x1)
U3(x0 − x1)

}
exp

{
−ief + (ie2/2) (3.3.6)

×
(

(x1 + x0)
x0 − x1∫ z∫ (

|U1(η)|2 + |U3(η)|2
)
dηdz
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−
x0 + x1∫ z2∫ z1∫ (

|U0(ξ)|2 + |U2(ξ)|2
)
dξdz1dz2

)}
.

Choosing arbitrary functions Uµ, µ = 0, . . . , 3 in proper way we can obtain
special classes of solutions possessing some additional properties.

If, for example, we choose in formulae (3.3.3), (3.3.6)

Uµ(z) = Cµ

(
d

dz
exp{−z2}

)1/2

, µ = 0, 2,

U1(z) = U3(z) = 0, f = 0,

(3.3.7)

where C0, C2 are complex constants, then the corresponding wave function
ψ(x) is localized in the neighborhood of the point x0 = x1. Consequently,
solution (3.3.6), (3.3.7) is a solitary wave propagating with the velocity v = 1.

Substitution of expressions (3.3.7) into (3.3.5) yields the following formulae
for A0(x), A1(x):

A0(x) = e
(
|C0|2 + |C2|2

) x0 + x1∫
exp{−τ2}dτ,

A1(x) = 0,

whence it follows that the electro-magnetic field

Fµν = ∂µAν − ∂νA
µ

is localized in the neighborhood of the point x1 = x0 and vanishes rapidly as
|x1| → +∞.

Thus, we can interpret (3.3.6), (3.3.7) as a wave function of a particle mov-
ing in the electro-magnetic field Fµν , which is localized in the neighborhood
of the line x1 = x0.

In conclusion, we note that the method described above has been used in
[293] to construct the general solution of the following two-dimensional system
of nonlinear PDEs:

(
iγµ∂µ − eγµAµ − λγµ(ψ̄γµψ)

)
ψ = 0,

∂ν∂
νAµ − ∂µ∂νAν = −eψ̄γµψ, µ, ν = 0, 1,

which can be represented in the form

Aµ(x) = Ãµ(x),
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{
ψ0(x)
ψ2(x)

}
=

{
ψ̃0(x)
ψ̃2(x)

}
exp

{
−iλ

x0 − x1∫ (
|U1(η)|2 + |U3(η)|2

)
dη

}
,

{
ψ1(x)
ψ3(x)

}
=

{
ψ̃1(x)
ψ̃3(x)

}
exp

{
−iλ

x0 + x1∫ (
|U0(ξ)|2 + |U2(ξ)|2

)
dξ

}
,

functions Ã0(x), Ã1(x), ψ̃0(x), . . . , ψ̃3(x) being given by formulae (3.3.5),
(3.3.6) correspondingly.

3.4. General solutions of Galilei-invariant spinor equations

Let us rewrite system (3.1.3) in the equivalent form by introducing new func-
tions F (x), f(x)

ψx0 = −F,

ψx1 = iλfx1γ1ψ − γ1(γ0 + γ4)F, (3.4.1)
fx1 = (ψ†ψ + ψ̄γ4ψ)1/2k.

Consider now the second equation of system (3.4.1) as a system of ODEs
with respect to x1. Since this system is linear, it is possible to apply the
standard method of variation of an arbitrary constant [197]. The general
solution of the homogeneous part of the system in question is given by the
formula

ψ(x) = exp{iλγ1f(x)}ϕ(x0),

where ϕ(x0) is an arbitrary four-component function. Consequently, the gen-
eral solution of the second equation from system (3.4.1) has the form

ψ(x) = exp{iλγ1f(x)}
(

ϕ(x0) + γ1

x1∫
exp{−iλγ1f(x0, z)}

×(γ0 + γ4)F (x0, z)dz

) (3.4.2)

Multiplying both parts of the first equation from (3.4.1) by the matrix
γ0 + γ4 we have

(γ0 + γ4)F = −(γ0 + γ4)ψx0 ,
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whence

(γ0 + γ4)F = − exp{−iλγ1f}(γ0 + γ4)(ϕ̇ + iλγ1fx0ϕ).

Consequently, formula (3.4.2) takes the form

ψ(x) = exp{iλγ1f(x)}
(

ϕ(x0) + γ1(γ0 + γ4)
x1∫

exp{2iλγ1

×f(x0, z)}
(
ϕ̇(x0) + iλγ1fx0(x0, z)ϕ(x0)

)
dz

)
.

(3.4.3)

Substitution of the above expression into the third equation of system
(3.4.1) yields the nonlinear ODE for a function f(x)

fx1 = (A1 cosh 2λf + A2 sinh 2λf)1/2k, (3.4.4)

where
A1 = ϕ̄(γ0 + γ4)ϕ, A2 = iϕ̄(γ0 + γ4)γ1ϕ.

The general solution of (3.4.4) is given by the quadrature

f(x0, x1)∫
(A1 cosh 2λz + A2 sinh 2λz)−1/2kdz = x1 + C(x0), (3.4.5)

C(x0) being an arbitrary smooth real-valued function.
Thus, the general solution of nonlinear system of PDEs (3.1.3) has the form

(3.4.3), function f = f(x0, x1) being determined by implicit formula (3.4.5).
Using formulae (3.4.3), (3.4.5) it is not difficult to obtain the general solu-

tion of the linear equation
(
i(γ0 + γ4)∂0 + iγ1∂1 − λ

)
ψ(x) = 0,

which is of the form

1) under λ 6= 0

ψ(x) = exp{iλγ1x1}
(
ϕ(x0) + (i/2λ)(γ0 + γ4) exp{2iλγ1x1}ϕ̇(x0)

)
,

2) under λ = 0
ψ(x) = ϕ(x0) + x1γ1(γ0 + γ4)ϕ̇(x0).
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Reduction of the nonlinear Dirac equation (2.4.1) by means of the Ansatz

ψ(x) = ϕ(ξ, ω),

ξ = x0 + x3, ω = x2

(3.4.6)

invariant under the two-parameter group with generators ∂0 − ∂3, ∂1 yields
the two-dimensional system of PDEs

(
i(γ0 + γ3)∂ξ + iγ2∂2 − λ(ψ̄ψ)r

)
ψ = 0, r = 1/2k, (3.4.7)

which can also be integrated by means of the above described trick [152, 304].
Rewriting system of PDEs (3.4.7) in the equivalent form (3.4.1) we have

ϕξ = F, (3.4.8)
ϕω = ifωγ2ϕ + γ2(γ0 + γ3)F, (3.4.9)
fω = λ(ψ̄ψ)r. (3.4.10)

Integration of system (3.4.9) by the method of variation of an arbitrary
constant with respect to ω yields the following expression for ϕ:

ϕ(ξ, ω) = exp{iγ2f}
(

Θ(ξ) + γ2(γ0 + γ3)
ω∫

0

exp{iγ2f(ξ, z)}

×F (ξ, z)dz

)
,

where Θ(ξ) is an arbitrary four-component function-column.
As due to (3.4.8) the equation

(γ0 + γ3)ϕξ = (γ0 + γ3)F

holds, we can exclude from the above equality the function F

ϕ(ξ, ω) = exp{iγ2f}
(

Θ + γ2(γ0 + γ3)
ω∫

0

exp{2iγ2f(ξ, z)}

×
(
Θ̇ + ifξ(ξ, z)γ2Θ

)
dz

)
.

(3.4.11)
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The only thing left is to substitute (3.4.11) into (3.4.10). As a result, we
get an integro-differential equation for f = f(ξ, ω)

fω = λ

(
A + B

ω∫

0

cosh 2fdz + C

ω∫

0

sinh 2fdz

)r

, (3.4.12)

where

A = Θ̄Θ,

B = Θ̄γ2(γ0 + γ3)Θ̇− ˙̄Θγ2(γ0 + γ3)Θ,

C = i
(
Θ̄(γ0 + γ3)Θ̇− ˙̄Θ(γ0 + γ3)Θ

)
.

The general solution of equation (3.4.12) has been constructed in [304].
Since its explicit form depends on relations between B and C, we have to
consider four inequivalent cases.

Case 1. B = ±C, B 6= 0

a) r 6= −1

f = ±(1/2) ln
(
ε± 2λB−1(r + 1)−1(A + Bg)r+1

)
,

g(ξ, ω)∫

0

[
ε± 2λB−1(r + 1)−1(A + Bτ)r+1

]−1

dτ = ω;

b) r = 1

f = ±(1/2) ln
(
ε± 2λB−1 ln(A + Bg)

)
,

g(ξ, ω)∫

0

[
ε± 2λB−1 ln(A + Bτ)

]−1

dτ = ω.

Case 2. B2 > C2 ⇔ B = α(ξ) cosh 2β(ξ), B = α(ξ) sinh 2β(ξ)

a) r 6= −1

cosh 2(f + β) =
[
1 +

(
ε + 2λα−1(r + 1)−1(A + αg)r+1

)2]1/2
,

g(ξ, ω)∫

0

[
1 +

(
ε + 2λα−1(r + 1)−1(A + ατ)r+1

)2
]−1/2

dτ = ω;
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b) r = −1

cosh 2(f + β) =
[
1 +

(
ε + 2λα−1 ln(A + αg)

)2]1/2
,

g(ξ, ω)∫

0

[
1 +

(
ε + 2λα−1 ln(A + ατ)

)2
]−1/2

dτ = ω.

Case 3. B2 < C2 ⇔ B = α(ξ) sinh 2β(ξ), B = α(ξ) cosh 2β(ξ)
a) r 6= −1

sinh 2(f + β) =
[
−1 +

(
ε + 2λα−1(r + 1)−1(A + αg)r+1

)2]1/2
,

g(ξ, ω)∫

0

[
−1 +

(
ε + 2λα−1(r + 1)−1(A + ατ)r+1

)2
]−1/2

dτ = ω.

b) r = −1

sinh 2(f + β) =
[
−1 +

(
ε + 2λα−1 ln(A + αg)

)2]1/2
,

g(ξ, ω)∫

0

[
−1 +

(
ε + 2λα−1 ln(A + ατ)

)2
]−1/2

dτ = ω.

Case 4. B = C = 0

f = λArω.

In the above formulae parameter ε takes the values −1, 0, 1.
Thus, we have constructed the general solution of system (3.4.7). Substi-

tution of the obtained expression for the four-component function ϕ = ϕ(ξ, ω)
into Ansatz (3.4.6) with r = 1/2k yields a class of exact solutions of the
nonlinear Dirac equation (2.4.1). And what is more, this class contains four
arbitrary complex functions of ξ = x0 +x3 (components of the function Θ(ξ)).
Such arbitrariness enables us to solve a wide class of Cauchy problems for the
system of nonlinear PDEs (2.4.1).



C H A P T E R 4

NONLINEAR

GALILEI-INVARIANT

SPINOR EQUATIONS

In the present chapter we investigate linear and nonlinear systems of PDEs
for the spinor field admitting the Galilei group G(1, 3). Wide classes of non-
linear first-order spinor PDEs invariant under the group G(1, 3) and its ex-
tensions, groups G1(1, 3) and G2(1, 3), are described. All Ansätze for the
spinor field ψ(t, ~x) invariant under the G(1, 3) non-conjugate three-parameter
subgroups of the Galilei group are obtained. With the use of these Ansätze
the multi-parameter families of exact solutions of a nonlinear Galilei-invariant
spinor equation are constructed. In addition, we briefly consider the second-
order spinor PDEs invariant under the group G(1, 3).

4.1. Nonlinear equations for the spinor field invariant

under the group G(1,3) and its extensions

In spite of the fact that the Galilei relativity principle is known for more than
300 years, the concept of the Galilei group has arisen only recently (1950–
1970). It is even more surprising, if we take into account that Sophus Lie has
discovered this group as early as in 1889. It was Lie who established that
the one-dimensional linear heat-transfer equation (which up to the constant
factor coincided with the Schrödinger equation) was invariant with respect to
the translation group, Galilei transformation, scale and projective transforma-
tions. Simultaneously, he discovered a projective representation of the Galilei
group G(1, 1).

Bargmann and Wigner [18, 191] have rediscovered projective representa-
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tions of the Galilei group and showed the fundamental role played by these in
the quantum theory. Since Bargmann’s and Wigner’s works the Galilei group
is intensively used by specialists dealing with mathematical physics problems.

A Galilei-invariant equation for a particle with the spin s = 1/2 was sug-
gested in [172, 212]. Systematic study of the first-order equations invariant
under the group G(1, 3) was begun by Lévy-Leblond [212, 213] and Hagen,
Hurley [178, 186]. The algebraic-theoretical derivation and detailed investiga-
tion of the new classes of linear Galilei-invariant equations for particles with
arbitrary spins were carried out in [114]–[116], [118, 119, 130]. Some nonlinear
Galilei-invariant systems of PDEs were considered in [130, 259, 296].

A Galilei-invariant equation for a particle with the spin s = 1/2 can be
represented in the form [296]

{−i(γ0 + γ4)∂t + iγa∂a + m(γ0 − γ4)}ψ(t, ~x) = 0, (4.1.1)

where ∂t = ∂/∂t, ∂a = ∂/∂xa , a = 1, 2, 3, m = const, ψ = ψ(t, ~x) is a
four-component complex-valued function (spinor), ~x ∈ R3, t ∈ R1.

In the process of derivation of equation (4.1.1) the Dirac’s heuristic trick
was used. Namely, one looked for a first-order system of PDEs with con-
stant matrix coefficients for a spinor ψ(t, ~x) whose components satisfied the
Schrödinger equation

(4im∂t − ∂a∂a)ψα(t, ~x) = 0, α = 0, . . . , 3, (4.1.2)

whence it immediately followed that up to equivalence the equation required
had the form (4.1.1) (to obtain (4.1.2) one has to act with the operator −i(γ0+
γ4)∂t + iγa∂a + m(γ0 − γ4)) on system (4.1.1). Let us note that the more
traditional notation of the equation for a Galilean particle with the spin s =
1/2

{i(1 + γ0)∂t + iγa∂a + m(1− γ0)}ψ(t, ~x) = 0

is obtained if we multiply (4.1.1) by the matrix γ4 and change the dependent
variable ψ → ψ′ = 2−1/2(1 + γ4)ψ.

1. Local symmetry of system of PDEs (4.1.1). The Lie symmetry of
PDE (4.1.1) for m 6= 0 is well-known. In particular, in [119, 130, 259] it was
established that (4.1.1) is invariant under the 13-parameter generalized Galilei
group G2(1, 3) (it is also called the Schrödinger group and denoted Sch(1, 3)).
We will prove the assertions describing the maximal (in Lie sense) invariance
group admitted by equation (4.1.1) for both cases m 6= 0 and m = 0.
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Theorem 4.1.1. The maximal local invariance group of equation (4.1.1)
with m 6= 0 is the 14-parameter group G(1) = G2(1, 3)⊗ I(1),3 where G2(1, 3)
is the 13-parameter generalized Galilei group having the generators

P0 = ∂t, Pa = ∂a, M = 2im,

Jab = xa∂b − xb∂a − (1/2)γaγb,

Ga = t∂a + 2imxa + (1/2)(γ0 + γ4)γa, (4.1.3)
D = 2t∂t + xa∂a + 2− (1/2)γ0γ4,

A = tD − t2∂t + imxaxa + (1/2)(γ0 + γ4)γaxa

and I(1) is the following one-parameter group

x′µ = xµ, ψ′(t′, ~x′) = eθψ(t, ~x).

In the above formulae a, b = 1, 2, 3, a 6= b, θ = const is a group parameter.
The proof is carried out by means of the Lie method. According to [236]

the operator

Q = ξ0(x, ψ∗, ψ)∂t + ξa(x, ψ∗, ψ)∂a

+ηα(x, ψ∗, ψ)∂ψα + η∗α(x, ψ∗, ψ)∂ψ∗α

(4.1.4)

generates an invariance group of PDE (4.1.1) iff the following relations hold

Q̃{−i(γ0 + γ4)ψt + iγaψxa + m(γ0 − γ4)ψ}
∣∣∣∣

= 0,
[L]

Q̃{i(γ∗0 + γ∗4)ψ∗t − iγ∗aψ∗xa
+ m(γ∗0 − γ∗4)ψ∗} ∣∣∣∣

= 0,
[L]

(4.1.5)

where Q̃ is the first prolongation of the operator Q. By the symbol [L] we
designate the set of solutions of equation (4.1.1).

Relations (4.1.5) yield the following determining equations for the coeffici-
ents of the operator Q:

η = −(ã + bµγµ + cµνγ
µγν + dµγµγ4 + e)ψ + Ωψ∗ + Ψ,

η∗ = −(ã∗ + b∗µγµ∗ + c∗µνγ
µ∗γν∗ + d∗µγµ∗γ∗4 + e∗)ψ∗ + Ω∗ψ + Ψ∗,

3Since equation (4.1.1) is linear, it admits an infinite-parameter group ψ′ = ψ + θΨ(t, ~x),
where θ is a group parameter and Ψ is an arbitrary solution of the system of PDEs (4.1.1).
Such a symmetry gives no essential information about the structure of the solutions of the
equation under consideration and therefore is neglected.
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∂tξ0 + 2d0 = ∂1ξ1 = ∂2ξ2 = ∂3ξ3, ∂aξ0 = 0,

∂tξa = 2da = −4c0a, ∂bξa = −∂aξb = 4cab,

∂ae = ∂t∂cξb, (a, b, c) = cycle (1, 2, 3), ba = 0, (4.1.6)

m e = 0, m(∂tξ0 + 4d0) = 0, ∂t

(
ã− d0 − (1/2)∂aξa

)
= 0,

∂bã− (1/2)∂a∂aξb − 2im∂tξb = 0, ∂ad0 = 0,

∂tΩ = ∂aΩ = 0, (γ0 + γ4)Ω = −Θ(γ0 − γ4),
γaΩ = −Ωγ∗a, m(γ0 − γ4)Ω = mΘ(γ0 + γ4),

where η is the four-component function {η0, η1, η2, η3}T , Ψ is an arbitrary
solution of the system of PDEs (4.1.1), Ω, Θ are complex (4 × 4)-matrices,
indices a, b, c take the values 1, 2, 3 and what is more a 6= b.

Since m 6= 0, from (4.1.6) it follows that e = 0, f = −2d0 and besides
d0 = d0(t). Due to this fact the equations for functions ξ0, ξ1, ξ2, ξ3 are
rewritten in the form

∂aξ0 = 0, ∂tξ0 = −4d0(t), ∂bξa = −∂aξb, a 6= b,

∂1ξ1 = ∂2ξ2 = ∂3ξ3 = −2d0(t), ∂t∂aξb = 0, a 6= b,

whence it follows that ∂b∂aξa = 0 (no summation over a) and what is more
the equalities

∂a∂bξc = −∂a∂cξb = −∂c∂aξb = ∂c∂bξa = ∂b∂cξa = −∂b∂aξc,

where (a, b, c) = cycle(1, 2, 3), hold. Consequently, ∂a∂bξc = −∂a∂bξc = 0
which implies that the functions ξµ are linear in the variables x1, x2, x3. Due
to this fact it is not difficult to integrate the system of PDEs (4.1.6). Its
general solution under m 6= 0 has the form

ξ0 = A1t
2 + 2A2t + A3,

ξa = Babxb + (A1t + A2)xa + Cat + Da,

ã = imA1xaxa + 2imCaxa + 2A1t + 2A2 + A4,

cab = (1/4)Bab, da = (1/2)(A1xa + Ca),
c0a = −(1/4)(A1xa + Ca), d0 = −(1/2)(A1t + A2),
b0 = ba = e = 0, Ω = 0, Θ = 0,

where A1, . . . , A4, Bab, Ca, Da are arbitrary real constants, Bab = −Bba,
a, b = 1, 2, 3.
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Substitution of the above results into (4.1.4) shows that the most general
infinitesimal operator Q admitted by the equation under study is a linear
combination of operators (4.1.3), I = ψα∂ψα+ψα∗∂ψα∗ and Q′ = Ψα(t, ~x)∂ψα+
Ψ∗α(t, ~x)∂ψ∗α . Consequently, operators (4.1.3) together with the operators
I, Q′ form the basis of the maximal invariance algebra admitted by the system
of PDEs (4.1.1). The theorem is proved. ¤

Note 4.1.1. Operators P0, Pa, M, Jab, Ga form a basis of the Lie algebra
of the Galilei group which is called the Galilei algebra AG(1, 3).

Note 4.1.2. Operators P0, Pa, M, Jab, Ga, D form a basis of the Lie algebra
of the extended Galilei group G1(1, 3) which is called the extended Galilei
algebra AG̃1(1, 3).

Theorem 4.1.2. The maximal local invariance group admitted by (4.1.1) with
m = 0 is the infinite-parameter Lie group having the generators4

A∞ = ϕ0(t)∂t + ϕ̇0(t)xa∂a + (3/2)ϕ̇0(t)
+(1/2)ϕ̈0(t)(γ0 + γ4)γaxa,

G∞ = ϕa(t)∂a + (1/2)(γ0 + γ4)γaϕ̇a(t),
D∞ = ϕ4(t)∂t + (1/2)ϕ̇4(t)(1− γ0γ4),
T∞ = (γ0 + γ4)ϕ5(t), (4.1.7)

J∞ = εabcϕ5+a(t)
(
xc∂b + (1/4)γbγc

)

+(1/2)(γ0 + γ4)γaϕ̇5+a(t)γbxb,

M1 = {C1ψ}α∂ψα + {C∗
1ψ∗}α∂ψ∗α ,

M2 = {C2γ2γ4ψ
∗}α∂ψα + {C∗

2γ∗2γ∗4ψ}α∂ψ∗α ,

M3 = {C3(γ2 + γ3γ1)ψ∗}∂ψα + {C∗
3 (γ∗2 + γ∗3γ∗1)ψ}∂ψ∗α ,

where ϕ0(t), ϕ1(t), . . . , ϕ8(t) are arbitrary smooth functions, ϕ̇s = dϕs/dt,
s = 0, . . . , 8, the symbol {ψ}α denotes the α-th component of ψ, C1, C2, C3

are arbitrary complex constants and

εabc =





1, (a, b, c) = cycle(1, 2, 3),
−1, (a, b, c) = cycle(2, 1, 3),
0, in the remaining cases.

Proof. The determining equations for coefficients of the infinitesimal opera-
tor of the invariance group of equation (4.1.1) are of the form (4.1.6) under

4See the footnote on the page 217.
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m = 0. The general solution of system of PDEs (4.1.6) with m = 0 is given
by the following formulae:

ξ0 = ϕ0(t)− 2ϕ4(t), ξa = εabcxbϕ5+c(t) + ϕ̇(t)xa + ϕa(t),
ã = (3/2)ϕ̇0(t) + C1, b0 = e = ϕ5(t)− (1/2)xaϕ5+a(t),
ba = 0, cab = (1/4)εabcϕ5+c(t),

da = −2c0a = −(1/2)
(
ϕ̈0(t)xa + ϕ̇a(t) + εabcϕ̇5+c(t)xb

)
,

Ω = C2γ2γ4 + C3(γ2 + γ3γ1),

where {C1, C2, C3} ⊂ C1; ϕ0(t), . . . , ϕ8(t) are arbitrary smooth functions.
Substituting the above result into (4.1.4) we come to the conclusion that
the most general infinitesimal operator admitted by equation (4.1.1) under
m = 0 is a linear combination of operators (4.1.7) and Q′ = Ψα(t, ~x)∂ψα +
Ψ∗α(t, ~x)∂ψ∗α . Consequently, the operators listed in (4.1.7) together with the
operator Q′ form the basis of the maximal (in Lie sense) invariance algebra of
(4.1.1). The theorem is proved. ¤

Note 4.1.3. The algebra (4.1.7) contains as a subalgebra the infinite-dimen-
sional centerless Virasoro algebra with the following basis operators:

qn ≡ A∞(tn) = tn∂t + ntn−1xa∂a + (3n/2)tn−1

+(1/2)n(n− 1)tn−2(γ0 + γ4)γaxa,

which satisfy the commutation relations

[qn, qm] = (m− n)qn+m−1, n, m ∈ Z.

The Virasoro algebra is a Kac-Moody-type algebra which plays an impor-
tant role in the theory of two-dimensional dynamical systems (see, for example,
[67, 276, 286]).

Note 4.1.4. On the set of solutions of system of PDEs (4.1.1) with m = 0
two inequivalent representations of the Lie algebra of the generalized Galilei
group are realized

1) P0 = ∂t, Pa = ∂a,

Ga = t∂a + (1/2)(γ0 + γ4)γa,

Jab = xa∂b − xb∂a − (1/2)γaγb, a 6= b,

D = 2t∂t + xa∂a + 2− (1/2)γ0γ4,
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A = tD − t2∂t + (1/2)(γ0 + γ4)γaxa;

2) P0 = ∂t, Pa = ∂a,

Ga = t∂a + (1/2)(γ0 + γ4)γa,

Jab = xa∂b − xb∂a − (1/2)γaγb, a 6= b,

D = t∂t + xa∂a + 3/2,

A = 2tD − t2∂t + (γ0 + γ4)γaxa.

Further, we adduce transformation groups generated by the operators
(4.1.3). To obtain a one-parameter transformation group generated by op-
erator Q (4.1.4) it is necessary to solve the following Cauchy problem (the Lie
equations):

dt′

dτ
= ξ0(t′, ~x′, ψ′∗, ψ′),

dx′a
dτ

= ξa(t′, ~x′, ψ′∗, ψ′),

dψ′α

dτ
= ηα(t′, ~x′, ψ′∗, ψ′),

dψ′∗α

dτ
= η∗α(t′, ~x′, ψ′∗, ψ′), (4.1.8)

t′(0) = t, x′a(0) = xa, ψ′α(0) = ψα, ψ′∗α(0) = ψ∗α.

Substituting into (4.1.8) functions ξµ, ηα, η∗α corresponding to the opera-
tors (4.1.3) and integrating the equations obtained we arrive at the following
transformation groups:

P :





t′ = t + θ0,
x′a = xa + θa,
ψ′(t′, ~x′) = ψ(t, ~x);

(4.1.9)

J :





t′ = t,

x′a =
(
δab cos θ + εabcθcθ

−1 sin θ

+θaθbθ
−2(1− cos θ)

)
xb,

ψ′(t′, ~x′) = exp{−(1/4)εabcθaγbγc}ψ(t, ~x);

(4.1.10)

G :





t′ = t,
x′a = xa + θat,

ψ′(t′, ~x′) = exp
{
−2im

(
θaxa + (t/2)θaθa

)

−(1/2)(γ0 + γ4)γaθa

}
ψ(t, ~x);

(4.1.11)

D :





t′ = te2θ0 ,
x′a = xae

θ0 ,
ψ′(t′, ~x′) = exp{−2θ0 + (1/2)θ0γ0γ4}ψ(t, ~x);

(4.1.12)
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A :





t′ = t(1− θ0t)−1,
x′a = xa(1− θ0t)−1,

ψ′(t′, ~x′) = (1− θ0t)2 exp
{
−imθ0(1− θ0t)−1xaxa

−(1/2t) ln(1− θ0t)
(
tγ0γ4 + (γ0 + γ4)γaxa

)}
ψ(t, ~x);

(4.1.13)

M :





t′ = t,
x′a = xa,
ψ′(t′, ~x′) = e−2imθ0ψ(t, ~x);

(4.1.14)

where P = θ0P0 + θaPa, J = (1/2)εabcθaJbc, G = θaGa, θ0, θa are group
parameters, θ = (θaθa)1/2.

One can check by a direct computation that equation (4.1.1) is invariant
under groups (4.1.9)–(4.1.14).

Note 4.1.5. Transformation groups corresponding to the operators (4.1.7) are
given in [160].

2. Non-Lie symmetry of system of PDEs (4.1.1). As earlier (see Section
1.1) we designate by M1 the class of the first-order differential operators with
complex matrix coefficients

X0 = A0(t, ~x)∂t + Ab(t, ~x)∂b + B(t, ~x)

acting on the space of four-component complex-valued functions ψ = ψ(t, ~x).
Below we adduce the assertions describing the symmetry of equation (4.1.1)
in the class M1.

Theorem 4.1.3. System of PDEs (4.1.1) with m 6= 0 has 34 linearly-indepen-
dent symmetry operators belonging to the class M1. The list of these operators
is exhausted by the generators of the generalized Galilei group (4.1.3) and by
the following 21 operators:

M1 = I, M2 = iI,

W0 = (1/2)(γ0 + γ4)∂t − (im/2)(γ0 − γ4),

Wa = (1/2)εabc

(
(1/2)(γ0 + γ4)(γb∂c − γc∂b) + imγbγc

)
,

Sa = γ0γ4∂a + (γ0 + γ4)γa∂t − im(γ0 − γ4)γa,

Ta = (1/2)εabc

(
(1/2)(γ0 − γ4)(γb∂c − γc∂b) + γbγc∂t

)
,

R0 = tW0 + xaWa + (3/4)(γ0 + γ4),

Ra = 2tTa + 2xaW0 + εabc

(
xbSc + (1/2)γbγc

)
+ (3/2)γa,

N0 = xaSa + γ0γ4,
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Na = tSa + 2εabcxbWc + (γ0 + γ4)γa,

Ka = 2xaR0 − (xbxb)Wa + εabc

(
txbSc + (1/2)tγbγc + (γ0 + γ4)xbγc

)

+t2Ta + (3/2)tγa,

where I is the unit (4× 4)-matrix.

Theorem 4.1.4. Basis of the infinite-dimensional vector space of symmetry
operators of system (4.1.1) with m = 0 belonging to the class M1 can be chosen
as follows

I1 = I, I2 = iI, A∞, G∞, D∞, T∞, J∞,

W∞ = (γ0 + γ4)(ϕ6
0∂t + ϕ6

a∂a),

S∞ = ϕ7
a

(
(γ0 + γ4)γa∂t + γ0γ4∂a

)
+ (1/2)(γ0 + γ4)γaϕ̇

7
a,

P∞ = ϕ8
a

(
2γa∂t − (γ0 − γ4)∂a

)
+ (1/4)(2γa + εabcγbγc)ϕ̇8

a,

Q∞ = ϕ9
0(γ0 + γ4)xa∂a,

R∞ = ϕ10
a

{
εabc

(
(γ0 + γ4)xbγc + γ0γ4xb∂c

)
+ (1/2)γa

}

−(1/2)(γ0 + γ4)γaϕ̇
10
a γbxb,

N∞ = ϕ11
0

(
(γ0 + γ4)γaxa∂t + γ0γ4xa∂a

+(1/2)(1 + γ0γ4)
)

+ (1/2)ϕ̇11
0 (γ0 + γ4)γaxa,

K∞ = ϕ12
a

(
−(γ0 + γ4)(xbxb)∂a + 2xa(γ0 + γ4)xb∂b

+2xa(γ0 + γ4) + εabcxbγc

)
,

L∞ = εabcϕ
13
a (γ0 + γ4)

(
xb∂c + (1/4)γbγc

)
.

Here A∞, . . . , J∞ are operators listed in (4.1.7), ϕN
µ , µ = 0, . . . , 3, N =

6, . . . , 13 are arbitrary smooth functions of t, an overdot means differentiation
with respect to t.

Proof. We give the main idea of the proof omitting very cumbersome in-
termediate calculations. According to the definition of a symmetry operator,
to describe all linearly independent symmetry operators of equation (4.1.1)
belonging to the class M1 it is necessary to construct a general solution of the
operator equation

[L, X] = (R0∂t + Ra∂a + R)L,

where L = −i(γ0 +γ4)∂t + iγa∂a +m(γ0−γ4); R0, Ra, R are variable (4×4)-
matrices.
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Computing the commutator and equating coefficients of linearly-indepen-
dent operators ∂2

t , ∂t∂a, ∂a∂b, ∂t, ∂a yield a system of matrix PDEs for A0, Ab,
B, R0, Ra, R. Eliminating matrix functions R0, Ra, R we arrive at the
over-determined system of PDEs for 80 functions Aµν

0 , Aµν
b , Bµν (by Aµν we

designate the entries of the matrix A) µ, ν = 0, . . . , 3 which general solution
gives rise to a complete set of symmetry operators of equation (4.1.1). ¤

The complete set of symmetry operators of equation (4.1.1) belonging to
the class M1 does not form a Lie algebra. But it contains some subsets which
have very interesting algebraic properties. In particular, the basis generators
of the Galilei group P0, Pa, Jab, Ga, M are even basis elements and the
operators W0, Wa are odd basis elements of a superalgebra. This superalgebra
can be considered as a superextension of the Galilei algebra AG(1, 3) [305].

A detailed account of symmetry properties of system of linear PDEs (4.1.1)
in the class of differential operators of the order higher than 1 and in the class
of integro-differential operators can be found in [119].

3. Nonlinear spinor equations invariant under the group G(1,3).
In this subsection we will obtain a complete description of Galilei-invariant
systems of PDEs

{−i(γ0 + γ4)∂t + iγa∂a + m(γ0 − γ4)}ψ = F (ψ∗, ψ), (4.1.15)

where F (ψ∗, ψ) is a complex-valued four-component function. In addition,
all the functions F (ψ∗, ψ) such that equation (4.1.15) admits wider symme-
try groups (in particular, the generalized Galilei group G2(1, 3)) will be con-
structed.

Theorem 4.1.5. The system of nonlinear PDEs (4.1.15) is invariant under
the Galilei group iff

F (ψ∗, ψ) =
(
f1 + (γ0 + γ4)f2

)
ψ, (4.1.16)

where f1, f2 are arbitrary smooth functions of w1 = ψ̄ψ, w2 = ψ†ψ + ψ̄γ4ψ.

Proof. It is convenient to represent a four-component function F (ψ∗, ψ) in
the form F = H(ψ∗, ψ)ψ, where H is a variable (4× 4)-matrix.

At first, we select from the class of equations (4.1.15) those which are
invariant under the rotation group O(3) ⊂ G(1, 3). Acting by the first prolon-
gation of the generator of the group O(3)

Q = αabxa∂b − (1/4){αabγaγbψ}α∂ψα − (1/4){αabγ
∗
aγ∗b ψ∗}α∂ψ∗α ,
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where αab = −αba are real constants, on (4.1.15) we arrive at the following
relation for H = H(ψ∗, ψ):

Q̃{−i(γ0 + γ4)ψt + iγaψxa + m(γ0 − γ4)ψ −Hψ} ∣∣∣∣
= 0.

[L]
(4.1.17)

Here [L] is the set of solutions of PDE (4.1.15).
Designating

Qab = −(1/2){γaγbψ}α∂ψα − (1/2){γ∗aγ∗b ψ∗}α∂ψα∗ ,

we rewrite equation (4.1.17) as follows

QabH + (1/2)[γaγb, H] = 0. (4.1.18)

Expanding the matrix H in the complete system of the Dirac matrices

H = ã(ψ∗, ψ)I + bµ(ψ∗, ψ)γµ + cµν(ψ∗, ψ)γµγν

+dµ(ψ∗, ψ)γ4γ
µ + e(ψ∗, ψ)γ4

(4.1.19)

and substituting it into (4.1.18) we get

Qab(ãI + bµγµ + cµνγ
µγν + dµγ4γ

µ + eγ4)
= bµ(gµaγb − gµbγa) + dµγ4(gµaγb − gµbγa)
−cµν(gaνγbγν + gbµγaγν − gaµγbγν − gbνγaγµ).

Equating the coefficients of linearly independent matrices we arrive at the
following system of PDEs:

Qabã = Qabe = Qabb0 = Qabd0 = 0,

Qabbk = bc(gcaδkb − gcbδka),
Qabdk = dc(gcaδkb − gcbδka), (4.1.20)
Qabc0k = c0c(gcaδkb − gcbδka),
Qabckc = cmn(ganδkc

bm + gbmδkc
an − gamδkc

bn − gbnδkc
am).

In (4.1.20) δkc
mn = δmkδnc − δnkδmc, a, b, c, k,m, n = 1, 2, 3.

Integration of system (4.1.20) is carried out in the same way as integration
of (1.2.6)–(1.2.9). That is why we omit intermediate computations and give
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the final result

ã = E1(~y), b0 = E2(~y), d0 = E3(~y), e = E4(~y),
bk = ψ†γkψB1(~y) + ψ†γ4γkψB2(~y) + ψT γ0γ2γkψB3(~y),

c0k = ψ†γkψC1(~y) + ψ†γ4γkψC2(~y) + ψT γ0γ2γkψC3(~y), (4.1.21)
dk = ψ†γkψD1(~y) + ψ†γ4γkψD2(~y) + ψT γ0γ2γkψD3(~y),
cab = ψ†γaγbψC4(~y) + ψ†γ4γaγbψC4(~y) + ψT γ0γ2γaγbψC6(~y),

where B1, B2, . . . , E4 are arbitrary smooth complex-valued functions; ~y is a
complete set of functionally-independent invariants of the group O(3) which
can be chosen in the form ~y = (ψ̄ψ, ψ†ψ, ψ†γ4ψ, ψ̄γ4ψ, ψT γ2ψ).

Substitution of (4.1.19), (4.1.21) into (4.1.15) gives rise to the following
class of O(3)-invariant spinor equations:

{−i(γ0 + γ4)∂t + iγa∂a + m(γ0 − γ4)}ψ
=

{
E1 + γ0E2 + γ0γ4E3 + γ4E4 + γa(ψ†γaψB1

+ψ†γ4γaψB2 + ψT γ0γ2γaψB3) + γ4γa(ψ†γaψD1 (4.1.22)
+ψ†γ4γaψD2 + ψT γ0γ2γaψD3) + γ0γa(ψ†γaψC1

+ψ†γ4γaψC2 + +ψT γ0γ2γaψC3) + γaγb(ψ†γaγbψC4

+ψ†γ4γaγbψC5 + ψT γ0γ2γaγbψC6

}
ψ.

Formulae (4.1.22) are substantially simplified if we use identity (1.2.18)
rewritten in the form

(ψ̄1γaψ2)γaψ2 = (ψ†1ψ2)γ0ψ2 − (ψ̄1ψ2)ψ2 − (ψ̄1γ4ψ2)γ4ψ2.

Here ψ1, ψ2 are arbitrary four-component functions.
Due to the above identity equation (4.1.22) takes a more compact form

{−i(γ0 + γ4)∂t + iγa∂a + m(γ0 − γ4)}ψ
= (h1 + h2γ0 + h3γ0γ4 + h4γ4)ψ,

(4.1.23)

where hi = hi(y1, y2, y3, y4, y5), i = 1, . . . , 4 are arbitrary smooth complex-
valued functions.

Next, acting with the first prolongation of the generator of group (4.1.11)
on (4.1.23) and using the Lie invariance criterion we get the following equations
for H = h1 + h2γ0 + h3γ0γ4 + h4γ4:

QaH + (1/2)[H, (γ0 + γ4)γa] = 0, a = 1, 2, 3, (4.1.24)
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where Qa = −(1/2){(γ0 + γ4)γaψ}α∂ψα − (1/2){(γ∗0 + γ∗4)γ∗aψ∗}α∂ψ∗α .
Computing commutators in the left-hand sides of system (4.1.24) and

equating to zero the coefficients of linearly independent γ-matrices we come
to the system of PDEs for h1, h2, h3, h4

Qah1 = 0, Qah2 = 0, h2 = h4, h3 = 0. (4.1.25)

Integration of the above equations yields

h1 = f1(w1, w2), h2 = h4 = f2(w1, w2), h3 = 0,

where w1 = ψ̄ψ, w2 = ψ†ψ + ψ̄γ4ψ.
Generally speaking, the group G(1, 3) is not the maximal invariance group

of equation (4.1.15) with F of the form (4.1.16). Below we give without proof
the assertions describing functions F = F (ψ∗, ψ) such that the system of
PDEs (4.1.15) admits wider groups.

Theorem 4.1.6. Equation (4.1.15) is invariant under the group G1(1, 3) =
G(1, 3)⊂×D(1), where D(1) is the one-parameter group of scale transforma-
tions, only in the following cases:

1) f1 = (ψ†ψ + ψ̄γ4ψ)1/(2k−1)f̃1

(
(ψ̄ψ)1−2k(ψ†ψ + ψ̄γ4ψ)2k

)
,

f2 = (ψ†ψ + ψ̄γ4ψ)2/(2k−1)f̃2

(
(ψ̄ψ)1−2k(ψ†ψ + ψ̄γ4ψ)2k

)
, (4.1.26)

D(1) being of the form
t′ = te2θ0 , x′a = xae

θ0 ,

ψ′(t′, ~x′) = exp
{
θ0

(
−k + (1/2)γ0γ4

)}
ψ(t, ~x), (4.1.27)

under k 6= 1/2;
2) f1 = ψ̄ψf̃1(ψ†ψ + ψ̄γ4ψ), f2 = (ψ̄ψ)2f̃2(ψ†ψ + ψ̄γ4ψ),

D(1) being of the form (4.1.27) under k = 1/2;

3) m = 0, f1 = (ψ†ψ + ψ̄γ4ψ)1/2kf̃1

(
(ψ̄ψ)(ψ†ψ + ψ̄γ4ψ)−1

)
,

f2 = (ψ†ψ + ψ̄γ4ψ)1/2kf̃2

(
(ψ̄ψ)(ψ†ψ + ψ̄γ4ψ)−1

)
, (4.1.28)

D(1) being of the form
t′ = teθ0 , x′a = xae

θ0 , ψ′(t′, ~x′) = e−kθ0ψ(t, ~x). (4.1.29)

Theorem 4.1.7. Equation (4.1.15) is invariant under the generalized Galilei
group G2(1, 3) only in the following cases:
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1) f1, f2 are of the form (4.1.26) under k = 3/2, the groups of scale and
projective transformations are given by formulae (4.1.27) (with k = 3/2) and
(4.1.13);

2) m = 0, f1, f2 are of the form (4.1.28) under k = 3/2, the group of
scale transformations is of the form (4.1.29) with k = 3/2 and the group of
the projective transformations has the form

t′ = t(1− θ0t)−1, x′a = xa(1− θ0t)−2,

ψ′(t′, ~x′) = (1− θ0t)3 exp{θ0(1− θ0t)−1(γ0 + γ4)γaxa}ψ(t, ~x).

4.2. Exact solutions of Galilei-invariant

spinor equations

The present section is devoted to reduction and construction of the multi-
parameter families of exact solutions of the nonlinear Galilei-invariant systems
of PDEs

{−i(γ0 + γ4)∂t + iγa∂a + m(γ0 − γ4)− f1 − f2(γ0 + γ4)}ψ = 0, (4.2.1)

where fi = fi(ψ̄ψ, ψ†ψ + ψ̄ψ).

1. Ansätze for the spinor field. Since a linear representation of the Galilei
algebra is realized on the set of solutions of the system of PDEs (4.2.1), we
can look for Ansätze reducing (4.2.1) to systems of ODEs in the form

ψ(t, ~x) = A(t, ~x)ϕ(ω), (4.2.2)

where ϕ = ϕ(ω) is a complex-valued four-component function. A variable
(4× 4)-matrix A(t, ~x) and a real-valued function ω = ω(t, ~x) are determined
by equations (1.5.22), (1.5.20), where operators Q1, Q2, Q3 are the basis
elements of some three-dimensional subalgebra of the Galilei algebra AG(1, 3).

A classification of the G(1, 3) non-conjugate subalgebras of the algebra
AG(1, 3) has been carried out in [267] (we use a more convenient classification
given in [100]). Each three-dimensional subalgebra 〈Q1, Q2, Q3〉 satisfying
condition (1.5.10) gives rise to an Ansatz of the form (4.2.2) which reduces
the G(1, 3)-invariant system of PDEs (4.2.1) to a system of ODEs for ϕ (ω)
(Theorem 1.5.1).
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It should be noted that the subalgebraic structure of the algebra AG(1, 3)
in the case m 6= 0 differs essentially from the one in the case m = 0. That is
why the cases m 6= 0 and m = 0 lead to principally different sets of Ansätze
for the spinor field.

Since the system of nonlinear PDEs (4.2.1) with m = 0 admits the infinite-
parameter Lie group with generators G∞, J∞ from (4.1.7) [292], which con-
tains the group G(1, 3) as a subgroup, it makes no sense reducing it by means
of subgroups of the Galilei groups. That is why we restrict ourselves to the
case m 6= 0 (Galilei-invariant Ansätze for the case m = 0 are constructed in
[160]).

At first, we will write down the complete list of inequivalent Ansätze for the
spinor field invariant under the G(1, 3) non-conjugate three-dimensional sub-
algebras of the algebra AG(1, 3) and then consider an example of integration
of the over-determined system of equations (1.5.22), (1.5.20).

1) 〈P0, P1, P2〉,
ψ(t, ~x) = ϕ (x3);

2) 〈J12 + αP0, P1, P2〉,
ψ(t, ~x) = exp{(t/2α)γ1γ2}ϕ (x3);

3) 〈P0 + iαm, P1, P2〉,
ψ(t, ~x) = exp{−iαmt}ϕ (x3);

4) 〈J12, P0, P3〉,
ψ(t, ~x) = exp{−(1/2)γ1γ2 arctan(x1/x2)}ϕ (x2

1 + x2
2);

5) 〈J12 + αP0 + βG3, P1, P2〉,
ψ(t, ~x) = exp{(2im/3)βα−2t(βt2 − 3αx3)− (βt/α)η3 + (t/2α)γ1γ2}
×ϕ (βt2 − 2αx3);

6) 〈J12 + αG3, P1, P2〉,
ψ(t, ~x) = exp{(1/2αt)x3(γ1γ2 − 2αη3 − 2imαx3)}ϕ (t);

7) 〈J12 + αG3, G1, G2〉,
ψ(t, ~x) = exp{−(im/t)(x2

1 + x2
2)− (1/t)(η1x1 + η2x2)}

× exp{(1/2αt)x3(2iαmx3 + αη3 − γ1γ2)}ϕ (t);
8) 〈J12 + αP3, P1, P2〉,

ψ(t, ~x) = exp{−(1/2α)x3γ1γ2}ϕ (t);
9) 〈J12 + αP3, G1, G2〉, (4.2.3)

ψ(t, ~x) = exp{−(im/t)(x2
1 + x2

2)− (1/t)(η1x1 + η2x2)}
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× exp{−(1/2α)x3γ1γ2}ϕ (t);
10) 〈P1, P2, P3〉,

ψ(t, ~x) = ϕ (t);
11) 〈G1, P2, P3〉,

ψ(t, ~x) = exp{−(im/t)x2
1 − (1/t)x1η1}ϕ (t);

12) 〈G1 + αP1, G2, P3〉,
ψ(t, ~x) = exp{−im[t−1x2

2 + (t− α)−1x2
1]− t−1x2η2

+(α− t)−1x1η1}ϕ (t);
13) 〈G1 + αP1, G2 + βP2, G3〉,

ψ(t, ~x) = exp{im[(α− t)−1x2
1 + (β − t)−1x2

2 − t−1x2
3]

+(α− t)−1x1η1 + (β − t)−1x2η2 − t−1x3η3}ϕ (t);
14) 〈G1 + αP0, P2, P3〉,

ψ(t, ~x) = exp{(2im/3)α−2t(t2 − 3αx1)− (t/α)η1}ϕ (t);
15) 〈J12 + iαm, P0, P3〉,

ψ(t, ~x) = exp{[iαm− (1/2)γ1γ2] arctan(x1/x2)}ϕ (x2
1 + x2

2);
16) 〈J12 + iαm, P0 + iβm, P3〉,

ψ(t, ~x) = exp{iβmt + [iαm− (1/2)γ1γ2] arctan(x1/x2)}ϕ (x2
1 + x2

2);
17) 〈G1 + αP2, G2 + αP1 + βP2 + τP3, G3 − ρG1 − δG2 − αδP1〉,

ψ(t, ~x) = exp{−(im/t)x2
1 − (1/t)x1η1} exp

{
−(im/t)(αx1 + tx2)2

×[t(t− β)− α2]−1 + (1/τt)(αη1 + tη2)x3

}
exp

{
imw2

(
f(t)[t(t− β)

−α2]
)−1 − [f(t)]−1w

(
(δt−1 − τ−1)(αη1 + tη2)− η3

)}
ϕ (t).

In the above formulae α, β, ρ, δ are arbitrary real parameters; ηa =
(1/2)(γ0 + γ4)γa, a = 1, 2, 3; ϕ (ω) is an arbitrary four-component function;

w = τ(αx1 + tx2) +
(
t(t− β)− α2

)
x3, τ = αρ + βδ,

f(t) = τ
(
α(ρt− αδ) + δt2

)
− t

(
t(t− β)− α2

)
.

As an example, we construct the Ansatz N 11 from (4.2.3). Substitution
of Q1 = t∂x1 + 2imx1 + (1/2)(γ0 + γ4)γ1, Q2 = ∂x2 , Q3 = ∂x3 into the system
of PDEs (1.5.22), (1.5.20) gives the following equations for A(t, ~x), ω(t, ~x):

∂x2A = ∂x3A = 0,

t∂x1A +
(
2imx1 + (1/2)(γ0 + γ4)γ1

)
A = 0,

(4.2.4)
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∂x2ω = 0, ∂x3ω = 0, t∂x1ω = 0. (4.2.5)

The first integral of system (4.2.5) has the form ω = t. Next, from (4.2.4)
it follows that A = A(t, x1) and in addition

∂A

∂x1
= −(1/t)

(
2imx1 + (1/2)(γ0 + γ4)γ1

)
A.

Integrating the above equation we get the expression for A.

2. Reduction of nonlinear equation (4.2.1). We will carry out reduction
of PDE (4.2.1) to systems of ODEs provided m 6= 0. Substitution of Ansätze
(4.2.2) into (4.2.1) gives rise to equations of the form

A(t, ~x)L

(
ω, ϕ∗, ϕ,

dϕ

dω

)
= 0. (4.2.6)

Since detA(t, ~x) 6= 0, the above equation is rewritten as follows

L

(
ω, ϕ∗, ϕ,

dϕ

dω

)
= 0.

Below we give explicit forms of systems of PDEs for ϕ = ϕ (ω) corre-
sponding to the Galilei-invariant Ansätze for the spinor field ψ(t, ~x) listed in
(4.2.3)

1) iγ3ϕ̇ + m(γ0 − γ4)ϕ = F̃ ,

2) iγ3ϕ̇ +
(
(i/2α)(γ0 + γ4)γ3 + m(γ0 − γ4)

)
ϕ = F̃ ,

3) iγ3ϕ̇ +
(
αm(γ0 + γ4) + m(γ0 − γ4)

)
ϕ = F̃ ,

4) 2iω1/2γ2ϕ̇ +
(
(i/2)ω−1/2γ2 + m(γ0 − γ4)

)
ϕ = F̃ ,

5) −2iαγ3ϕ̇ +
(
m(γ0 − γ4) + α−2βω(γ0 + γ4)

+(i/2α)(γ0 + γ4)γ3

)
ϕ = F̃ ,

6) −i(γ0 + γ4)ϕ̇ +
(
m(γ0 − γ4) + (i/2αω)[γ0γ4

−α(γ0 + γ4)]
)
ϕ = F̃ ,

7) −i(γ0 + γ4)ϕ̇ +
(
(i/2αω)γ0γ4 − (i/ω)(γ0 + γ4) + m(γ0 − γ4)

)
ϕ

= F̃ ,
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8) −i(γ0 + γ4)ϕ̇ +
(
m(γ0 − γ4)− (i/2α)γ0γ4

)
ϕ = F̃ ,

9) −i(γ0 + γ4)ϕ̇ +
(
m(γ0 − γ4)− iω−1(γ0 + γ4)− i(2α)−1γ0γ4

)
ϕ

= F̃ ,

10) −i(γ0 + γ4)ϕ̇ + m(γ0 − γ4)ϕ = F̃ , (4.2.7)

11) −i(γ0 + γ4)ϕ̇ +
(
m(γ0 − γ4)− (i/2ω)(γ0 + γ4)

)
ϕ = F̃ ,

12) −i(γ0 + γ4)ϕ̇ +
(
m(γ0 − γ4)− i(2ω − α)[2ω(ω − α)]−1

×(γ0 + γ4)
)
ϕ = F̃ ,

13) −i(γ0 + γ4)ϕ̇ +
(
m(γ0 − γ4)− i[3ω2 − 2(α + β)ω + αβ]

×[2ω(ω − α)(ω − β)]−1(γ0 + γ4)
}
ϕ = F̃ ,

14) −2iαγ1ϕ̇ +
(
m(γ0 − γ4) + mα−2ω(γ0 + γ4)

)
ϕ = F̃ ,

15) 2iω1/2γ2ϕ̇ +
(
iω−1/2[iαmγ1 + (1/2)γ2] + m(γ0 − γ4)

)
ϕ = F̃ ,

16) 2iω1/2γ2ϕ̇ +
(
iω−1/2[iαmγ1 + (1/2)γ2] + m(γ0 − γ4)

+mβ(γ0 + γ4)
)
ϕ = F̃ ,

17) −i(γ0 + γ4)ϕ̇ +
(
i[2ωf(ω)]−1[ω3 + α(α + ρτ)ω − 2τα2δ]

×(γ0 + γ4)− (i/ω)(γ0 + γ4) + m(γ0 − γ4)
)
ϕ = F̃ .

Here a dot over ϕ means differentiation with respect to ω,

F̃ = {f1 (ϕ̄ϕ, ϕ†ϕ + ϕ̄γ4ϕ) + (γ0 + γ4)f2 (ϕ̄ϕ, ϕ†ϕ + ϕ̄γ4ϕ)}ϕ,

τ = αρ + δβ, f(ω) = τ [α(ρω − αδ) + δω2]− [ω(ω − β)− α2]ω.

3. Exact solutions of nonlinear equation (4.2.1). We will construct
the multi-parameter families of exact solutions of nonlinear Galilei-invariant
system of PDEs of the form (4.2.1) with the power nonlinearity

{
−i(γ0 + γ4)∂t + iγa∂a + m(γ0 − γ4)− λ(ψ†ψ + ψ̄γ4ψ)1/2k

}
ψ = 0, (4.2.8)

where λ, k are constants, by means of the Ansätze for the spinor field ψ(t, ~x)
invariant under the G(1, 3) non-conjugate three-dimensional subalgebras of
the Galilei algebra AG(1, 3).

According to the results obtained in the previous subsection substitution
of Ansätze (4.2.3) into (4.2.8) gives rise to systems of ODEs (4.2.7) with F̃ =
λ(ϕ†ϕ + ϕ̄γ4ϕ)1/2kϕ.
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ODEs 6–13 prove to be integrable due to the following assertion.

Lemma 4.2.1. The quantities

I6 = ϕ̄(γ0 + γ4)ϕω, I7 = ϕ̄(γ0 + γ4)ϕ ω2,

I8 = ϕ̄(γ0 + γ4)ϕ, I9 = ϕ̄(γ0 + γ4)ϕω2,

I10 = ϕ̄(γ0 + γ4)ϕ, I11 = ϕ̄(γ0 + γ4)ϕω,

I12 = ϕ̄(γ0 + γ4)ϕ (ω2 − αω),
I13 = ϕ̄(γ0 + γ4)ϕω(ω − α)(ω − β)

are the first integrals of the systems of PDEs 6,7,. . . ,13, respectively.

Proof is carried out by a direct check. ¤

According to the above lemma, the systems of nonlinear ODEs 6–13 are
linearized. And what is more, the linear systems obtained are integrable in
quadratures. This fact enables us to construct the general solutions of the
reduced ODEs 6–13 from (4.2.7). These solutions are represented in the fol-
lowing unified form:

ϕN (ω) = (1/2){fN (ω)(γ0 + γ4) + gN (ω)(1 + γ0γ4)}χ, (4.2.9)

where N = 6, . . . , 13, χ is an arbitrary constant four-component column,

f6(ω) = (1/2m)[λ̃ ω−1/2k − (i/2αω)]g6,

g6(ω) = ω−1/2 exp{−(i/16)(α2mω)−1 + iW1(k, ω)};
f7(ω) = (1/2m)[λ̃ ω−1/k − (i/2αω)]g7,

g7(ω) = ω−1 exp{−(i/16)(α2mω)−1 + iW2(k, ω)};
f8(ω) = (1/2m)[λ̃ + (i/2α)]g8,

g8(ω) = exp{i(1 + 4α2λ̃2)(16α2m)−1ω};
f9(ω) = (1/2m)[λ̃ω−1/k + (i/2α)]g9,

g9(ω) = (1/ω) exp{iω(16α2m)−1 + iW2(k, ω)};
f10(ω) = (λ̃/2m) exp{(i/4m)λ̃2ω},
g10(ω) = exp{(i/4m)λ̃2ω}; (4.2.10)
f11(ω) = (λ̃/2m)ω1/2kg11,

g11(ω) = ω1/2 exp{iW1(k, ω)};
f12(ω) = (λ̃/2m)(ω2 − αω)−1/2kg12,

g12(ω) = (ω2 − αω)−1/2 exp

{
iλ̃2(4m)−1

ω∫
(z2 − αz)−1/kdz

}
;
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f13(ω) = (λ̃/2m)[ω(ω − α)(ω − β)]−1/2kg13,

g13(ω) = [ω(ω − α)(ω − β)]−1/2

× exp

{
(iλ̃2/4m)

ω∫
[z(z − α)(z − β)]−1/kdz

}
.

In (4.2.10) λ̃ = λ(χ†χ + χ̄γ4χ)1/2k,

Wn(k, ω) = (λ̃2/4m)





k(k − n)−1ω(k−n)/k, under k 6= n,

ln ω, under k = n.

Substitution of the above results into the corresponding Ansätze for the
spinor field ψ(t, ~x) yields the following classes of exact solutions of nonlinear
equation (4.2.8):

ψ(t, ~x) = exp{x3(2αt)−1(γ1γ2 − 2αη3 − 2iαmx3)}ϕ6 (t),
ψ(t, ~x) = exp{−imt−1xaxa − t−1ηaxa} exp{(2αt)−1x3γ1γ2}ϕ7 (t),
ψ(t, ~x) = exp{−(2α)−1x3γ1γ2}ϕ8 (t),
ψ(t, ~x) = exp{−imt−1(x2

1 + x2
2)− t−1(x1η1 + x2η2)}

× exp{−(2α)−1x3γ1γ2}ϕ9 (t),
ψ(t, ~x) = ϕ10 (t), (4.2.11)
ψ(t, ~x) = exp{−imt−1x2

1 − t−1x1η1}ϕ11 (t),
ψ(t, ~x) = exp{−imt−1x2

2 − t−1x2η2} exp{im(α− t)−1x2
1

+(α− t)−1x1η1}ϕ12 (t),
ψ(t, ~x) = exp{−im[t−1x2

3 + (t− α)−1x2
1 + (t− β)−1x2

2]
−t−1x3η3 + (α− t)−1x1η1 + (β − t)−1x2η2}ϕ13 (t).

To obtain G(1, 3)-ungenerable families of exact solutions of system of non-
linear PDEs (4.2.8) it is necessary to apply the procedure of generating solu-
tions by transformations from the symmetry group of system of PDEs (4.2.8).

Using Theorem 2.4.1 it is not difficult to obtain the formulae of generating
solutions by transformation groups (4.1.9)–(4.1.14)

P :





ψII(t, ~x) = ψI(t′, ~x′),
t′ = t + θ0,
x′a = xa + θa;
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J :





ψII(t, ~x) = exp{(1/4)εabcθaγbγc}ψI(t′, ~x′),
t′ = t,

x′a =
(
δab cos θ + εabcθcθ

−1 sin θ

+θaθbθ
−2(1− cos θ)

)
xb;

G :





ψII(t, ~x) = exp
{
2im

(
θaxa + (t/2)θaθa

)

+(1/2)(γ0 + γ4)γaθa

}
ψI(t′, ~x′),

t′ = t,
x′a = xa + θat;

D :





ψII(t, ~x) = exp{2θ0 − (1/2)θ0γ0γ4}ψI(t′, ~x′),
t′ = te2θ0 ,
x′a = xae

θ0 ;

A :





ψII(t, ~x) = (1− θ0t)−2 exp
{
imθ0(1− θ0t)−1xaxa

+(1/2t) ln(1− θ0t)
(
tγ0γ4 + (γ0 + γ4)γaxa

)}
ψI(t′, ~x′),

t′ = t(1− θ0t)−1,
x′a = xa(1− θ0t)−1;

M :





ψII(t, ~x) = e2imθ0ψI(t′, ~x′),
t′ = t,
x′a = xa,

where θ0, θa are arbitrary parameters, θ = (θaθa)1/2.
Applying the solution generation formulae to (4.2.11) and making some

rather cumbersome computations yield the G(1, 3)-ungenerable families of ex-
act solutions of nonlinear equation (4.2.8). Below we present one of them

ψ(t, ~x) = (1/2) exp{im(2θaxa + tθaθa)} exp
{
−(1/2T )abzb

(
2imabzb

+(γ0 + γ4)γbab

)}{
(γ0 + γ4)

(
f11(T ) + g11(T )γaθa

)

+g11(T )(1 + γ0γ4)
}
χ,

where za = xa + tθa + τa, T = t + τ0; {θa, τµ} ⊂ R1 are arbitrary parameters;
~a is an arbitrary constant unit vector; the functions f11(T ), g11(T ) are given
in (4.2.10).

It is worth noting that all solutions (4.2.11) have a singularity at the point
m = 0. Consequently, it is impossible to obtain solutions of massless equation
(4.1.1) putting in (4.2.11) m = 0.
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4.3. Galilei-invariant second-order spinor equations

As noted in Section 4.1 the substitution

ψ(t, ~x) = {−i(γ0 + γ4)∂t + iγa∂a + m(γ0 − γ4)}Ψ(t, ~x) (4.3.1)

reduces equation (4.1.1) to a system of splitting Schrödinger equations

(4im∂t − ∂a∂a)Ψα(t, ~x) = 0, (4.3.2)

where Ψα are components of the spinor Ψ.
Thus, the problem of integration of system of linear PDEs (4.1.1) is reduced

to the integration of the scalar Schrödinger equation. That is why system of
the second-order PDEs (4.3.2) can also be used to describe a Galilean particle
with spin s = 1/2. However equations (4.3.2) describe particles with different
spins because they are invariant under the Galilei group having the generators

P0 = ∂t, Pa = ∂a,

Jab = −xa∂b + xb∂a + Sab, a 6= b, (4.3.3)
Ga = t∂a + 2imxa + ηa,

where Sab, ηa are arbitrary constant matrices of the corresponding dimensions
which satisfy the commutation relations

[Sab, Scd] = −δadSbc − δbcSad + δacSbd + δbdSac,

[ηa, Sbc] = δacηb − δabηc, [ηa, ηb] = 0.
(4.3.4)

To obtain from (4.3.2) a system of PDEs describing a particle with spin
s = 1/2 one should impose an additional constraint on the set of solutions of
(4.3.2). For example, if equations (4.3.2) are considered together with (4.1.1)

(4im∂t − ∂a∂a)ψ(t, ~x) = 0,

{−i(γ0 + γ4)∂t + iγa∂a + m(γ0 − γ4)}ψ(t, ~x) = 0,
(4.3.5)

then the maximal (in Lie sense) invariance group of the system obtained is the
generalized Galilei group having the generators (4.1.3). This assertion follows
from the fact that the set of solutions of system (4.3.5) coincides with the set
of solutions of equation (4.1.1).

Imposing on solutions of system (4.3.2) the weaker nonlinear constraint

∂t

(
ψ̄(γ0 + γ4)ψ

)
= ∂a(ψ̄γaψ) (4.3.6)
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we get another example of a Galilei-invariant system of PDEs for a particle
with spin s = 1/2. Let us note that additional constraint (4.3.6) is an algebraic
consequence of equation (4.1.1). Therefore, the set of solutions of system
(4.3.2), (4.3.6) contains all solutions of equation (4.1.1).

By a direct check we can become convinced of the fact that the system of
PDEs (4.3.2) is not invariant under the generalized Galilei group with gener-
ators (4.1.3). The same assertion holds for nonlinear equations of the form

(4im∂t − ∂a∂a)ψ + F (ψ∗, ψ) = 0, (4.3.7)

where F is a complex-valued four-component function.

Theorem 4.3.1. The system of PDEs (4.3.7) is invariant under the Galilei
group with the generators P0, Pa, Jab, Ga, M from (4.1.3) iff

F = {f1 + (γ0 + γ4)f2}ψ, (4.3.8)

where f1, f2 are arbitrary smooth functions of w1 = ψ̄ψ, w2 = ψ†ψ + ψ̄γ4ψ.
Furthermore, the class of PDEs (4.3.7) contains no equations admitting the
group G2(1, 3) with generators (4.1.3).

Proof. Invariance of system (4.3.7) with respect to the group of translations
(4.1.9) is evident. Consequently, to prove the theorem we have to study the
restrictions imposed on the four-component function F (ψ∗, ψ) by the require-
ment that (4.3.7) admits the Lie groups with the generators Jab, Ga. Acting
by the first prolongation of the operators Jab, Ga on (4.3.7) and applying the
Lie invariance criterion we get an over-determined system of linear PDEs for
F (ψ∗, ψ). If we rewrite the function F in the equivalent form H(ψ∗, ψ)ψ,
where H(ψ∗, ψ) is a 4× 4-matrix, then the system of PDEs in question takes
the form

(
{γaγbψ}α∂ψα + {γ∗aγ∗b ψ∗}α∂ψα∗

)
H = [γaγb, H],(

{(γ0 + γ4)γaψ}α∂ψα + {(γ∗0 + γ∗4)γ∗aψ∗}α∂ψ∗α

)
H

= [H, (γ0 + γ4)γa].

(4.3.9)

Here {ψ}α is the α-th component of ψ, [ , ] is the commutator.
Equations (4.3.9) coincide with (4.1.18), (4.1.24), whose general solution

after being substituted into the equality F (ψ∗, ψ) = H(ψ∗, ψ)ψ gives rise to
formula (4.3.8).

On applying the Lie method we come to the conclusion that the necessary
and sufficient conditions for system (4.3.7), (4.3.8) to be invariant under the
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group of projective transformations (4.1.13) are as follows

(w1∂w1 + w2∂w2 − 2/3)fi = 0, i = 1, 2,

(γ0 + γ4)
(
iγa∂a + m(γ0 − γ4)

)
ψ = 0.

Since the last equation is not a consequence of system (4.3.7), (4.3.8),
equation (4.3.7) is not invariant with respect to the generalized Galilei group
having generators (4.3.1). The theorem is proved. ¤

According to the above theorem, to obtain a G2(1, 3)-invariant nonlinear
generalization of system (4.3.2) we have to study the wider class of PDEs

(4im∂t − ∂a∂a)ψ − F (ψ∗, ψ, ψ
1

∗, ψ
1

) = 0, (4.3.10)

where the notation ψ
1

= {∂tψ, ∂aψ} is used.

Here we adduce only one example of the equation of the form (4.3.10)
invariant under the group G2(1, 3) with generators (4.1.3)

(4im∂t − ∂a∂a)ψ + (1/3)(ψ̄ψ)−1
{(

i(γ0 + γ4)∂t − iγa∂a

)
ψ̄ψ

}

×
{
−i(γ0 + γ4)∂t + iγa∂a + m(γ0 − γ4)

}
ψ

+(ψ̄ψ)2/3
(
f1 + f2(γ0 + γ4)

)
ψ = 0,

where fi = fi[(ψ†ψ + γ̄4ψ)3(ψ̄ψ)−2], i = 1, 2 are arbitrary smooth functions.
There exist second-order PDEs invariant under the Galilei group which

are principally different from (4.3.2). For example, in [114, 119] the following
G(1, 3)-invariant system of PDEs

(iγµ∂µ −m)ψ(t, ~x) = (1/2m)(1− γ0 − iγ4)∂a∂aψ(t, ~x)

was obtained. It is invariant under the Galilei group with the generators

P0 = ∂t, Pa = ∂a,

Jab = −xa∂b + xb∂a + (1/2)γaγb, a 6= b,

Ga = t∂a − imxa + (1/2)(1 + iγ4)γa.



C H A P T E R 5

SEPARATION

OF VARIABLES

In this Chapter we present the basis of the symmetry approach to the sepa-
ration of variables in systems of linear PDEs. A generalization of the Stäckel
method of separation of variables [75, 268] for the case of systems of differen-
tial equations is suggested. Separation of variables in some Galilei-invariant
PDEs is performed.

5.1. Separation of variables and symmetry of systems

of partial differential equations

The Dirac equation (1.1.1) is called separable in Cartesian coordinates if it
has exact solutions of the form

ψ(x) = V0(x0)V1(x1)V2(x2)V (x3)χ, (5.1.1)

where Vµ are nonsingular (4 × 4)-matrices, χ is a constant four-component
column.

It is well-known that there exists a deep relation between variable sepa-
ration and symmetry properties of PDEs [149, 201, 226]. This relation can
be characterized in the following way: a solution with separated variables is a
common eigenfunction of some set of commuting symmetry operators of the
equation considered. To demonstrate the main steps of applying the method
of separation of variables within the framework of the symmetry approach we
will consider an example. A particular solution of (1.1.1) is looked for as a
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solution of the following over-determined system of PDEs:

(iγµ∂µ −m)ψ(x) = 0, (∂0 − λ1)ψ(x) = 0,

(∂1 − λ2)ψ(x) = 0, (∂2 − λ3)ψ(x) = 0.
(5.1.2)

Integration of the last three equations of system (5.1.2) yields

ψ(x) = exp{λ1x0 + λ2x1 + λ3x2}ϕ (x3).

Substitution of the above expression into the first equation from (5.1.2)
gives rise to the system of ODEs for the four-component function ϕ (ω)

iγ3ϕ̇ + (−m + iλ1γ0 + iλ2γ1 + iλ3γ2)ϕ = 0,

whose general solution reads

ϕ (ω) = exp{iγ3(−m + iλ1γ0 + iλ2γ1 + iλ3γ2)ω}χ.

Hence we conclude that the general solution of (5.1.2) is of the form (5.1.1)

ψ(x) = exp{λ1x0} exp{λ2x1} exp{λ3x2}
× exp{iγ3(−m + iλ1γ0 + iλ2γ1 + iλ3γ2)x3}χ.

(5.1.3)

Comparing (5.1.1) with (5.1.3) we come to a conclusion that the solu-
tion with separated variables (in Cartesian coordinates) is the eigenfunction
of operators ∂0, ∂1, ∂2 which form a commutative subalgebra of the invari-
ance algebra of the Dirac equation. Consequently, classification of commuting
symmetry operators is a part of the method of separation of variables.

From the above example it is seen that the solution with separated variables
contains arbitrary parameters λ1, λ2, λ3 which are called separation constants.

Now we turn to the problem of variable separation in arbitrary systems of
linear first-order PDEs

{Lµ(x)∂µ + M(x)}u(x) = 0, (5.1.4)

where u =
(
u0(x), u1(x), . . . , um−1(x)

)T
; x = (x0, x1, . . . , xn−1); {n,m} ⊂ N;

Lµ, M are (m×m)-matrices (M is supposed to be nonsingular).
In what follows, a block (n1N1×n2N2)-matrix B, whose entries are (N1×

N2)-matrices Bµν , µ = 1, . . . , n1, ν = 1, . . . , n2, is designated for brevity as
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B = ‖Bµν‖n1 n2
µ=1ν=1. Such a notation is very convenient and simplifies consid-

erably all manipulations with block matrices. For example, a product of two
block (n1N1 × n2N2)- and (n2N2 × n3N3)-matrices

B = ‖Bµν‖n1 n2
µ=1ν=1, C = ‖Cµν‖n2 n3

µ=1ν=1

is a block (n1N1 × n3N3)-matrix

BC = ‖BµαCαν‖n1 n3
µ=1ν=1,

where summation over the repeated indices from 1 to n2 is understood. More
details about operations with block matrices can be found in [173].

In the theory of variable separation in linear PDEs with one dependent
variable a very important role is played by the Stäckel matrices C = ‖cµν‖,
detC 6= 0, where cµν are smooth functions depending on the variable xµ

only. Separable PDEs admit rather natural and simple description in terms
of the Stäckel matrices [201]. It is believed that the above matrices when
properly generalized should be of importance for variable separation in multi-
component systems of linear PDEs as well [227].

Below we present an approach to variable separation in systems of linear
PDEs (5.1.4) which uses essentially a generalized block Stäckel matrix intro-
duced below.

Definition 5.1.1. Block (nm × nm)-matrix C = ‖Cµν(xµ)‖n−1
µ,ν=0, where

Cµν(xµ) are square (m ×m) matrices, is called the Stäckel matrix if the fol-
lowing conditions are fulfilled:

1) detC 6= 0,

2) [Cµν , Cαβ ] + [Cµβ, Cαν ] = 0.

Evidently, provided m = 1, the above definition coincides with the usual
definition of the Stäckel matrix (see e.g. [201, 227]).

Definition 5.1.2. A set of smooth real-valued functions zµ = zµ(x), µ =
0, . . . , n− 1 is called a coordinate system if the condition det ‖∂xµzν(x)‖n−1

µ,ν=0

6= 0 is satisfied.
Now we are ready to give a precise definition of separation of variables in

systems of linear PDEs which has been suggested for the first time in [169].

Definition 5.1.3. Let (m × m)-matrix functions Vµ(zµ), µ = 0, . . . , n− 1
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satisfy the system of n matrix ODEs

dVµ

dzµ
=

(
Cµ0(zµ) + Cµa(zµ)λa

)
Vµ, µ = 0, . . . , n− 1,

Vµ
∣∣∣∣∣∣

= I,
zµ = θµ

λa = 0

(5.1.5)

where C = ‖Cµν(zµ)‖n−1
µ,ν=0 is a Stäckel matrix, λ1, . . . , λn−1 are arbitrary

parameters taking values in some open domain Λ ⊂ Rn−1, I is the unit (m×m)-
matrix, θµ are arbitrary fixed real constants. We say that the system of linear
PDEs (5.1.4) is separable in the coordinate system z0(x), z1(x), . . . , zn−1(x)
if there exist such a (m ×m)-matrix A(x) and such a Stäckel matrix C that
substitution of the Ansatz

u(x) = A(x)
n−1∏

µ=0

Vµ(zµ, ~λ)χ, (5.1.6)

where Vµ(zµ), µ = 0, . . . , n− 1 are solutions of system of ODEs (5.1.5) and χ
is an arbitrary m-component constant column, into (5.1.4) yields an identity
with respect to ~λ ∈ Λ.

Our aim is to solve the following mutually related problems:

• to describe separable systems of PDEs (5.1.4) in terms of the correspon-
ding Stäckel matrices,

• to establish a correspondence between separability of systems of PDEs
and their symmetry properties.

Solution of the first problem is necessary for general understanding of the
mechanism of variable separation in systems of linear PDEs and for classifica-
tion of separable systems. Solving the second problem we obtain a practical
tool for finding coordinate systems providing variable separation in a given
system of linear PDEs.

Before adducing the principal assertions we make an important remark.
It is readily seen that if a system of linear ODEs (5.1.4) is separable in a
coordinate system zµ = zµ(x), then the equation

{L′µ(z)∂zµ + M ′(x)}w(z) = 0,

obtained from (5.1.4) by means of the change of variables

zµ = zµ(x), w(z) = A−1(x)u(x),
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is separable in the coordinate system z′µ = zµ and what is more, the solution
with separated variables (5.1.6) reads

w(z) =
n−1∏

µ=0

Vµ(zµ, ~λ)χ.

Consequently, when classifying separable systems we can consider separa-
tion in Cartesian coordinates zµ = xµ only and choose A(x) = I. With this
remark the solution with separated variables (5.1.6) takes the form

u(x) =
n−1∏

µ=0

Vµ(xµ, ~λ)χ. (5.1.7)

Theorem 5.1.1. Equation (5.1.4) is separable iff there exists a Stäckel matrix
C satisfying the condition

Lµ(x)Cµν(xµ) = −δν0M(x). (5.1.8)

Proof. The necessity. Let system of PDEs (5.1.4) be separable. Then,
according to Definition 5.1.3 there is such a Stäckel matrix C that solutions
Vµ(xµ) of the matrix system of ODEs

dVµ

dxµ
=

(
Cµ0(xµ) + Cµa(xµ)λa

)
Vµ, µ = 0, . . . , n− 1,

Vµ
∣∣∣∣∣∣

= I,
xµ = θµ

λa = 0

(5.1.9)

after being substituted into (5.1.7) give rise to an exact solution of the initial
system of PDEs (5.1.4) with an arbitrary ~λ ∈ Λ.

Inserting (5.1.7) into (5.1.4) with account of (5.1.9) we get

L0(C00 + C0aλa

)
V1V2 · · · · · Vn−1χ

+L1V0(C10 + C1aλa

)
V2V3 · · · · · Vn−1χ + . . . (5.1.10)

+Ln−1V0V1 · · · · · Vn−2(Cn−10 + Cn−1aλa

)
χ + Mχ = 0.

Using properties of the Stäckel matrix C it is not difficult to prove that
the matrices Aµ(xµ) = Cµ0(xµ) + Cµa(xµ)λa, µ = 0, . . . , n− 1 are mutually
commuting.
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Indeed,

[Aµ, Aν ] = [Cµ0, Cν0] + λa

(
[Cµ0, Cνa] + [Cµa, Cν0]

)

+λaλb

(
[Cµa, Cνb] + [Cµb, Cνa]

)
= 0.

Since Vµ(xµ) are solutions of the Cauchy problem (5.1.9), they can be
represented by the following converging series [197]:

Vµ = I +

xµ∫

θµ

Aµ(τ)dτ +

xµ∫

θµ

Aµ(τ)
τ∫

θµ

Aµ(τ1)dτ1dτ + . . . , µ = 0, . . . , n− 1.

Hence, it follows that [Aµ, Vν ] = 0 under µ 6= ν. With this fact relation
(5.1.10) is rewritten in the form

(
Lµ(Cµ0 + Cµaλa) + M

) n−1∏

µ=0

Vµχ = 0. (5.1.11)

Since χ is an arbitrary m-component constant column and matrices Vµ are
invertible, the above equality is equivalent to the following one:

Lµ(Cµ0 + Cµaλa) + M = 0.

Splitting the equality obtained with respect to λa we arrive at the conditions
(5.1.8).

The sufficiency. Let Vµ be solutions of (5.1.9) with a Stäckel matrix C
satisfying (5.1.8). Inserting the Ansatz (5.1.7) into (5.1.4) and taking into
account the relations [Aµ, Vν ] = 0, µ 6= ν we get the equality (5.1.11). Hence
it follows that the function (5.1.7) satisfies the initial system of PDEs (5.1.4)
identically with respect to ~λ ∈ Λ. The theorem is proved. ¤

Let B = ‖Bµν(x)‖n−1
µ,ν=0 be the inverse of the Stäckel matrix C =

‖Cµν(xµ)‖n−1
µ,ν=0, i.e.,

BµαCαν = CµαBαν = δµνI.

Then, multiplying (5.1.8) by Bνµ on the right and summing over ν we arrive
at the following representation of the matrices Lµ:

Lµ = −MB0µ, µ = 0, . . . , n− 1. (5.1.12)
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Consequently, Theorem 5.1.1 admits an equivalent formulation: the sys-
tem of linear PDEs (5.1.4) is separable iff the matrix coefficients Lµ, M are
given in the Stäckel form (5.1.12). Thus, we have proved an analogue of the
well-known theorem about variable separation in PDEs with one dependent
variable [201, 227].

Theorem 5.1.1 provides a description of separable systems of PDEs via
the corresponding Stäckel matrices but it gives no method for construction
of solutions with separated variables for specific equations. As stated above,
the most effective method for separating variables in systems of linear PDEs
is utilization of their symmetry properties. We will show that our definition
of variable separation in a system of PDEs is consistent with its symmetry
properties. Furthermore, we will obtain a simple description of a solution
with separated variables in terms of the first-order symmetry operators of the
system under consideration

First,we will prove an auxiliary lemma.

Lemma 5.1.2. Let ‖Bµν(x)‖n−1
µ,ν=0 be a block nonsingular (nm× nm)-matrix.

The inverse of it is designated as ‖Hµν(x)‖n−1
µ,ν=0. Then matrix functions

Bµν(x), Bµ(x) satisfy the system of PDEs

1) [Bµα, Bνβ] + [Bµβ, Bνα] = 0,
2) [Bµα, Bν ]− [Bνα, Bµ] + Bµβ∂βBνα −Bνβ∂βBµα = 0, (5.1.13)
3) Bµα∂αBν −Bνα∂αBµ + [Bµ, Bν ] = 0,

iff matrix functions Hµν(x), Hµ(x) = −HµνBν satisfy the system of PDEs

1) [Hµα, Hνβ ] + [Hµβ, Hνα] = 0,
2) ∂νHµα − ∂µHνα + [Hµα, Hν ]− [Hνα, Hµ] = 0, (5.1.14)
3) ∂νHµ − ∂µHν + [Hµ, Hν ] = 0.

In (5.1.13), (5.1.14) subscripts µ, ν, α, β take the values 0, 1, 2, . . . , n−1.

Proof. Consider an over-determined system of PDEs

(Bµν∂ν + Bµ)u = λµu, µ = 0, . . . , n− 1. (5.1.15)

According to Theorem 1.5.3 the above system is compatible iff conditions

[Bµα∂α + Bµ, Bνβ∂β + Bν ] = 0 (5.1.16)
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hold true. Computing commutators in the left-hand sides of (5.1.16) and
equating to zero coefficients of the linearly independent operators ∂µ∂ν , ∂µ, I
we get equations (5.1.13). Consequently, the system of PDEs (5.1.13) provides
the necessary and sufficient compatibility conditions for system (5.1.15).

Next, multiplying both parts of (5.1.15) by Hαµ on the left and summing
over µ we have

∂µu = Hµν(λν −Bν)u. (5.1.17)

The compatibility criterion ∂µ(∂νu) = ∂ν(∂µu) for the system (5.1.17)
yields the identities

∂µ

(
Hνα(λα −Bα)u

)
= ∂ν

(
Hµα(λα −Bα)u

)
,

whence it follows that (m × m)-matrices Hµν(x), Hµ(x) = −HµνBν satisfy
the system of PDEs (5.1.14). The lemma is proved. ¤

Theorem 5.1.2. Let the system of PDEs (5.1.4) be separable. Then, a so-
lution with separated variables u(x) is a common eigenfunction of commuting
first-order differential operators Q1, Q2, . . . , Qn−1 which are symmetry oper-
ators of system (5.1.4).

Proof. As earlier, we designate by the symbol B = ‖Bµν(x)‖n−1
µ,ν=0 the in-

verse of the Stäckel matrix C = ‖Cµν(xµ)‖n−1
µ,ν=0. Due to the properties of

the Stäckel matrix C, the matrix functions Hµν = Cµν(xµ), Hµ = 0 satisfy
system (5.1.14). Hence it follows (Lemma 5.1.2) that the matrix functions
Bµν(x), Bµ(x) = 0 satisfy equations (5.1.13). Consequently, the operators
Qµ = Bµν∂ν commute.

By definition the solution with separated variables u(x) =
∏n−1

µ=0 Vµ(xµ, ~λ)χ
satisfies the system of PDEs

∂µu =
(
C0µ(xµ) + Cµa(xµ)λa

)
u. (5.1.18)

Multiplying both parts of (5.1.18) by Bαµ(x) on the left and summing over µ
we obtain

Bαµ∂µu = (δα0I + δαaλa)u. (5.1.19)

Putting in (5.1.19) α = 0, 1, 2, . . . , n− 1 we arrive at the relations

B0µ∂µu = u,

Baµ∂µu = λau, a = 1, . . . , n− 1.
(5.1.20)
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But according to (5.1.12) B0µ = −M−1Lµ, µ = 0, . . . , n− 1, whence

[Baµ∂µ, M−1Lµ∂µ + I] = −[Baµ∂µ, B0µ∂µ] = 0.

Now we will show that Qa are symmetry operators, which will complete
the proof. Indeed,

[Qa, Lµ∂µ + M ] ≡ [Qa, M(M−1Lµ∂µ + I)]
= M [Qa, M−1Lµ∂µ + I] + [Qa, M ](M−1Lµ∂µ + I)
= (Baµ∂µM + BaM)M−1(Lµ∂µ + M) ≡ Ra(x)(Lµ∂µ + M),

the same which is required. The theorem is proved. ¤

Note 5.1.1. A class of solutions with separated variables of a given system of
linear PDEs can be considerably extended if we define these by formula (5.1.6)
without imposing additional constraints on the matrix functions Vµ(zµ, ~λ). A
peculiar example is the four-component complex-valued function:

ψ(~x) = exp{−iλ1(γ0 + γ4)x1} exp
{
−

(
λ2 + (1/2)γ0γ4

)
ln x2

}
ϕ (x2/x3),

(5.1.21)
which is a solution with separated variables in the coordinate system z0 =
x1, z1 = lnx2, z2 = x2/x3 of the spinor equation:

(
εabcγaγb∂c + m/x2 + f(x2/x3)(γ0 + γ4)

)
ψ(~x) = 0, (5.1.22)

where m = const, f is an arbitrary real-valued function.
The function (5.1.21) is a “generalized” eigenfunction of the symmetry

operators Q1 = ∂1, Q2 = x1∂1 + x2∂2 + (1/2)γ0γ4 of the system of PDEs
(5.1.22) in a sense that it satisfies the following equalities:

Q1ψ = λ1(γ0 + γ4)ψ, Q2ψ = λ2ψ,

and what is more, the operators Q1 and Q2 do not commute.
However such a class of solutions with separated variables is too large to

be described by means of the classical symmetry of the equation under study.
To give a symmetry interpretation of these solutions it is necessary to study
conditional symmetry of systems of linear PDEs [149, 152]. Unlike the clas-
sical case, the determining equations for conditional symmetry operators are
nonlinear. By this reason, a systematic description of solutions with sepa-
rated variables (5.1.6) without imposing additional constraints on the form of
functions Vµ(zµ, ~λ) seems to be impossible.
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According to Theorem 5.1.2, a solution with separated variables in the
sense of Definition 5.1.3 has to be looked for as an eigenfunction of some
commuting symmetry operators of the equation under study. Consequently,
we can formulate the following symmetry approach to the problem of variable
separation in systems of linear PDEs of the form (5.1.4):

• at the first step, the symmetry properties of (5.1.4) in the classM1 of the
first-order differential operators with matrix coefficients are investigated;

• at the second step, the (n− 1)-dimensional commutative subalgebras of
the symmetry algebra are classified;

• at the third step, a compatible over-determined system of PDEs

(Lµ∂µ + M)u = 0,

Qau = (Baµ(x)∂µ + Ba(x))u = λau, a = 1, . . . , n− 1,
(5.1.23)

where Q1, Q2, . . . , Qn−1 are commuting symmetry operators (Lie or non-
Lie ones) of equation (5.1.4), is transformed to a separated form

∂zµw =
(
Cµ0(zµ) + Cµa(zµ)λa

)
w, (5.1.24)

by a proper change of variables

zµ = zµ(x), w(z) = A−1(x)u(x). (5.1.25)

If it is possible to implement the above three steps, then due to The-
orem 5.1.2 the initial system of PDEs (5.1.4) is separable in coordinates
zµ = zµ(x), µ = 0, . . . , n− 1 and solution with separated variables has the
form (5.1.6), where Vµ(zµ, ~λ) are (m×m)-matrices satisfying systems of ODEs

dVµ

dzµ
=

(
Cµ0(zµ) + Cµa(zµ)λa

)
Vµ, µ = 0, . . . , n− 1

(no summation over µ).
The most difficult problem to be solved in the framework of the above

approach is a choice of an appropriate change of variables (5.1.25). A regular
method for finding such a change is known only for the case, when operators
Qa are Lie symmetry operators. Otherwise, we have to solve a nonlinear
problem in order to get an explicit form of the “new” variables zµ = zµ(x)
and the matrix function A(x).
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In the next two sections we will apply the approach suggested to some
Galilei-invariant PDEs.

5.2. Separation of variables in the Galilei-invariant

spinor equation

The problem of variable separation in the Dirac equation (1.1.1) was studied
intensively by many researchers [12, 13, 48, 59, 196, 227, 256], a number of
important results were obtained. Nevertheless, they did not succeed in creating
the complete theory (as it was the case for the Hamilton-Jacobi equation) of
variable separation in equation (1.1.1).

Analyzing the methods applied we come to the conclusion that the most
effective ones are those based on symmetry properties of the Dirac equation.
V.N. Shapovalov and G.G. Ekle in [256] described solutions of the system of
PDEs (1.1.1) with separated variables which were eigenfunctions of triplets of
mutually commuting first-order symmetry operators (a complete description
of such operators is given by Theorem 1.1.3). They have obtained 29 in-
equivalent (P (1,3) non-conjugate) triplets of mutually commuting first-order
symmetry operators, each one giving rise to a solution of the Dirac equation
with separated variables.

In addition, we can construct a solution with separated variables by using
symmetry operators of the order higher than one. In particular, a number
of papers (see [12, 13] and references therein) are devoted to the application
of the second-order symmetry operators to variable separation in the Dirac
equation.

At the same time, the problem of variable separation in spinor PDEs in-
variant under the Galilei group has not been studied yet. In the present
section we will carry out separation of variables in the system of linear PDEs
for the spinor field (4.1.1) by using its Lie and non-Lie symmetry described
by Theorems 4.1.1, 4.1.3.

To apply the approach developed in the previous section we have, first of
all, to describe inequivalent triplets of mutually commuting symmetry opera-
tors of equation (4.1.1). To this end, we need the following assertion.

Theorem 5.2.1. Let Q1 = Q
(`)
1 +Q

(n)
1 , Q2 = Q

(`)
2 +Q

(n)
2 be linear combinations

of the first-order symmetry operators of equation (4.1.1) with real coefficients
and besides Q

(`)
1 , Q

(`)
2 be linear combinations of Lie symmetry operators and
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Q
(n)
1 , Q

(n)
2 be linear combinations of non-Lie ones. Let the operators Q1, Q2

commute, then C1Q
(n)
1 + C2Q

(n)
2 = 0 with some non-vanishing simultaneously

real constants C1, C2.

Proof. The proof of the assertion demands very involved computations,
therefore only a general scheme of it will be given.

We declare the operators t, xa to be of the degree +1, the operators
∂t, ∂a, im to be of the degree −1, the operators I, γµ to be of the degree
0. In addition, we assume that the zero operator 0 has an arbitrary degree.
With such assumptions the set of the symmetry operators of equation (4.1.1)
separates into the three classes

1) operators of the degree −1

P0, Pa, W0, Wa, Sa, Ta;

2) operators of the degree 0

Jab, Ga, D, M1, M2, R0, Ra, N0, Na;

3) operators of the degree +1
A, Ka.

It is easy to see that the relation

[Q(n), Q(`)] = Q(n + `), (5.2.1)

where Q(k) is a symmetry operator of the degree k, holds. Representing the
operators Q1, Q2 in the form

Qi = Qi(−1) + Qi(0) + Qi(+1), i = 1, 2

and using (5.2.1) we get

[Q1, Q2] = [Q1(−1), Q2(−1)] + [Q1(−1), Q2(0)] + [Q1(0), Q2(−1)]
+[Q1(+1), Q2(−1)] + [Q1(0), Q2(+1)] + [Q1(+1), Q2(0)]
+[Q1(+1), Q2(+1)] + [Q1(0), Q2(0)] + [Q1(−1), Q2(+1)]
= Q(−2) + Q(−1) + Q(0) + Q(+1) + Q(+2) = 0.

From the above equalities we obtain the following relations:

Q(−2) = Q(−1) = Q(0) = Q(+1) = Q(+2) = 0.
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Consequently, [Q1(−1), Q2(−1)] = 0 or

[a(1)
0 W0 + a(1)

a Wa + b(1)
a Sa + c(1)

a Ta + d
(1)
0 P0 + d(1)

a Pa,

a
(2)
0 W0 + a(2)

a Wa + b(2)
a Sa + c(2)

a Ta + d
(2)
0 P0 + d(2)

a Pa] = 0.

Computing the commutator in the left-hand side of the above equality
and equating coefficients of linearly independent operators we arrive at the
conclusion that there exist such real constants C1, C2 that

C1a
(1)
0 + C2a

(2)
0 = 0, C1a

(1)
a + C2a

(2)
a = 0,

C1b
(1)
a + C2b

(2)
a = 0, C1c

(1)
a + C2c

(2)
a = 0,

(5.2.2)

where a = 1, 2, 3, and what is more C2
1 + C2

2 6= 0 (without loss of generality
we may choose C2 6= 0).

Due to (5.2.2) the equality

0 = Q(−1) = [Q1(−1), Q2(0)] + [Q1(0), Q2(−1)]

takes the form

[Q(n)
1 (−1), C1Q1(0) + C2Q2(0)] + [α0P0 + αaPa, Q1(0)] = 0

with some real constants α0, α1, α2, α3.
Computing the commutator and equating coefficients of the linearly-inde-

pendent operators we arrive at the condition

C1Q
(n)
1 (0) + C2Q

(n)
2 (0) = 0.

Similarly,
C1Q

(n)
1 (+1) + C2Q

(n)
2 (+1) = 0.

Thus, we have established that there exist such non-vanishing simultane-
ously real numbers C1, C2 that

C1Q
(n)
1 + C2Q

(n)
2 = C1

(
Q

(n)
1 (−1) + Q

(n)
1 (0) + Q

(n)
1 (+1)

)

+C2

(
Q

(n)
2 (−1) + Q

(n)
2 (0) + Q

(n)
2 (+1)

)
= 0.

The theorem is proved. ¤

Note 5.2.1 As established in [198, 256] the above assertion holds true for
the first-order symmetry operators of the Dirac equation.
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Theorem 5.2.1 simplifies substantially the problem of classification of in-
equivalent triplets of the mutually commuting symmetry operators of equation
(4.1.1). Since we look for a solution with separated variables as a solution of
over-determined system of PDEs (5.1.23), triplets of the symmetry operators
〈Q1, Q2, Q3〉 and 〈Q1, Q2, C1Q1 + C2Q2 + C3Q3〉 with C3 6= 0 are equiva-
lent. Hence, by using Theorem 5.2.1, it follows that triplets of the mutually
commuting symmetry operators belong to one of the following classes:

I. 〈Q(`)
1 + Q

(n)
1 , Q

(`)
2 , Q

(`)
3 〉,

II. 〈Q(n)
1 , Q

(`)
2 , Q

(`)
3 〉, (5.2.3)

where we designate by the symbol Q
(`)
a a linear combination of the Lie sym-

metry operators and by the symbol Q
(n)
1 a linear combination of the non-Lie

symmetry operators.
By the arguments used while proving Theorem 5.2.1 we establish that the

operators Q
(`)
1 + Q

(n)
1 , Q

(`)
2 and Q

(`)
3 commute iff

[Q(`)
1 , Q

(`)
2 ] = [Q(n)

1 , Q
(`)
2 ] = 0,

[Q(`)
1 , Q

(`)
3 ] = [Q(n)

1 , Q
(`)
3 ] = 0, (5.2.4)

[Q(`)
2 , Q

(`)
3 ] = 0.

Consequently, to classify G2(1, 3) inequivalent triplets of commuting sym-
metry operators of equation (4.1.1) we can make use of the results of subal-
gebraic analysis of the Lie algebra of the generalized Galilei group G2(1, 3)
which has been carried out in [16, 100].

According to [16, 100] there are 5 three-dimensional and 14 two-dimension-
al G2(1, 3) non-conjugate commutative subalgebras of the algebra AG2(1, 3).
Solving for each of them equations (5.2.4) we get the following assertion.

Theorem 5.2.2. The list of G2(1, 3) non-conjugate triplets of commuting first-
order symmetry operators of equation (4.1.1) is exhausted by the following
ones:

1) 〈G1 + αP0, P2, P3〉,
2) 〈G1 + αP1, G2, P3〉,
3) 〈G1 + αP1, G2 + βP2, P3〉,
4) 〈J12, P0, αW0 + α1N0 + α2W3 + α3T3 + δS3〉,
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5) 〈J12, A + P0, αW3 + βN0 + δ(T3 + K3)〉,
6) 〈J12, D, αW3 + βR3 + δN0〉,
7) 〈J12, G3 + P0, αW3 + β(R0 + T3) + δS3〉,
8) 〈J12, P3, αW0 + α1W3 + α2T3 + α3S3 + δN3〉,
9) 〈G1, P2, αaWa + βN2 + δS1〉,
10) 〈G1 + P2, P3, αaWa + β(2W0 −N3) + δS1〉,
11) 〈P0, P1, αW0 + αaWa + βaTa + δaSa〉,
12) 〈P1, P2, αW0 + αaWa + βaTa + δaSa〉,
13) 〈J12 + P3, P0, αW0 + α1W3 + α2T3 + δS3〉,
14) 〈G3 + P0, P2, αaWa + β(T1 −N2) + δS3〉,
15) 〈G1 + P2, J12 + A + P0, αW3 + β(T3 + N0 + K3)〉,
16) 〈J12 + P0, P3, αW0 + α1W3 + α2T3 + α3S3〉,
17) 〈G1 + P1 + αP3, G2, αaWa + β[(1 + α2)S2 + N2

−αR0] + δ(N1 + αN3)〉, (5.2.5)
18) 〈G1 + P1 + αP3, G2 + βP3, α3Wa + δ(N1

−2βW0 − β2S1 − βR0 + αβS2 + αN3)
+ρ[N2 − βS3 − αβS1 − αR0 + (1 + α2)S2 − βN3]〉,

19) 〈P0 + αW0 + αaWa + βaTa + δaSa, P1, P2〉,
20) 〈P0, P1 + αW0 + αaWa + βaTa + δaSa, P2〉,
21) 〈P0 + αW0 + αaWa + βaTa + δaSa, P2, P3〉,
22) 〈G1 + αW0 + αaWa + βaTa + δaSa, P2, P3〉,
23) 〈G1, P2 + αaWa + βN3 + δS1, P3〉,
24) 〈G1 + P0 + αW0 + αaWa + βaTa + δaSa, P2, P3〉,
25) 〈G1 + P0, P2 + αaWa + β(T2 −N3) + δS1, P3〉,
26) 〈G1 + P1 + αaWa + βN3 + δS2, G2, P3〉,
27) 〈G1 + P1, G2 + αaWa + βS1, P3〉,
28) 〈G1 + P1, G2, P3 + αaWa + βN1〉,
29) 〈J12 + αW0 + αaWa + βaTa + δaSa, P0, P3〉,
30) 〈J12, P0 + αW0 + α1W3 + α2T3 + α3S3 + βN3, P3〉,
31) 〈J12, P0, P3 + αW0 + α1N0 + α2W3 + α3T3 + βS3〉,

where α, αa, β, βa, δ, δa, ρ are arbitrary real constants.
We have not succeeded yet in relating each triplet from the list (5.2.5)
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to some coordinate system providing variable separation in system of PDEs
(4.1.1) (so far it is not clear whether such a relation exists). Another problem
is that there exist different triplets yielding the same coordinate system. For
example, triplets 8 and 9 from (5.2.5) give rise to solutions of (4.1.1) with sep-
arated variables in Cartesian coordinates t, xa. In such a case we adduce the
most simple triplet of symmetry operators corresponding to a given coordinate
system.

We have obtained 16 coordinate systems providing variable separation in
equation (4.1.1). As an example, we will consider a procedure of variable
separation in the case when all elements of the triplet

Qa = ξa0(t, ~x)∂t + ξab(t, ~x)∂b + ηa(t, ~x) (5.2.6)

belong to the Lie algebra admitted by the equation under study.
Since the above operators commute, there exists such a change of variables

[159]
zµ = zµ(t, ~x), µ = 0, . . . , 3,

ψ̃(z) = A(t, ~x)ψ(t, ~x),
(5.2.7)

where A(t, ~x) is some invertible (4×4)-matrix, that operators (5.2.6) take the
form Qa = ∂za . And what is more due to Theorem 1.5.1 the initial equation
(4.1.1) on the set of solutions of the system of PDEs

Qaψ̃ = λaψ̃ (5.2.8)

is rewritten as follows

R0(z0)ψ̃z0 + R1(z0; λ1, λ2, λ3)ψ̃ = 0

with some matrices R0, R1.
Thus, the system of PDEs (5.1.19) rewritten in the new variables zµ, ψ̃(z)

takes the form

R0(z0)ψ̃z0 + R1(z0;λ1, λ2, λ3)ψ̃ = 0,

ψ̃za = λaψ̃, a = 1, 2, 3

i.e., the variables zµ separate.
On integrating the above systems of ODEs and substituting the result into

(5.2.7) we get the solution of equation (4.1.1) with separated variables.
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Provided one element of the triplet of symmetry operators is a non-Lie one,
there is no general approach to the problem of transforming system (5.1.23)
to the ”separated” form

R1µ(zµ)ψ̃zµ + R2µ(zµ; λ1, λ2, λ3)ψ̃ = 0, µ = 0, . . . , 3, (5.2.9)

(no summation over µ is carried out), where R1µ, R2µ are some (4 × 4)-
matrices. Each triplet containing non-Lie symmetry operator demands specific
and very involved computations.

In the case considered, the problem is a little bit simplified since two el-
ements of the triplet are Lie symmetry operators. Transforming these to the
form Qa = ∂za , a = 1, 2 we get two new variables z1(t, ~x), z2(t, ~x). The
third new variable is always z0 = t. So it is necessary to guess the fourth
variable z3 = z3(t, ~x) and the (4× 4)-matrix A(t, ~x) transforming the system
of PDEs (4.1.1) to a separated form (5.2.9). Omitting details of derivation
of the corresponding formulae we present the final result: triplets of commut-
ing symmetry operators, coordinate systems providing variable separation and
corresponding systems of separated ODEs of the form (5.2.9).

1) 〈P0, P1, P2〉,
A(t, ~x) = I, z0 = x3, z1 = t, z2 = x1, z3 = x2,

ψ̃z0 + {λ1γ3(γ0 + γ4)− λ2γ3γ1 − λ3γ3γ2 + imγ3(γ0 − γ4)}ψ̃ = 0,

ψ̃za = λaψ̃, a = 1, 2, 3;

2) 〈J12, P0, P3〉,
A(t, ~x) = exp{−(1/2)z2γ1γ2},
z0 = (x2

1 + x2
2)

1/2, z1 = t, z2 = arctan(x2/x1), z3 = x3,

ψ̃z0 + {λ1γ1(γ0 + γ4)− λ2z
−1
0 γ1γ2 − λ3γ1γ3

+imγ1(γ0 − γ4) + (1/2)z−1
0 }ψ̃ = 0, ψ̃za = λaψ̃, a = 1, 2, 3;

3) 〈G1 + αP0, P2, P3〉,
A(t, ~x) = exp{2imz0z1 + (i/3)αmz3

1 + (1/2)z1γ1(γ0 + γ4)},
z0 = x1 − t2/2α, z1 = t/α, z2 = x2, z3 = x3,

ψ̃z0 + {α−1(λ1 − 2imz0)γ1(γ0 + γ4)− λ2γ1γ2 − λ3γ1γ3

+imγ1(γ0 + γ4)}ψ = 0, ψ̃za = λaψ̃, a = 1, 2, 3;

4) 〈G1 + αP1, G2, P3〉,
A(t, ~x) = exp{imz0z

2
2 + (1/2)z2(γ0 + γ4)γ2 + (1/2)z1(γ0 + γ4)γ1
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+im(z0 + α)z2
1},

z0 = t, z1 = x1/(t + α), z2 = x2/t, z3 = x3,

−i(γ0 + γ4)ψ̃z0 + {−(1/2)(z0 + α)−1(γ0 + γ4) + (i/2)z−1
0 (γ0 + γ4)

+iλ1(z0 + α)−1γ1 + iλ2z
−1
0 γ2 + iλ3γ3 + m(γ0 − γ4)}ψ̃ = 0,

ψ̃za = λaψ̃, a = 1, 2, 3;

5) 〈G1 + αP1, G2 + βP2, G3〉,
A(t, ~x) = exp{im[(z0 + α)z2

1 + (z0 + β)z2
2 + z0z

2
3 ]

+(1/2)(γ0 + γ4)γaza},
z0 = t, z1 = x1/(t + α), z2 = x2/(t + β), z3 = x3/t,

−i(γ0 + γ4)ψ̃z0 +
{
iλ1(z0 + α)−1γ1 + iλ2(z0 + β)−1γ2

+iλ3z
−1
0 γ3 + (i/2)

(
(z0 + α)−1 + (z0 + β)−1 + z−1

0

)
(γ0 + γ4)

+m(γ0 − γ4)
}
ψ̃ = 0, ψ̃za = λaψ̃, a = 1, 2, 3;

6) 〈N0 + αW0, J12, P0〉,
A(t, ~x) = exp{−(1/2)γ1γ3z3} exp{−(1/2)γ1γ2z2},
z0 = t, z1 = (x2

1 + x2
2 + x2

3)
1/2, z2 = arctan(x2/x1),

z3 = arctan[x3(x2
1 + x2

2)
−1/2],

ψ̃z0 = λ1ψ̃, ψ̃z2 = −λ2ψ̃,

ψ̃z1 =
{(

(α/2)z−1
1 − γ1

)(
λ1(γ0 + γ4) + im(γ0 − γ4)

)

+λ3z
−1
1 γ0γ4 − z−1

1

}
ψ̃,

ψ̃z3 =
{
(1/2) tan z3 + λ2(cos z3)−1γ2γ3 − (α/2)

(
λ1(γ0 + γ4)

−im(γ0 − γ4)
)
γ2 − λ3γ2

}
ψ̃;

7) 〈N3 + αW3, J12, P3〉,
A(t, ~x) = exp{imz0z

2
1 + (1/2)(γ0 + γ4)γ1z1} exp{−(1/2)γ1γ2z2},

z0 = t, z1 = (x2
1 + x2

2)
1/2/t, z2 = arctan(x2/x1), z3 = x3,

z0(γ0 + γ4)γ3ψ̃z0 +
{
(γ0 + γ4)γ3 + λ3z0γ0γ4 + imz0γ3(γ0 − γ4)

+(α/2)
(
λ3(γ0 + γ4)− 2imγ3

)
− λ1

}
ψ̃ = 0,

γ2ψ̃z1 + {(1/2)z−1
1 γ1γ2 + λ3z

−1
1 γ1}ψ̃ = 0,
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ψ̃z2 = −λ2ψ̃, ψ̃z3 = λ3ψ̃;

8) 〈G1, P2, N2 + εS1〉, ε = ±1,

A(t, ~x) = exp{−ε(γ0 + γ4)z3(1 + z2
0)
−1/2} exp{imz0z

2
3 + (1/2)z0z3

×(1 + z2
0)
−1/2(γ0 + γ4)γ3} exp{−(ε/2)γ1γ2 arctan z0}

× exp{imz0z
2
1 + (1/2)z1(γ0 + γ4)γ1},

z0 = t, z1 = x1/t, z2 = x2, z3 = x3(1 + t2)−1/2,

(1 + z2
0)

1/2(γ0 + γ4)γ1ψ̃z0 + {(1 + z2
0)

1/2(2z0)−1(γ0 + γ4)γ1

+(ελ1z
−1
0 + λ2z0)γ0γ4 − im(1 + z2

0)
1/2(γ0 − γ4)γ1 − λ3}ψ̃ = 0,

ψ̃z1 = −λ1ψ̃, ψ̃z2 = λ2ψ̃,

ψ̃z3 + {2imz3γ3 − (λ1 − ελ2)γ2γ3 − λ3γ2}ψ̃ = 0;

9) 〈D, J12, N0〉,
A(t, ~x) = exp{(1/4)(γ0 + γ4)γ1} exp{−(1/2)γ0γ4z0 + 2 ln z1 − 2z0}
× exp{−(1/2)γ1γ3z3} exp{−(1/2)γ1γ2z2},

z0 = (1/2) ln t, z1 = (x2
1 + x2

2 + x2
3)

1/2t−1/2,

z2 = arctan(x2/x1), z3 = arctan[x3(x2
1 + x2

2)
−1/2],

ψ̃z0 = λ1ψ̃, ψ̃z2 = −λ2ψ̃,

ψ̃z1 = {−(1/4)(γ0 + γ4)γ1(1 + 2λ1)− im(γ0 − γ4)γ1 + im

+(im/4)γ1(γ0 + γ4) + λ3z
−1
1 γ4γ0}ψ̃,

ψ̃z3 = {λ3γ2 + (1/2) tan z3 + λ2(cos z3)γ2γ3}ψ̃;

10) 〈D, J12, W3〉,
A(t, ~x) = exp{−(1/2)γ0γ4z0} exp{−(1/2)γ1γ2z2},
z0 = (1/2) ln t, z1 = (x2

1 + x2
2)

1/2t−1/2, z2 = arctan(x2/x1),
z3 = x3t

−1/2,

ψ̃z0 = λ1ψ̃, ψ̃z2 = −λ2ψ̃,

γ1(γ0 + γ4)ψ̃z1 + {(1/2)z−1
1 γ1(γ0 + γ4)− λ2z

−1
1 γ2(γ0 + γ4)

−2λ3γ3 − 2imγ0γ4}ψ̃ = 0,

(γ0 + γ4)ψ̃z3 − {2imγ3 + 2λ3}ψ̃ = 0;

11) 〈A + P0, J12, N0〉,
A(t, ~x) = exp{imz2

1 tan z0 − 2 ln(cos z0)}
{
exp{(1/2)γ0γ4
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× ln(cos z0)}+ (1/2)z1 sin z0(cos z0)−1/2(γ0 + γ4)γ1

}

× exp{−(1/2)γ1γ3z3} exp{−(1/2)γ1γ2z2},
z0 = arctan t, z1 = (x2

1 + x2
2 + x2

3)
1/2(1 + t2)−1/2,

z2 = arctan(x2/x1) , z3 = arctan[x3(x2
1 + x2

2)
−1/2],

ψ̃z0 = λ1ψ̃, ψ̃z2 = −λ2ψ̃,

ψ̃z1 =
{
−z−1

1 + λ1(γ0 + γ4)γ1 − imγ1(γ0 − γ4) + λ1z
−1
1 γ0γ4

}
ψ̃,

ψ̃z3 = {(1/2) tan z3 − λ2(cos z3)−1γ2γ3 + λ3γ2}ψ̃;

12) 〈A + P0, J12, W3〉,
A(t, ~x) = exp{im(z2

1 + z2
3) tan z0 − 2 ln(cos z0)}

{
exp{(1/2)γ0γ4

× ln(cos z0)}+ (1/2)(γ1z1 + γ3z3) sin z0(cos z0)−1/2
}

× exp{−(1/2)γ1γ2z2},
z0 = arctan t, z1 = (x2

1 + x2
2)

1/2(1 + t2)−1/2,

z2 = arctan(x2/x1), z3 = x3,

ψ̃z0 = λ1ψ̃, ψ̃z2 = −λ2ψ̃,

(γ0 + γ4)γ2ψ̃z1 + {(2z1)−1(γ0 + γ4)γ2 + λ2z
−1
1 (γ0 + γ4)γ1

+2(λ3 − imγ1γ2)}ψ̃ = 0,

(1/2)(γ0 + γ4)ψ̃z3 − {λ3 + imγ3}ψ̃ = 0;

13) 〈G3 + P0, J12, S3〉,
A(t, ~x) = exp{2im[z0z3 + (1/6)z3

0 ] + (1/2)z0(γ0 + γ4)γ3

−(1/2)γ1γ2z2},
z0 = t, z1 = (x2

1 + x2
2)

1/2, z2 = arctan(x2/x1),
z3 = x3 − (1/2)t2,
ψ̃z0 = λ1ψ̃, ψ̃z2 = −λ2ψ̃,

ψ̃z1 = {(2z1)−1 − λ2z
−1
1 γ1γ2 + λ3γ2}ψ̃,

ψ̃z3 = {λ1(γ0 + γ4)γ3 − imγ3(γ0 − γ4)− 2imz3(γ0 + γ4)γ3

+λ3γ0γ4})ψ̃;

14) 〈J12 + P3, P0, S3〉,
A(t, ~x) = exp{(1/2)γ1γ2(z3 − z2)},
z0 = t, z1 = (x2

1 + x2
2)

1/2, z2 = arctan(x2/x1) + x3, z3 = x3,
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ψ̃z0 = λ1ψ̃, ψ̃z3 = λ3ψ̃,

ψ̃z1 = {(2z1)−1 − λ2z
−1
1 γ1γ2 + λ3γ2}ψ̃,

ψ̃z2 = {−λ2 + λ3γ0γ4 − λ1(γ0 + γ4)γ3 − imγ3(γ0 − γ4)}ψ̃;

15) 〈J12 + P0, P3, W0〉,
A(t, ~x) = exp{−(1/2)γ1γ2z2},
z0 = t, z1 = (x2

1 + x2
2)

1/2, z2 = t + arctan(x2/x1), z3 = x3,

ψ̃z0 = λ2ψ̃, ψ̃z3 = λ3ψ̃,

(γ0 + γ4)γ1ψ̃z1 +
{
z−1
1 γ2

(
−2λ1 − λ2(γ0 + γ4) + im(γ0 − γ4)

)

+
(
−(2z1)−1γ1 + 2λ1 − λ3γ3

)
(γ0 + γ4)

}
ψ̃ = 0,

(γ0 + γ4)ψ̃z2 + {2λ1 + λ2(γ0 + γ4)− im(γ0 − γ4)}ψ̃ = 0;

16) 〈G1 + P2, P3, S1〉,
A(t, ~x) = exp{imz2

1z0 + (z1/2)γ1(γ0 + γ4)},
z0 = t, z1 = x1/t, z2 = x2 − x1/t, z3 = x3,

−i(γ0 + γ4)γ1ψ̃z0 + {−i(2z0)−1(γ0 + γ4) + iλ1z
−1
0 γ1 + iλ2γ2γ3

+m(γ0 − γ4)}ψ̃ = 0, ψ̃z1 = λ1ψ̃, ψ̃z3 = λ3ψ̃,

ψ̃z2 = {λ2γ3 + λ3γ2γ3}ψ̃.

In the above formulae α, β are arbitrary real parameters, λ1, λ2, λ3 are
separation constants.

Note that coordinate systems given in the formulae 1–5 correspond to the
Lie symmetry of the system of PDEs (4.1.1) and the ones given in the formulae
6–16 correspond to its non-Lie symmetry.

5.3. Separation of variables in the Schrödinger equation

The problem of separation of variables in the two-dimensional Schrödinger
equation

iut + ux1x1 + ux2x2 = V (x1, x2)u (5.3.1)

as well as a majority of classical problems of mathematical physics can be
formulated in a very simple way (but this simplicity does not, of course, imply
existence of an easy way to its solution). To separate variables in equation
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(5.3.1) we have to construct such functions R(t, ~x), ω1(t, ~x), ω2(t, ~x) that the
Schrödinger equation (5.3.1) after being rewritten in the new variables

z0 = t, z1 = ω1(t, ~x), z2 = ω2(t, ~x),
v(z0, ~z) = R(t, ~x)u(t, ~x)

(5.3.2)

separates into three ordinary differential equations (ODEs) by means of the
substitution v = ϕ0(z0)ϕ1(z1)ϕ2(z2). From this point of view the problem of
separation of variables in equation (5.3.1) is studied in [37, 38, 179, 257].

But of no less importance is the problem of describing the potentials
V (x1, x2) for which the Schrödinger equation admits variable separation. Thus
by a separation of variables in equation (5.3.1) we imply two mutually con-
nected problems. The first one is to describe all such functions V (x1, x2) that
the corresponding Schrödinger equation (5.3.1) can be separated into three
ODEs in some coordinate system of the form (5.3.2) (classification problem).
The second problem is to construct for each function V (x1, x2) obtained in
this way all coordinate systems (5.3.2) enabling us to carry out separation of
variables in equation (5.3.1).

As far as we know, the second problem has been solved provided V = 0 [38]
and V = αx−2

1 + βx−2
2 [37]. The first one was considered in a restricted sense

in [257]. Using the symmetry approach to classification problem the authors
obtained some potentials providing separability of equation (5.3.1) and carried
out separation of variables in the corresponding Schrödinger equations. But
their results are far from being complete and systematic. The necessary and
sufficient conditions imposed on the potential V (x1, x2) by the requirement
that the Schrödinger equation admits symmetry operators of an arbitrary
order are obtained in [231]. But so far there is no systematic and exhaustive
description of potentials V (x1, x2) providing separation of variables in equation
(5.3.1).

To have a right to claim a description of all potentials and all coordinate
systems, which make it possible to separate the Schrödinger equation, it is
necessary to have a definition of separation of variables. It is natural to utilize
Definition 5.1.3 adapted to the case of a second-order PDE with one dependent
variable. Consider the following system of ODEs:

i
dϕ0

dt
= U0(t, ϕ0;λ1, λ2),

d2ϕ1

dω2
1

= U1

(
ω1, ϕ1,

dϕ1

dω1
; λ1, λ2

)
, (5.3.3)
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d2ϕ2

dω2
2

= U2

(
ω2, ϕ2,

dϕ2

dω2
; λ1, λ2

)
,

where U0, U1, U2 are some smooth functions of the corresponding arguments,
{λ1, λ2} ⊂ R1 are arbitrary parameters (separation constants) and what is
more

rank ‖∂Uµ/∂λa‖2 2
µ=0 a=1 = 2 (5.3.4)

(the last condition ensures essential dependence of the corresponding solution
with separated variables on λ1, λ2, see [201]).

Definition 5.3.1. We say that equation (5.3.1) admits a separation of vari-
ables in the coordinate system t, ω1(t, ~x), ω2(t, ~x) if there exists such a func-
tion Q(t, ~x) that substitution of the Ansatz

u = Q(t, ~x)ϕ0(t)ϕ1

(
ω1(t, ~x)

)
ϕ2

(
ω2(t, ~x)

)
(5.3.5)

into (5.3.1) with subsequent elimination of the derivatives ϕ̇0, ϕ̈1, ϕ̈2 according
to equations (5.3.3) yields an identity with respect to ϕ0, ϕ1, ϕ2, ϕ̇1, ϕ̇2, λ1,
λ2. Thus, according to the above definition to separate variables in equation
(5.3.1) we have

• to substitute the expression (5.3.5) into (5.3.1),

• to eliminate the derivatives ϕ̇0, ϕ̈1, ϕ̈2 with the help of equations (5.3.3),

• to split the equality obtained with respect to the variables ϕ0, ϕ1, ϕ2,
ϕ̇1, ϕ̇2, λ1, λ2 considered as independent.

As a result, we get some over-determined system of PDEs for the functions
Q(t, ~x), ω1(t, ~x), ω2(t, ~x). On solving it we obtain a complete description
of all coordinate systems and potentials providing separation of variables in
the Schrödinger equation. Naturally, the words complete description make
sense only within the framework of our definition. So if one uses a more
general definition it may be possible to construct new coordinate systems and
potentials providing separability of equation (5.3.1). But all solutions of the
Schrödinger equation with separated variables known to us fit into the scheme
suggested by us and can be obtained in the above described way.

1. Classification of potentials V (x1, x2). We do not adduce in full detail
computations needed because they are very cumbersome. We will restrict
ourselves to pointing out main steps of the realization of the above suggested
algorithm.
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First of all we make a remark, which makes life a little bit easier. It is
readily seen that a substitution of the form

Q → Q′ = QΨ1(ω1)Ψ2(ω2),
ωa → ω′a = Ωa(ωa), a = 1, 2, (5.3.6)
λa → λ′a = Λa(λ1, λ2), a = 1, 2,

does not alter the structure of relations (5.3.3), (5.3.4), (5.3.5). That is why
we can introduce the following equivalence relation:

(ω1, ω2, Q) ∼ (ω′1, ω′2, Q′),

provided (5.3.6) holds with some Ψa, Ωa, Λa.
Substituting (5.3.5) into (5.3.1) and excluding the derivatives ϕ̇0, ϕ̈1, ϕ̈2

with the use of equations (5.3.3) we get

i(Qtϕ0ϕ1ϕ2 + QU0ϕ1ϕ2 + Qω1tϕ0ϕ̇1ϕ2 + Qω2tϕ0ϕ1ϕ̇2)
+(4Q)ϕ0ϕ1ϕ2 + 2Qxaω1xaϕ0ϕ̇1ϕ2 + 2Qxaω2xaϕ0ϕ1ϕ̇2

+Q
(
(4ω1)ϕ0ϕ̇1ϕ2 + (4ω2)ϕ0ϕ1ϕ̇2 + ω1xaω1xaϕ0U1ϕ2

+ω2xaω2xaϕ0ϕ1U2 + 2ω1xaω2xaϕ0ϕ̇1ϕ̇2

)
= V Qϕ0ϕ1ϕ2,

where the summation over the repeated index a from 1 to 2 is understood,
4 = ∂2

x1
+ ∂2

x2
.

Splitting the equality obtained with respect to the independent variables
ϕ1, ϕ2, ϕ̇1, ϕ̇2, λ1, λ2 we conclude that ODEs (5.3.3) are linear and up to
the equivalence relation (5.3.6) can be written in the form

i
dϕ0

dt
=

(
λ1R1(t) + λ2R2(t) + R0(t)

)
ϕ0,

d2ϕ1

dω2
1

=
(
λ1B11(ω1) + λ2B12(ω1) + B01(ω1)

)
ϕ1,

d2ϕ2

dω2
2

=
(
λ1B21(ω2) + λ2B22(ω2) + B02(ω2)

)
ϕ2

and what is more, functions ω1, ω2, Q satisfy an over-determined system of
nonlinear PDEs

1) ω1xb
ω2xb

= 0,

2) B1a(ω1)ω1xb
ω1xb

+ B2a(ω2)ω2xb
ω2xb

+ Ra(t) = 0,
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3) 2ωaxb
Qxb

+ Q(iωat +4ωa) = 0, (5.3.7)

4)
(
B01(ω1)ω1xb

ω1xb
+ B02(ω1)ω2xb

ω2xb

)
Q + iQt +4Q

+R0(t)Q− V (x1, x2)Q = 0,

where a, b = 1, 2.
Thus, to solve the problem of separation of variables for the linear Schrödin-

ger equation it is necessary to construct a general solution of the system of
nonlinear PDEs (5.3.7). Roughly speaking, to solve a linear equation we have
to solve a system of nonlinear equations! This is the reason why so far there
is no complete description of all coordinate systems providing separability of
the four-dimensional d’Alembert equation [226].

However in the present case we have succeeded in integrating the system
of nonlinear PDEs (5.3.7). Our approach to its integration is based on the
following change of variables (hodograph transformation)

z0 = t, z1 = Z1(t, ω1, ω2), z2 = Z2(t, ω1, ω2),
v1 = x1, v2 = x2,

where z0, z1, z2 are new independent and v1, v2 are new dependent variables,
correspondingly.

Using the hodograph transformation determined above we have construc-
ted the general solution of equations 1–3 from (5.3.7). It is given up to the
equivalence relation (5.3.6) by one of the following formulae:

1) ω1 = A(t)x1 + W1(t), ω2 = B(t)x2 + W2(t),

Q(t, ~x) = exp
{
−(i/4)

(
(Ȧ/A)x2

1 + (Ḃ/B)x2
2

)
− (i/2)

(
(Ẇ1/A)x1

+ (Ẇ2/B)x2

)}
;

2) x1 = W (t)eω1 sinω2 + W1(t), x2 = W (t)eω1 cosω2 + W2(t),

Q(t, ~x) = exp
{
(iẆ /4W )

(
(x1 −W1)2 + (x2 −W2)2

)

+ (i/2)(Ẇ1x1 + Ẇ2x2)
}
;

3) x1 = (1/2)W (t)(ω2
1 − ω2

2) + W1(t), x2 = W (t)ω1ω2 + W2(t), (5.3.8)

Q(t, ~x) = exp
{
(iẆ /4W )

(
(x1 −W1)2 + (x2 −W2)2

)

+ (i/2)(Ẇ1x1 + Ẇ2x2)
}
;

4) x1 = W (t) cosh ω1 cosω2 + W1(t), x2 = W (t) sinh ω1 sinω2 + W2(t),
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Q(t, ~x) = exp
{
(iẆ /4W )

(
(x1 −W1)2 + (x2 −W2)2

)

+ (i/2)(Ẇ1x1 + Ẇ2x2)
}
.

Here A, B, W, W1, W2 are arbitrary smooth functions of t.
Substituting the obtained expressions for the functions Q, ω1, ω2 into the

last equation from the system (5.3.7) and splitting with respect to variables
x1, x2 we get explicit forms of potentials V (x1, x2) and systems of nonlinear
ODEs for unknown functions A(t), B(t), W (t), W1(t), W2(t). We have suc-
ceeded in integrating these and in constructing all coordinate systems provid-
ing the separation of variables in the initial equation (5.3.1) [316]. Integration
has been carried out up to the equivalence relation which is introduced below
in Notes 5.3.1–5.3.3.

Note 5.3.1. The Schrödinger equation with the potential

V (x1, x2) = k1x1 + k2x2 + k3 + V1(k2x1 − k1x2), (5.3.9)

where k1, k2, k3 are constants, is transformed to the Schrödinger equation
with the potential

V ′(x′1, x
′
2) = V1(k2x

′
1 − k1x

′
2) (5.3.10)

by means of the following change of variables:

t′ = t, ~x′ = ~x + t2~k,

u′ = u exp{(i/3)(k2
1 + k2

2)t
3 + it(k1x1 + k2x2) + ik3t}.

(5.3.11)

It is readily seen that the class of Ansätze (5.3.5) is transformed into itself
by the above change of variables. That is why potentials (5.3.9) and (5.3.10)
are considered as equivalent.

Note 5.3.2. The Schrödinger equation with the potential

V (x1, x2) = k(x2
1 + x2

2) + V1(x1/x2)(x2
1 + x2

2)
−1 (5.3.12)

with k = const is reduced to the Schrödinger equation with the potential

V ′(x1, x2) = V1(x′1/x′2)(x
′2
1 + x′21 )−1 (5.3.13)

by means of the change of variables

t′ = α(t), ~x′ = β(t)~x, u′ = u exp
{
iγ(t)(x2

1 + x2
2) + δ(t)

}
,
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where
(
α(t), β(t), γ(t), δ(t)

)
is an arbitrary solution of the system of ODEs

γ̇ − 4γ2 = k, β̇ − 4γβ = 0, α̇− β2 = 0, δ̇ + 4γ = 0

such that β 6= 0.
Since the above change of variables does not alter the structure of the

Ansatz (5.3.5), when classifying potentials V (x1, x2) providing separability
of the corresponding Schrödinger equation we consider potentials (5.3.12),
(5.3.13) as equivalent.

Note 5.3.3. It is well-known (see e.g. [177, 232]) that the general form of the
invariance group admitted by equation (5.3.1) is as follows:

t′ = F (t, ~θ), x′a = ga(t, ~x, ~θ), a = 1, 2,

u′ = h(t, ~x, ~θ)u + U(t, ~x),

where ~θ = (θ1, θ2, . . . , θn) are group parameters and U(t, ~x) is an arbitrary
solution of equation (5.3.1).

The above transformations also do not alter the structure of the Ansatz
(5.3.5). That is why systems of coordinates t′, x′1, x′2 and t, x1, x2 are
considered as equivalent.

Below we give without derivation a list of potentials V (x1, x2) providing
separability of the Schrödinger equation (5.3.1) (some details can be found in
[316]).

1. V (x1, x2) = V1(x1) + V2(x2);

(a) V (x1, x2) = k1x
2
1 + k2x

−2
1 + V2(x2), k2 6= 0;

i. V (x1, x2) = k1x
2
1 + k2x

2
2 + k3x

−2
1 + k4x

−2
2 , k3k4 6= 0,

k2
1 + k2

2 6= 0, k1 6= k2;
ii. V (x1, x2) = k1x

2
1 + k2x

−2
1 , k1k2 6= 0;

iii. V (x1, x2) = k1x
−2
1 + k2x

−2
2 ;

(b) V (x1, x2) = k1x
2
1 + V2(x2);

i. V (x1, x2) = k1x
2
1 + k2x

2
2 + k3x

−2
2 , k1k3 6= 0, k1 6= k2;

ii. V (x1, x2) = k1x
2
1 + k2x

2
2, k1k2 6= 0, k1 6= k2;

iii. V (x1, x2) = k1x
2
1 + k2x

−2
2 , k1 6= 0;

2. V (x1, x2) = V1(x2
1 + x2

2) + V2

(
x1

x2

)
(x2

1 + x2
2)
−1;
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(a) V (x1, x2) = V2

(
x1

x2

)
(x2

1 + x2
2)
−1;

(b) V (x1, x2) = (x2
1 + x2

2)
−1/2(k1 + k2x1x

−2
2 ) + k3x

−2
2 , k2

1 + k2
3 6= 0;

3. V (x1, x2) =
(
V1(ω1) + V2(ω2)

)
(ω2

1 + ω2
2)
−1,

where ω2
1 − ω2

2 = 2x1, ω1ω2 = x2;

4. V (x1, x2) =
(
V1(ω1) + V2(ω2)

)
(sinh2 ω1 + sin2 ω2)−1,

where coshω1 cosω2 = x1, sinhω1 sinω2 = x2;

5. V (x1, x2) = 0.

In the above formulae V1, V2 are arbitrary smooth functions, k1, k2, k3, k4

are real arbitrary constants.
It should be emphasized that the above potentials are not inequivalent in

a usual sense. These potentials differ from each other by the fact that the
coordinate systems providing separability of the corresponding Schrödinger
equations are different. Moreover, in some cases the form of coordinate systems
depends essentially on the signs of the parameters kj , j = 1, . . . , 4.

Next, we consider in detail separation of variables in the Schrödinger equa-
tion with the anisotropic harmonic oscillator potential V (x1, x2) = k1x

2
1+k2x

2
2

and the Coulomb potential V (x1, x2) = k1(x2
1 + x2

2)
−1/2.

2. Separation of variables in the Schrödinger equation with the
anisotropic harmonic oscillator and the Coulomb potentials. Here we
will obtain all coordinate systems providing separability of the Schrödinger
equation with the potential V (x1, x2) = k1x

2
1 + k2x

2
2

iut + ux1x1 + ux2x2 = (k1x
2
1 + k2x

2
2)u. (5.3.14)

In the following, we consider the case k1 6= k2, because otherwise equation
(5.3.1) is reduced to the free Schrödinger equation (see Note 5.3.2) which has
been studied in detail in [226].

Explicit forms of the coordinate systems to be found depend essentially on
the signs of the parameters k1, k2. We consider in some detail the case, when
k1 < 0, k2 > 0 (the cases k1 > 0, k2 > 0 and k1 < 0, k2 < 0 are handled in
an analogous way). This means that equation (5.3.14) can be written in the
form

iut + ux1x1 + ux2x2 + (1/4)(a2x2
1 − b2x2

2)u = 0. (5.3.15)
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where a, b are arbitrary non-zero real constants (the factor 1/4 is introduced
for further convenience).

As stated above to describe all coordinate systems t, ω1(t, ~x), ω2(t, ~x)
providing separability of equation (5.3.14) it is necessary to construct the
general solution of system (5.3.8) with V (x1, x2) = −(1/4)(a2x2

1 − b2x2
2). The

general solution of equations 1–3 from (5.3.7) splits into four inequivalent
classes listed in (5.3.8). Analysis shows that only solutions belonging to the
first class can satisfy the fourth equation of (5.3.7).

Substituting the expressions for ω1, ω2, Q given by the formulae 1 from
(5.3.8) into the equation 4 from (5.3.7) with V (x1, x2) = −(1/4)(a2x2

1 − b2x2
2)

and splitting with respect to x1, x2 yield

B01(ω1) = α1ω
2
1 + α2ω1, B02(ω2) = β1ω

2
2 + β2ω2,

(Ȧ/A)
. − (Ȧ/A)2 − 4α1A

4 + a2 = 0, (5.3.16)
(Ḃ/B)

. − (Ḃ/B)2 − 4β1B
4 − b2 = 0, (5.3.17)

θ̈1 − 2θ̇1(Ȧ/A)− 2(2α1θ1 + α2)A4 = 0, (5.3.18)
θ̈2 − 2θ̇2(Ḃ/B)− 2(2β1θ2 + β2)B4 = 0. (5.3.19)

Here α1, α2, β1, β2 are arbitrary real constants.
Evidently, equations (5.3.16)–(5.3.19) can be rewritten in the following

unified form:

(ẏ/y)
. − (ẏ/y)2 − 4αy4 = k, z̈ − 2ż(ẏ/y)− 2(2αz + β)y4 = 0. (5.3.20)

Provided k = −a2 < 0, system (5.3.20) coincides with equations (5.3.16),
(5.3.18) and under k = b2 > 0 with equations (5.3.17), (5.3.19).

First of all, we note that the function z = z(t) is determined up to addi-
tion of an arbitrary constant. Indeed, the coordinate functions ωa have the
following structure:

ωa = yxa + z, a = 1, 2.

But the coordinate system t, ω1, ω2 is equivalent to the coordinate system
t, ω1 +C1, ω2 +C2, Ca ∈ R1. Hence it follows that the function z(t) is equiv-
alent to the function z(t) + C with arbitrary real constant C. Consequently,
provided α 6= 0, we can choose in (5.3.20) β = 0.

Case 1. α = 0
On making in (5.3.20) the change of variables

w = ẏ/y, v = z/y (5.3.21)
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we get
ẇ = w2 + k, v̈ + kv = 2βy3. (5.3.22)

First, we consider the case k = −a2 < 0. Then, the general solution of the
first equation from (5.3.22) is given by one of the formulae

w = −a coth a(t + C1), w = −a tanh a(t + C1), w = ±a, C1 ∈ R1,

whence

y(t) = C2 sinh−1 a(t + C1), y(t) = C2 cosh−1 a(t + C1),

y(t) = C2 exp(±at), C2 ∈ R1.
(5.3.23)

The second equation of system (5.3.22) is a linear inhomogeneous ODE. We
substitute its general solution into (5.3.21) and get the following expressions
for z(t):

z(t) = (C3 cosh at + C4 sinh at) sinh−1 a(t + C1)
+(βC4

2/a2) sinh−2 a(t + C1),
z(t) = (C3 cosh at + C4 sinh at) cosh−1 a(t + C1) (5.3.24)

+(βC4
2/a2) cosh−2 a(t + C1),

z(t) = (C3 cosh at + C4 sinh at) exp(±at)
+(βC4

2/4a2) exp(±4at),

where {C3, C4} ⊂ R1.
The case k = b2 > 0 is treated in a similar way, the general solution of

(5.3.20) being given by the formulae

y(t) = D2 sin−1 b(t + D1),
z(t) = (D3 cos bt + D4 sin bt) sin−1 b(t + D1) (5.3.25)

+(βD4
2/b2) sin−2 b(t + D1),

where D1, D2, D3, D4 are arbitrary real constants.

Case 2. α 6= 0, β = 0
On making in (5.3.20) the change of variables

y = expw, v = z/y

we have
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ẅ − ẇ2 = k + α exp 4w, v̈ + kv = 0. (5.3.26)

The first ODE from (5.3.26) is reduced to the first-order linear ODE

(1/2)
dp(w)
dw

− p(w) = k + α exp 4w

by the substitution ẇ = [p(w)]1/2, whence

p(w) = α exp 4w + γ exp 2w − k, γ ∈ R1.

The equation ẇ = [p(w)]1/2 has a singular solution w = C = const such
that p(C) = 0. If ẇ 6= 0, then integrating the equation ẇ = p(w) and returning
to the initial variable y we get

y(t)∫
τ−1(ατ4 + γτ2 − k)−1/2dτ = t + C1.

Taking the integral in the left-hand side of the above equality we obtain
the general solution of the first ODE from (5.3.20). It is given by the following
formulae:

under k = −a2 < 0

y(t) = C2

(
α + sinh 2a(t + C1)

)−1/2
,

y(t) = C2

(
α + cosh 2a(t + C1)

)−1/2
,

y(t) = C2

(
α + exp(±2at)

)−1/2
,

(5.3.27)

under k = b2 > 0

y(t) = D2

(
α + sin 2b(t + D1)

)−1/2
. (5.3.28)

Here C1, C2, D1, D2 are arbitrary real constants.
Integrating the second ODE from (5.3.26) and returning to the initial vari-

able z we have

under k = −a2 < 0

z(t) = y(t)(C3 cosh at + C4 sinh at), (5.3.29)
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under k = b2 > 0

z(t) = y(t)(D3 cos bt + D4 sin bt), (5.3.30)

where C3, C4, D3, D4 are arbitrary real constants.
Thus, we have constructed the general solution of the system of nonlinear

ODEs (5.3.20) which is given by the formulae (5.3.24)–(5.3.30).
Substitution of the formulae (5.3.21), (5.3.23)–(5.3.25), (5.3.27)–(5.3.30)

into the corresponding expressions 1 from (5.3.8) yields a complete list of
coordinate systems providing separability of the Schrödinger equation (5.3.15).
These systems can be transformed to canonical form if we use Note 5.3.3.

The invariance group of equation (5.3.15) is generated by the following
basis operators [315]:

P0 = ∂t, I = u∂u, M = iu∂u, Q∞ = U(t, ~x)∂u,

P1 = cosh at ∂x1 + (ia/2)(x1 sinh at)u∂u,

P2 = cos bt ∂x2 − (ib/2)(x2 sin bt)u∂u, (5.3.31)
G1 = sinh at ∂x1 + (ia/2)(x1 cosh at)u∂u,

G2 = sin bt ∂x2 + (ib/2)(x2 cos bt)u∂u,

where U(t, ~x) is an arbitrary solution of equation (5.3.15).
Making use of the finite transformations generated by the infinitesimal

operators (5.3.31) and Note 5.3.3 we can choose in the formulae (5.3.23)–
(5.3.25), (5.3.27), (5.3.29), (5.3.30) C3 = C4 = D1 = 0, D3 = D4 = 0, C2 =
D2 = 1. As a result, we come to the following assertion.

Theorem 5.3.1. The Schrödinger equation (5.3.15) admits separation of vari-
ables in 21 inequivalent coordinate systems of the form

ω0 = t, ω1 = ω1(t, ~x), ω2 = ω2(t, ~x), (5.3.32)

where ω1 is given by one of the formulae from the first and ω2 by one of the
formulae from the second column of the Table 5.3.1.

There is no necessity to consider specially the case when in (5.3.14) k1 >
0, k2 < 0, since such an equation by the change of independent variables
u(t, x1, x2) → u(t, x2, x1) is reduced to equation (5.3.15).

Below we adduce without proof the assertions describing coordinate sys-
tems providing separation of variables in equation (5.3.14) with k1 < 0, k2 < 0
and k1 > 0, k2 > 0 and in the Schrödinger equation with the Coulomb poten-
tial k1(x2

1 + x2
2)
−1/2.
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Table 5.3.1. Coordinate systems providing separability
of the Schrödinger equation (5.3.15)

ω1(t, ~x) ω2(t, ~x)

x1

(
sinh a(t + C)

)−1
+α

(
sinh a(t + C)

)−2
x2(sin bt)−1 + β(sin bt)−2

x1

(
cosh a(t + C)

)−1
+α

(
cosh a(t + C)

)−2
x2(β + sin 2bt)−1/2

x1 exp(±at) + α exp(±4at) x2

x1

(
α + sinh 2a(t + C)

)−1/2

x1

(
α + cosh 2a(t + C)

)−1/2

x1

(
α + exp(±2at)

)−1/2

x1

Here C, α, β are arbitrary real constants.

Theorem 5.3.2. The Schrödinger equation

iut + ux1x1 + ux2x2 + (1/4)(a2x2
1 + b2x2

2)u = 0 (5.3.33)

with a2 6= 4b2 admits separation of variables in 49 inequivalent coordinate
systems of the form (5.3.32), where ω1 is given by one of the formulae from
the first and ω2 by one of the formulae from the second column of the Table
5.3.2. Provided a2 = 4b2, one more coordinate system should be included into
the above list, namely,

ω0 = t, ω2
1 − ω2

2 = 2x1, ω1ω2 = x2. (5.3.34)

Theorem 5.3.3. The Schrödinger equation

iut + ux1x1 + ux2x2 − (1/4)(a2x2
1 + b2x2

2)u = 0 (5.3.35)

with a2 6= 4b2 admits separation of variables in 9 inequivalent coordinate sys-
tems of the form (5.3.32), where ω1 is given by one of the formulae from the
first and ω2 by one of the formulae from the second column of the Table 5.3.3.
Provided a2 = 4b2, the above list should be supplemented by the coordinate
system (5.3.34).
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Table 5.3.2. Coordinate systems providing separability
of the Schrödinger equation (5.3.33)

ω1(t, ~x) ω2(t, ~x)

x1

(
sinh a(t + C)

)−1
+α

(
sinh a(t + C)

)−2
x2(sinh bt)−1 + β(sinh bt)−2

x1

(
cosh a(t + C)

)−1
+α

(
cosh a(t + C)

)−2
x2(cosh bt)−1 + β(cosh bt)−2

x1 exp(±at) + α exp(±4at) x2 exp(±bt) + β exp(±4bt)

x1

(
α + sinh 2a(t + C)

)−1/2
x2(β + sinh 2bt)−1/2

x1

(
α + cosh 2a(t + C)

)−1/2
x2(β + cosh 2bt)−1/2

x1

(
α + exp(±2at)

)−1/2
x2

(
β + exp(±2bt)

)−1/2

x1 x2

Here C, α, β are arbitrary constants.

Theorem 5.3.4. The Schrödinger equation with the Coulomb potential

iut + ux1x1 + ux2x2 − k1(x2
1 + x2

2)
−1/2u = 0

admits separation of variables in two coordinate systems. One of them is the
polar coordinate system

t = ω0, x1 = eω1 sinω2, x2 = eω1 cosω2

and another is the parabolic coordinate system (5.3.34).
It is important to note that explicit forms of coordinate systems providing

separability of equations (5.3.15), (5.3.33), (5.3.35) depend essentially on the
parameters a, b contained in the potential V (x1, x2). It means that the free
Schrödinger equation (V = 0) does not admit separation of variables in such
coordinate systems. Consequently, they are essentially new.

3. Conclusion. In the present section we have studied the case when the
Schrödinger equation (5.3.1) separates into one first-order and two second-
order ODEs. It is not difficult to prove that there are no functions Q(t, ~x),
ωµ(t, ~x), µ = 0, . . . , 2 such that the Ansatz

u = Q(t, ~x)ϕ0

(
ω0(t, ~x)

)
ϕ1

(
ω1(t, ~x)

)
ϕ2

(
ω2(t, ~x)

)
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separates equation (5.3.1) into three second-order ODEs (see [315]). Never-
theless, there exists a possibility for equation (5.3.1) to be separated into two
first-order and one second-order ODEs or into three first-order ODEs. This is
a probable source of new potentials and new coordinate systems providing sep-
arability of the Schrödinger equation. It should be mentioned that separation
of the two-dimensional d’Alembert equation

utt − uxx = V (x)u

into one first-order and one second-order ODEs gives no new potentials as
compared with separation of it into two second-order ODEs. But for some
already known potentials new coordinate systems providing separability of
the above equation are obtained [312, 314].

Table 5.3.3. Coordinate systems providing separability
of the Schrödinger equation (5.3.35)

ω1(t, ~x) ω2(t, ~x)

x1

(
sin a(t + C)

)−1
+α

(
sin a(t + C)

)−2
x2(sin bt)−1 + β(sin bt)−2

x1

(
β + sin 2a(t + C)

)−1/2
x2(β + sin 2bt)−1/2

x1 x2

Here C, α, β are arbitrary constants.

Let us briefly analyze the connection between separability and symmetry
properties of equation (5.3.1). It is well-known that each solution of the free
Schrödinger equation with separated variables is a common eigenfunction of
its two mutually commuting second-order symmetry operators [226]. And
what is more, separation constants λ1, λ2 are eigenvalues of these symmetry
operators.

We will establish that the same assertion holds for the Schrödinger equation
(5.3.1). Let us make in equation (5.3.1) the following change of variables:

u = Q(t, ~x)U
(
t, ω1(t, ~x), ω2(t, ~x)

)
, (5.3.36)

where (Q, ω1, ω2) is an arbitrary solution of the system of PDEs (5.3.7).
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Substituting the expression (5.3.36) into (5.3.1) and taking into account
equations (5.3.7) we get

Q
(
iUt + [Uω1ω1 −B01(ω1)U ]ω1xaω1xa + [Uω2ω2 −B02(ω2)U ]

×ω2xaω2xa

)
= 0.

(5.3.37)

Resolving equations 2 from the system (5.3.7) with respect to ω1xaω1xa

and ω2xaω2xa we have

ω1xaω1xa = (1/δ)
(
R2(t)B21(ω2)−R1(t)B22(ω2)

)
,

ω2xaω2xa = (1/δ)
(
R1(t)B12(ω1)−R2(t)B11(ω1)

)
,

where δ = B11(ω1)B22(ω2)−B12(ω1)B21(ω2) (δ 6= 0 resulting from the condi-
tion (5.3.4)).

Substitution of the above equalities into equation (5.3.37) with subsequent
division by Q 6= 0 yields the following PDE:

iUt + (1/δ)R1(t)
(
B12(ω1)[Uω2ω2 −B02(ω2)U ]−B22(ω2)

×[Uω1ω1 −B01(ω1)U ]
)

+ (1/δ)R2(t)
(
B21(ω2)[Uω1ω1 (5.3.38)

−B01(ω1)U ]−B11(ω1)[Uω2ω2 −B02(ω2)U ]
)

= 0.

Thus, in the new coordinates t, ω1, ω2, U(t, ω1, ω2) equation (5.3.1) takes
the form (5.3.38).

By direct (and very cumbersome) computation one can check that the
following second-order differential operators

X1 = (1/δ)B22(ω2)
(
∂2

ω1
−B01(ω1)

)
− (1/δ)B12(ω1)

(
∂2

ω2
−B02(ω2)

)
,

X2 = −(1/δ)B21(ω2)
(
∂2

ω1
−B01(ω1)

)
+ (1/δ)B11(ω1)

(
∂2

ω2
−B02(ω2)

)

commute under arbitrary B0a, Bab, a, b = 1, 2, i.e.,

[X1, X2] ≡ X1X2 −X2X1 = 0. (5.3.39)

After being rewritten in terms of the operators X1, X2 equation (5.3.38)
reads

(
i∂t −R1(t)X1 −R2(t)X2

)
U = 0.
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Since the relations

[i∂t −R1(t)X1 −R2(t)X2, Xa] = 0, a = 1, 2 (5.3.40)

hold, operators X1, X2 are mutually commuting symmetry operators of equa-
tion (5.3.38). Furthermore, the solution of equation (5.3.38) with separated
variables U = ϕ0(t)ϕ1(ω1)ϕ2(ω2) satisfies the identities

XaU = λaU, a = 1, 2. (5.3.41)

Consequently, if we designate by X ′
1, X ′

2 the operators X1, X2 written in
the initial variables t, ~x, u, then we get from (5.3.39)–(5.3.41) the following
equalities:

[i∂t +4− V (x1, x2), X ′
a] = 0, a = 1, 2,

[X ′
1, X ′

2] = 0, X ′
au = λau, a = 1, 2,

where u = Q(t, ~x)ϕ0(t)ϕ1(ω1)ϕ2(ω2).
This means that each solution with separated variables is a common eigen-

function of two mutually commuting symmetry operators X ′
1, X ′

2 of the Schrö-
dinger equation (5.3.1), separation constants λ1, λ2 being their eigenvalues.

So, we have exposed two possible approaches to variable separation in
linear PDEs which are based on their symmetry properties. The first one is
to start with a set of commuting symmetry operators of the equation under
study and to finish with the Ansatz (5.1.6) [12, 226, 255]. Another approach
suggested for the first time in [169] is closer to the original understanding of
the separation of variables in PDEs. A desired form (5.3.5) of the Ansatz for a
solution with separated variables is postulated and then it turns out that the
solution obtained can be related to a set of mutually-commuting symmetry
operators of the equation under consideration.

Both approaches have their merits and drawbacks. We think that the
utilization of the first approach is the only way to separate variables in multi-
component systems of PDEs. But to separate variables in PDEs with one
dependent variable it is preferable to apply the second approach, since a com-
putation of symmetry operators is an extra step which is not, in fact, necessary
for obtaining solutions with separated variables. Another benefit of the ap-
proach in question is its simplicity, only some basics of the standard university
course of mathematical physics are required for understanding and implement-
ing it.
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One more merit is that the second approach in contrast to the first one can
be easily generalized in order to separate variables in nonlinear PDEs [314].
Using such a generalization we have classified in the paper [300] all nonlinear
d’Alembert equations

ux0x0 − ux1x1 = F (u),

which separate into two first-order ODEs

ϕ̇1 = R1(ϕ1), ϕ̇2 = R1(ϕ2)

by means of the Ansatz

u(x0, x1) = f
(
ϕ1(x0) + ϕ2(x1)

)
.

It turned out that nonlinear d’Alembert equations admitting variable se-
paration in the above sense are equivalent to one of the following PDEs:

2u = λ1

(
coshu + (sinh 2u) arctan eu

)
+ λ2 sinh 2u,

2u = λ1eu + λ2e−2u,

2u = λ1

(
sinhu− (sinh 2u) arctanh eu

)
+ λ2 sinh 2u,

2u = λ1

(
2 sin u + (sin 2u) ln tan(u/2)

)
+ λ2 sin 2u,

2u = λ1u + λ2u ln u,

where 2u = ux0x0 − ux1x1 , λ1, λ2 are arbitrary real constants.
This fact enabled us to construct exact solutions of the above nonlinear

PDEs which could not be found by the symmetry reduction procedure.
Let us also mention anti-reduction of PDEs [161, 162] which is also a ge-

neralization of a traditional notion of separation of variables specially designed
to handle nonlinear PDEs.



C H A P T E R 6

CONDITIONAL SYMMETRY

AND REDUCTION

OF SPINOR EQUATIONS

In this chapter a non-Lie method of reduction of nonlinear Poincaré- and
Galilei-invariant systems of PDEs to differential equations of lower dimen-
sion is suggested. With the use of this method we construct the wide classes
of conditionally-invariant Ansätze reducing nonlinear P (1, 3)- and G(1, 3)-
invariant spinor equations to systems of ODEs.

6.1. Non-Lie reduction of Poincaré-invariant spinor equations

In Section 2.3 we have constructed a number of Ansätze for the spinor field
ψ(x) reducing P (1, 3)-invariant equation

(
iγµ∂µ − f̃1(ψ̄ψ, ψ̄γ4ψ)− f̃2(ψ̄ψ, ψ̄γ4ψ)γ4

)
ψ = 0 (6.1.1)

to systems of ODEs which cannot be obtained within the framework of the
classical Lie approach. Existence of such Ansätze is a consequence of condi-
tional symmetry of equation (6.1.1).

Definition 6.1.1. Equation (6.1.1) is conditionally-invariant under the invo-
lutive set of operators

Qa = ξaµ(x)∂µ + ηa(x), a = 1, . . . , N,

if the system of PDEs

(iγµ∂µ − f̃1 − f̃2γ4)ψ = 0, Qaψ = 0, a = 1, . . . , N (6.1.2)



278 Chapter 6. CONDITIONAL SYMMETRY AND REDUCTION

is invariant in Lie sense with respect to the one-parameter groups generated
by the operators Qa.

Due to Theorem 1.5.1 conditional invariance of PDE (6.1.1) under the
involutive set of operators Qa ensures its reducibility and, consequently, can
be used to construct exact solutions of the (6.1.1).

A usual approach to investigation of conditional symmetry of a given PDE
is application of the infinitesimal Lie method. But the problem is that the
determining equations for functions ξaµ(x), ηa(x) prove to be nonlinear ones.
That is why there is a little hope to describe all conditional symmetries of
multi-dimensional system of PDEs (6.1.1). It should be said that more or
less systematic results on conditional symmetry of PDEs are obtained for two-
dimensional equations only [137].

In the present section we suggest a method making it possible to get both
invariant and conditionally-invariant Ansätze constructed in Sections 2.2, 2.4.
Moreover, applying this method we obtain some essentially new Ansätze for
spinor field ψ = ψ(x) reducing system of PDEs (6.1.1) to systems of ODEs.

1. Reduction of the nonlinear Dirac equation (6.1.1). Analysis of
Ansätze for the spinor field invariant under the one- and three-parameter
subgroups of the Poincaré group shows that all of them have the following
structure:

ψ(x) = exp{θAγA(γ0 + γ3)} exp{(1/2)θ0γ0γ3 + (1/2)θ3γ1γ2}

×
{

ϕ(ω1, ω2, ω3),
ϕ(ω1),

(6.1.3)

where ϕ is an arbitrary four-component function-column; θµ, ωa are some
real-valued scalar functions, the constraint holding

θA = θA(x0 + x3, x1, x2). (6.1.4)

Hereafter the subscripts denoted by Latin alphabet letters A, B take the
values 1, 2 and summation over the repeated indices is understood.

The key idea of the approach suggested can be formulated in a rather sim-
ple and natural way: we impose no a priori constraints on the functions θµ,
ωa, they are obtained from the requirement that substitution of expression
(6.1.3) into (6.1.1) yields a system of PDEs for the function ϕ(~ω) (or a sys-
tem of ODEs for the function ϕ(ω1)) with coefficients depending on the new
variables ω1, ω2, ω3 only.

In the following we describe all Ansätze of the form (6.1.3), (6.1.4) reducing
the system of nonlinear four-dimensional PDEs (6.1.1) to a system of ODEs.
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Substituting the Ansatz

ψ(x) = exp{θAγA(γ0 + γ3)} exp{(1/2)θ0γ0γ3 + (1/2)θ3γ1γ2}ϕ(ω) (6.1.5)

into equation (6.1.1) and multiplying the expression obtained by the matrix

exp{−(1/2)θ0γ0γ3 − (1/2)θ3γ1γ2} exp{−θAγA(γ0 + γ3)}

on the left yield

iR1ϕ + iR2ϕ̇ =
(
f̃1(ϕ̄ϕ, ϕ̄γ4ϕ) + f̃2(ϕ̄ϕ, ϕ̄γ4ϕ)γ4

)
ϕ, (6.1.6)

where R1 = R1(x), R2 = R2(x) are (4 × 4)-matrices determined by the fol-
lowing equalities:

R1 = 2eθ0

(
−∂AθA + γ1γ2(∂1θ2 − ∂2θ1)

)
(γ0 + γ3) +

[
(γ0∂0θ0 + γ3∂3θ0)

×(cosh θ0 + γ0γ3 sinh θ0) + γA

(
∂Aθ0 + 2θA(∂3θ0 − ∂0θ0)

)
(cos θ3

+γ1γ2 sin θ3)− 2eθ0θA(∂Aθ0)(γ0 + γ3)
]
γ0γ3 + 2eθ0θAθA(∂0θ0

−∂3θ0)(γ0 + γ3) +
[
(γ0∂0θ3 + γ3∂3θ3)(cosh θ0 + γ0γ3 sinh θ0)

+γA

(
∂Aθ3 + 2θA(∂3θ3 − ∂0θ3)

)
(cos θ3 + γ1γ2 sin θ3)− 2eθ0θA

×(∂Aθ3)(γ0 + γ3)
]
γ1γ2 + 2eθ0θAθA(∂0θ3 − ∂3θ3)(γ0 + γ3)γ1γ2,

R2 = (γ0∂0ω + γ3∂3ω)(cosh θ0 + γ0γ3 sinh θ0) + γA

(
∂Aω + 2θA(∂3ω

−∂0ω)
)
(cos θ3 + γ1γ2 sin θ3)− 2eθ0θA(∂Aω)(γ0 + γ3)

+2eθ0θAθA(∂0ω − ∂3ω)(γ0 + γ3).

Consequently, Ansatz (6.1.5) reduces equation (6.1.1) to a system of ODEs
iff there exist such (4× 4)-matrices Q1(ω), Q2(ω) that

R1(x) = Q1(ω), R2(x) = Q2(ω). (6.1.7)

Expanding matrices Q1(ω), Q2(ω) in the complete system of the Dirac
matrices and equating coefficients of the matrices I, γµ, Sµν , γ4γµ, γ4 we ob-
tain from (6.1.7) the over-determined system of nonlinear PDEs for functions
θµ, ω

1) (∂0θ0) sinh θ0 + (∂3θ0) cosh θ0 − 2eθ0∂AθA − 2eθ0θA∂Aθ0
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+2eθ0θAθA(∂0θ0 − ∂3θ0) = f1(ω),
2) (∂0θ0) cosh θ0 + (∂3θ0) sinh θ0 − 2eθ0∂AθA − 2eθ0θA∂Aθ0

+2eθ0θAθA(∂0θ0 − ∂3θ0) = f2(ω),

3)
(
∂2θ3 + 2θ2(∂3θ3 − ∂0θ3)

)
cos θ3 −

(
∂1θ3 + 2θ1(∂3θ3

−∂0θ3)
)

sin θ3 = f3(ω),

4)
(
∂1θ3 + 2θ1(∂3θ3 − ∂0θ3)

)
cos θ3 +

(
∂2θ3 + 2θ2(∂3θ3

−∂0θ3)
)

sin θ3 = f4(ω),

5) 2eθ0(∂1θ2 − ∂2θ1) + (∂0θ3) cosh θ0 + (∂3θ3) sinh θ0

+2eθ0θAθA(∂0θ3 − ∂3θ3)− 2eθ0θA∂Aθ3 = f5(ω),
6) 2eθ0(∂1θ2 − ∂2θ1) + (∂0θ3) sinh θ0 + (∂3θ3) cosh θ0

+2eθ0θAθA(∂0θ3 − ∂3θ3)− 2eθ0θA∂Aθ3 = f6(ω),

7)
(
∂1θ0 + 2θ1(∂3θ0 − ∂0θ0)

)
cos θ3 +

(
∂2θ0 + 2θ2(∂3θ0

−∂0θ0)
)

sin θ3 = f7(ω), (6.1.8)

8)
(
∂2θ0 + 2θ2(∂3θ0 − ∂0θ0)

)
cos θ3 −

(
∂1θ0 + 2θ1(∂3θ0

−∂0θ0)
)

sin θ3 = f8(ω),

9) (∂0ω) cosh θ0 + (∂3ω) sinh θ0 − 2eθ0θA∂Aω + 2eθ0

×θAθA(∂0ω − ∂3ω) = f9(ω),
10) (∂3ω) cosh θ0 + (∂0ω) sinh θ0 − 2eθ0ωA∂Aω + 2eθ0

×θAθA(∂0ω − ∂3ω) = f10(ω),

11)
(
∂1ω + 2θ1(∂3ω − ∂0ω)

)
cos θ3 +

(
∂2ω + 2θ2(∂3ω

−∂0ω)
)

sin θ3 = f11(ω),

12)
(
∂2ω + 2θ2(∂3ω − ∂0ω)

)
cos θ3 −

(
∂1ω + 2θ1(∂3ω

−∂0ω)
)

sin θ3 = f12(ω),

where f1(ω), . . . , f12(ω) are arbitrary smooth real-valued functions.
Thus, the problem of construction of Ansätze (6.1.5) reducing the non-

linear Dirac equation (6.1.1) to systems of ODEs is equivalent to the one of
integration of the over-determined system of PDEs (6.1.8). Let us empha-
size that the above system is compatible because Poincaré-invariant Ansätze
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obtained in Section 2.2 are contained in class (6.1.5).
Integration of the system of nonlinear PDEs (6.1.8) is substantially sim-

plified if we utilize an equivalence relation which is introduced below.
First of all, we note that the class of Ansätze (6.1.5) is transformed into

itself if we generate the spinor field (6.1.5) by the 8-parameter transformation
group G8 ⊂ P (1, 3) with the generators Pµ, J12, J03, J01 − J13, J02 − J23.

The above assertion is checked by a direct verification. Take, as an exam-
ple, the one-parameter transformation group having the generator J03. Ap-
plying formula (2.4.43) with a = 3 to (6.1.5) we get

ψ(x) = exp{θ′A(x′)γA(γ0 + γ3)} exp{(1/2)θ′0(x
′)γ0γ3

+(1/2)θ′3(x
′)γ1γ2}ϕ

(
ω′(x′)

)
,

where

x′0 = x0 cosh τ + x3 sinh τ, x′1 = x1,

x′2 = x2, x′3 = x3 cosh τ + x0 sinh τ,

θ′0 = θ0 + τ, θ′1 = θ1e
−τ , θ′2 = θ2e

−τ ,

θ′3 = θ3, ω′ = ω.

Consequently, the group G8 induces in the space of variables x, θµ(x),
ω(x) some transformation group G̃8. It is not difficult to establish that G̃8 is
the invariance group of system of PDEs (6.1.8).

Another transformation leaving the class of Ansätze (6.1.5) invariant is the
following one:

θ0 → θ0 + g0(ω), θ3 → θ3 + g3(ω), ω → g(ω),

θ1 → θ1 + e−θ0

(
g1(ω) cos θ3 − g2(ω) sin θ3

)
, (6.1.9)

θ2 → θ2 + e−θ0

(
g2(ω) cos θ3 + g1(ω) sin θ3

)
.

That is why it is natural to introduce the following equivalence relation
E. We say that solutions of system (6.1.5) θµ(x), ω(x) and θ′µ(x), ω′(x) are
equivalent if they can be transformed one into another by

1) a suitable transformation from the group G̃8, or
2) a suitable transformation of the form (6.1.9).
An easy check shows that E is indeed an equivalence relation. It divides

the set of solutions of the system of PDEs under study into inequivalent classes
which are described by the following assertion.
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Theorem 6.1.1. The general solution of system of PDEs (6.1.8) determined
up to the equivalence relation E is given by one of the following formulae:

1) θ1 = θ2 = 0, θ0 = ln(x0 + x3), θ3 = C ln(x0 + x3), ω = x2
0 − x2

3;

2) θA = −xA

(
2(x0 + x3)

)−1
, θ0 = ln(x0 + x3), θ3 = C ln(x0 + x3),

ω = x2
0 − x2

1 − x2
2 − x2

3;

3) θ1 = 0, θ2 = −x2

(
2(x0 + x3)

)−1
, θ0 = ln(x0 + x3),

θ3 = C ln(x0 + x3), ω = x2
0 − x2

2 − x2
3;

4) θ1 = θ2 = 0, θ0 = 0, θ3 = C1(x0 + x3), ω = x0 − x3

+C2(x0 + x3);
5) θ1 = θ2 = 0, θ0 = Cx1, θ3 = 0, ω = Cx1 + ln(x0 − x3);
6) θA = ∂AW, θ0 = 0, θ3 = (C/2)(x0 − x3 + 4W ), ω = x0 + x3,

W = τ1z
2 + τ2z + τ∗1 z∗2 + τ∗2 z∗ + τ3zz∗,

where z = x1 + ix2 and the functions τj(x) are determined by

one of the formulae a − c given below

a) τ1 = C2

(
64C2

2 (x0 + x3)2 − 1
)−1

eiC1 ,

τ2 = C3 exp

{
16C2

(1/2)(x0 + x3)∫
(256C2

2ξ2 − 1)−1
[
−16C2ξ

+cos
(
2R1(ξ)− C1

)]
dξ + iR1

(
(1/2)(x0 + x3)

)}
,

τ3 = 16C2
2 (x0 + x3)

(
1− 64C2

2 (x0 + x3)2
)−1

,

Ṙ1(ξ) = 16C2(1− 256C2
2ξ2)−1

[
16C2ξ + sin

(
2R1(ξ)− C1

)]
;

b) τ1 =
(
16(x0 + x3)

)−1
eiC1 , (6.1.10)

τ2 = C2 exp

{
(1/2)

(1/2)(x0 + x3)∫ [
cos

(
2R2(ξ)− C1

)
− 1

]
ξ−1dξ

+iR2

(
(1/2)(x0 + x3)

)}
, τ3 = −

(
8(x0 + x3)

)−1
,

2ξṘ2(ξ) + sin
(
2R2(ξ)− C1

)
+ 1 = 0;
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c) τ1 = 0, τ2 = (C1 + iC2)(x0 + x3)−1, τ3 =
(
4(x0 + x3)

)−1
;

7) θA = (1/2)ẇA + C2 arctan(x̃1/x̃2)(x̃2
1 + x̃2

2)
1/2

× exp{−C1 arctan(x̃1/x̃2)}∂A

(
arctan(x̃1/x̃2)

)
,

θ0 = C1 arctan(x̃1/x̃2), θ3 = − arctan(x̃1/x̃2), ω = x̃2
1 + x̃2

2;

8) θA = (1/2)ẇA + (x̃2
1 + x̃2

2)
1/2

(
C1(x0 + x3)−1

× arctan(x̃1/x̃2) + w3

)
∂A

(
arctan(x̃1/x̃2)

)
,

θ0 = ln(x0 + x3), θ3 = − arctan(x̃1/x̃2), ω = x̃2
1 + x̃2

2;

9) θA = x1wA + ∂A

(
U(z, x0 + x3) + U(z∗, x0 + x3)

)
, z = x1 + ix2,

θ0 = θ3 = 0, ω = x0 + x3;

10) θ1 = (x1 sinw2 − x2 cosw2)
[(

(1/2)ẇ1 + Ce−w1

)
sinw2

−(1/2)ẇ2 cosw2

]
+ w4 sinw2 + (1/2)ẇ3 cosw2,

θ2 = (x1 sinw2 − x2 cosw2)
[
−

(
(1/2)ẇ1 + Ce−w1

)
cosw2

−(1/2)ẇ2 sinw2

]
− w4 cosw2 + (1/2)ẇ3 sinw2,

θ0 = w1, θ3 = w2, ω = x1 cosw2 + x2 sinw2 + w3;
11) θA = (1/2)ẇA, θ0 = C(x2 + w2), θ3 = 0, ω = x1 + w1.

In the above formulae x̃A = xA + wA; A = 1, 2; w1, w2, w3, w4 are
arbitrary smooth real-valued functions of x0 + x3; U is an arbitrary analytic
function of z; C, C1, C2, C3 are arbitrary real constants.

Proof. On introducing new independent variables ξ = (1/2)(x0 + x3), η =
(1/2)(x0 − x3) we rewrite system (6.1.8) in the form

1) ∂ηθ0 = f1(ω)eθ0 ,

2) ∂ξθ0 − 4∂AθA − 4θA∂Aθ0 + 4f1(ω)eθ0θAθA = f2(ω)e−θ0 ,

3) ∂1θ3 = 2θ1e
θ0f1(ω) + f4(ω) cos θ3 − f3(ω) sin θ3,

4) ∂2θ3 = 2θ2e
θ0f1(ω) + f3(ω) cos θ3 + f4(ω) sin θ3,

5) ∂ηθ3 = f5(ω)eθ0 ,

6) ∂ξθ3 + 4(∂1θ2 − ∂2θ1) + 4f5(ω)eθ0θAθA − 4θA∂Aθ3

= f6(ω)e−θ0 , (6.1.11)
7) ∂1θ0 = 2θ1f1(ω)eθ0 + f7(ω) cos θ3 − f8(ω) sin θ3,

8) ∂2θ0 = 2θ2f1(ω)eθ0 + f8(ω) cos θ3 + f7(ω) sin θ3,



284 Chapter 6. CONDITIONAL SYMMETRY AND REDUCTION

9) ∂ηω = f9(ω)eθ0 ,

10) ∂ξω − 4θA∂Aω + 4f9(ω)eθ0θAθA = f10(ω)e−θ0 ,

11) ∂1ω = 2θ1f9(ω)eθ0 + f11(ω) cos θ3 − f12(ω) sin θ3,

12) ∂2ω = 2θ2f9(ω)eθ0 + f12(ω) cos θ3 + f11(ω) sin θ3.

Now we see that the above system contains a subsystem of PDEs 1, 5, 9

∂ηθ0 = f1(ω)eθ0 , ∂ηθ3 = f5(ω)eθ0 , ∂ηω = f9(ω)eθ0 ,

which can be considered as a system of ODEs with respect to the variable η.
Transforming θ0, θ3, ω according to (6.1.9) we can put f1f9 = 0. With this
remark the above system is easily integrated. Its general solution determined
up to the equivalence relation E is given by one of the following formulae:

I. under f1 = f5 = f9 = 0,

θ0 = F1, θ3 = F2, ω = F3;
II. under f1 = f5 = 0, f9 6= 0,

θ0 = lnF1, ω = ηF1 + F2, θ3 = F3;
III. under f9 = 0, f1 6= 0,

θ0 = − ln(η + F2), ω = F1, θ3 = f5(F1) ln(η + F2) + F3;
IV. under f1 = f9 = 0, f5 6= 0,

θ0 = − lnF2, θ3 = F−1
2 f5(F1)η + F3, ω = F1,

where F1, F2, F3 are arbitrary smooth real-valued functions of ξ, x1, x2.
Thus, to prove the theorem we have to consider four inequivalent cases

I–IV. We will integrate system of PDEs (6.1.11) in the case f1 = f5 = f9 = 0,
the remaining cases are handled in an analogous way.

When proving the theorem, we will use essentially the following assertion.

Lemma 6.1.1. General solution of system of PDEs

∂1u = A1(u) cos v −A2(u) sin v,

∂2u = A2(u) cos v + A1(u) sin v,

∂1v = B1(u) cos v −B2(u) sin v,

∂2v = B2(u) cos v + B1(u) sin v,

determined up to the equivalence relation

u → h1(u), v → v + h2(u), hi ∈ C1(R1,R1)
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is given by one of the formulae

1) u = (x1 + w1)2 + (x2 + w2)2,

v = arctan
(
(x1 + w1)(x2 + w2)−1

)
;

2) u = x1 cosw2 + x2 sinw2 + w1, v = w2;

3) u = w1, v = w2.

(6.1.12)

Here w1, w2 are arbitrary smooth real-valued functions of ξ.
Proof of the above assertion is carried out with the help of rather simple

but very cumbersome computations, therefore it is omitted.
Substituting θ0 = F1(ξ, x1, x2), θ3 = F2(ξ, x1, x2), ω = F3(ξ, x1, x2) into

system (6.1.11) we have

1) ∂ξF1 − 4∂AθA − 4θA∂AF1 = f2e
−F1 ,

2) ∂1F2 = f4 cosF2 − f3 sinF2,

3) ∂2F2 = f3 cosF2 + f4 sinF2,

4) ∂ξF2 + 4(∂1θ2 − ∂2θ1)− 4θA∂AF2 = f6e
−F1 ,

5) ∂1F1 = f7 cosF2 − f8 sinF2, (6.1.13)
6) ∂2F1 = f8 cosF2 + f7 sinF2,

7) ∂ξF3 − 4θA∂AF3 = f10e
−F1 ,

8) ∂1F3 = f11 cosF2 − f12 sinF2,

9) ∂2F3 = f12 cosF2 + f11 sinF2,

where f2, . . . , f12 are arbitrary smooth real-valued functions of F3.
According to Lemma 6.1.1 a subsystem of equations 2, 3, 8, 9 has three

inequivalent classes of solutions given by formulae (6.1.12).
Case 1. F2 = − arctan

(
(x1 + w1)(x2 + w2)−1

)
, F3 = (x1 + w1)2

+ (x2 + w2)2.
Substitution of the above expressions into the fifth and sixth equations of

system (6.1.13) yields the following system of PDEs for the function F1:

∂1F1 = x̃2f̃7(x̃2
1 + x̃2

2) + x̃1f̃8(x̃2
1 + x̃2

2),

∂2F1 = x̃2f̃8(x̃2
1 + x̃2

2)− x̃1f̃8(x̃2
1 + x̃2

2),
(6.1.14)

where x̃A = xA + wA, A = 1, 2.
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Taking into account the compatibility condition ∂1(∂2F1) = ∂2(∂1F1) we
have ˙̃

f7 = 0 or f̃7 = C1 = const. Hence it follows that up to the equivalence
relation E the general solution of system (6.1.14) can be represented in the
form

F1 = C1 arctan(x̃1/x̃2) + w3(ξ), w3 ∈ C1(R1,R1).

From the seventh equation of system (6.1.13) it follows that functions θ1, θ2

satisfy the equality

x̃A(ẇA − 4θA) = f10(x̃2
1 + x̃2

2) exp{−C1 arctan(x̃1/x̃2)− w3},

whose general solution reads

θA = (1/4)ẇA + W (ξ, x1, x2)∂A

(
arctan(x̃1/x̃2)

)
, A = 1, 2.

Here W is an arbitrary smooth real-valued function.
Substituting the above results into the first and fourth equations of system

(6.1.13) we arrive at the following system of two PDEs for W :

x̃A∂AW = W + α1 exp{−C1 arctan(x̃1/x̃2)− w3},
(x̃2∂1 − x̃1∂2)W = −C1W + (1/4)ẇ3(x̃2

1 + x̃2
2) (6.1.15)

+α2 exp{−C1 arctan(x̃1/x̃2)− w3},

where αA = αA(x̃2
1 + x̃2

2). Integration of system of linear PDEs (6.1.15) yields
two inequivalent classes of solutions

under C1 6= 0

W =
(
C3 + C2 arctan(x̃1/x̃2)

)
(x̃2

1 + x̃2
2)

1/2

× exp{−C1 arctan(x̃1/x̃2)}, w3 = 0;

under C1 = 0

W =
(
w0(ξ) + Cξ−1 arctan(x̃1/x̃2)

)
(x̃2

1 + x̃2
2)

1/2, w3 = ξ.

Here C, C1, C2, C3 are real constants, w0 ∈ C1(R1,R1) is an arbitrary
function.

Substituting the results obtained into the corresponding expressions for
θµ, ω and returning to the initial independent variables xµ we get up to the
equivalence relation E the formulae 8, 9 from (6.1.10).
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Case 2. F2 = w2(ξ), F3 = w3(ξ).
Up to the equivalence relation E we can choose F3 = ξ, F2 = 0. Substi-

tution of these expressions into (6.1.13) gives rise to the following system of
PDEs for F1, θ1, θ2:

1) ∂ξF1 − 4θA∂AF1 − 4∂AθA = f2(ξ)e−F1 ,

2) ∂2θ1 − ∂1θ2 = f6(ξ)e−F1 ,

3) ∂1F1 = f7(ξ), (6.1.16)
4) ∂2F1 = f8(ξ),
5) 1 = f10(ξ)e−F1 .

From the last three equations we conclude that within the equivalence re-
lation F1 = 0. Integrating the remaining equations and returning to the initial
independent variables we obtain within the equivalence relation E formulae 9
from (6.1.10).

Case 3. F2 = w2(ξ), F3 = x1 cosw2(ξ) + x2 sinw2(ξ) + w3(ξ).
Substitution of the above expressions into equations 1, 4–7 from (6.1.13)

gives rise to the over-determined system of PDEs for functions F1, θ1, θ2

1) 4∂AθA = ∂ξF1 − 4θA∂AF1 + f2e
−F1 ,

2) 4(∂2θ1 − ∂1θ2) = ẇ2 + f6e
−F1 ,

3) ∂1F1 = f7 cosw2 − f8 sinw2, (6.1.17)
4) ∂2F1 = f8 cosw2 + f7 sinw2,

5) ẇ2(x2 cosw2 − x1 sinw2) + ẇ3

−4(θ1 cosw2 + θ2 sinw2) = f10e
−F1 ,

where f2, f6, f7, f8, f10 are arbitrary smooth functions of x1 cosw2 +x2 sinw2

+w3.
The necessary and sufficient compatibility condition of a subsystem of

equations 3, 4 reads ∂1(∂2F1) = ∂2(∂1F1), whence it follows that f8 = C1 =
const. Substituting f8 = C1 into equations 3, 4 from (6.1.17) and integrating
the equations obtained we have

F1 = C1(x2 cosw2 − x1 sinw2) + w1(ξ), w1 ∈ C1(R1,R1).

With account of the above formula system (6.1.17) is rewritten in the
following way:

1) ∂AθA = −(1/4)C1ẇ2(x1 cosw2 + x2 sinw2) + (1/4)ẇ1
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+C1(θ1 sinw2 − θ2 cosw2) + f2 exp{−C1(x2 cosw2

−x1 sinw2)− w1},
2) ∂2θ1 − ∂1θ2 = (1/4)ẇ2 + f6 exp{−C1(x2 cosw2 (6.1.18)

−x1 sinw2)− w1},
3) θ1 cosw2 + θ2 sinw2 = (1/4)ẇ2(x2 cosw2 − x1 sinw2)

+(1/4)ẇ3 + f10 exp{−C1(x2 cosw2 − x1 sinw2)− w1}.
Integrating equations (6.1.18) we get up to the equivalence relation E the

formulae 10, 11 from (6.1.10) under C1 = 0 and C1 6= 0, respectively. The
theorem is proved. ¤

Choosing in an appropriate way parameters and arbitrary functions we
can obtain from (6.1.5) and (6.1.10) Ansätze invariant under the P (1, 3) non-
conjugate three-dimensional subalgebras of the algebra AP (1, 3) constructed
in Section 2.2. Hence it follows, in particular, that the classical Lie approach
gives no complete description of Ansätze reducing nonlinear PDE (6.1.1) to
ODEs. Additional possibilities of reduction of equation (6.1.1) are the conse-
quence of its conditional symmetry. To become convinced of this fact we will
construct involutive sets of the first-order differential operators

Qa = ξaµ(x)∂µ + ηa(x), a = 1, 2, 3,

where ξaµ(x) are real-valued scalar functions, ηa(x) are (4× 4)-matrices, such
that Ansätze (6.1.5), (6.1.10) are invariant with respect to these operators.
Then, we will show that the nonlinear Dirac equation (6.1.1) is conditionally-
invariant with respect to so obtained involutive sets of differential operators.

According to Definition 1.5.2 Ansatz (6.1.5) is invariant with respect to
the involutive set of operators Q1, Q2, Q3 if the conditions

Qaψ(x) ≡ Qa

(
A(x)ϕ(ω)

)
= 0, a = 1, 2, 3, (6.1.19)

where A(x) = exp{γAθA(γ0 + γ3)} exp{(1/2)θ0γ0γ3 + (1/2)θ3γ1γ2}, hold with
an arbitrary four-component function ϕ(ω).

Equating coefficients of ϕ(ω) and ϕ̇(ω) in the left-hand side of (6.1.19) to
zero we get

ξaµ(x)∂µω(x) = 0, a = 1, 2, 3, (6.1.20)

ηa(x) = −
(
ξaµ(x)∂µA

)
A−1, a = 1, 2, 3. (6.1.21)

Thus, to obtain the involutive set of operators Oa such that the Ansatz (6.1.5)
is invariant with respect to it we have
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• to solve equations (6.1.20) which should be considered as a system of lin-
ear algebraic equations with respect to ξaµ(x), a = 1, 2, 3, µ = 0, . . . , 3;

• to get explicit expressions for ηa, a = 1, 2, 3 from (6.1.21).

On solving equations (6.1.20), (6.1.21) for each class of functions θµ(x),
ω(x) from (6.1.10) we obtain the following sets of operators Qa:

1) Q1 = ∂1, Q2 = ∂2, Q3 = x0∂3 + x3∂0 − (1/2)γ0γ3 − C
(
x2∂1

−x1∂2 + (1/2)γ1γ2

)
;

2) Q1 = (x0 + x3)∂1 + x1(∂0 − ∂3) + (1/2)γ1(γ0 + γ3),
Q2 = (x0 + x3)∂2 + x2(∂0 − ∂3) + (1/2)γ2(γ0 + γ3),

Q3 = x0∂3 + x3∂0 − (1/2)γ0γ3 − C
(
x2∂1 − x1∂2 + (1/2)γ1γ2

)
;

3) Q1 = ∂1, Q2 = (x0 + x3)∂2 + x2(∂0 − ∂3) + (1/2)γ2(γ0 + γ3),

Q3 = x0∂3 + x3∂0 − (1/2)γ0γ3 − C
(
x2∂1 − x1∂2 + (1/2)γ1γ2

)
;

4) Q1 = ∂1, Q2 = ∂2, Q3 = (1− C2)∂0 + (1 + C2)∂3

−2C1

(
x2∂1 − x1∂2 + (1/2)γ1γ2

)
;

5) Q1 = ∂0 + ∂3, Q2 = ∂2,

Q3 = ∂1 + C
(
x0∂3 + x3∂0 − (1/2)γ0γ3

)
;

6) QA = ∂A − γB(∂B∂AW )(γ0 + γ3)− 2C(∂AW )
(
γ1γ2

+2(γ1∂2W − γ2∂1W )(γ0 + γ3)
)
, A = 1, 2,

Q3 = ∂0 − ∂3 − Cγ1γ2 − 2C(γ1∂2W − γ2∂1W )(γ0 + γ3);
7) Q1 = ∂0 − ∂3, Q2 = x̃1∂2 − x̃2∂1 − (1/2)(γ1γ2 − C1γ0γ3)

+C1(x̃2
1 + x̃2

2)
−1/2 exp {−C1 arctan(x̃1/x̃2)}

×(γ2x̃1 − γ1x̃2)(γ0 + γ3) + (1/2)(γ1ẇ2 − γ2ẇ1) (6.1.22)
×(γ0 + γ3)− (C1/2)γAẇA(γ0 + γ3),

Q3 = ∂0 + ∂3 − 2ẇA∂A − γAẅA(γ0 + γ3);
8) Q1 = ∂0 − ∂3, Q2 = x̃1∂2 − x̃2∂1 − (1/2)γ1γ2 − C1(x̃2

1

+x̃2
2)
−1/2(x0 + x1)−1(x̃1γ2 − x̃2γ1)(γ0 + γ3)

−(1/2)(γ1ẇ2 − γ2ẇ1)(γ0 + γ3),
Q3 = x0∂3 + x3∂0 − (x0 + x3)ẇA∂A − (1/2)γ0γ3

−(1/2)γA

(
ẇA + (x0 + x3)ẅA

)
(γ0 + γ3)− (x̃2

1 + x̃2
2)
−1/2
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×
(
w3 + (x0 + x3)ẇ3

)
(γ1x̃2 − γ2x̃1)(γ0 + γ3);

9) QA = ∂A − γB

[
∂B∂A

(
U(x1 + ix2, x0 + x3)

+U(x1 − ix2, x0 + x3)
)]

(γ0 + γ3) + δA1γBWB

×(γ0 + γ3), A = 1, 2, Q3 = ∂0 − ∂3;
10) Q1 = ∂0 − ∂3, Q2 = (sinw2)∂1 − (cosw2)∂2

−
[
γ1

[(
(1/2)ẇ1 + Ce−w1

)
sinw2 − (1/2)ẇ2

× cosw2

]
− γ2

[(
(1/2)ẇ1 + Ce−w1

)
cosw2

+(1/2)ẇ2 sinw2

]]
(γ0 + γ3), Q3 = ẇ2(x1∂2 − x2∂1)

+ẇ3

(
(cosw2)∂1 + (sinw2)∂2

)
+ (1/2)(∂0 + ∂3)

−(x1 sinw2 − x2 cosw2)
(
(1/2)(ẅ1 + ẇ2

1)(γ1 sinw2

−γ2 cosw2)− (1/2)(ẅ2 + ẇ1ẇ2)(γ1 cosw2 + γ2 sinw2)
)

×(γ0 + γ3)− (ẇ4 + ẇ1w4)(γ1 sinw2 − γ2 cosw2)(γ0 + γ3)
−(1/2)(ẅ3 + ẇ1ẇ3)(γ1 cosw2 + γ2 sinw2)(γ0 + γ3)
−(1/2)ẇ2γ1γ2 − (1/2)ẇ1γ0γ3,

11) Q1 = ∂0 − ∂3, Q2 = ∂2 − (C/2)γ0γ3 − (C/2)γAẇA(γ0 + γ3),
Q3 = −ẇ1∂1 + (1/2)(∂0 + ∂3)− (1/2)γAẅA(γ0 + γ3)
−(C/2)ẇ2γ0γ3 − (C/2)ẇ2γAẇA(γ0 + γ3).

Analyzing the above formulae we come to a conclusion that only the op-
erators 1–5 from (6.1.22) are linear combinations of the generators of the
Poincaré group P (1, 3) (1.1.20). The remaining triplets of operators cannot
be represented as linear combinations of operators (1.1.20). Consequently,
Ansätze 6–11 from (6.1.10) are not invariant with respect to three-parameter
subgroups of the group P (1, 3) and cannot, in principle, be constructed within
the framework of the Lie approach. They correspond to conditional symmetry
of the nonlinear Dirac equation (6.1.1).

Let us consider as an example the eighth triplet of operators Q1, Q2, Q3.
Rather tiresome computations yield the following relations:

Q̃1L = 0,

Q̃2L = −2iC1(x̃2
1 + x̃2

2)
−1/2(x0 + x3)

(
(γ0 + γ3)Q2ψ
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+(γ1x̃2 − γ2x̃1)Q1ψ
)

+ i(γ1ẇ2 − γ2ẇ1)Q1ψ +
(
C1(x̃2

1

+x̃2
2)
−1/2(x0 + x3)−1(x̃1γ2 − x̃2γ1)(γ0 + γ3)

+(1/2)γ1γ2 + (1/2)(γ1ẇ2 − γ2ẇ1)(γ0 + γ3)
)
L, (6.1.23)

Q̃3L = 2i
(
w3 + (x0 + x3)ẇ3

)
(x̃2

1 + x̃2
2)
−1/2

(
(γ0 + γ3)Q2ψ

+(γ1x̃2 − γ2x̃1)Q1ψ
)

+
[
(1/2)γ0γ3 + (1/2)γA

(
ẇA

+(x0 + x3)ẅA

)
(γ0 + γ3) + (x̃2

1 + x̃2
2)
−1/2

(
w3 + (x0 + x3)

×ẇ3

)
(γ1x̃2 − γ2x̃1)(γ0 + γ3)

]
L.

[Q1, Q2] = [Q2, Q3] = 0, [Q3, Q1] = Q1,

In (6.1.23) we designate by the symbol Q̃a the first prolongation of operator
Qa, L = iγµψxµ − f̃1ψ − f̃2γ4ψ.

Thus, the nonlinear Dirac equation (6.1.1) is conditionally-invariant with
respect to the involutive set of operators Q1, Q2, Q3.

Substitution of the Ansätze (6.1.5), (6.1.10) into (6.1.1) gives rise to the
following systems of ODEs for the four-component function ϕ = ϕ(ω):

1) (1/2)(γ0 + γ3)(1 + Cγ1γ2)ϕ +
(
γ0 − γ3 + ω(γ0 + γ3)

)
ϕ̇ = R,

2) (1/2)(γ0 + γ3)(3 + Cγ1γ2)ϕ +
(
γ0 − γ3 + ω(γ0 + γ3)

)
ϕ̇ = R,

3) (1/2)(γ0 + γ3)(2 + Cγ1γ2)ϕ +
(
γ0 − γ3 + ω(γ0 + γ3)

)
ϕ̇ = R,

4) (C1/2)(γ0 + γ3)γ4ϕ +
(
C2(γ0 + γ3) + γ0 − γ3

)
ϕ̇ = R,

5) (1/2)γ2γ4ϕ +
(
Cγ1 + e−ω(γ0 + γ3)

)
ϕ̇ = R,

6) −
(
C(γ0 − γ3)γ4 + 4τ3(ω)(γ0 + γ3) + 8C|τ2(ω)|2

×(γ0 + γ3)γ4

)
ϕ + (γ0 + γ3)ϕ̇ = R,

7) ω−1/2
(
(1/2)γ2 − C2(γ0 + γ3) + (C1/2)γ2γ4

)
ϕ + 2ω1/2γ2ϕ̇ = R,

8) (1/2)
(
(1− 2C1ω

−1/2)(γ0 + γ3) + ω−1/2γ2

)
ϕ + 2ω1/2γ2ϕ̇ = R,

9) (γ0 + γ3)
(
w2(ω)γ4 − w1(ω)

)
ϕ + (γ0 + γ3)ϕ̇ = R,

10) −C(γ0 + γ3)ϕ + γ1ϕ̇ = R,

11) −Cγ1γ4ϕ + γ1ϕ̇ = R,
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where R = −i
(
f̃1(ϕ̄ϕ, ϕ̄γ4ϕ) + f̃2(ϕ̄ϕ, ϕ̄γ4ϕ)γ4

)
ϕ.

It is important to emphasize a very important difference between Poincaré-
invariant Ansätze for the spinor field and conditionally-invariant Ansätze given
in (6.1.10). As it was said above, P (1, 3)-invariant Ansätze for the spinor field
reduce any Poincaré-invariant spinor equation to systems of ODEs, provided
the generators of the Poincaré group have the form (1.1.20). But for Ansätze
(6.1.10) it is not the case. Each specific equation gives rise to a specific system
of PDEs for functions θµ, ω. This means that the approach suggested makes
it possible to take into account a structure of solutions of the equation under
study more precisely than the Lie approach does.

It is worth noting that the formula (6.1.5) can be easily adapted to the
case of a field with an arbitrary spin s. Let us rewrite it in the following way:

ψ(x) = exp{2θA(S0A − SA3)} exp{θ0S03 + θ3S12}ϕ(ω), (6.1.24)

where Sµν = (1/4)(γµγν − γνγµ). Ansatz (6.1.24) can be applied to reduce
any Poincaré-invariant equation (by means of the method described above)
provided it admits the group P (1, 3) with the following generators:

Pµ = ∂µ, Jµν = xµPν − xνPµ + Sµν .

Here Sµν are constant matrices of the corresponding dimension satisfying
the commutation relations of the Lie algebra AO(1, 3).

2. Non-Lie reduction of spinor equations invariant under the ex-
tended Poincaré group. We look for solutions of the nonlinear P̃ (1, 3)-
invariant equations

{
iγµ∂µ − (ψ̄ψ)1/2k

[
g1

(
ψ̄ψ(ψ̄γ4ψ)−1

)
+ g2

(
ψ̄ψ(ψ̄γ4ψ)−1

)
γ4

]}
ψ = 0 (6.1.25)

in the form
ψ(x) = exp{θ0 + γAθA(γ0 + γ3)}ϕ(ω), (6.1.26)

where θ0, θ1, θ2, ω are arbitrary smooth real-valued functions of x0 + x3, x1,
x2; ϕ is an arbitrary complex-valued four-component function.

Substituting the Ansatz (6.1.26) into (6.1.25) and multiplying the expres-
sion obtained by the matrix exp{−θ0 − θAγA(γ0 + γ3)} yield

iR1(x)ϕ + iR2(x)ϕ̇ = (ϕ̄ϕ)1/2k(g1 + g2γ4)ϕ,
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where

gA = gA

(
ϕ̄ϕ(ϕ̄γ4ϕ)−1

)
, A = 1, 2,

R1 = (γ0 + γ3)∂ξθ0 + γA∂Aθ0 + γAγB∂AθB(γ0 + γ3)− 2θA∂Aθ0(γ0 + γ3),
R2 = (γ0 + γ3)(∂ξω − 2θA∂Aω) + γA∂Aω

(as earlier, the notation ξ = x0 + x3 is used).
Consequently, Ansatz (6.1.26) reduces the initial equation (6.1.25) to a

system of ODEs if there exist such (4×4)-matrices G1(ω), G2(ω) that RA(x) =
GA(ω), A = 1, 2. Hence we get the system of nonlinear PDEs for unknown
functions θ0, θ1, θ2, ω

1) (∂ξ − 2θA∂A)θ0 − ∂AθA = f1(ω) exp{θ0k
−1},

2) ∂1θ0 = f2(ω) exp{θ0k
−1},

3) ∂2θ0 = f3(ω) exp{θ0k
−1},

4) ∂2θ1 − ∂1θ2 = f4(ω) exp{θ0k
−1}, (6.1.27)

5) (∂ξ − 2θA∂A)ω = f5(ω) exp{θ0k
−1},

6) ∂1ω = f6(ω) exp{θ0k
−1},

7) ∂2ω = f7(ω) exp{θ0k
−1}.

In (6.1.27) f1, . . . , f7 are arbitrary smooth real-valued functions.
Solutions of the above system of nonlinear PDEs are looked for up to the

equivalence relation E which is introduced in the following way. We say that
the solutions of equations (6.1.27) θ0(x), θA(x), ω(x) and θ′0(x), θ′A(x), ω′(x)
are equivalent if they are transformed one into another by

1) a suitable transformation from the group G̃8, which is induced in the
space of variables x, θ0(x), θA(x), ω(x) by the action of the transformation
group G8 ⊂ P̃ (1, 3) with generators Pµ, J01−J13, J02−J23, J12, D on Ansatz
(6.1.26), or

2) a suitable transformation of the form

ω → h(ω), θ0 → θ0 + h0(ω), θA → θA + hA(ω), (6.1.28)

where {h, h0, h1, h2} ⊂ C1(R1,R1).
Due to the fact that system (6.1.27) is over-determined we have succeeded

in constructing its general solution. Up to the equivalence relation E it is
given by one of the formulae

1) θ0 = k ln w1, θ1 = (2w1)−1(ẇ1x1 + ẇ2),



294 Chapter 6. CONDITIONAL SYMMETRY AND REDUCTION

θ2 = (2w1)−1
(
(2k − 1)ẇ1x2 + w3

)
, ω = w1x1 + w2;

2) θ0 = −k ln(x0 + w1), θA = w3

(
(x1 + w1)2

+(x2 + w2)2
)k−1

(xA + wA) + (1/2)ẇA, A = 1, 2, (6.1.29)

ω = (x1 + w1)(x2 + w2)−1;

3) θ0 = 0, ω = x0 + x3, θA = ∂A

(
U(x1 + ix2, x0 + x3)

+U(x1 − ix2, x0 + x3)
)

+ wAx1, A = 1, 2.

Here w1, w2, w3 are arbitrary smooth real-valued functions of x0 + x3; U
is an arbitrary function analytic in the first variable.

Substitution of Ansätze (6.1.26), (6.1.29) into equation (6.1.25) gives rise
to the following systems of ODEs:

1) iγ1ϕ̇ = R,

2) i(γ2 − ωγ1)ϕ̇ = R,

3) i(γ0 + γ3)ϕ̇ + (γ0 + γ3)(w2γ1γ2 − w1)ϕ = R,

where R = (ϕ̄ϕ)1/2k
[
g1

(
ϕ̄ϕ(ϕ̄γ4ϕ)−1

)
+ γ4g2

(
ϕ̄ϕ(ϕ̄γ4ϕ)−1

)]
ϕ.

Generally speaking, Ansätze (6.1.26), (6.1.29) are not invariant with re-
spect to the three-parameter subgroups of the group P̃ (1, 3) (description of
inequivalent P̃ (1, 3)-invariant Ansätze for the spinor field is given in Section
2.2). In the case involved we deal with reduction via conditionally-invariant
Ansätze. For example, the involutive set of operators Qa corresponding to the
Ansatz 1 from (6.1.29) is of the form

Q1 = (1/2)(∂0 − ∂3), Q2 = w1∂2 + (1/2)(1− 2k)ẇ1γ2(γ0 + γ3),
Q3 = (1/2)w1(∂0 + ∂3)− ẇ1xA∂A − ẇ2∂1 − kẇ1 + (2w1)−1

×(2ẇ2
1 − w1ẅ1)

(
γAxA + 2(k − 1)γ2x2

)
(γ0 + γ3) + (2w1)−1

×
(
(2ẇ1ẇ2 − w1ẅ2)γ1 + (w3ẇ1 − w1ẇ3)γ2

)
(γ0 + γ3).

The above operators satisfy the following relations:

[Q1, Q2] = [Q1, Q3] = 0, [Q2, Q3] = −2w1Q2,

Q̃1L = 0, Q̃2L = A1L + A2Q1ψ + A3Q2ψ,

Q̃3L = B0L + BaQaψ,
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where Q̃a is the first prolongation of operator Qa; L = iγµ∂µψ−(ψ̄ψ)1/2k(g1 +
g2γ4)ψ; Aa, B0, Ba are some variable (4×4)-matrices. Hence it follows that
the nonlinear Dirac equation (6.1.25) is conditionally-invariant with respect
to the involutive set of operators Q1, Q2, Q3.

In conclusion we adduce the two classes of new exact solutions of the
nonlinear spinor equation

(
iγµ∂µ − λ(ψ̄ψ)1/2k

)
ψ = 0

constructed with the use of conditionally-invariant Ansätze (6.1.10), (6.1.29)

ψ(x) = exp
{

γ1(γ0 + γ3)
[
(x1 sinw2 − x2 cosw2)

[(
(1/2)ẇ1

+Ce−w1

)
sinw2 − (1/2)ẇ2 cosw2

]
+ w4 sinw2 + (1/2)ẇ3

× cosw2

]
− γ2(γ0 + γ3)

[
(x1 sinw2 − x2 cosw2)

[(
(1/2)ẇ1

+Ce−w1

)
cosw2 + (1/2)ẇ2 sinw2

]
+ w4 cosw2

−(1/2)ẇ3 sinw2

]}
exp{(1/2)w1γ0γ3 + (1/2)w2γ1γ2}

× exp
{(

iλ(χ̄χ)1/2kγ1 − Cγ1(γ0 + γ3)
)
(x1 cosw2

+x2 sinw2 + w3)
}
χ,

ψ(x) = wk
1 exp

{
(2w1)−1

[
(ẇ1x1 + ẇ2)γ1 +

(
(2k − 1)ẇ1x1 + w3

)
γ2

]

×(γ0 + γ3)
}

exp{iλγ1(χ̄χ)1/2k(w1x1 + w2)}χ.

Here w1, w2, w3, w4 are arbitrary smooth real-valued functions of x0+x3; χ
is an arbitrary four-component constant column.

6.2. Non-Lie reduction of Galilei-invariant spinor equations

Taking into account the classical ideas and methods of symmetry analysis of
differential equations we generalize results obtained in the previous section in
the form of the following non-Lie algorithm of reduction of PDEs:

• the maximal (in Lie sense) invariance group of the equation under study
is found by the Lie method;
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• subgroup analysis of the invariance group is carried out, each subgroup
giving rise to some Ansatz which reduces PDE in question to an equation
having a smaller dimension. As a rule, Ansätze obtained in this way have
a quite definite structure which is determined by the representation of
the symmetry group.

• the general form of the invariant Ansatz is obtained. This Ansatz
includes several scalar functions θ1, . . . , θN satisfying some compatible
over-determined system of nonlinear PDEs (reduction conditions).

• equations for θ1, . . . , θN are integrated.

Let us realize the above algorithm for the following system of nonlinear
spinor PDEs:

{−i(γ0 + γ4)∂t + iγa∂a + m(γ0 − γ4)− F (ψ∗, ψ)}ψ = 0, (6.2.1)

where F is a variable (4× 4)-matrix.
According to Theorem 4.1.5 equation (6.2.1) is invariant under the Galilei

group iff

F = f̃1(ψ̄ψ, ψ†ψ + ψ̄γ4ψ) + f̃2(ψ̄ψ, ψ†ψ + ψ̄γ4ψ)(γ0 + γ4), (6.2.2)

where {f̃1, f̃2} ⊂ C1(R2,C2) are arbitrary functions. In Section 4.2 we have
constructed G(1, 3)-inequivalent Ansätze for the spinor field ψ(t, ~x) invariant
under three-parameter subgroups of the Galilei group. One can become con-
vinced of the fact that these Ansätze have the form

ψ(t, ~x) = exp{iθ0 + γaθa(γ0 + γ4)} exp{θ4γ1γ2}ϕ(ω), (6.2.3)

where θµ, θ4, ω are smooth real-valued functions on t, ~x; ϕ = ϕ(ω) is an
arbitrary complex-valued four-component function.

In the following, we will describe all Ansätze (6.2.3) with θ4 = 0 reducing
the Galilei-invariant equation (6.2.1), (6.2.2) to systems of ODEs.

Substituting (6.2.3) with θ4 = 0 into (6.2.1), (6.2.2) and requiring for the
obtained equation be equivalent to a system of ordinary differential equations
for ϕ(ω) we have

1) ∂2θ3 − ∂3θ2 = f1(ω),
2) ∂3θ1 − ∂1θ3 = f2(ω),
3) ∂1θ2 − ∂2θ1 = f3(ω),
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4) ∂aθa = f4(ω), (6.2.4)
5) (∂t + 2θa∂a)θ0 + 4mθaθa = f5(ω),
6) (∂t + 2θa∂a)ω = f6(ω),
7) ∂aω = f6+a(ω),
8) ∂aθ0 + 4mθa = f9+a(ω).

Here f1, . . . , f12 are arbitrary smooth real-valued functions, a = 1, 2, 3.
As earlier (see Section 6.1), we introduce an equivalence relation E on the

set of solutions of system of PDEs (6.2.4). We say that solutions of equations
(6.2.4) θ0(t, ~x), θa(t, ~x), ω(t, ~x) and θ′0(t, ~x), θ′a(t, ~x), ω′(t, ~x) are equivalent if
they are transformed one into another by

1) a suitable transformation from the group G̃11 which is induced in the
space of the variables t, ~x, θ0(t, ~x), θa(t, ~x), ω(t, ~x) by the action of the Galilei
group G(1, 3) on Ansatz (6.2.3), or

2) a suitable transformation of the form

θ0 → θ0 + h0(ω),
θa → θa + ha(ω),
ω → h(ω),

where {hµ, h} ⊂ C1(R1,R1) are arbitrary functions.

Theorem 6.2.1. General solution of system of PDEs (6.2.4) determined up
to the equivalence relation E is given by one of the following formulae:

I. m = 0
1) ω = x1 + w1(t), θ0 = C3

(
x2 − 2w2(t)

)
+ C4

(
x3 − 2w3(t)

)
+ C5t,

θ1 = −(1/2)ẇ1(t), θ2 = −α(C3x2 + C4x3) + ẇ2(t) + C1x2,

θ3 = α(C3x3 − C4x2) + ẇ3(t) + C2x2, α = (C1C3 + C2C4)
×(C2

3 + C2
4 )−1;

2) ω = x1 + w0(t), θ0 = C3t, θ1 = −(1/2)ẇ0(t),
θ2 = U(x2 + ix3, t) + U(x2 − ix3, t) + C1x2,

θ3 = iU(x2 + ix3, t)− iU(x2 − ix3, t) + C2x2;
3) ω = t, θ0 = xaga(t), θa = εabchb(t)xc + ∂aW + w0(t)xa,

function W = W (t, ~x) being given by one of the relations a − c

a) under g1 = g2 = g3 = 0
∂a∂aW = 0;
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b) under g2 = 0, g3 6= 0

W = g−1
3

(
r1x1x3 + r2x2x3 + r4x3 + (1/2)r3x

2
3 − (1/2)g−1

3 g1r1x
2
3

+(1/2)(g−1
3 g1r1 − r3)x2

2

)
+ U(z, t) + U(z∗, t),

z = (g2
1 + g2

3)
−1/2(g1x3 − g3x1) + ix2;

c) under g2
1 + g2

2 6= 0, g3 6= 0
W = (1/2)g−2

3 r1(2g3x1x3 − g1x
2
3) + (1/2)g−2

3 r2(2g3x2x3

−g2x
2
3) + (1/2)g−1

3 (r3x3 + 2r4x3) + (1/2)g2
3(g

2
1 + g2

2)
−1(r1g1

+r2g2 − r3g3)(g2x1 − g1x2)2 + U(z, t) + U(z∗, t),

z =
(
(g2

1 + g2
2)
−1(g2

2 + g2
3)− g2

1g
2
3(g

2
1 + g2

2)
−2

)1/2
(g2x1 − g1x2)

+i
(
g1g3(g2

1 + g2
2)
−1(g2x1 − g1x2) + g3x2 − g2x3

)
,

where

ra = −
(
gaw0 + εabcgbhc + (1/2)ġa

)
, r4 = g0.

II. m 6= 0
1) ω = x1 + (4m)−1C5t

2 + C7t, θ0 = (2mC7 + C5t)ω
+(C3 − 4mC1)x2 + (C4 − 4mC2)x3 − (12m)−1C2

5 t3 − (1/2)C5C7t
2

+C6t, θ1 = −(4m)−1C5t− (1/2)C7, θ2 = C1, θ3 = C2;
2) ω = t, θ0 = −2mR0xaxa + Raxa − 4m(Tabxaxb + Taxa),

θa = R0xa + 2Tabxb + Ta,

where R0(t), Rb(t), Tbc(t), Tb(t) are real-valued functions satisfying the Ric-
cati-type systems of ODEs

(Ṙ0 + 2R2
0)δab + 2Ṫab + 8TacTbc + 8R0Tab = 0,

Ṙa − 4mṪa − 8mR0Ta − 16mTabTb + 4TabRb + 2R0Ra = 0

and besides
Tab = Tba, T11 + T22 + T33 = 0.

In the above formulae w0, wa, g0, ga, ha are arbitrary smooth real-valued
functions of t; a, b, c = 1, 2, 3; U is an arbitrary function analytic in the
variable z; C1, C2, . . . , C7 are arbitrary constants.

A detailed proof of this assumption can be found in [8, 303].
Substantial extension of the class of Ansätze (6.2.3) reducing nonlinear

PDE (6.2.1), (6.2.2) to systems of ODEs as compared with the class of Lie
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Ansätze (see Section 4.2) is achieved due to the conditional symmetry of equa-
tion (6.2.1).

Computing involutive sets of operators Qa = ξaµ(t, ~x)∂µ + ηa(t, ~x) (∂0 ≡
∂t), a = 1, 2, 3 with the use of formulae (6.1.20), (6.1.21), (4× 4)-matrix A =
A(t, ~x) and scalar function ω(t, ~x) being determined by the formulae I.1–II.2,
we can become convinced of that Ansätze I.2, I.3 correspond to conditional
symmetry of system of PDEs (6.2.1), (6.2.2).

Substitution of the Ansätze obtained above into the initial equation (6.2.1),
(6.2.2) yields systems of ODEs for a four-component function ϕ(ω)

I. 1) iγ1ϕ̇ + i
(
(C2γ1 − C1 − iC5)(γ0 + γ4) + iC3γ2 + iC4γ3

)
ϕ = R,

2) iγ1ϕ̇ + i(C2γ1 − C1 − iC3)(γ0 + γ4)ϕ = R,

3) −i(γ0 + γ4)ϕ̇ + i
(
(2haγa − 3w0 − ig0)(γ0 + γ4)

+igaγa

)
ϕ = R,

II. 1) iγ1ϕ̇ +
(
(C5ω + C6 − 4mC2

1 − 4mC2
2 + mC2

7 + 2C1C3

+2C2C4)(γ0 + γ4)− C3γ2 − C4γ3 + m(γ0 − γ4)
)
ϕ = R,

2) −i(γ0 + γ4)ϕ̇ +
(
−3iR0(γ0 + γ4) + (2RaTa − 4mTaTa)

×(γ0 + γ4)−Raγa + m(γ0 − γ4)
)
ϕ = R,

Here R =
(
f̃1(ϕ̄ϕ, ϕ†ϕ+ ϕ̄γ4ϕ)+ f̃2(ϕ̄ϕ, ϕ†ϕ+ ϕ̄γ4ϕ)(γ0 +γ4)

)
ϕ; w0, wa,

ha, g0, ga, Ta, Ra are functions of ω determined in Theorem 6.2.1; C1, . . . ,
C7 are constants.

A particular or general solution ϕ = ϕ(ω) of one of the above equations
after being substituted into corresponding Ansatz (6.2.3) gives rise to a class
of exact solutions of the initial nonlinear PDE.

As an example, we adduce the class of solutions of system of nonlinear
PDEs (6.2.1), (6.2.2) with m = 0, f̃1 = 0, f̃2 = λ(ψ†ψ + ψ̄γ4ψ)k, λ =
const, k = const constructed with use of the Ansatz I.3

ψ(x) = exp{iλ(χ†χ + χ̄γ4χ)kt + (γ0 + γ4)γa∂aW}χ,

where χ is an arbitrary constant four-component column, W = W (t, ~x) is an
arbitrary solution of the three-dimensional Laplace equation

∆3W = ∂a∂aW = 0.
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The approach to the problem of reduction of G(1, 3)-invariant equations
for the spinor field of the form (6.2.1) suggested above can be generalized for
the case of an arbitrary Galilei-invariant system of PDEs admitting the group
G(1, 3) with generators

P0 = ∂t, Pa = ∂a,

Jab = xb∂a − xa∂b + Sab,

Ga = t∂a + iλxa + ηa,

where λ = const; a, b = 1, 2, 3; Sab, ηa are arbitrary constant matrices satis-
fying the commutation relations of the Lie algebra AE(3). Exact solutions of
such a system are looked for in the form

ψ(t, ~x) = exp{θ0 + θaηa} exp{θ4S12}ϕ(ω),

where {θ0, θ1, θ2, θ3, θ4, ω} ⊂ C1(R4,R1).



C H A P T E R 7

REDUCTION AND EXACT SOLUTIONS

OF SU(2) YANG-MILLS EQUATIONS

In the present chapter a detailed account of symmetry properties of SU(2)
Yang-Mills equations is given. Using a subgroup structure of the Poincaré
and conformal groups we have constructed all C(1, 3)-inequivalent Ansätze
for the Yang-Mills field which are invariant under three-parameter subgroups
of the Poincaré group. With the aid of these Ansätze reduction of Yang-Mills
equations to systems of ordinary differential equations is carried out and wide
families of their exact solutions are obtained. A number of generalizations of
the Lie Ansätze are suggested making it possible to construct broad families
of exact solutions of the Yang-Mills equations containing arbitrary functions.
It is shown that a possibility of such generalizations is provided by nontrivial
conditional symmetry of the Yang-Mills equations.

7.1. Symmetry reduction and exact solutions of the

Yang-Mills equations

1. Introduction. A majority of papers devoted to construction of the explicit
form of exact solutions of the SU(2) Yang-Mills equations (YMEs)

∂ν∂
ν ~Aµ − ∂µ∂ν

~Aν + e
(
(∂ν

~Aν)× ~Aµ − 2(∂ν
~Aµ)× ~Aν

+(∂µ ~Aν)× ~Aν
)

+ e2 ~Aν × ( ~Aν × ~Aµ) = ~0.
(7.1.1)

are based on the Ansätze for the three-component vector-potential of the
Yang-Mills field ~Aµ(x0, x1, x2, x3) (called, for brevity, the Yang-Mills field)
suggested by Wu and Yang, Rosen, ’t Hooft, Corrigan and Fairlie, Wilczek,
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Witten (see [2] and references therein). And what is more, Ansätze mentioned
are obtained in a non-algorithmic way, i.e., there is no regular and systematic
method for constructing these Ansätze.

Since there are only a few distinct exact solutions of YMEs, it is difficult
to give their reliable and self-consistent physical interpretation. That is why
the problem of prime importance is the development of an effective regular
approach for constructing new exact solutions of system of nonlinear PDEs
(7.1.1).

A natural approach to construction of particular solutions of YMEs (7.1.1)
is to utilize their symmetry properties. Apparatus of the theory of Lie transfor-
mation groups makes it possible to reduce system of PDEs (7.1.1) to systems
of ODEs by using invariant Ansätze. If we succeed in constructing its gen-
eral or particular solutions, then substituting the results obtained into the
corresponding Ansätze we obtain exact solutions of YMEs. Let us note that
symmetry reductions of the Euclidean self-dual YMEs (which form the first-
order system of PDEs) by means of the subgroups of the Euclid group E(4)
have been performed in the paper [204]. It is interesting to note that many
integrable two-dimensional PDEs are obtained as symmetry reductions of the
self-dual YMEs (see [47] and references therein).

Another possibility of construction of exact solutions of YMEs is to use
their conditional symmetry. To this end, we apply the same approach which
enables us to obtain broad families of conditionally-invariant Ansätze for the
nonlinear Dirac equation (see Chapter 6).

In the present chapter we exploit both possibilities mentioned above. In the
first section symmetry reduction of system of PDEs (7.1.1) by means of three-
parameter subgroups of the Poincaré group is carried out and a number of its
non-Abelian exact solutions are constructed. The second section is devoted to
investigation of conditional symmetry of YMEs.

2. Symmetry and solution generation for the Yang-Mills equations.
It was known long ago that YMEs are invariant with respect to the group
C(1, 3) ⊗ SU(2), where C(1, 3) is the 15-parameter conformal group having
the following generators:

Pµ = ∂µ,

Jαβ = xα∂β − xβ∂α + Aaα∂Aa
β
−Aaβ∂Aa

α
,

D = xµ∂µ −Aa
µ∂Aa

µ
,

Kµ = 2xµD − xνx
ν∂µ + 2Aaµxν∂Aa

ν
− 2Aa

νx
ν∂Aaµ ,

(7.1.2)
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and SU(2) is the infinite-parameter special unitary group with the following
basis generator:

Q =
(
εabcA

b
µwc(x) + e−1∂µwa(x)

)
∂Aa

µ
. (7.1.3)

In (7.1.2), (7.1.3) ∂Aa
µ
=∂/∂Aa

µ, wc(x) are arbitrary smooth functions, εabc

is the third-order anti-symmetric tensor with ε123 = 1.
But the fact that the group with generators (7.1.2), (7.1.3) is a maximal (in

Lie sense) invariance group admitted by YMEs was established only recently
[251] with the use of a symbolic computation technique. The only explanation
for this situation is a very cumbersome structure of the system of PDEs (7.1.1).
As a consequence, realization of the Lie algorithm of finding the maximal
invariance group admitted by YMEs demands a huge amount of computations.
This difficulty has been overcome with the aid of computer facilities.

One of the remarkable consequences of the fact that the equation under
study admits a nontrivial symmetry group is a possibility of getting new solu-
tions from the known ones by the solution generation technique (see Theorem
2.4.1).

To make use of Theorem 2.4.1 we need formulae for finite transformations
generated by the infinitesimal operators (7.1.2), (7.1.3). We adduce them
following [2, 137].

1) The group of translations (generator X = τµPµ)

x′µ = xµ + τµ, Ad′
µ = Ad

µ.

2) The Lorentz group O(1, 3)

a) the group of rotations (generator X = τJab)

x′0 = 0, x′c = xc, c 6= a, c 6= b,

x′a = xa cos τ + xb sin τ,

x′b = xb cos τ − xa sin τ,

Ad′
0 = Ad

0, Ad′
c = Ad

c , c 6= a, c 6= b,

Ad′
a = Ad

a cos τ + Ad
b sin τ,

Ad′
b = Ad

b cos τ −Ad
a sin τ ;

b) the group of Lorentz transformations (generator X = τJ0a)

x′0 = x0 cosh τ + xa sinh τ,
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x′a = xa cosh τ + x0 sinh τ, x′b = xb, b 6= a,

Ad′
0 = Ad

0 cosh τ + Ad
a sinh τ,

Ad′
a = Ad

a cosh τ + Ad
0 sinh τ, Ad′

b = Ad
b , b 6= a.

3) The group of scale transformations (generator X = τD)

x′µ = xµeτ , Ad′
µ = Ad

µe−τ .

4) The group of special conformal transformations (generator X = τµKµ)

x′µ = (xµ − τµxνx
ν)σ−1(x),

Ad′
µ =

(
gµνσ(x) + 2(xµτν − xντµ + 2ταxατµxν

−xαxατµτν − ταταxµxν

)
Adν .

5) The group of gauge transformations (generator X = Q)

x′µ = xµ,

Ad′
µ = Ad

µ cosw + εdbcA
b
µnc sinw + 2ndnbAb

µ sin2(w/2)

+e−1
(
(1/2)nd∂µw + (1/2)(∂µnd) sin w + εdbc(∂µnb)nc

)
.

In the above formulae σ(x) = 1− ταxα + (τατα)(xβxβ), na = na(x) is the
unit vector determined by the equality wa(x) = w(x)na(x), a = 1, 2, 3.

Using Theorem 2.4.1 it is not difficult to obtain formulae for generating
solutions of YMEs by the above transformation groups. We adduce these
omitting the derivation (see also [134]).

1) The group of translations

Aa
µ(x) = ua

µ(x + τ).

2) The Lorentz group

Ad
µ(x) = aµud

0(a · x, b · x, c · x, d · x) + bµud
1(a · x, b · x, c · x, d · x)

+cµud
2(a · x, b · x, c · x, d · x) + dµud

3(a · x, b · x, c · x, d · x).

3) The group of scale transformations

Ad
µ(x) = eτ ud

µ(xeτ ).
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4) The group of special conformal transformations

Ad
µ(x) =

(
gµνσ

−1(x) + 2σ−2(x)(xντµ − xµτν + 2ταxαxµτν

−xαxατµτν − ταταxµxν)
)
udν

(
[x− τ(xαxα)]σ−1(x)

)
.

5) The group of gauge transformations

Ad
µ(x) = ud

µ cosw + εdbcu
b
µnc sinw + 2ndnbub

µ sin2(w/2)

+e−1
(
(1/2)nd∂µw + (1/2)(∂µnd) sin w + εdbc(∂µnb)nc

)
.

Here ud
µ(x) is a given solution of YMEs; Ad

µ(x) is a new solution of YMEs;
τ, τµ are arbitrary parameters; aµ, bµ, cµ, dµ are arbitrary parameters sat-
isfying the equalities

aµaµ = −bµbµ = −cµcµ = −dµdµ = 1,

aµbµ = aµcµ = aµdµ = bµcµ = bµdµ = cµdµ = 0.

In addition, we use the following notations: x+τ = {xµ+τµ, µ = 0, . . . , 3},
a · x = aµxµ.

Thus, each particular solution of YMEs gives rise to a multi-parameter
family of exact solutions by virtue of the above solution generation formulae.

3. Ansätze for the Yang-Mills field. Let us recall that the key idea of the
symmetry approach to the problem of reduction of PDEs is a special choice of
the form of a solution. This choice is dictated by a structure of the symmetry
group admitted by the equation under study.

In the case involved, to reduce YMEs by N variables we have to construct
Ansätze for the Yang-Mills field Aa

µ(x) invariant under (4 − N)-dimensional
subalgebras of the algebra with the basis elements (7.1.2), (7.1.3). Since we are
looking for Poincaré-invariant Ansätze reducing YMEs to systems of ODEs, N
is equal to 3. Due to invariance of YMEs under the conformal group C(1, 3)
it is enough to consider only subalgebras which cannot be transformed one
into another by a group transformation from C(1, 3), i.e., C(1, 3)-inequivalent
subalgebras. Complete description of C(1, 3)-inequivalent subalgebras of the
Poincaré algebra was obtained in [100].

According to Theorem 1.5.1 to construct an Ansatz invariant under the
invariance algebra having the basis elements

Xa = ξaµ(x,A)∂µ + ηb
aµ(x,A)∂Ab

µ
, a = 1, 2, 3, (7.1.4)

where A = {Aa
µ, a = 1, 2, 3, µ = 0, . . . , 3}, we have
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• to construct a complete system of functionally-independent invariants of
the operators (7.1.4) Ω = {ωj(x,A), j = 1, . . . , 13};

• to resolve the relations

Fj

(
ω1(x,A), . . . , ω13(x,A)

)
= 0, j = 1, . . . , 12 (7.1.5)

with respect to the functions Aa
µ.

As a result, we get an Ansatz for the field Aa
µ(x) which reduces YMEs to

the system of twelve nonlinear ODEs.

Remark 7.1.1. Equalities (7.1.5) can be resolved with respect to Aa
µ, a =

1, 2, 3, µ = 0, . . . , 3 provided the condition

rank ‖ξaµ(x,A)‖3 3
a=1µ=0 = 3 (7.1.6)

holds. If (7.1.6) does not hold, the above procedure leads to partially-invariant
solutions [235], which are not considered here.

In Section 1.5 we have established that a procedure of construction of
invariant Ansätze could be substantially simplified if coefficients of operators
Xa have the structure:

ξaµ = ξaµ(x), ηb
aµ = ρbc

aµν(x)Ac
ν (7.1.7)

(i.e., basis elements of the invariance algebra realize a linear representation).
In this case, the invariant Ansatz for the field Aa

µ(x) is searched for in the form

Aa
µ(x) = Qab

µν(x)Bbν
(
ω(x)

)
. (7.1.8)

Here Bb
ν(ω) are arbitrary smooth functions and ω(x), Qab

µν(x) are particular
solutions of the system of PDEs

ξaµωxµ = 0, (ξaν∂ν − ρbc
aµα)Qcd

αβ = 0, (7.1.9)

where µ = 0, . . . , 3, a, b, d = 1, 2, 3.
The basis elements of the Poincaré algebra Pµ, Jαβ from (7.1.2) evidently

satisfy conditions (7.1.7) and besides the equalities

ηb
aµ = ρaµν(x)Ab

ν , (7.1.10)

hold.
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This fact allows further simplification of formulae (7.1.8), (7.1.9). Namely,
the Ansatz for the Yang-Mills field invariant under a 3-dimensional subalgebra
of the Poincaré algebra with basis elements belonging to the class (7.1.4),
(7.1.10) should be looked for in the form

Aa
µ(x) = Qµν(x)Baν

(
ω(x)

)
, (7.1.11)

where Ba
ν (ω) are arbitrary smooth functions and ω(x), Qµν(x) are particular

solutions of the following system of PDEs:

ξaµωxµ = 0, a = 1, 2, 3, (7.1.12)
ξaα∂αQµν − ρaµαQαν = 0, a = 1, 2, 3, µ, ν = 0, . . . , 3. (7.1.13)

Thus, to obtain the complete description of C(1, 3)-inequivalent Ansätze
for the field Aa

µ(x) invariant under 3-dimensional subalgebras of the Poincaré
algebra, it is necessary to integrate the over-determined system of PDEs
(7.1.12), (7.1.13) for each C(1, 3)-inequivalent subalgebra. Let us note that
compatibility of (7.1.12), (7.1.13) is guaranteed by the fact that operators
X1, X2, X3 form a Lie algebra.

Consider, as an example, a procedure of constructing Ansatz (7.1.11) in-
variant under the subalgebra 〈P1, P2, J03〉. In this case system (7.1.12) reads

ωx1 = 0, ωx2 = 0, x0ωx3 + x3ωx0 = 0,

whence ω = x2
0 − x2

3.
Next, we note that the coefficients ρ1µν , ρ2µν of the operators P1, P2 are

equal to zero, while coefficients ρ3µν form the following (4× 4) matrix

‖ρ3µν‖3
µ,ν=0 =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0




(we designate this constant matrix by the symbol S).
With account of the above fact, equations (7.1.13) take the form

Qx1 = 0, Qx2 = 0, x0Qx3 + x3Qx0 − SQ = 0, (7.1.14)

where Q = ‖Qµν(x)‖3
µ,ν=0 is a (4× 4)-matrix.
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From the first two equations of system (7.1.14) it follows that Q = Q(x0,
x3). Since S is a constant matrix, a solution of the third equation can be
looked for in the form (see Section 2.2)

Q = exp{f(x0, x3)S}.

Substituting this expression into (7.1.14) we get

(x0fx3 + x3fx0 − 1) exp{fS} = 0

or, equivalently,
x0fx3 + x3fx0 = 1,

whence f = ln(x0 + x3).
Consequently, a particular solution of equations (7.1.14) reads

Q = exp{ln(x0 + x3)S}.

Using an evident identity S = S3 we get the equalities:

Q =
∞∑

n=0

Sn

n!

(
ln(x0 + x3)

)n
= I + S

(
ln(x0 + x3) +

1
3!

[ln(x0 + x3)]3

+ . . .

)
+ S2

(
1
2!

[ln(x0 + x3)]2 +
1
4!

[ln(x0 + x3)]4 + . . .

)

= I + S sinh[ln(x0 + x3)] + S2
(
cosh[ln(x0 + x3)]− 1

)
,

where I is the unit (4× 4)-matrix.
Substitution of the obtained expressions for functions ω(x), Qµν(x) into

(7.1.11) yields the Ansatz for the Yang-Mills field Aa
µ(x) invariant under the

algebra 〈P1, P2, J03〉

Aa
0 = Ba

0 (x2
0 − x2

3) cosh ln(x0 + x3) + Ba
3 (x2

0 − x2
3) sinh ln(x0 + x3),

Aa
1 = Ba

1 (x2
0 − x2

3), Aa
2 = Ba

2 (x2
0 − x2

3), (7.1.15)
Aa

3 = Ba
3 (x2

0 − x2
3) cosh ln(x0 + x3) + Ba

0 (x2
0 − x2

3) sinh ln(x0 + x3).

Substituting (7.1.15) into YMEs we get a system of ODEs for functions
Ba

µ. If we succeed in constructing its general or particular solution, then sub-
stituting it into formulae (7.1.15) we get an exact solution of YMEs. But such
a solution will have an unpleasant feature: independent variables xµ will be in-
cluded into it in an asymmetric way. At the same time, in the initial equation
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(7.1.1) all independent variables are on equal rights. To remove this drawback
we have to apply the solution generation procedure by transformations from
the Lorentz group. As a result, we will obtain the Ansatz for the Yang-Mills
field in the manifestly-covariant form with symmetric dependence on xµ.

In the same way, we construct the rest of Ansätze invariant under three-
dimensional subalgebras of the Poincaré algebra. They are represented in the
unified form (7.1.11), where

Qµν(x) = (aµaν − dµdν) cosh θ0 + (dµaν − dνaµ) sinh θ0

+2(aµ + dµ)[(θ1 cos θ3 + θ2 sin θ3)bν + (θ2 cos θ3

−θ1 sin θ3)cν + (θ2
1 + θ2

2)e
−θ0(aν + dν)] + (bµcν (7.1.16)

−bνcµ) sin θ3 − (cµcν + bµbν) cos θ3 − 2e−θ0

×(θ1bµ + θ2cµ)(aν + dν)

and θµ(x), ω(x) are some functions whose explicit form is determined by the
choice of a subalgebra of the Poincaré algebra AP (1, 3).

Below, we adduce a complete list of 3-dimensional C(1, 3)-inequivalent
subalgebras of the Poincaré algebra following [100]

L1 = 〈P0, P1, P2〉; L2 = 〈P1, P2, P3〉;
L3 = 〈P0 + P3, P1, P2〉; L4 = 〈J03 + αJ12, P1, P2〉;
L5 = 〈J03, P0 + P3, P1〉; L6 = 〈J03 + P1, P0, P3〉;
L7 = 〈J03 + P1, P0 + P3, P2〉; L8 = 〈J12 + αJ03, P0, P3〉;
L9 = 〈J12 + P0, P1, P2〉; L10 = 〈J12 + P3, P1, P2〉; (7.1.17)
L11 = 〈J12 + P0 − P3, P1, P2〉; L12 = 〈G1, P0 + P3, P2 + αP1〉;
L13 = 〈G1 + P2, P0 + P3, P1〉; L14 = 〈G1 + P0 − P3, P0 + P3, P2〉;
L15 = 〈G1 + P0 − P3, P0 + P3, P1 + αP2〉; L16 = 〈J12, J03, P0 + P3〉;
L17 = 〈G1 + P2, G2 − P1 + αP2, P0 + P3〉; L18 = 〈J03, G1, P2〉;
L19 = 〈G1, J03, P0 + P3〉; L20 = 〈G1, J03 + P2, P0 + P3〉;
L21 = 〈G1, J03 + P1 + αP2, P0 + P3〉; L22 = 〈G1, G2, J03 + αJ12〉;
L23 = 〈G1, P0 + P3, P1〉; L24 = 〈J12, P1, P2〉;
L25 = 〈J03, P0, P3〉; L26 = 〈J12, J13, J23〉; L27 = 〈J01, J02, J12〉.

Here Gi = J0i − Ji3, i = 1, 2, α ∈ R1.
P (1, 3)-invariant Ansätze for the Yang-Mills field Aa

µ(x) are of the form
(7.1.11), (7.1.16), functions θµ(x), ω(x) being determined by one of the fol-
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lowing formulae:

L1 : θµ = 0, ω = d · x;
L2 : θµ = 0, ω = a · x;
L3 : θµ = 0, ω = k · x;
L4 : θ0 = − ln |k · x|, θ1 = θ2 = 0, θ3 = α ln |k · x|,

ω = (a · x)2 − (d · x)2;
L5 : θ0 = − ln |k · x|, θ1 = θ2 = θ3 = 0, ω = c · x;
L6 : θ0 = −b · x, θ1 = θ2 = θ3 = 0, ω = c · x;
L7 : θ0 = −b · x, θ1 = θ2 = θ3 = 0, ω = b · x− ln |k · x|;
L8 : θ0 = α arctan(b · x/c · x), θ1 = θ2 = 0, θ3 = − arctan(b · x/c · x),

ω = (b · x)2 + (c · x)2;
L9 : θ0 = θ1 = θ2 = 0, θ3 = −a · x, ω = d · x;

L10 : θ0 = θ1 = θ2 = 0, θ3 = d · x, ω = a · x;
L11 : θ0 = θ1 = θ2 = 0, θ3 = −(1/2)k · x, ω = a · x− d · x;
L12 : θ0 = 0, θ1 = (1/2)(b · x− αc · x)(k · x)−1, θ2 = θ3 = 0,

ω = k · x; (7.1.18)
L13 : θ0 = θ2 = θ3 = 0, θ1 = (1/2)c · x, ω = k · x;
L14 : θ0 = θ2 = θ3 = 0, θ1 = −(1/4)k · x, ω = 4b · x + (k · x)2;
L15 : θ0 = θ2 = θ3 = 0, θ1 = −(1/4)k · x, ω = 4(αb · x− c · x)

+α(k · x)2;
L16 : θ0 = − ln |k · x|, θ1 = θ2 = 0, θ3 = − arctan(b · x/c · x),

ω = (b · x)2 + (c · x)2;

L17 : θ0 = θ3 = 0, θ1 = (1/2)
(
c · x + (α + k · x)b · x

)(
1 + k · x

×(α + k · x)
)−1

, θ2 = −(1/2)(b · x− c · xk · x)
(
1 + k · x

×(α + k · x)
)−1

, ω = k · x;

L18 : θ0 = − ln |k · x|, θ1 = (1/2)b · x(k · x)−1, θ2 = θ3 = 0,

ω = (a · x)2 − (b · x)2 − (d · x)2;
L19 : θ0 = − ln |k · x|, θ1 = (1/2)b · x(k · x)−1, θ2 = θ3 = 0, ω = c · x;
L20 : θ0 = − ln |k · x|, θ1 = (1/2)b · x(k · x)−1, θ2 = θ3 = 0,

ω = ln |k · x| − c · x;
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L21 : θ0 = − ln |k · x|, θ1 =
1
2
(b · x− ln |k · x|)(k · x)−1, θ2 = θ3 = 0,

ω = α ln |k · x| − c · x;
L22 : θ0 = − ln |k · x|, θ1 = (1/2)b · x(k · x)−1, θ2 = (1/2)c · x(k · x)−1,

θ3 = α ln |k · x|, ω = (a · x)2 − (b · x)2 − (c · x)2 − (d · x)2.

Here kµ = aµ + dµ, µ = 0, . . . , 3.

Note 7.1.2. Basis elements of subalgebras L23 − L27 do not satisfy (7.1.6).
That is why Ansätze invariant under these subalgebras lead to partially-
invariant solutions and are not considered here.

4. Reduction of the Yang-Mills equations. In order to reduce YMEs to
ODE it is necessary to substitute Ansatz (7.1.11), (7.1.16) into (7.1.1) and
convolute the expression obtained with Qµ

α(x). As a result, we get a system
of twelve nonlinear ODEs for functions Ba

ν (ω) of the form

kµγ
~̈Bγ + lµγ

~̇Bγ + mµγ
~Bγ + egµνγ

~̇Bν × ~Bγ + ehµνγ
~Bν × ~Bγ

+e2 ~Bγ × ( ~Bγ × ~Bµ) = ~0.
(7.1.19)

Coefficients of the reduced ODE are given by the following formulae:

kµγ = gµγF1 −GµGγ ,

lµγ = gµγF2 + 2Sµγ −GµHγ −GµĠγ ,

mµγ = Rµγ −GµḢγ , (7.1.20)
gµνγ = gµγGν + gνγGµ − 2gµνGγ ,

hµνγ = (1/2)(gµγHν − gµνHγ)− Tµνγ ,

where gµν is a metric tensor of the Minkowski space R(1, 3) and F1, F2, Gµ,
. . ., Tµνγ are functions of ω determined by the relations

F1 = ωxµωxµ , F2 = 2ω, Gµ = Qαµωxα , Hµ = Qαµxα ,

Sµν = Qα
µQανxβ

ωxβ , Rµν = Qα
µ2Qαν , (7.1.21)

Tµνγ = Qα
µQανxβ

Qβγ + Qα
ν Qαγxβ

Qβµ + Qα
γ Qαµxβ

Qβν .

Substituting functions Qµν(x) from (7.1.16), where θµ(x), ω(x) are de-
termined by one of the formulae (7.1.18), into (7.1.20), (7.1.21) we obtain
coefficients of the corresponding systems of ODEs (7.1.19)

L1 : kµγ = −gµγ − dµdγ , lµγ = mµγ = 0,
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gµνγ = gµγdν + gνγdµ − 2gµνdγ , hµνγ = 0;
L2 : kµγ = gµγ − aµaγ , lµγ = mµγ = 0,

gµνγ = gµγaν + gνγaµ − 2gµνaγ , hµνγ = 0;
L3 : kµγ = −kµkγ , lµγ = mµγ = 0,

gµνγ = gµγkν + gνγkµ − 2gµνkγ , hµνγ = 0;
L4 : kµγ = 4gµγω − aµaγ(ω + 1)2 − dµdγ(ω − 1)2 − (aµdγ + aγdµ)

×(ω2 − 1), lµγ = 4
(
gµγ + α(bµcγ − cµbγ)

)
− 2kµ(aγ − dγ + kγω),

mµγ = 0, gµνγ = ε
(
gµγ(aν − dν + kνω) + gνγ(aµ − dµ + kµω)

−2gµν(aγ − dγ + kγω)
)
, hµνγ = (ε/2)(gµγkν − gµνkγ) + αε

(
(bµcν

−cµbν)kγ + (bνcγ − cνbγ)kµ + (bγcµ − cγbµ)kν

)
;

L5 : kµγ = −gµγ − cµcγ , lµγ = −εcµkγ , mµγ = 0,

gµνγ = gµγcν + gνγcµ − 2gµνcγ , hµνγ = (ε/2)(gµγkν − gµνkγ);
L6 : kµγ = −gµγ − cµcγ , lµγ = 0, mµγ = −(aµaγ − dµdγ),

gµνγ = gµγcν + gνγcµ − 2gµνcγ , hµνγ = −
(
(aµdν − aνdµ)bγ

+(aνdγ − aγdν)bµ + (aγdµ − aµdγ)bν

)
;

L7 : kµγ = −gµγ − (bµ − εkµeω)(bγ − εkγeω), lµγ = −2(aµdγ − aγdµ)
+εeωkγ(bµ − εkµeω), mµγ = −(aµaγ − dµdγ),
gµνγ = gµγ(bν − εkνeω) + gνγ(bµ − εkµeω)− 2gµν(bγ − εkγeω),

hµνγ = −
(
(aµdν − aνdµ)bγ + (aνdγ − aγdν)bµ + (aγdµ − aµdγ)bν

)
;

L8 : kµγ = −4ω(gµγ + cµcγ), lµγ = −4(gµγ + cµcγ),

mµγ = −ω−1
(
α2(aµaγ − dµdγ) + bµbγ

)
, gµνγ = 2ω1/2(gµγcν

+gνγcµ − 2gµνcγ), hµνγ = (1/2)ω−1/2(gµγcν − gµνcγ) + αω−1/2

×
(
(aµdν − aνdµ)bγ + (aνdγ − dνaγ)bµ + (aγdµ − aµdγ)bν

)
;

L9 : kµγ = −gµγ − dµdγ , lµγ = 0, mµγ = bµbγ + cµcγ ,

gµνγ = gµγdν + gνγdµ − 2gµνdγ , hµνγ = aγ(bµcν − cµbν)
+aµ(bνcγ − cνbγ) + aν(bγcµ − cγbµ);

L10 : kµγ = gµγ − aµaγ , lµγ = 0, mµγ = −(bµbγ + cµcγ),

gµνγ = gµγaν + gνγaµ − 2gµνaγ , hµνγ = −
(
dγ(bµcν − cµbν)
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+dµ(bνcγ − cνbγ) + dν(bγcµ − cγbµ)
)
;

L11 : kµγ = −(aµ − dµ)(aγ − dγ), lµγ = −2(bµcγ − cµbγ), mµγ = 0,

gµνγ = gµγ(aν − dν) + gνγ(aµ − dµ)− 2gµν(aγ − dγ), hµνγ =

= (1/2)
(
kγ(bµcν − cµbν) + kµ(bνcγ − cνbγ) + kν(bγcµ − cγbµ)

)
;

L12 : kµγ = −kµkγ , lµγ = −ω−1kµkγ , mµγ = −α2ω−2kµkγ ,

gµνγ = gµγkν + gνγkµ − 2gµνkγ , hµνγ = (1/2)ω−1(gµγkν − gµνkγ)

+αω−1
(
(kµbν − kνbµ)cγ + (kνbγ − kγbν)cµ + (kγbµ − kµbγ)cν

)
;

L13 : kµγ = −kµkγ , lµγ = 0, mµγ = −kµkγ ,

gµνγ = gµγkν + gνγkµ − 2gµνkγ , hµνγ = −
(
(kµbν − kνbµ)cγ

+(kνbγ − kγbν)cµ + (kγbµ − kµbγ)cν

)
;

L14 : kµγ = −16(gµγ + bµbγ), lµγ = mµγ = hµνγ = 0, (7.1.22)
gµνγ = 4(gµγbν + gνγbµ − 2gµνbγ);

L15 : kµγ = −16
(
(1 + α2)gµγ + (cµ − αbµ)(cγ − αbγ)

)
,

lµγ = mµγ = hµνγ = 0, gµνγ = −4
(
gµγ(cν − αbν)

+gνγ(cµ − αbµ)− 2gµν(cγ − αbγ)
)
;

L16 : kµγ = −4ω(gµγ + cµcγ), lµγ = −4(gµγ + cµcγ)− 2εω1/2kγcµ,

mµγ = −ω−1bµbγ , gµνγ = 2ω1/2(gµγcν + gνγcµ − 2gµνcγ),

hµνγ = (1/2)
(
ε(gµγkν − gµνkγ) + ω−1/2(gµγcν − gµνcγ)

)
;

L17 : kµγ = −kµkγ , lµγ = −(2ω + α)
(
ω(ω + α) + 1

)
kµkγ ,

mµγ = −4kµkγ

(
1 + ω(ω + α)

)−2
, gµνγ = gµγkν + gνγkµ − 2gµνkγ ,

hµνγ = (1/2)(2ω + α)
(
1 + ω(ω + α)

)−1
(gµγkν − gµνkγ)

−2
(
1 + ω(ω + α)

)−1(
(kµbν − kνbµ)cγ + (kνbγ − kγbν)cµ

+(kγbµ − kµbγ)cν

)
;

L18 : kµγ = 4ωgµγ − (kµω + aµ − dµ)(kγω + aγ − dγ), lµγ = 6gµγ

+4(aµdγ − aγdµ)− 3kγ(kµω + aµ − dµ), mµγ = −kµkγ ,

gµνγ = ε
(
gµγ(kνω + aν − dν) + gνγ(kµω + aµ − dµ)
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−2gµν(kγω + aγ − dγ)
)
, hµνγ = ε(gµγkν − gµνkγ);

L19 : kµγ = −gµγ − cµcγ , lµγ = 2εkγcµ, mµγ = −kµkγ ,

gµνγ = gµγcν + gνγcµ − 2gµνcγ , hµνγ = ε(gµγkν − gµνkγ);
L20 : kµγ = −gµγ − (cµ − εkµ)(cγ − εkγ), lµγ = 2εkγcµ − 2kµkγ ,

mµγ = −kµkγ , gµνγ = gµγ(εkν − cν) + gνγ(εkµ − cµ)
−2gµν(εkγ − cγ), hµνγ = ε(gµγkν − gµνkγ);

L21 : kµγ = −gµγ − (cµ − αεkµ)(cγ − αεkγ), lµγ = 2(εkγcµ − αkµkγ),
mµγ = −kµkγ , gµνγ = −gµγ(cν − αεkν)− gνγ(cµ − αεkµ)
+2gµν(cγ − αεkγ), hµνγ = ε(gµγkν − gµνkγ);

L22 : kµγ = 4ωgµγ − (aµ − dµ + kµω)(aγ − dγ + kγω),

lµγ = 4
(
2gµγ + α(bµcγ − cµbγ)− aµaγ + dµdγ − ωkµkγ

)
,

mµγ = −2kµkγ , gµνγ = ε
(
gµγ(aν − dν + kνω) + gνγ(aµ − dµ

+kµω)− 2gµν(aγ − dγ + kγω)
)
, hµνγ = (3ε/2)(gµγkν − gµνkγ)

−εα
(
kγ(bµcν − cµbν) + kµ(bνcγ − cνbγ) + kν(bγcµ − cγbµ)

)
;

where ε = 1 for a · x + d · x > 0 and ε = −1 for a · x + d · x < 0.

5. Exact solutions of the Yang-Mills equations. When applying the
symmetry reduction procedure to the nonlinear Dirac equation, we succeeded
in constructing general solutions for most of the reduced systems of ODEs.
In the case considered we are not so lucky. Nevertheless, we obtain some
particular solutions of equations (7.1.19), (7.1.20), (7.1.22).

The principal idea of our approach to integration of systems of ODEs
(7.1.19), (7.1.20), (7.1.22) is rather simple and quite natural. It is reduction
of these systems by the number of components with the aid of ad hoc substi-
tutions. Using this trick we have constructed particular solutions of equations
1, 2, 5, 8, 14, 15, 16, 18, 19, 20, 21, 22 (α = 0). Below we adduce substitutions
for ~Bµ(ω) and corresponding equations.

(1) ~Bµ = aµ~e1f(ω) + bµ~e2g(ω) + cµ~e3h(ω),
f̈ − e2(g2 + h2)f = 0, g̈ + e2(f2 − h2)g = 0,

ḧ + e2(f2 − g2)h = 0.

(2) ~Bµ = bµ~e1f(ω) + cµ~e2g(ω) + dµ~e3h(ω),
f̈ + e2(g2 + h2)f = 0, g̈ + e2(f2 + h2)g = 0,
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ḧ + e2(f2 + g2)h = 0.

(5) ~Bµ = kµ~e1f(ω) + bµ~e2g(ω),
f̈ − e2g2f = 0, g̈ = 0.

(8.1) (under α = 0) ~Bµ = kµ~e1f(ω) + bµ~e2g(ω),
4ωf̈ + 4ḟ − e2g2f = 0, 4ωg̈ + 4ġ − ω−1g = 0.

(8.2) ~Bµ = aµ~e1f(ω) + dµ~e2g(ω) + bµ~e3h(ω),

4ωf̈ + 4ḟ − α2ω−1f − 2αeω−1/2gh + e2(h2 + g2)f = 0,

4ωg̈ + 4ġ + α2ω−1g + 2αeω−1/2fh + e2(f2 − h2)g = 0,

4ωḧ + 4ḣ− ω−1h + 2αeω−1/2fg + e2(f2 − g2)h = 0.

(14.1) ~Bµ = aµ~e1f(ω) + dµ~e2g(ω) + cµ~e3h(ω),
16f̈ − e2(h2 + g2)f = 0, 16g̈ + e2(f2 − h2)g = 0,

16ḧ + e2(f2 − g2)h = 0.

(14.2) ~Bµ = kµ~e1f(ω) + cµ~e2g(ω), (7.1.23)
16f̈ − e2g2f = 0, g̈ = 0.

(15.1) ~Bµ = aµ~e1f(ω) + dµ~e2g(ω) + (1 + α2)−1/2(αcµ + bµ)~e3h(ω),
16(1 + α2)f̈ − e2(h2 + g2)f = 0,

16(1 + α2)g̈ + e2(f2 − h2)g = 0,

16(1 + α2)ḧ + e2(f2 − g2)h = 0.

(15.2) ~Bµ = kµ~e1f(ω) + (1 + α2)−1/2(αcµ + bµ)~e2g(ω),
16(1 + α2)f̈ − e2fg2 = 0, g̈ = 0.

(16) ~Bµ = kµ~e1f(ω) + bµ~e2g(ω),
4ωf̈ + 4ḟ − e2g2f = 0, 4ωg̈ + 4ġ − ω−1g = 0.

(18) ~Bµ = bµ~e1f(ω) + cµ~e2g(ω),
4ωf̈ + 6ḟ + e2g2f = 0, 4ωg̈ + 6ġ + e2f2g = 0.

(19) ~Bµ = kµ~e1f(ω) + bµ~e2g(ω),
f̈ − e2g2f = 0, g̈ = 0.

(20) ~Bµ = kµ~e1f(ω) + bµ~e2g(ω),
f̈ − e2g2f = 0, g̈ = 0.

(21) ~Bµ = kµ~e1f(ω) + bµ~e2g(ω),
f̈ − e2g2f = 0, g̈ = 0.

(22) (under α = 0) ~Bµ = bµ~e1f(ω) + cµ~e2g(ω),
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4ωf̈ + 8ḟ + e2g2f = 0, 4ωg̈ + 8ġ + e2f2g = 0.

In the above formulae we use the notations ~e1 = (1, 0, 0), ~e2 = (0, 1, 0),
~e3 = (0, 0, 1).

Thus, combining symmetry reduction by the number of independent vari-
ables and reduction by the number of dependent variables we reduce YMEs
to rather simple ODEs.

Next, we will briefly consider a procedure of integration of systems of
nonlinear ODEs (7.1.23).

Substitution f = 0, g = h = u(ω) reduces the system of ODEs 1 from
(7.1.23) to the equation

ü = e2u3, (7.1.24)

which is integrated in elliptic functions [26, 197]. In addition, ODE (7.1.24)
has a solution which is expressed in terms of elementary functions u =

√
2(eω−

C)−1, C ∈ R1.
ODE 2 with f = g = h = u(ω) reduces to the form ü + 2e2u3 = 0. This

equation is also integrated in elliptic functions [26, 197].
Integrating the second equation of system of ODEs 5 we get g = C1ω +

C2, Ci ∈ R1. If C1 6= 0, then the constant C2 can be neglected, and we may
put C2 = 0. Provided C1 6= 0, the first equation from system 5 reads

f̈ − e2C2
1ω2f = 0. (7.1.25)

The general solution of ODE (7.1.25) is given by the formula

f(ω) = ω1/2Z1/4

(
(ieC1/2)ω2

)
.

Hereafter, we use the notation Zν(ω) = C3Jν(ω) + C4Yν(ω), where Jν , Yν

are Bessel functions, C3, C4 are arbitrary real constants.
In the case C1 = 0, C2 6= 0 the general solution of the first equation from

system 5 reads f = C3 coshC2eω + C4 sinhC2eω, where C3, C4 are arbitrary
real constants.

At last, provided C1 = C2 = 0, the general solution of the first equation
from system 5 has the form f = C3ω + C4, {C3, C4} ⊂ R1.

The general solution of the second ODE from system 8.1 is of the form
g = C1ω

1/2 + C2ω
−1/2, where C1, C2 are arbitrary real constants.

Substituting the expression obtained into the first equation we get

4ω2f̈ + 4ωḟ − e2(C1ω + C2)2f = 0. (7.1.26)
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We cannot solve ODE (7.1.26) with C1C2 6= 0. In the remaining cases its
general solution reads

a) C1 6= 0, C2 = 0
f = Z0

(
(ieC1/2)ω

)
,

b) C1 = 0, C2 6= 0
f = C3ω

eC2/2 + C4ω
−eC2/2,

c) C1 = 0, C2 = 0
f = C3 ln ω + C4.

Here C3, C4 are arbitrary real constants.
We did not succeed in obtaining particular solutions of the system 8.2.

Equations 14.1 coincide with equations 1, if we replace e by e/4. Similarly,
equations 14.2 coincide with equations 5, if we change e by e/4. Next, equa-
tions 15.1 coincide with equations 1 and equations 15.2 with equations 5, if
we replace e by (e/4)(1 + α2)−1/2.

System of ODEs 16 coincides with the system 8.1 and systems 19, 20, 21
with the system 5. We did not succeed in integrating equations 18.

At last, the system 22 (under α = 0) with the substitution f = g = u(ω)
reduces to the form

ωü + 2u̇ + (e2/4)u3 = 0. (7.1.27)

ODE (7.1.27) is the Emden-Fowler equation which is integrated in terms
of elliptic functions (see, e.g. [197]). It has two classes of particular solutions
which are expressed in terms of elementary functions

u = e−1ω−1/2, u = 2
√

2C1e
−1(ω + C1)−1, C1 ∈ R1.

Substituting the results obtained into the corresponding formulae from
(7.1.23) and then into the Ansatz (7.1.16), we get exact solutions of the non-
linear YMEs (7.1.1). Let us note that solutions of the systems of ODEs 5, 8.1,
14.2, 15.2, 16, 19, 20, 21 satisfying the condition g = 0 give rise to Abelian
solutions of YMEs. We do not adduce these and present non-Abelian solutions
of YMEs only.

1) ~Aµ = (~e2bµ + ~e3cµ)
√

2(ed · x− λ)−1;

2) ~Aµ = (~e2bµ + ~e3cµ)λ sn [(e
√

2/2)λd · x] dn [(e
√

2/2)λd · x]

×
(
cn [(e

√
2/2)λd · x]

)−1
;
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3) ~Aµ = (~e2bµ + ~e3cµ)λ
(
cn (eλd · x)

)−1
;

4) ~Aµ = (~e1bµ + ~e2cµ + ~e3dµ)λ cn (e
√

2λa · x);

5) ~Aµ = ~e1kµ|k · x|−1(c · x)1/2Z1/4

(
(ieλ/2)(c · x)2

)
+ ~e2bµλc · x;

6) ~Aµ = ~e1kµ|k · x|−1
(
λ1 cosh(eλc · x) + λ2 sinh(eλc · x)

)
+ ~e2bµλ;

7) ~Aµ = ~e1kµZ0

(
(ieλ/2)[(b · x)2 + (c · x)2]

)
+ ~e2(bµc · x− cµb · x)λ;

8) ~Aµ = ~e1kµ

(
λ1[(b · x)2 + (c · x)2]eλ/2 + λ2[(b · x)2 + (c · x)2]−eλ/2

)

+~e2(bµc · x− cµb · x)λ[(b · x)2 + (c · x)2]−1;

9) ~Aµ =
{
~e2

(
(1/8)[dµ − kµ(k · x)2] + (1/2)bµk · x

)
+ ~e3cµ

}
λ

×sn
(
(eλ

√
2/8)[4b · x + (k · x)2]

)
dn

(
(eλ

√
2/8)[4b · x + (k · x)2]

)

×
{
cn

(
(eλ

√
2/8)[4b · x + (k · x)2]

)}−1
;

10) ~Aµ =
{
~e2

(
(1/8)[dµ − kµ(k · x)2] + (1/2)bµk · x

)
+ ~e3cµ

}
λ

×
{
cn

(
(eλ/4)[4b · x + (k · x)2]

)}−1
;

11) ~Aµ =
{
~e2

(
(1/8)[dµ − kµ(k · x)2] + (1/2)bµk · x

)
+ ~e3cµ

}
4
√

2

×
(
e[4b · x + (k · x)2]− λ

)−1
;

12) ~Aµ = ~e1kµ[4b · x + (k · x)2]1/2Z1/4

(
(ieλ/8)[4b · x + (k · x)2]2

)

+~e2cµλ[4b · x + (k · x)2];

13) ~Aµ = ~e1kµ

{
λ1 cosh

(
(eλ/4)[4b · x + (k · x)2]

)
+λ2 sinh

(
(eλ/4)[4b · x

+(k · x)2]
)}

+ ~e2cµλ;

14) ~Aµ =
(
~e2[dµ − (1/8)kµ(k · x)2 − (1/2)bµk · x] + ~e3[αcµ + bµ

+(1/2)kµk · x](1 + α2)−1/2
}
λ sn

(
(eλ

√
2/8)[4(αb · x− c · x)

+α(k · x)2](1 + α2)−1/2
)

dn
(
(eλ

√
2/8)[4(αb · x− c · x) + α(k · x)2]

×(1 + α2)−1/2
){

cn
(
(eλ

√
2/8)[4(αb · x− c · x) + α(k · x)2]

×(1 + α2)−1/2
)}−1

;

15) ~Aµ =
(
~e2[dµ − (1/8)kµ(k · x)2 − (1/2)bµk · x] + ~e3[αcµ + bµ
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+(1/2)kµk · x](1 + α2)−1/2
){

cn
(
(eλ/4)[4(αb · x− c · x) + α(k · x)2]

×(1 + α2)−1/2
)}−1

;

16) ~Aµ =
(
~e2[dµ − (1/8)kµ(k · x)2 − (1/2)bµk · x] + ~e3[αcµ + bµ

+(1/2)kµk · x](1 + α2)−1/2
)
4
√

2(1 + α2)1/2
(
e[4(αb · x− c · x)

+α(k · x)2]
)−1

; (7.1.28)

17) ~Aµ = ~e1kµ

{
[4(αb · x− c · x) + α(k · x)2]1/2Z1/4

(
(ieλ/8)[4(αb · x

−c · x) + α(k · x)2]2(1 + α2)−1/2
)}

+ ~e2[αcµ + bµ + (1/2)kµk · x]λ

×[4(αb · x− c · x) + α(k · x)2](1 + α2)−1/2;

18) ~Aµ = ~e1kµ

{
λ1 cosh

(
(eλ/4)(1 + α2)−1/2[4(αb · x− c · x) + α(k · x)2]

)

+λ2 sinh
(
(eλ/4)(1 + α2)−1/2[4(αb · x− c · x) + α(k · x)2]

)}
+ ~e2[αcµ

+bµ + (1/2)kµk · x]λ(1 + α2)−1/2;

19) ~Aµ = ~e1kµ|k · x|−1Z0

(
(ieλ/2)[(b · x)2 + (c · x)2]

)
+ ~e2(bµc · x

−cµb · x)λ;

20) ~Aµ = ~e1kµ|k · x|−1
(
λ1[(b · x)2 + (c · x)2]eλ/2 + λ2[(b · x)2

+(c · x)2]−eλ/2
)

+ ~e2(bµc · x− cµb · x)λ[(b · x)2 + (c · x)2]−1;

21) ~Aµ = ~e1kµ|k · x|−1(c · x)1/2Z1/4[(ieλ/2)(c · x)2] + ~e2[bµ

−kµb · x(k · x)−1]λc · x;

22) ~Aµ = ~e1kµ|k · x|−1
(
λ1 cosh(λec · x) + λ2 sinh(λec · x)

)

+~e2[bµ − kµb · x(k · x)−1]λ;

23) ~Aµ = ~e1kµ|k · x|−1(ln |k · x| − c · x)1/2Z1/4[(ieλ/2)(ln |k · x| − c · x)2]

+~e2[bµ − kµb · x(k · x)−1]λ(ln |k · x| − c · x);

24) ~Aµ = ~e1kµ|k · x|−1
(
λ1 cosh[λe(ln |k · x| − c · x)] + λ2 sinh[λe(ln |k · x|

−c · x)]
)

+ ~e2[bµ − kµb · x(k · x)−1]λ;

25) ~Aµ = ~e1kµ|k · x|−1(α ln |k · x| − c · x)1/2Z1/4[(ieλ/2)(α ln |k · x|
−c · x)2] + ~e2[bµ − kµ(b · x− ln |k · x|)(k · x)−1]λ(α ln |k · x| − c · x);

26) ~Aµ = ~e1kµ|k · x|−1
(
λ1 cosh[λe(α ln |k · x| − c · x)] + λ2 sinh[λe
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×(α ln |k · x| − c · x))
)

+ ~e2[bµ − kµ(b · x− ln |k · x|)(k · x)−1]λ;

27) ~Aµ =
(
~e1[bµ − kµb · x(k · x)−1] + ~e2[cµ − kµc · x(k · x)−1]

)
e−1

×
{

(x · x)−1/2,
2
√

2λ(x · x + λ)−1;

28) ~Aµ =
(
~e1[bµ − kµb · x(k · x)−1] + ~e2[cµ − kµc · x(k · x)−1]

)
f(x · x),

ωf̈ + 2ḟ + (e2f3/4) = 0.

In the above formulae Zα(ω) is the Bessel function; sn, dn, cn are Jacobi
elliptic functions having the modulus

√
2/2; λ, λ1, λ2 = const.

Let us note that the solutions N 27 are nothing more but the meron and
the instanton solutions of YMEs [2]. In the Euclidean space the meron and
instanton solutions were obtained by Alfaro, Fubini, Furlan [68] and Belavin,
Polyakov, Schwartz, Tyupkin [29] with the use of the Ansatz suggested by ’t
Hooft [278], Corrigan and Fairlie [60] and Wilczek [285].

Another important point is that we can obtain new exact solutions of
YMEs by applying to solutions (7.1.28) the solution generation technique. We
do not adduce the corresponding formulae because of their awkwardness.

6. Some generalizations. It was noticed in [157, 158] that group-invariant
solutions of nonlinear PDEs could provide us with rather general information
about the structure of solutions of the equation under study. Using this fact,
we constructed in [157, 158, 160] a number of new exact solutions of the non-
linear Dirac equation which could not be obtained by the symmetry reduction
procedure (see also Sections 6.1 and 7.2). We will demonstrate that the same
idea proves to be efficient for constructing new solutions of YMEs.

Solutions of YMEs numbered by 7, 8, 19, 20 can be represented in the
following unified form:

~Aµ = kµ
~B(k · x, c · x) + bµ

~C(k · x, c · x). (7.1.29)

Substituting the Ansatz (7.1.29) into YMEs and splitting the equality ob-
tained with respect to linearly independent four-vectors with components kµ,
bµ, cµ, we get

1) ~Cω1ω1 = ~0,

2) ~C × ~Cω1 = ~0, (7.1.30)
3) ~Bω1ω1 + e ~Cω0 × ~C + e2 ~C × (~C × ~B) = ~0.
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Here we use the notations ω0 = k · x, ω1 = c · x.
The general solution of the first two equations from (7.1.30) is given by

one of the formulae

I. ~C = ~f(ω0),

II. ~C =
(
ω1 + v0(ω0)

)
~f(ω0),

where v0, ~f are arbitrary smooth functions.
Consider the case ~C = ~f(ω0). Substituting this expression into the third

equation from (7.1.30) we have

~Bω1ω1 + e~fω0 × ~f + e2 ~f(~f ~B)− e2 ~f 2 ~B = ~0. (7.1.31)

Since equations (7.1.31) do not contain derivatives of ~B with respect to
ω0, they can be considered as a system of ODEs with respect to the variable
ω1. Multiplying (7.1.31) by ~f we arrive at the relation ( ~B ~f )ω1ω1 = 0, whence

~B ~f = v1(ω0)ω1 + v2(ω0). (7.1.32)

In (7.1.32) v1, v2 are arbitrary sufficiently smooth functions.
With account of (7.1.32) system (7.1.31) reads

~Bω1ω1 − e2 ~f 2 ~B = e~f × ~fω0 − e2(v1ω1 + v2)~f.

The above linear system of ODEs is easily integrated. Its general solution
is given by the formula

~B = ~g(ω0) cosh e|~f |ω1 + ~h(ω0) sinh e|~f |ω1 + e−1|~f |−2 ~fω0 × ~f

×|~f |−2(v1ω1 + v2)~f,
(7.1.33)

where ~g, ~h are arbitrary smooth functions.
Substituting (7.1.33) into (7.1.32) we get the following restrictions on the

choice of the functions ~g, ~h:

~f ~g = 0, ~f ~h = 0. (7.1.34)

Thus, provided ~Cω1 = 0, the general solution of the system of ODEs
(7.1.31) is given by formulae (7.1.33), (7.1.34). Substituting (7.1.33) into
the initial Ansatz (7.1.29) we obtain the following family of exact solutions
of YMEs:

~Aµ = kµ

{
~g cosh e|~f |c · x + ~h sinh e|~f |c · x + e−1|~f |−2 ~̇f × ~f

+(v1c · x + v2)~f
}

+ bµ
~f,
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where ~f, ~g, ~h, v1, v2 are arbitrary smooth functions of k ·x satisfying (7.1.34),
an overdot denotes differentiation with respect to ω0 = k · x.

The case ~C = [ω1 + v0(ω0)]~f(ω0) is treated in a similar way. As a result,
we obtain the following family of exact solutions of YMEs:

~Aµ = kµ

{
(c · x + v0)1/2

(
~gJ1/4[(ie/2)|~f |(c · x + v0)2]

+~hY1/4[(ie/2)|~f |(c · x + v0)2]
)

+ (v1c · x + v2)~f

+e−1|~f |−2 ~̇f × ~f
}

+ bµ(c · x + v0)~f,

where ~f, ~g, ~h, v0, v1, v2 are arbitrary smooth functions of k · x satisfying
(7.1.34), J1/4(ω), Y1/4(ω) are the Bessel functions.

Another effective Ansatz for the Yang-Mills field is obtained if we replace
c · x in (7.1.29) by b · x

~Aµ = kµ
~B(k · x, b · x) + bµ

~C(k · x, b · x). (7.1.35)

Substitution of (7.1.35) into YMEs yields the following system of PDEs
for ~B, ~C:

~Bω1ω1− ~Cω0ω1−e( ~B× ~Cω1 +2 ~Bω1× ~C+ ~C× ~Cω0)+e2 ~C×(~C× ~B) = ~0. (7.1.36)

We have succeeded in integrating system (7.1.36), provided ~C = ~f(ω0).
Substituting the result obtained into (7.1.35), we come to the following family
of exact solutions of YMEs:

~Aµ = kµ

{
(~g + b · x|~f |−1~g × ~f ) cos(e|~f |b · x) + (~h + b · x|~f |−1~h× ~f )

× sin(e|~f |b · x) + e−1|~f |−2 ~̇f × ~f + (v1b · x + v2)~f
}

+ bµ
~f,

where ~f, ~g, ~h, v1, v2 are arbitrary smooth functions of k · x.
In addition, we have constructed the following class of exact solutions of

YMEs:

~Aµ = kµ~e1vu2(b · x) + bµ~e2u(b · x),

where ~e1 = (1, 0, 0), ~e2 = (0, 1, 0); v is an arbitrary smooth function of k · x;
u(b · x) is a solution of the nonlinear ODE ü = e2u5, which is integrated in
elliptic functions.
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In conclusion of this section we will obtain a generalization of the plane-
wave Coleman solution [54]

~Aµ = kµ

(
~f(k · x)b · x + ~g(k · x)c · x

)
. (7.1.37)

It is not difficult to verify that (7.1.37) satisfy YMEs with arbitrary ~f, ~g.
Evidently, solution (7.1.37) is a particular case of the Ansatz

~Aµ = kµ
~B(k · x, b · x, c · x). (7.1.38)

Substituting (7.1.38) into YMEs we get

~Bω1ω1 + ~Bω2ω2 = ~0, (7.1.39)

where ω1 = b · x, ω2 = c · x.
Integrating the Laplace equations (7.1.39) and substituting the result ob-

tained into (7.1.38) we have

~Aµ = kµ

(
~U(k · x, b · x + ic · x) + ~U(k · x, b · x− ic · x)

)
.

Here ~U(k ·x, z) is an arbitrary analytical with respect to z function. Choo-
sing ~U = (1/2)[~f(k · x) − i~g(k · x)]z we get the Coleman’s solution (7.1.37).

7.2. Non-Lie reduction of the Yang-Mills equations

In the present section we will obtain conditionally-invariant Ansätze for the
Yang-Mills field ~Aµ(x) utilizing the idea which enables us to construct non-Lie
(conditionally-invariant) Ansätze for the spinor field ψ(x). This idea proves to
be fruitful for obtaining new reductions and constructing new exact solutions
of the SU(2) Yang-Mills equations (7.1.1) as compared with those found by
means of the symmetry reduction of YMEs.

1. Reduction of YMEs. We are looking for a solution of YMEs of the
form (7.1.11), (7.1.16) without imposing a priori conditions on the functions
ω(x), θµ(x). They should be determined from the requirement that substi-
tution of the Ansatz (7.1.11) into system of PDEs (7.1.1) yields a system of
ordinary differential equations for a vector function ~Bµ(ω).
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By direct check one can become convinced of that the following assertion
holds true.

Lemma 7.2.1. Ansatz (7.1.11), (7.1.16) reduces YMEs (7.1.1) to a system
of ODEs iff the functions ω(x), θµ(x) satisfy the system of PDEs

1) ωxµωxµ = F1(ω),
2) 2ω = F2(ω),
3) Qαµωxα = Gµ(ω),
4) Qαµxα = Hµ(ω), (7.2.1)
5) Qα

µQανxβ
ωxβ = Rµν(ω),

6) Qα
µ2Qαν = Sµν(ω),

7) Qα
µQανxβ

Qβγ + Qα
ν Qαγxβ

Qβµ + Qα
γ Qαµxβ

Qβν = Tµνγ(ω),

where F1, F2, Gµ, . . . , Tµνγ are some smooth functions, µ, ν, γ = 0, . . . , 3.
And what is more, a reduced equation has the form

kµγ
~̈Bγ + lµγ

~̇Bγ + mµγ
~Bγ + eqµνγ

~̇Bν × ~Bγ + ehµνγ
~Bν × ~Bγ

+e2 ~Bγ × ( ~Bγ × ~Bµ) = ~0,
(7.2.2)

where

kµγ = gµγF1 −GµGγ ,

lµγ = gµγF2 + 2Rµγ −GµHγ −GµĠγ ,

mµγ = Sµγ −GµḢγ , (7.2.3)
qµνγ = gµγGν + gνγGµ − 2gµνGγ ,

hµνγ = (1/2)(gµγHν − gµνHγ)− Tµνγ .

Thus, to describe all Ansätze of the form (7.1.11) reducing YMEs to
a system of ODEs we have to construct the general solution of the over-
determined system of PDEs (7.1.16), (7.2.1). Let us emphasize that system
(7.1.16), (7.2.1) is compatible since Ansätze for the Yang-Mills field ~Yµ(x)
invariant under the P (1, 3) non-conjugate subgroups of the Poincaré group
satisfy equations (7.1.16), (7.2.1) with some specific choice of the functions
F1, F2, . . . , Tµνγ .

Computations needed to integrate system of nonlinear PDEs (7.1.16),
(7.2.1) are rather involved. In addition, they have much in common with
those performed to obtain conditionally-invariant Ansätze for the spinor field
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(Theorem 6.1.1). That is why we present here only a principal idea of our
approach to solving the system (7.1.16), (7.2.1). When integrating it we use
essentially the fact that the general solution of system of equations 1, 2 from
(7.2.1) is known (see Section 2.1). With already known ω(x) we proceed to
integration of linear PDEs 3, 4 from (7.2.1). Next, we substitute the results
obtained into the remaining equations and thus get the final form of the func-
tions ω(x), θµ(x).

Before adducing the results of integration of system of PDEs (7.1.16),
(7.2.1) we make a remark. As a direct check shows, the structure of the
Ansatz (7.1.11), (7.1.16) is not altered by the change of variables

ω → ω′ = T (ω), θ0 → θ′0 = θ0 + T0(ω),

θ1 → θ′1 = θ1 + eθ0

(
T1(ω) cos θ3 + T2(ω) sin θ3

)
,

θ2 → θ′2 = θ2 + eθ0

(
T2(ω) cos θ3 − T1(ω) sin θ3

)
,

θ3 → θ′3 = θ3 + T3(ω),

(7.2.4)

where T (ω), Tµ(ω) are arbitrary smooth functions. That is why solutions of
system (7.1.16), (7.2.1) connected by the relations (7.2.4) are considered as
equivalent.

It occurs that the new (non-Lie) Ansätze are obtained only when the func-
tions ω(x), θµ(x) up to the equivalence relations (7.2.4) have the form

θµ = θµ(ξ, b · x, c · x),

ω = ω(ξ, b · x, c · x),
(7.2.5)

where ξ = (1/2)k · x, kν = aν + dν , µ, ν = 0, . . . , 3.
A list of inequivalent solutions of system of PDEs (7.1.16), (7.2.1) belonging

to the class (7.2.5) is exhausted by the following solutions:

1) θ0 = θ3 = 0, ω = (1/2)k · x, θ1 = w0(ξ)b · x + w1(ξ)c · x,

θ2 = w2(ξ)b · x + w3(ξ)c · x;

2) ω = b · x + w1(ξ), θ0 = α
(
c · x + w2(ξ)

)
,

θa = −(1/4)ẇa(ξ), a = 1, 2, θ3 = 0, (7.2.6)

3) θ0 = T (ξ), θ3 = w1(ξ), ω = b · x cosw1 + c · x sinw1 + w2(ξ),

θ1 =
(
(1/4)(εeT + Ṫ )(b · x sinw1 − c · x cosw1) + w3(ξ)

)
sinw1
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+(1/4)
(
ẇ1(b · x sinw1 − c · x cosw1)− ẇ2

)
cosw1,

θ2 = −
(
(1/4)(εeT + Ṫ )(b · x sinw1 − c · x cosw1) + w3(ξ)

)
cosw1

+(1/4)
(
ẇ1(b · x sinw1 − c · x cosw1)− ẇ2

)
sinw1;

4) θ0 = 0, θ3 = arctan
(
[c · x + w2(ξ)][b · x + w1(ξ)]−1

)
,

θa = −(1/4)ẇa(ξ), a = 1, 2,

ω =
(
[b · x + w1(ξ)]2 + [c · x + w2(ξ)]2

)1/2
.

Here α 6= 0 is an arbitrary constant, ε = ±1, w0, w1, w2, w3 are arbitrary
smooth functions of ξ = (1/2)k · x, T = T (ξ) is a solution of the nonlinear
ODE

(Ṫ + εeT )2 + ẇ2
1 = κe2T , κ ∈ R1. (7.2.7)

Substitution of the Ansatz (7.1.11), where Qµν(x) are given by formulae
(7.1.16), (7.2.6), into YMEs yields systems of nonlinear ODEs of the form
(7.2.2), where

1) kµγ = −(1/4)kµkγ , lµγ = −(w0 + w3)kµkγ ,

mµγ = −4 (w2
0 + w2

1 + w2
2 + w2

3)kµkγ − (ẇ0 + ẇ3)kµkγ ,

qµνγ = (1/2)(gµγkν + gνγkµ − 2gµνkγ),

hµνγ = (w0 + w3)(gµγkν − gµνkγ) + 2(w1 − w2)
(
(kµbν − kνbµ) cγ

+(bµcν − bνcµ)kγ + (cµkν − cνkµ)bγ

)
;

2) kµγ = −gµγ − bµbγ , lµγ = 0, mµγ = −α2(aµaγ − dµdγ),
qµνγ = gµγbν + gνγbµ − 2gµνbγ ,

hµνγ = α
(
(aµdν − aνdµ)cγ + (dµcν − dνcµ)aγ + (cµaν − cνaµ)dγ

)
;

3) kµγ = −gµγ − bµbγ , lµγ = −(ε/2)bµkγ , (7.2.8)
mµγ = −(κ/4)kµkγ , qµνγ = gµγbν + gνγbµ − 2gµνbγ ,

hµνγ = (ε/4)(gµγkν − gµνkγ);

4) kµγ = −gµγ − bµbγ , lµγ = −ω−1(gµγ + bµbγ),
mµγ = −ω−2cµcγ , qµνγ = gµγbν + gνγbµ − 2gµνbγ ,

hµνγ = (1/2)ω−1(gµγbν − gµνbγ).



7.2. Non-Lie reduction of the Yang-Mills equations 327

2. Exact solutions of the Yang-Mills equations. Systems (7.2.2), (7.2.8)
are systems of twelve nonlinear second-order ODEs with variable coefficients.
That is why there is a little hope to construct their general solutions. But it is
possible to obtain particular solutions of system (7.2.2) with coefficients given
by formulae 2–4 from (7.2.8).

Consider, as an example, system of ODEs (7.2.2) with coefficients given
by the formulae 2 from (7.2.8). We look for its solutions in the form

~Bµ = kµ~e1f(ω) + bµ~e2g(ω), fg 6= 0, (7.2.9)

where ~e1 = (1, 0, 0), ~e2 = (0, 1, 0).
Substituting the expression (7.2.9) into the above mentioned system we

get
f̈ + (α2 − e2g2)f = 0, f ġ + 2ḟg = 0. (7.2.10)

The second ODE from (7.2.10) is easily integrated

g = λf−2, λ ∈ R1, λ 6= 0. (7.2.11)

Substitution of the result obtained into the first ODE from (7.2.10) yields
the Ermakov-type equation for f(ω)

f̈ + α2f − e2λ2f−3 = 0,

which is integrated in elementary functions [197]

f =
(
α−2C2 + α−2(C4 − α2e2λ2)1/2 sin 2|α|ω

)1/2
. (7.2.12)

Here C 6= 0 is an arbitrary constant.
Substituting (7.2.9), (7.2.11), (7.2.12) into the corresponding Ansatz for

~Aµ(x) we get the following class of exact solutions of YMEs (7.1.1):

~Aµ = ~e1kµ exp (−αc · x− αw2)
(
α−2C2 + α−2(C4 − α2e2λ2)1/2

× sin 2|α|(b · x + w1)
)1/2

+ ~e2λ
(
α−2C2 + α−2(C4 − α2e2λ2)1/2

× sin 2|α|(b · x + w1)
)−1

(bµ + (1/2)kµẇ1

)
.

In a similar way we have obtained five other classes of the exact solutions
of the Yang-Mills equations

~Aµ = ~e1kµe−T (b · x cosw1 + c · x sinw1 + w2)1/2Z1/4

(
(ieλ/2)(b · x cosw1
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+c · x sinw1 + w2)2
)

+ ~e2λ (b · x cosw1 + c · x sinw1 + w2)

×
(
cµ cosw1 − bµ sinw1 + 2kµ[(1/4)(εeT + Ṫ )(b · x sinw1

−c · x cosw1) + w3]
)
;

~Aµ = ~e1kµe−T
(
C1 cosh[eλ(b · x cosw1 + c · x sinw1 + w2)] + C2 sinh[eλ

×(b · x cosw1 + c · x sinw1 + w2)]
)

+ ~e2λ
(
cµ cosw1 − bµ sinw1

+2kµ[(1/4)(εeT + Ṫ )(b · x sinw1 − c · x cosw1) + w3]
)
;

~Aµ = ~e1kµe−T
(
C2(b · x cosw1 + c · x sinw1 + w2)2 + λ2e2C−2

)1/2

+~e2λ
(
C2(b · x cosw1 + c · x sinw1 + w2)2 + λ2e2C−2

)−1

×
(
bµ cosw1 + cµ sinw1 − (1/2)kµ[ẇ1(b · x sinw1

−c · x cosw1)− ẇ2]
)
;

~Aµ = ~e1kµZ0

(
(ieλ/2)[(b · x + w1)2 + (c · x + w2)2]

)
+ ~e2λ

(
cµ(b · x + w1)

−bµ(c · x + w2)− (1/2)kµ[ẇ1(c · x + w2)− ẇ2(b · x + w1)]
)
;

~Aµ = ~e1kµ

(
C1[(b · x + w1)2 + (c · x + w2)2]eλ/2 + C2[(b · x + w1)2

+(c · x + w2)2]−eλ/2
)

+ ~e2λ[(b · x + w1)2 + (c · x + w2)2]−1

×
(
cµ(b · x + w1)− bµ(c · x + w2)− (1/2)kµ[ẇ1(c · x + w2)

−ẇ2(b · x + w1)]
)
.

Here C1, C2, C 6= 0, λ are arbitrary parameters; w1, w2, w3 are arbitrary
smooth functions of ξ = (1/2)k ·x, T = T (ξ) is a solution of ODE (7.2.7) and

Zs(ω) = C1Js(ω) + C2Ys(ω),
~e1 = (1, 0, 0), ~e2 = (0, 1, 0),

where Js, Ys are Bessel functions.
Thus, we have obtained broad families of exact non-Abelian solutions of

YMEs (7.1.1).
In conclusion of the section we will say a few words about the symmetry

interpretation of the Ansätze (7.1.11), (7.1.16), (7.2.6). Let us consider as an
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example the Ansatz determined by the formulae 1 from (7.2.6). As a direct
computation shows, the generators of a three-parameter Lie group leaving it
invariant are of the form

Q1 = kα∂α,

Q2 = bα∂α − 2

{
[w0(kµbν − kνbµ) + w2(kµcν − kνcµ)]

3∑

a=1

Aaν

}
∂Aaµ ,

Q3 = cα∂α − 2

{
[w1(kµbν − kνbµ) + w3(kµcν − kνcµ)]

3∑

a=1

Aaν

}
∂Aaµ .

Evidently, system of PDEs (7.1.1) is invariant under the one-parameter
group having the generator Q1. But it is not invariant under the groups
having the generators Q2, Q3. At the same time, the system of PDEs

∂ν∂
ν ~Aµ − ∂µ∂ν

~Aν + e
(
(∂ν

~Aν)× ~Aµ − 2(∂ν
~Aµ)× ~Aν

+(∂µ ~Aν)× ~Aν
)

+ e2 ~Aν × ( ~Aν × ~Aµ) = ~0,

Q0
~Aµ ≡ kα∂α

~Aµ = ~0,

Q1
~Aµ ≡ bα∂α

~Aµ + 2
(
w0(kµbν − kνbµ) + w2(kµcν − kνcµ)

)
~Aν = ~0,

Q2
~Aµ ≡ cα∂α

~Aµ + 2
(
w1(kµbν − kνbµ) + w3(kµcν − kνcµ)

)
~Aν = ~0

is invariant under the above mentioned group. Consequently, YMEs (7.1.1)
are conditionally-invariant under the Lie algebra 〈Q1, Q2, Q3〉. It means that
solutions of YMEs obtained with the help of Ansatz invariant under the group
with generators Q1, Q2, Q3 cannot be found by means of the classical sym-
metry reduction procedure.

As rather tedious computations show, the Ansätze determined by the for-
mulae 2–4 from (7.2.6) also correspond to conditional symmetry of YMEs.
Hence it follows, in particular, that YMEs should be included into the long
list of mathematical and theoretical physics equations possessing nontrivial
conditional symmetry [97].
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A P P E N D I X 1

THE POINCARÉ GROUP

AND ITS REPRESENTATIONS

The Poincaré group P (1, 3) is a group of linear transformations of the
Minkowski space R(1, 3) preserving the quadratic form s(x) = x2

0−x2
1−x2

2−x2
3.

We say that there is a representation of the group P (1, 3) in some linear space
H if the homomorphism of this group g → Tg into the set of linear operators on
H is determined, i.e., the product of the group corresponds to the product of
operators Tg1g2 = Tg1Tg2 and the unit element of the group P (1, 3) corresponds
to the identical transformation of the space H. If the representation space H
is infinite-dimensional, then it is assumed that the domain of definition of
operators Tg, ∀ g ∈ P (1, 3) is dense in H.

A representation is called irreducible if H contains no subspace invariant
with respect to operators Tg, ∀ g ∈ P (1, 3).

Irreducible representations of the Poincaré group were described by Wigner
as early as 1939. It is known that the problem of description of representations
of the Lie group G can be reduced to description of representations of its
Lie algebra AG. An abstract definition of the algebra AP (1, 3) is given by
commutation relations for the basis elements Pµ, Jαβ

[Pµ, Pν ] = 0, [Pµ, Jαβ] = i(gµαPν − gµβPµ),

[Jµν , Jαβ] = i(gµβJνα + gναJµβ − gνβJµα − gµαJνβ).
(A.1.1)

A homomorphism x → T (x) of the algebra AP (1, 3) into the set of linear
operators determined in some linear space H

ax + by → aT (x) + bT (y),
[x, y] → [T (x), T (y)] = T (x)T (y)− T (y)T (x), (A.1.2)
{x, y} ⊂ AP (1, 3), {a, b} ⊂ C1
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is called a representation of the Poincaré algebra AP (1, 3).
Wigner’s results were supplemented by Shirokov [258] who was the first to

construct an explicit form of the basis elements of the algebra AP (1, 3) for all
classes of irreducible representations. In many successive papers representa-
tions of this algebra in various bases were found (see, for example, [28]).

We adduce the formulae giving a complete description of irreducible repre-
sentations of the Poincaré algebra in the class of Hermitian operators following
[115, 116, 118].

According to the Schur’s lemma classification of irreducible representations
of the Lie algebra L is reduced to construction of the complete set of opera-
tors commuting with all basis elements x ∈ L (such operators are called the
Casimir operators of the algebra L) and to computation of the spectrum of
their eigenvalues. Furthermore, each set of eigenvalues of all Casimir operators
corresponds to the one and only one irreducible representation [19].

Theorem A.1.1[118]. An arbitrary Hermitian representation of the Poincaré
algebra AP (1, 3) can be realized by the following operators:

P0 = p0, Pa = pa,

~J = ~x× ~p + λ0
(~n + ~p )

(1 + ~n ~p )
, (A.1.3)

~N = −p0~x +
~λ× ~p

p2
− (λ0p0p− ~λ ~p )

(~p× ~n )
(p + ~n ~p )

,

where ~J = (J1, J2, J3), ~N = (N1, N2, N3), Ja = (1/2)εabcJbc, Na = J0a,
a = 1, 2, 3, p0, pa are real variables connected by the relation p0 = ε(C1 +
papa)1/2, ε = ±1, C1 is an arbitrary real number, xa = i∂/∂pa, a = 1, 2, 3,
p = (papa)1/2; λ0, λ1, λ2, λ3 are matrices satisfying the commutation rela-
tions

[λ0, λa] = iεabcnbλc,

[λa, λb] = iC1εabcncλ0

(A.1.4)

and ~n = (n1, n2, n3) is an arbitrary unit vector.
The algebra (A.1.4) has two Casimir operators

I1 = λ2
0C1 + λ2

1 + λ2
2 + λ2

3, I2 = exp{2iπλ0}.

To obtain the explicit forms of matrices λµ realizing an irreducible repre-
sentation of algebra (A.1.4) we choose the basis which consists of the complete
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set of eigenvectors of the commuting operators I1, I2 and λ0. On designating
these vectors by the symbol |C1, C2, λ〉 we have

λ0|C1, C2, λ〉 = λ|C1, C2, λ〉,
(λ1 ± iλ2)|C1, C2, λ〉 = (1/2)(1 + n3)

(
C2 − C1λ(λ± 1)

)1/2

×|C1, C2, λ± 1〉+ (n2 ∓ n1)2
(
2(1 + n3)

)−1
(A.1.5)

×
(
C2 − C1λ(λ∓ 1)

)1/2|C1, C2, λ∓ 1〉,
λ3|C1, C2, λ〉 = −(λ1 + λ2)|C1, C2, λ〉.

If the representation is irreducible, then the parameters C1, C2 take the
fixed values from the intervals enumerated below in formulae (A.1.6)

1) C1 = m2 > 0, C2 = C1s(s + 1), λ = −s, −s + 1, . . . , s;
2) C1 = C2 = 0, λ = λ̃;
3) C1 = 0, C2 = η2 > 0,

λ = 0, ±1, ±2, . . . or λ = ±1/2, ±3/2, . . . ;
4) C1 = −η2 < 0, C2 = −αη2, −∞ < α < −1/4, (A.1.6)

λ = ±1/2, ±3/2, . . . or λ = 0, ±1, ±2, . . . ;
C1 = −η2 < 0, 0 < C2 < (1/4)η2, λ = 0,±1,±2, . . . ;
C1 = −η2 < 0, C2 = −l(l + 1)η2, λ = l + 1, l + 2, . . . ;
C1 = −η2 < 0, C2 = −l(l + 1)η2, λ = −l − 1, −l − 2, . . . ,

where s > 0 and λ̃ are arbitrary integer or half-integer numbers, l is a positive
integer or half-integer number satisfying the condition −(1/2) ≤ l < +∞
whose values in the irreducible representation are fixed.

Formulae (A.1.3)–(A.1.6) give all possible (up to the equivalence relation)
irreducible Hermitian representations of the commutation relations (A.1.1)
provided not all Pµ vanish. If Pµ = 0, µ = 0, . . . , 3, then algebra (1.1.31)
is isomorphic to the Lie algebra of the Lorentz group O(1, 3). The theory of
representations of the algebra AO(1, 3) is expounded with exhaustive com-
pleteness in [174].

Among all possible representations of the Poincaré algebra a specific role
is played by so-called covariant representations which are characterized by the
following form of the basis elements

Pµ = pµ = igµν∂ν , Jµν = xµpν − xνpµ + Sµν , (A.1.7)
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where Sµν are constant matrices.
Necessary and sufficient conditions for operators (A.1.7) to realize a rep-

resentation of the Poincaré algebra are as follows:

[Sµν , Sαβ ] = i(gµβSνα + gναSµβ − gµαSνβ − gνβSµα).

Let us note that operators (A.1.7) unlike those given by (A.1.3) realize a
reducible representation of the algebra AP (1, 3). In addition, this representa-
tion is non-Hermitian if the matrices Sµν are finite-dimensional.

In what follows we consider the case of finite-dimensional matrices Sµν ,
since it is mostly used in applications.

It is straightforward to verify that the matrices

ja = (1/2)
(
(1/2)εabcSbc + iS0a

)
,

τa = (1/2)
(
(1/2)εabcSbc − iS0a

)

satisfy the following commutation relations:

[ja, jb] = iεabcjc, [τa, τb] = iεabcτc, [ja, τb] = 0. (A.1.8)

As a basis of the space of a finite-dimensional irreducible representation
of algebra (A.1.8) we take the complete set of eigenvectors |j,m; τ, n〉 of com-
muting operators jaja, j3, τaτa, τ3. In this basis the action of the operators
ja and τa can be represented in the form

jaja|j, m; τ, n〉 = j(j + 1)|j,m; τ, n〉,
j3|j, m; τ, n〉 = m|j,m; τ, n〉,
(j1 ± ij2)|j, m; τ, n〉 =

(
j(j + 1)

−m(m± 1)
)1/2|j,m± 1; τ, n〉,

τaτa|j, m; τ, n〉 = τ(τ + 1)|j, m; τ, n〉,
τ3|j,m; τ, n〉 = n|j, m; τ, n〉,
(τ1 ± iτ2)|j, m; τ, n〉 =

(
τ(τ + 1)

−n(n± 1)
)1/2|j, m; τ, n± 1〉,

(A.1.9)

where j, m (τ, n) are (half-) integer numbers, inequalities holding

−j ≤ m ≤ j, −τ ≤ n ≤ τ.
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Thus, irreducible finite-dimensional representations of the algebra AO(1, 3)
(A.1.8) are realized by matrices of the dimension (2j+1)(2τ +1)×(2j+1)(2τ +
1) with matrix elements (A.1.9). The above representations are denoted by
the symbol D(j, τ).

Using formulae (A.1.9) it is easy to check that on the set of solutions of
the Dirac equation (1.1.1) the representation D(1/2, 0)⊕D(0, 1/2) is realized.

The Poincaré algebra has two principal Casimir operators

I1 = PµPµ, I2 = WµWµ,

where W0 = (1/2)εabcPaJbc, Wa = (1/2)P0εabcJbc − εabcPbJ0c, whose eigenva-
lues are considered as the mass and the spin of a particle.

We say that the Poincaré-invariant equation describes a particle with the
spin s and the mass m provided its solutions satisfy identically the relations

I1ψ = m2ψ, I2ψ = s(s + 1)m2ψ.

It is established by direct computation that solutions of the Dirac equation
satisfy the equalities I1ψ = m2ψ, I2ψ = (3/4)m2ψ, whence it follows that the
Dirac equation (1.1.1) describes a particle with the spin s = 1/2 and the mass
m.
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A P P E N D I X 2

THE GALILEI GROUP

AND ITS REPRESENTATIONS

The Galilei group G(1, 3) is a group of transformations of the four-dimen-
sional space R1 × R3 of the form

t′ = t + r0,

x′a = θabxb + vat + ra,
(A.2.1)

where ‖θab‖3
a,b=1 is an arbitrary orthogonal matrix, va, rµ are real parameters.

Since elements of orthogonal (3 × 3)-matrix can be expressed via three
parameters (for example, via the Euler angles), the group (A.2.1) is a 10-
parameter Lie transformation group.

It is worth noting that a condition of invariance of physical laws with re-
spect to coordinate transformation (A.2.1) is nothing else but the mathemati-
cal formulation of the Galilei relativity principle. This principle establishes an
equivalence of inertial reference frames. Therefore, the corresponding motion
equation has to be invariant under the Galilei group. In other words, some
representation of the Galilei group is to be realized on the set of solutions of the
equation in question. Consequently, to investigate wave equations invariant
under the group G(1, 3) we have to know its representations.

As noted in the Appendix 1 the problem of description of representations
of the Lie group reduces to the study of representations of its Lie algebra and
besides we can restrict ourselves to irreducible representations.

An abstract definition of the Galilei algebra AG(1, 3) with basis operators
P0, Pa, Ja, Ga, M is given by the following commutation relations

[Pµ, Pν ] = 0, [Pµ, M ] = 0,

[Ja, M ] = 0, [Ga, M ] = 0,
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[P0, Ga] = iPa, [P0, Ja] = 0, (A.2.2)

[Pa, Gb] = δabM, [Pa, Jb] = iεabcPc,

[Ga, Jb] = iεabcGc, [Ja, Jb] = iεabcJc

where µ, ν = 0, 1, 2, 3; a, b, c = 1, 2, 3.

Note A.2.1. In Section 4.1 we designate the basis elements of the rotation
group Ja, a = 1, 2, 3 as Jab, a 6= b, a, b = 1, 2, 3. These notations are related
by means of the formula

Ja = (1/2)εabcJbc.

Let us note that the Lie algebra of the group (A.2.1) satisfies relations
(A.2.2) under M = 0.

The algebra (A.2.2) has three principal Casimir operators

C1 = M,

C2 = (M ~J − ~P × ~G)2, (A.2.3)
C3 = 2MP0 − PaPa.

Following [114, 118] we give a realization of irreducible representations of
the Galilei algebra distinguished by a universal and quite simple form of the
generators of the group G(1, 3).

Theorem A.2.1. Irreducible Hermitian representations of the Galilei algebra
AG(1, 3) are numbered by numbers C1, C2, C3 (eigenvalues of the Casimir
operators (A.2.3)) which take the values

1) C2
1 = m2 > 0, C2 = m2s(s + 1), −∞ < C3 < +∞,

s = 0, 1/2, 1, . . . ;

2) C1 = C2 = 0, C3 = −k2 < 0;

3) C1 = 0, C2 = r2, C3 = −k2 < 0.

(A.2.4)

The explicit form of basis operators of an irreducible representation is
determined by the formulae

P0 = p0, Pa = pa, (A.2.5)
M = C1 = m,

Ja = −iεabcpb
∂

∂pc
+ λ0

(pa + na)
(1 + ~n ~p )

, (A.2.6)
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Ga = −ipa
∂

∂p0
− im

∂

∂pa
+ εabc

λbpc

(~p ~p)

−εabcpbnc
(mλ0 − ~λ ~p )

(p + ~n ~p )
,

where m is a fixed real number, λµ are matrices (A.1.4)–(A.1.6) and the vari-
ables p0, pa are connected by the relation

2mp0 − papa = C3,

C3 being fixed too.
Let us give a brief characterization of the classes of irreducible representa-

tions enumerated in (A.2.4):
1) representations of the class I (m 6= 0, m2 > 0) are characterized by

three numbers m, s and ε0, where m and ε0 are arbitrary real numbers, s
is an integer or half-integer non-negative number. Such representations are
realized in the space of square-integrable functions f(~p, λ), where

λ = −s, −s + 1, . . . , s,

i.e., the dimension of f(~p, λ) with respect to the index λ is equal to 2s+1. The
space of irreducible representation of the algebra AG(1, 3) is usually associated
with the position space of a free particle having the mass m, the spin s and
the internal energy ε0/2m;

2) representations of the class II are given by the pair of numbers

C3 < 0 and C4 = 0, 1/2, 1, . . . .

These representations are one-dimensional and are realized in the space of
square-integrable functions g(p0, ~p).

Representations of the Galilei algebra of the class II are realized on the set
of solutions of equations describing fields with the zero rest mass, for example,
Galilei-invariant electro-magnetic field [212, 213];

3) representations of the class III are numbered by the pair of positive
numbers r2, k2. These representations are realized in the space of square-
integrable functions h(p0, ~p, λ), where λ takes the infinite number of values

0, ±1, ±2, . . . or ± 1/2, ±3/2, . . . .

So far representations of the Galilei algebra of the class III have no appli-
cations in physics.
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The above considered classes of representations of the algebra AG(1, 3)
exhaust all inequivalent non-Hermitian representations of this algebra if not
all Pµ are equal to zero.

Provided
Pµ = 0, µ = 0, . . . , 3,

the Galilei algebra is isomorphic to the Lie algebra of the Euclid group AE(3)
which is determined by commutation relations (4.3.4). The problem of com-
plete description of inequivalent irreducible representations of the Euclid alge-
bra is reduced to a purely algebraic problem which cannot be solved by already
known methods [118]. By the same reason, the problem of description of all
inequivalent covariant representations of the algebra AG(1, 3) having the form
(4.3.3) is not solved yet.



A P P E N D I X 3

REPRESENTATIONS

OF THE POINCARÉ

AND GALILEI GROUPS

BY LIE VECTOR FIELDS

Given a fixed representation of a Lie transformations group G, the prob-
lem of description of differential equations invariant under the group G is
reduced with the help of the infinitesimal Lie method to integrating some
over-determined linear system of PDEs (called determining equations). But
to solve the problem of constructing all differential equations admitting the
transformation group G whose representation is not fixed a priori one has

• to construct all inequivalent (in some sense) representations of the Lie
transformation group G,

• to solve the determining equations for each representation obtained.

And what is more, the first problem, in contrast to the second one, reduces to
solving nonlinear systems of PDEs. It has been completely solved by Rideau
and Winternitz [247], Zhdanov and Fushchych [307] for the generalized Galilei
group G2(1, 1) acting in the space of two dependent and two independent
variables.

Some new representations of the Galilei group G(1, 3) were suggested
in [102]–[104],[144]. Yehorchenko [288] and Fushchych, Tsyfra and Boyko
[144] have constructed new (nonlinear) representations of the Poincaré groups
P (1, 2) and P (1, 3), correspondingly. A complete description of covariant rep-
resentations of the conformal group C(n,m) in the space of n+m independent
and one dependent variables was obtained by Fushchych, Zhdanov and Lahno
[110, 164]. It has been established, in particular, that any covariant represen-
tation of the Poincaré group P (n,m) with max{n,m} ≥ 3 in the case of one
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dependent variable is equivalent to the standard representation. But given the
condition max{n,m} < 3, there exist essentially new representations of the
corresponding Poincaré groups.

In this appendix we give a brief account of our latest results on classification
of inequivalent representation of the Euclid group E(3), which is a semi-direct
product of the three-parameter rotation group O(3) and of the three-parameter
Abelian group of translations T (3), acting in the space of three independent
x1, x2, x3 and n ∈ N dependent u1, . . . , un variables. Furthermore, we adduce
results on classification of representations of the Poincaré and Galilei groups
acting in the space of four independent x0, x1, x2, x3 and n ∈ N dependent
u1, . . . , un variables.

It is a common knowledge that investigation of representations of a Lie
transformation group G is reduced to study of representations of its Lie algebra
AG whose basis elements are first-order differential operators (Lie vector fields)
of the form

Q = ξα(x, u)∂xα + ηi(x, u)∂ui , (A.3.1)

where ξα, ηa are some real-valued smooth functions on x = (x0, x1, x2, x3)
∈ R4, u = (u1, u2, . . . , un) ∈ Rn, ∂xα = ∂

∂xα
, ∂ui = ∂

∂ui
, α = 0, . . . , 3, i =

1, 2, . . . , n.
In the above formulae we have two kinds of variables. The variables

x0, . . . , x3 and u1, u2, . . . , un will be referred to as independent and depen-
dent variables, respectively. Difference between these becomes essential when
we take into consideration partial differential equations invariant under the
Lie algebra AG.

Due to the properties of the corresponding Lie transformation group G
basis operators Qa, a = 1, . . . , N of the Lie algebra AG satisfy commutation
relations

[Qa, Qb] = Cc
abQc, a, b = 1, . . . , N, (A.3.2)

where [Qa, Qb] ≡ QaQb −QbQa is the commutator.
In (A.3.2) Cc

ab ∈ R are structure constants which determine uniquely the
Lie algebra AG. A fixed set of the Lie vector fields Qa satisfying (A.3.2) is
called the representation of the Lie algebra AG.

Thus, the problem of description of all representations of a given Lie al-
gebra AG reduces to solving the relations (A.3.2) with some fixed structure
constants Cc

ab in the class of Lie vector fields (A.3.1).
It is easy to check that the relations (A.3.2) are not altered with an arbi-
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trary invertible transformation of variables x, u

yα = fα(x, u), α = 0, . . . , 3,

vi = gi(x, u), i = 1, . . . , n,
(A.3.3)

where fα, gi are smooth functions. That is why, one can introduce on a set of
representations of a Lie algebra AG the following relation: two representations
Q1, . . . , QN and Q′

1, . . . , Q
′
N are called equivalent if they are transformed one

into another by means of an invertible transformation (A.3.3). Since invert-
ible transformations of the form (A.3.2) form the group (called diffeomorphism
group), the relation above is the equivalence relation. It divides the set of all
representations of the Lie algebra AG into equivalence classes A1, . . . , Ar. Con-
sequently, to describe all possible representations of AG it suffices to construct
one representative of each equivalence class Aj , j = 1, . . . , r.

Definition A.3.1. Set of first-order linearly independent differential operators
Pa, Jb of the form (A.3.1) is called the Euclid algebra AE(3) if they satisfy the
following commutation relations:

[Pa, Pb] = 0, [Ja, Pb] = εabcPc, [Ja, Jb] = εabcJc, (A.3.4)

where

εabc =





1, (abc) = cycle (123),
−1, (abc) = cycle (213),

0, in the remaining cases.

Definition A.3.2. Set of first-order linearly independent differential operators
Pµ, Jαβ of the form (A.3.1) is called the Poincaré algebra AP (1, 3) if they
satisfy the following commutation relations:

[Pµ, Pν ] = 0, [Pµ, Jαβ ] = gµαPβ − gµβPα,

[Jµν , Jαβ] = gµβJνα + gναJµβ − gµαJνβ − gνβJµα.
(A.3.5)

Definition A.3.3. Set of first-order linearly independent differential operators
P0, Pa, Jb, Gc, M of the form (A.3.1) is called the Galilei algebra AG(1, 3) if
they satisfy the commutation relations (A.3.4) and

[P0, Pa] = 0, [P0, Ja] = 0, [P0, Ga] = Pa,

[P0, M ] = 0, [Pa, Gb] = δabM, [Pa, M ] = 0,

[Ja, Gb] = εabcGc, [Ga, Gb] = 0, [Ga, M ] = 0.

(A.3.6)
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We say that basis elements of the Euclid algebra AE(3) realize a covariant
representation if they can be reduced to the form

Pa = ∂xa , Ja = −εabcxb∂xc + ηai(x, u)∂ui (A.3.7)

with the help of the transformation (A.3.3).
Note that the case when ηai are linear in u corresponds to what is called

in the classical representation theory a covariant representation of the Euclid
algebra (see Appendix 2). This is the reason why we preserve for the more
general class of representations (A.3.7) the term ‘covariant representation’.

Similarly, operators Pµ, Jαβ realize a covariant representation of the Poin-
caré algebra AP (1, 3) if they can be reduced to the form

Pµ = gµν∂xν , Jαβ = xαgβν∂xν − xβgαν∂xν + ηαβi(x, u)∂ui (A.3.8)

with the help of a transformation (A.3.3).
At last, operators P0, Pa, Ja, Ga,M realize a covariant representation of

the Galilei algebra AG(1, 3) if they can be reduced to the form

P0 = ∂x0 , Pa = ∂xa , Ja = −εabcxb∂xc + η1
ai(x, u)∂ui ,

Ga = x0∂xa + η2
ai(x, u)∂ui , M = η3

i (x, u)∂ui

(A.3.9)

with the help of a transformation (A.3.3).
A specific role played by covariant representations of the algebras AE(3),

AP (1, 3) and AG(1, 3) is explained by the fact that they are widely used in
physical applications. Furthermore, the transformation groups generated by
their basis elements have a natural physical interpretation. The operators P0,
Pa generate translations of the time x0 and space xa variables, correspondingly.
Next, the operators Ja generate rotations of the Euclid space ~x and the oper-
ators J0a generate the Lorentz transformations of the Minkowski space x0, ~x
preserving the quadratic form xµxµ. The operators Ga generate the Galilei
transformations of the space of independent variables x0, xa leaving the time
variable x0 invariant.

In what follows, we will restrict our considerations to the case of covariant
representations only.

1. Covariant representations of the Euclid algebra. Direct check shows
that the operators (A.3.7) form a basis of the Euclid algebra iff the following
relations hold:

∂ηai

∂xb
= 0, [ηai∂ui , ηbj∂uj ] = εabcηci∂ui ,
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where a, b = 1, 2, 3, i = 1, . . . , n.
Consequently, functions ηai are independent of x and, in addition, the

operators
Ja = ηai(u)∂ui (A.3.10)

satisfy the commutation relations of the Lie algebra of the rotation group

[Ja, Ja] = εabcJc. (A.3.11)

Thus, the problem of description of all inequivalent covariant represen-
tations reduces to describing all functions ηai(u) such that the operators Ja

fulfill the commutation relations (A.3.11). Solution of this problem is given
by the following lemma.

Lemma A.3.1. Let the differential operators (A.3.10) satisfy the commuta-
tion relations (A.3.11). Then, there exists a transformation

vi = Fi(u), i = 1, . . . , n (A.3.12)

reducing these operators to one of the following forms:

1. J1 = − sinu1 tanu2∂u1 − cosu1∂u2 ,

J2 = − cosu1 tanu2∂u1 + sin u1∂u2 , (A.3.13)
J3 = ∂u1 ;

2. J1 = − sinu1 tanu2∂u1 − (cosu1 − α sinu1 secu2)∂u2

+ sin u1 sec u2∂u3 ,

J2 = − cosu1 tanu2∂u1 + (sinu1 + α cosu1 secu2)∂u2 (A.3.14)
+ cos u1 sec u2∂u3 ,

J3 = ∂u1 ;

3. Ja = 0, a = 1, 2, 3. (A.3.15)

Here α is an arbitrary smooth function of u3, . . . , un.

Proof. If at least one of the operators Ja (say J3) is equal to zero, then by
virtue of commutation relations (A.3.11) two other operators J2, J3 are also
equal to zero and we get (A.3.15).

Let J3 be a non-zero operator. Then, using a transformation (A.3.12) we
can always reduce the operator J3 to the form J3 = ∂v1 (we should write
J ′3 but to simplify the notations we omit hereafter primes). Next, from the
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commutation relations [J3, J1] = J2, [J3, J2] = −J1 it follows that coefficients
of the operators J1, J2 satisfy the system of ordinary differential equations
with respect to v1

∂η2i

∂v1
= η3i,

∂η3i

∂v1
= −η2i. i = 1, . . . , n.

Solving the above system yields

η2i = fi cos v1 + gi sin v1,

η3i = gi cos v1 − fi sin v1,
(A.3.16)

where fi, gi are arbitrary smooth functions of v2, . . . , vn, i = 1, . . . , n.

Case 1. fj = gj = 0, j ≥ 2.
In this case operators J1, J2 read

J1 = f cos v1∂v1 , J2 = −f sin v1∂v1

with an arbitrary smooth function f = f(v2, . . . , vn).
Inserting the above expressions into the remaining commutation relation

[J1, J2] = J3 and computing the commutator on the left-hand side we arrive
at the equality f2 = −1 which can not be satisfied by a real-valued function.

Case 2. Not all fj , gj , j ≥ 2 are equal to 0.
Making the change of variables

w1 = v1 + V (v2, . . . , vn), wj = vj , j = 2, . . . , n

we transform operators Ja, a = 1, 2, 3 with coefficients (A.3.16) as follows

J1 = f̃ sinw1∂w1 +
n∑

j=2

(f̃j cosw1 + g̃j sinw1)∂wj ,

J2 = f̃ cosw1∂w1 +
n∑

j=2

(g̃j cosw1 − f̃j sinw1)∂wj , (A.3.17)

J3 = ∂w1 .

Subcase 2.1. Not all f̃j are equal to 0. Making the transformation

z1 = w1, zj = Wj(w2, . . . , wn), j = 2, . . . , n,
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where W2 is a particular solution of the PDE

n∑

j=2

f̃j∂wjW2 = 1,

and W3, . . . ,Wn are functionally-independent first integrals of the PDE

n∑

j=2

f̃j∂wjW = 0

we reduce the operators (A.3.17) to be

J1 = F sin z1∂z1 + cos z1∂z2 +
n∑

j=2

Gj sin z1∂zj ,

J2 = F cos z1∂z1 − sin z1∂z2 +
n∑

j=2

Gj cos z1∂wj , (A.3.18)

J3 = ∂z1 .

Substituting operators (A.3.18) into the commutation relation [J1, J2] =
J3 and equating coefficients of the linearly independent operators ∂z1 , . . . , ∂zn

we arrive at the following system of PDEs for the functions F, G2, . . . , Gn:

Fz2 − F 2 = 1, Gjz2 − FGj = 0, j = 2, . . . , n.

Integration of the above equations yields

F = tan(z2 + c1),

Gj =
cj

cos(z2 + c1)
,

where c1, . . . , cn are arbitrary smooth functions of z3, . . . , zn, j = 2, . . . , n.
Replacing, if necessary, z2 by z2 + c1(z3, . . . , zn) we may put c1 equal to

zero. Next, making the transformation

ya = za, a = 1, 2, 3,

yk = Zk(z3, . . . , zn), k = 4, . . . , n,

where Zk are functionally-independent first integrals of the PDE

n∑

j=3

Gj∂zjZ = 0,
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we can put Gk = 0, k = 4, . . . , n.
With these remarks the operators (A.3.18) take the form

J1 = sin y1 tan y2∂y1 + cos y1∂y2 +
sin y1

cos y2
(f∂y2 + g∂y3),

J2 = cos y1 tan y2∂y1 − sin y1∂y2 +
cos y1

cos y2
(f∂y2 + g∂y3), (A.3.19)

J3 = ∂y1 ,

where f, g are arbitrary smooth functions of y3, . . . , yn.
If in (A.3.19) g 6≡ 0, then replacing y3 by ỹ3 =

∫
g−1dy3 and y2 by ỹ2 = −y2

we transform the above operators to the form (A.3.14).
If g ≡ 0, then making the transformation

ũ1 = y1 + arctan
f

cos y2
, ũ2 = − arctan

sin y2√
cos2 y2 + f2

, ũk = yk,

where k = 3, . . . , n, we reduce the operators (A.3.19) to the form (A.3.13).

Subcase 2.2. fj = 0, j = 2, . . . , n.
Substituting operators (A.3.17) under fj = 0 into the commutation rela-

tion [J1, J2] = J3 and equating coefficients of the linearly independent oper-
ators ∂z1 , . . . , ∂zn yield the following system of PDEs:

−f2 = 1, fgj = 0, j = 2, . . . , n.

As the function f is real-valued, the system obtained is inconsistent.
Thus, we have proved that operators (A.3.12)–(A.3.15) exhaust a set of

all possible inequivalent representations of the Lie algebra with commutation
relations (A.3.11) in the class of the first-order differential operators (A.3.10).

As an immediate consequence of Lemma A.3.1 we get the following asser-
tion.

Theorem A.3.1. Any covariant representation of the Euclid algebra is
equivalent to one of the following representations:

1. Pa = ∂xa , Ja = −εabcxb∂xc ; (A.3.20)

2. Pa = ∂xa ,

J1 = x3∂x2 − x2∂x3 − sinu1 tanu2∂u1 − cosu1∂u2 , (A.3.21)
J2 = x1∂x3 − x3∂x1 − cosu1 tanu2∂u1 + sin u1∂u2 ,

J3 = x2∂x1 − x1∂x2 + ∂u1 ;
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3. Pa = ∂xa ,

J1 = x3∂x2 − x2∂x3 − sinu1 tanu2∂u1

− (cosu1 − α sinu1 secu2)∂u2 + sinu1 sec u2∂u3 , (A.3.22)
J2 = x1∂x3 − x3∂x1 − cosu1 tanu2∂u1

+ (sinu1 + α cosu1 secu2)∂u2 + cosu1 secu2∂u3 ,

J3 = x2∂x1 − x1∂x2 + ∂u1 .

Here α is an arbitrary smooth function of u3, . . . , un.
In two next subsections we will give without proofs the assertions describ-

ing inequivalent covariant representations of the Poincaré and Galilei algebras.

2. Covariant representations of the Poincaré algebra. Inserting the
operators (A.3.8) into commutation relations (A.3.5) yields that the functions
ηαβi(x, u) are independent of x and the operators

Jαβ = ηαβi(u)∂ui (A.3.23)

satisfy the commutation relations of the Lie algebra of the Lorentz group

[Jµν , Jαβ] = gµβJνα + gναJµβ − gµαJνβ − gνβJµα.

Consequently, the problem of describing inequivalent covariant representa-
tions of the Poincaré algebra reduces to describing inequivalent representations
of the Lorentz algebra having the basis elements (A.3.23).

Theorem A.3.2. Any covariant representation of the Poincaré algebra is
equivalent to the representation

Pµ = gµν∂xν ,

J0i = −x0∂xi − xi∂x0 +
1
2
(Pi +Ki),

Ji3 = x3∂xi − xi∂x3 +
1
2
(Pi −Ki),

J12 = x2∂x1 − x1∂x2 + J12,

J03 = −x0∂x3 − x3∂x0 +D,

where i = 1, 2 and the operators Pi,J12,D,Ki are given by one of the formulae
below

1. P1 = ∂u1 , P2 = ∂u2 ,
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J12 = u2∂u1 − u1∂u2 , D = −u1∂u1 − u2∂u2 ,

K1 = (−u2
1 + u2

2)∂u1 − 2u1u2∂u2 ,

K2 = −2u1u2∂u1 + (u2
1 − u2

2)∂u2 ;

2. P1 = ∂u1 , P2 = ∂u2 ,

J12 = u2∂u1 − u1∂u2 , D = −u1∂u1 − u2∂u2 + ∂u3 ,

K1 = (−u2
1 + u2

2 + εe−2u3)∂u1 − 2u1u2∂u2 + 2u1∂u3 ,

K2 = −2u1u2∂u1 + (u2
1 − u2

2 + εe−2u3)∂u2 + 2u2∂u3 ;

3. P1 = ∂u1 , P2 = ∂u2 ,

J12 = u2∂u1 − u1∂u2 + ∂u3 , D = −u1∂u1 − u2∂u2 ,

K1 = (−u2
1 + u2

2)∂u1 − 2u1u2∂u2 + 2u2∂u3 ,

K2 = −2u1u2∂u1 + (u2
1 − u2

2)∂u2 − 2u1∂u3 ;

4. P1 = ∂u1 , P2 = ∂u2 ,

J12 = u2∂u1 − u1∂u2 + ∂u3 , D = −u1∂u1 − u2∂u2 + ∂u4 ,

K1 = (−u2
1 + u2

2 + εe−2u4 cos 2u3)∂u1 − (2u1u2 + εe−2u4 sin 2u3)∂u2

+
(
2u2 + (q cosu3 + r sinu3)e−u4

)
∂u3 +

(
2u1 − (r cosu3

− q sinu3)e−u4

)
∂u4 + e−u4 sinu3∂u5 + e−u4 cosu3∂u6 ,

K2 = (−2u1u2 − εe−2u4 sin 2u3)∂u1 + (u2
1 − u2

2 − εe−2u4 cos 2u3)∂u2

−
(
2u1 + (q sinu3 − r cosu3)e−u4

)
∂u3 +

(
2u2 + (r sinu3

+ q cosu3)e−u4

)
∂u4 + e−u4 cosu3∂u5 − e−u4 sinu3∂u6 ;

5. P1 = ∂u1 , P2 = ∂u2 ,

J12 = u2∂u1 − u1∂u2 + ∂u3 , D = −u1∂u1 − u2∂u2 + ∂u4 ,

K1 = (−u2
1 + u2

2 + εe−2u4 cos 2u3)∂u1 − (2u1u2 + εe−2u4 sin 2u3)∂u2

+
(
2u2 + (f cosu3 + g sinu3)e−u4

)
∂u3 +

(
2u1 − (g cosu3

− f sinu3)e−u4

)
∂u4 + (h cosu3 + sin u3)e−u4∂u5 ,

K2 = −(2u1u2 + εe2u4 sin 2u3)∂u1 + (u2
1 − u2

2 − εe−2u4 cos 2u3)∂u2

+
(
−2u1 + (g cosu3 − f sinu3)e−u4

)
∂u3 +

(
2u2 + (f cosu3
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+ g sinu3)e−u4

)
∂u4 + (cosu3 − h sinu3)e−u4∂u5 ;

6. P1 = ∂u1 , P2 = ∂u2 ,

J12 = u2∂u1 − u1∂u2 + ∂u3 , D = −u1∂u1 − u2∂u2 + ∂u4 ,

K1 = (−u2
1 + u2

2)∂u1 − 2u1u2∂u2 + (2u2 + εe−u4 cosu3)∂u3

+
(
2u1 + (fe−εu5 cosu3 + ε sinu3)e−u4

)
∂u4

+
(
((εfe−εu5 + g) cosu3 + sin u3)e−u4

)
∂u5 + he−u4 cosu3∂u6 ,

K2 = −2u1u2∂u1 + (u2
1 − u2

2)∂u2 − (2u1 + εe−u4 sinu3)∂u3

+
(
2u2 + (ε cosu3 − fe−εu5 sinu3)e−u4

)
∂u4

+
(
cosu3 − (εfe−εu5 + g) sin u3)e−u4

)
∂u5 − he−u4 sinu3∂u6 ;

7. P1 = ∂u1 , P2 = ∂u2 ,

J12 = u2∂u1 − u1∂u2 + ∂u3 , D = −u1∂u1 − u2∂u2 + ∂u4 ,

K1 = (−u2
1 + u2

2)∂u1 − 2u1u2∂u2 + 2u2∂u3 + (2u1 + fe−u4 cosu3)∂u4

+
(
(−u5f + g) cos u3 + sin u3)e−u4

)
∂u5 + he−u4 cosu3∂u6 ,

K2 = −2u1u2∂u1 + (u2
1 − u2

2)∂u2 − 2u1∂u3 + (2u2 − fe−u4 sinu3)∂u4

+
(
(cosu3 + (u5f − g) sin u3)e−u4

)
∂u5 − he−u4 sinu3∂u6 ;

8. P1 = ∂u1 , P2 = ∂u2 ,

J12 = u2∂u1 − u1∂u2 + ∂u3 , D = −u1∂u1 − u2∂u2 + ∂u4 ,

K1 = (−u2
1 + u2

2)∂u1 − 2u1u2∂u2 + (2u2 + εe−u4 cosu3)∂u3

+ (2u1 + εe−u4 sinu3)∂u4 ,

K2 = −2u1u2∂u1 + (u2
1 − u2

2)∂u2 − (2u1 + εe−u4 sinu3)∂u3

+ (2u2 + εe−u4 cosu3)∂u4 ;

9. P1 = ∂u1 , P2 = ∂u2 ,

J12 = u2∂u2 − u1∂u2 + ∂u3 , D = −u1∂u1 − u2∂u2 + ∂u4 ,

K1 = (−u2
1 + u2

2)∂u1 − 2u1u2∂u2 + 2u2∂u3 + (2u1 + εe−u4 sinu3)∂u4 ,

K2 = −2u1u2∂u1 + (u2
1 − u2

2)∂u2 − 2u1∂u3 + (2u2 + εe−u4 cosu3)∂u4 ;

10. P1 = ∂u1 , P2 = ∂u2 ,
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J12 = u2∂u1 − u1∂u2 + ∂u3 , D = −u1∂u1 − u2∂u2 + ∂u4 ,

K1 = (−u1
2 + u2

2 + εe−2u4 cos 2u3)∂u1 − (2u1u2 + εe−2u4 sin 2u3)∂u2

+ 2u2∂u3 + 2u1∂u4 ,

K2 = −(2u1u2 + εe−2u4 sin 2u3)∂u1 + (u1
2 − u2

2 − εe−2u4 cos 2u3)∂u2

− 2u1∂u3 + 2u2∂u4 ;

11. P1 = ∂u1 , P2 = ∂u2 ,

J12 = u2∂u1 − u1∂u2 + ∂u3 , D = −u1∂u1 − u2∂u2 + Q∂u3 ,

K1 = (−u2
1 + u2

2)∂u1 − 2u1u2∂u2 + 2(u2 + u1Q)∂u3 ,

K2 = −2u1u2∂u1 + (u2
1 − u2

2)∂u2 − 2(u1 − u2Q)∂u3 .

Here ε = 0, 1, and f, g, h are arbitrary smooth functions of u6, . . . , un, and
Q is an arbitrary smooth function of u4, . . . , un, and

r = U(u5 + iu6, u7, . . . , un) + U(u5 − iu6, u7, . . . , un),

q = i
(
U(u5 + iu6, u7, . . . , un)− U(u5 − iu6, u7, . . . , un)

)

with an arbitrary function U analytic in the variable u5 + iu6.
Note that the operators Pi,J12,D,Ki fulfill the commutation relations

of the Lie algebra of the conformal group C(2) (which is isomorphic to the
Lorentz algebra AO(1, 3))

[Pi, D] = −Pi, [P1, J12] = −P2, [P2, J12] = P1,

[J12, D] = 0, [P1, K1] = [P2, K2] = D,

[P1, K2] = −2J12, [P2, K1] = 2J12,

[Ki, D] = Ki, [K1, J12] = −K2, [K2, J12] = K1.

The above formulae give the list of all inequivalent representations of the
algebra AC(2) by Lie vector fields.

3. Covariant representations of the Galilei algebra. Inserting the for-
mulae (A.3.9) into (A.3.6) and making some simple manipulations we conclude
that the basis elements of a covariant representation of the algebra AG(1, 3)
necessarily take the form

P0 = ∂x0 , Pa = ∂xa , Ja = εabcxc∂xb
+ Ja,

Ga = x0∂xa + xaM+ Ga, M = M,
(A.3.24)
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where Ja,Gb,M are Lie vector fields of the form ηi(u)∂ui satisfying the com-
mutation relations of the Euclid algebra

[Ga, Gb] = 0, [Ja, Gb] = εabcGc, [Ja, Jb] = εabcJc

and
[M, Ja] = 0, [M, Ga] = 0.

On describing all inequivalent representations of the above Lie algebra we
arrive at the following assertion.

Theorem A.3.3. Any covariant representation of the Galilei algebra AG(1, 3)
is equivalent to the representation having the basis elements (A.3.24), opera-
tors Ja,Gb,M being given by one of the formulae below

1. J1 = u3∂u2 − u2∂u3 , J2 = u1∂u3 − u3∂u1 , J3 = u2∂u1 − u1∂u2 ,

G1 = ∂u1 , G2 = ∂u2 , G3 = ∂u3 ,

M = ε∂u4 ,

2. J1 = −u2 cosu3 tan u4∂u1 + u2 sinu3 tanu4∂u2 + cosu3 cotu4∂u3

+ sin u3∂u4 + cosu3 csc u4∂u5 ,

J2 = u1 cosu3 tanu4∂u1 − u1 sinu3 tanu4∂u2 − cotu4 sinu3∂u3

+ cosu3∂u4 − csc u4 sinu3∂u5 ,

J3 = u2∂u1 − u1∂u2 + ∂u3 ,

G1 = ∂u1 , G2 = ∂u2 , G3 = cosu3 tanu4∂u1 − sinu3 tanu4∂u2 ,

M = f(cosu3 cosu5 secu4 + sin u3 sinu5)∂u1

+ f(− sinu3 secu4 cosu5 + cosu3 sinu5)∂u2 + g∂u5 + ε∂u6 ;

3. J1 = −u2 cosu3 tan u4∂u1 + u2 sinu3 tanu4∂u2 + cosu3 cotu4∂u3

+ sin u3∂u4 ,

J2 = u1 cosu3 tanu4∂u1 − u1 sinu3 tanu4∂u2 − sinu3 cotu4∂u3

+ cosu3∂u4 ,

J3 = u2∂u1 − u1∂u2 + ∂u3 ,

G1 = ∂u1 , G2 = ∂u2 , G3 = cosu3 tanu4∂u1 − sinu3 tanu4∂u2 ,

4. J1 = F (secu3)2∂u1 + cosu2 tanu3∂u2 − sinu2∂u3 ,

J2 = (F (secu3)2 tanu2 + u1 sec u2 tanu3)∂u1 + sinu2 tan u3∂u2
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+ cosu2∂u3 ,

J3 = −u1 tanu2∂u1 − ∂u2 ,

G1 = ∂u1 , G2 = tanu2∂u1 , G3 = secu2 tanu3∂u1 ,

M = Q sec u2 secu3∂u1 + ∂u4 ;

5. J1 = Q(sec u3)2∂u1 + cos u2 tanu3∂u2 − sinu2∂u3 ,

J2 = (Q(sec u3)2 tanu2 + u1 secu2 tanu3)∂u1 + sin u2 tanu3∂u2

+ cosu2∂u3 ,

J3 = −u1 tanu2∂u1 − ∂u2 ,

G1 = ∂u1 , G2 = tanu2∂u1 , G3 = secu2 tanu3∂u1 ,

M = Q sec u2 secu3∂u1 ;

6. J1 = cosu2 tanu4∂u2 + (cosu2 + u3 sinu2 tanu4)∂u3 − sinu2∂u4 ,

J2 = u1 secu2 tanu4∂u1 + sin u2 tanu4∂u2 + (sinu2

− u3 cosu2 tanu4)∂u3 + cosu2∂u4 ,

J3 = −u1 tanu2∂u1 − ∂u2 ,

G1 = ∂u1 , G2 = tanu2∂u1 , G3 = secu2 tanu4∂u1 ,

M = F secu2 sec u4∂u1 + G cosu4∂u3 + ε∂u5 ;

7. J1 = sin u1 tanu3∂u1 + R secu3 sinu1∂u2 + (Q sinu1 sec u3

+ cosu1)∂u3 + ε sinu1 secu3∂u4 ,

J2 = cosu1 tanu3∂u1 + R cosu1 secu3∂u2 + (Q cosu1 secu3

− sinu1)∂u3 + ε cosu1 secu3∂u4 ,

J3 = ∂u1 ,

G1 = 0, G2 = 0, G3 = 0,

M = ∂u2 ;

8. J1 = − sinu1 tanu2∂u1 − cosu1∂u2 ,

J2 = − cosu1 tanu2∂u1 + sinu1∂u2 ,

J3 = ∂u1 ,

G1 = 0, G2 = 0, G3 = 0,

M = 0;
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9. J1 = − sinu1 tanu2∂u1 − (cosu1 − α sinu1 sec u2)∂u2

+ sin u1 secu2∂u3 ,

J2 = − cosu1 tanu2∂u1 + (sinu1 + α cosu1 sec u2)∂u2

+ cosu1 secu2∂u3 ,

J3 = ∂u1 ,

G1 = 0, G2 = 0, G3 = 0,

M = ε∂u1 ;

10. J1 = 0, J2 = 0, J3 = 0,

G1 = 0, G2 = 0, G3 = 0,

M = ε∂u1 .

Here f, g are arbitrary smooth functions of u6, . . . , un, F is an arbitrary
smooth function of u5, . . ., un, R,Q are arbitrary smooth functions of u4, . . .,
un, α is an arbitrary smooth function of u3, . . . , un and ε = 0, 1.
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[74] Dürr H., Heisenberg W., Mitter H. and Yamazaki K., To the theory of elementary
particles, Zs. Naturforch., 14A, 441–465 (1959).

[75] Eisenhart L.P., Separable systems of Stäckel, Ann. Math., 35, N 1, 284–305 (1934).
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dinger-type and their exact solutions II., Ukrain. Math. J., 41, N 12, 1687–1694
(1989).

[104] Fushchych W.I. and Cherniha R.M., Galilei-invariant nonlinear systems of evolution
equations, J. Phys. A: Math. Gen., 28, N 19, 5569–5579 (1995).

[105] Fushchych W.I. and Chopyk V.I., Conditional invariance of the nonlinear Schrödinger
equations, Proc. Acad. of Sci. Ukraine, N 4A, 30–33 (1990).

[106] Fushchych W.I. and Chopyk V.I., Symmetry and non-Lie reduction of the nonlinear
Schrödinger equation, Ukrain. Math. J., 45, N 4, 581–597 (1993).

[107] Fushchych W.I., Chopyk V.I. and Myronyuk P.I., Conditional invariance and exact
solutions of the three-dimensional acoustics equation, Proc. Acad. of Sci. Ukraine, N
9A, 25–28 (1990).



364 BIBLIOGRAPHY

[108] Fushchych W.I. and Kornyak V.V., Computer realization of the algorithm for calcu-
lating nonlocal symmetry of the Dirac equation, Preprint, Inst. of Math. Acad. of Sci.
Ukraine, N 85-20, Kiev (1985).

[109] Fushchych W.I. and Kornyak V.V., Computing algebra application for determining
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[198] Kamran N., Légaré M., McLenaghan R.G. and Winternitz P., The classification of
complete sets of operators commuting with the Dirac operator in Minkowski space-
time, J. Math. Phys., 29, N 2, 403–411 (1988).

[199] Kersten P.H., Infinitesimal symmetries and conserved currents of nonlinear Dirac
equations, J. Math. Phys., 24, N 9, 2374–2379 (1983).

[200] Klauder J.R., Linear representation of spinor fields by antisymmetric tensors, J. Math.
Phys., 5, N 9, 1204–1214 (1964).

[201] Koornwinder T.H., A precise definition of separation of variables, Lecture Notes in
Math., 810, 240–263 (1980).

[202] Kornyak V.V., Integration of determining system of Bäcklund symmetries with the
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