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A continuous infinite system of point particles interacting via two-body strong
superstable potential is considered in the framework of classical statistical mechan-
ics. We define some kind of approximation of main quantities, which describe
macroscopical and microscopical characteristics of systems, such as grand partition
function and correlation functions. The pressure of an approximated system con-
verges to the pressure of the initial system if the parameter of approximation a
→0 for any values of an inverse temperature ��0 and a chemical activity z. The
same result is true for the family of correlation functions in the region of small z.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3081054�

I. INTRODUCTION

The main achievements of mathematical physics in research of critical phenomena are con-
nected first of all with studying infinite lattice systems. However, one can see totally another
situation concerning continuous systems. The mathematical results have been obtained in the
majority of cases only for the small values of parameters �=1 /kT �where T is a temperature� and
a chemical activity z. The research of continuous systems in the area of critical values of these
parameters is restricted to some artificial models such as the Widom–Rowlinson model25 or with
field theory of type Hamiltonian,9 and the methods of investigation are copied from lattice systems
�see, e.g., Refs. 22 and 10, using Peierls’ argument2 and using the Pirogov–Sinai theory, or Refs.
3 and 4, using random cluster expansion�. Another type of arguments was invented by Gruber and
Griffiths5 and used in Refs. 19 and 6 to prove the existence of orientational ordering transitions in
the continuous-spin models of ferrofluid.

Some important characteristics of critical phenomena can be also described by using lattice
approximation of continuous systems. It was especially successful to apply lattice approximation
to research of the models of quantum field theory �see, e.g., Ref. 23 and references therein�.
Substantial progress was also reached in studying models of lattice gas.20 However, the main
disadvantage of the last example is that it does not contain the parameter that ensures the transition
to the classical continuous gas.

On the other hand the main mathematical problems in the research of infinite continuous
systems appear because it is necessary to take into account all possible configurations of particles,
even if the probability of their occurrence is rather small. One of possible ways to solve this
problem is to introduce hard-core potentials. It helps to avoid mathematical difficulties, which is
connected with an accumulation of many numbers of particles in the small volume, but at the same
time it leads to some new problems, which is connected with interpretation of physical results and
application of some mathematical methods.
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In the present article we propose some intermediate approximation of several main quantities,
which describe macroscopical and microscopical characteristics of systems, such as grand parti-
tion function and correlation functions. The main idea is in the following: we split the space Rd

into nonintersecting hypercubes with a volume ad and define approximated grand partition func-
tion and the family of approximated correlation functions in such a way that they take into account
only such configurations of particles in Rd, when there is not more than one particle in each cube.

It was shown in this work that for the potentials which have nonintegrable singularity in the
neighborhood of the origin �strong superstable �SSS� potentials� the pressure of the approximated
system converges to the pressure of the initial system if a→0 for any value of an inverse tem-
perature ��0 and a chemical activity z. The same result is true for the family of correlation
functions in the region of small z.

II. NOTATIONS AND MAIN RESULTS

A. Configuration space

Let Rd be a d-dimensional Euclidean space. The set of positions �xi�i�N of identical particles
is considered to be a locally finite subset in Rd and the set of all such subsets creates the configu-
ration space

� = �Rd ª �� � Rd��� � �� � � for all � � Bc�Rd�� ,

where �A� denotes the cardinality of the set A and Bc�Rd� denote the systems of all bounded Borel
sets in Rd. We also need to define the space of finite configurations �0:

�0 = �
n�N0

��n�, ��n�
ª �� � Rd���� = n�, N0 = N � �0� .

For every ��Bc�Rd� one can define a mapping N� :�→N0 of the form

N���� ª �� � �� = ���� .

The Borel 	-algebra B��� is equal to 	�N� ���Bc�Rd�� and additionally one may introduce the
following filtration:

B���� ª 	�N����� � Bc�Rd�, �� � �� ,

see Refs. 11, 12, and 1 for details. We need also to define

�� ª �� � �0�� � �� .

By B���� we denote the corresponding 	-algebra on ��. For the given intensity measure 	
�in this context 	 is Lebesgue measure on B�Rd�� and any n�N the product measure 	�n can be
considered as a measure on

�Rd�ñ = ��x1, . . . ,xn� � �Rd�n�xk � xl if k � l�

and hence as a measure 	�n� on ��n� through the map

symn:�Rd�ñ � �x1, . . . ,xn� � �x1, . . . ,xn� � ��n�.

Define the Lebesgue–Poisson measure 
z	 on B��0� by the formula


z	 ª �
n�0

zn

n!
	�n�. �2.1�

The restriction of 
z	 to B���� we also denote by 
z	. For a more detailed structure of the
configuration spaces �, �0, �� see Ref. 1.

As in Ref. 16 define two additional configuration spaces: a space of dilute configurations and
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a space of dense configurations. Let a�0 be arbitrary. Following Ref. 21 for each r�Zd we define
an elementary cube with an edge a and a center r,

�a�r� ª �x � Rd�a�ri − 1/2� 
 xi � a�ri + 1/2�� . �2.2�

We will write � instead of �a�r� if a cube � is considered to be arbitrary and there is no reason

to emphasize that it is centered at the concrete point r�Zd. Let �̄a be the partition of Rd into cubes
�a�r�. Without loss of generality consider only that ��Bc�Rd� which is a union of cubes �a�r�.
Then for any X�� which is a union of cubes �� �̄a define

�X
dil
ª �� � �X�N���� = 0 ∨ 1 for all � � X� �2.3�

and

�X
den

ª �� � �X�N���� � 2 for all � � X� . �2.4�

B. Definition of the system

The energy of any configuration ���� or ���0 is defined by the following formula:

U���� = U��� ª �
�x,y���

���x − y�� , �2.5�

where �· , ·� means sum over all possible different couples of particles from the configuration
� ,���x−y��-pair interaction potential. Define also interaction energy between configurations � ,�
��0 by

W��;�� ª �
x��

y��

���x − y�� . �2.6�

We introduce three kinds of interactions, which will be used in this article.
Definition 1: Interaction is called

�a� stable (S) if there exists B�0 such that

U��� � − B��� for any � � �0; �2.7�

�b� superstable (SS) if there exist A�a��0, B�a��0, and a�0 such that

U��� � A�a� �
���̄a:�����2

����2 − B�a���� for any � � �0; �2.8�

�c� SSS if there exist A�a��0, B�a��0, m�2, and a0�0 such that

U��� � A�a� �
���̄a:�����2

����m − B�a���� for any � � �0 �2.9�

for any a
a0.

In the above conditions constants A�a�, B�a� depend on �̄a and consequently on a. In accor-
dance with these definitions there is a problem of describing the necessary conditions on two-body
potential, which ensure stability, superstability, or strong superstability of an infinite statistical
system. For the latest review and some new results on this problem see Refs. 18 and 24 for the
many-body case.

(A) Assumption on the interaction potential: In this article we consider a general type of
potentials �, which are continuous on R+∖ �0� and for which there exist r0�0, R�r0, �0�0,
�1�0, s�d, and �0�0 such that
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�1�

���x�� 	 − �−��x�� � −
�1

�x�d+�0
for �x� � R , �2.10�

�2�

���x�� 	 �+��x�� �
�0

�x�s
for �x� 
 r0, �2.11�

where

�+��x�� ª max�0,���x���, �−��x�� ª − min�0,���x��� . �2.12�

Note that in Eq. �2.9� the constant a0
r0. For the interaction potentials which satisfy assump-

tion �A� define two important characteristics �for any �� �̄a with a�r0�:

�1�

�0�a� ª �
����̄a

sup
x��

sup
y���

�−��x − y�� , �2.13�

�2�

b�a� ª inf
�x,y���

�+��x − y�� . �2.14�

Due to the translation invariance of the two-body potential �0 and b do not depend on the
position of �. The following statement is true.

Proposition 2.1: Let potential � satisfy assumption (A). Then the interaction is SSS and the
energy U satisfies inequality (2.9) with some 0�a�a0 and if s�d then

m = 2, A = A�a� =
b − 2�0

4
� 0, B = B�a� =

�0

2
. �2.15�

Proof: For any ���0 and any a�0

U��� = �
�x,y���

���x − y�� = �
���̄a:�����2

�
�x,y����

���x − y�� + �
��,�����̄a

�
x���

y����

���x − y��

� �
���̄a:�����2

1

2
��������� − 1�b − �

��,�����̄a:�����2,������2

��������� sup
x���

sup
y����

�−��x − y�� −
�0

2
���

� �
���̄a:�����2

����2
b

4
−

�0

2
� −

�0

2
��� .

We use definitions �2.12�–�2.14� and the inequality

��������� 

1
2 �����2 + �����

2� .

In the case s=d the following statement is true �see Ref. 18 for details�: for any sufficiently small
��0 there exists a constant B=B�� ,a� such that the following inequality holds:

033301-4 A. L. Rebenko and M. V. Tertychnyi J. Math. Phys. 50, 033301 �2009�

Downloaded 18 Jun 2009 to 131.91.96.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



U��� � �
���a,

�����2


Cd log���� −
v0

2
− � log���������2 − B��� , �2.16�

where �see Ref. 7�

Cd =
1

ad

�d/2

d�
d

2
��0. �2.17�

��·� is a classical gamma function.
The system of particles is SSS because for any ��0 one can find such numbers N0�2 and

B=B�N0 ;� ,a� that for any �����N0,

Cd log���� �
v0

2
. �2.18�

It follows from �2.16�–�2.18� that if s=d we can set

A�a� = Ks����0, B�a� = Ls����0 + Ms��� ,

where Ks���, Ls���, Ms��� do not depend on the parameter a.
In the sequel we will use the estimates �2.15� of the constants A�a� and B�a� because the proof

of the main results is the same for both cases. �

Proposition 2.2: For the potentials which satisfy conditions (2.10)–(2.12) inequality (2.7)
holds with

B = 
22d−sdsd/2�0
s

�0
d �1/�s−d�

, �2.19�

where the constant �0 is close to �Rd�−��x��dx for small a�0.
Proof: We can set a=am in such a way that b�am�=2�0�am�. From definitions �2.13� and �2.14�

it is clear that

b�am� �
�0

ds/2am
s

and �0�am�= �1 /am
d ��0 as lima→0 ad�0�a�=�Rd�−��x��dx. As a result

am �


 �0

2�0
�1/�s−d�

ds/2�s−d� . �2.20�

Estimate �2.19� of the constant B directly follows from �2.20� and �2.15�. This ends the proof. �

Remark 2.1: It is important to stress that the constant B in (2.19) does not depend on the

partition �̄a and depends only on the potential � and dimension of the space.
Remark 2.2: Indeed, for the potentials which satisfy assumption (A) inequality (2.9) holds

with m=1+s /d (see Ref. 18). However, for our purpose it is sufficient to apply (2.9) with (2.15)
and (2.7) with (2.19).

C. Partition functions, corresponding pressure, and correlation functions

The main characteristics of Gibbs states are correlation functions.8 A family of finite volume
correlation functions with empty boundary conditions for the grand canonical ensemble is defined
by the following formula:
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����;z,�� ª
z���

Z��z,��
��

e−�U�����
z	�d��, � � ��, �2.21�

where

Z��z,�� ª 

��

e−�U���
z	�d�� �2.22�

is the grand partition function which plays the role of normalizing constant in the definition of the
Gibbs measure. Besides it has independent important physical meaning for the definition of the
thermodynamic function–pressure:

p�z,�� = lim
���→�

p��z,�� =
1

�
lim

���→�

1

���
log Z��z,�� , �2.23�

The existence of this limit for the above defined system of particles is well known �see, e.g., Ref.
21�.

To define the above mentioned approximation let us introduce the following family of corre-
lation functions:

��
�−���;z,�,a� ª

z���

Z�
�−��z,�,a�



��

e−�U����� �
���̄a��

�−
��� � ��
z	�d��, � � ��, �2.24�

Z�
�−��z,�,a� ª 


��
dil

e−�U���
z	�d�� = 

��

e−�U��� �
���̄a��

�−
����
z	�d�� . �2.25�

where we introduced B����� measurable function �−
� by the formula

�−
���� = �1 for � with N���� = ���� = 0 ∨ 1

0 otherwise.
� �2.26�

Remark 2.3: By definition ��
�−��� ;z ,� ;a�=0 for ����

�dil�.
One can define the corresponding pressure:

p�−��z,�,a� = lim
���→�

p�
�−��z,�,a� =

1

�
lim

���→�

1

���
log Z�

�−��z,�,a� . �2.27�

Remark 2.4: The main point of this approximation consists in that in expressions for the basic
characteristics of the system integration is carried out not over all space of configurations �� but

only over those configurations which contain for the given partition �̄a not more than one particle

in each cube �� �̄a. That fact is surprising as for an infinite system the set of such configurations
in � is the set of measure zero with respect to the Poisson measure and the Gibbs measure.
Nevertheless, as we shall see in following section, the basic characteristics of the approximated
system (even in a thermodynamic limit �↗Rd) can be somehow close to the corresponding
characteristics of the initial system.

D. Main results

We prove the results for the infinite volume characteristics; so let us define the sequence of
bounded Lebesgue measurable regions of �l�Rd:

�1 � �2 � ¯ � �n � ¯ , �
l

�l = Rd. �2.28�

We consider only such �l�Bc�Rd� which is union of cubes �a�r� defined by �2.2�.
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Theorem 2.1: Let the interaction potential ���x�� satisfy assumption (A). Then the limits

p�z,�� =
1

�
lim
l→�

1

��l�
log Z�l

�z,�� , �2.29�

p�−��z,�,a� =
1

�
lim
l→�

1

��l�
log Z�l

�−��z,�,a� �2.30�

are finite and for any ��0 there exists a1=a1�z ,���0 such that

�p�z,�� − p�−��z,�,a�� � � �2.31�

holds for all positive z, � and a� �0,a1�z ,���.
The proof of limit �2.29� is well known �see Ref. 21�. One can find the proof of �2.30� and

�2.31� in Ref. 17. However, for completeness of the presentation we give a sketch of the proof in
the next section.

To formulate a similar result for correlation functions note that for any configuration ���0

and any sequence �2.28�, such that ���1, there exists subsequence ��k�� of ��l�, such that

lim
k→�

��k�
��;z,�� = ���;z,�� � � �2.32�

for all positive z, � uniformly on Bc��0�. This result follows from the uniform bounds of the
family ��� :��Bc�Rd�� �see Refs. 21, 16, and 14�.

It is also clear that the same uniform bounds hold for the family of ���
�−� :��Bc�Rd��. So,

there exists subsequence ��m� � of the sequence ��k�� such that one can define

��−���;z,�,a� = lim
m→�

�
�m�
�−���;z,�,a� � � . �2.33�

In the case of small values of a chemical activity z there exists the unique limit ��� ;z ,�� that is
a solution of Kirkwood–Salzburg �KS� equations in the space E� �see Ref. 20�. In the next chapter
we will show that similar equations can be easily written for the functions ��−��� ;z ,�� that is a
unique solution of these equations for sufficiently small values of parameters z or �.

Theorem 2.2: Let the interaction potential ���x�� satisfy assumption (A). Then for any ��0,
sufficiently small z, and any configuration ���0 there exists a1=a1�z ,� ,���0 such that

����;z,�� − ��−���;z,�,a�� � � �2.34�

holds for all a� �0,a1�z ,���.
Corollary 2.1: Inequalities (2.31) and (2.34) ensure the existence of limits

lim
a→0

p�−��z,�,a� = p�z,�� �2.35�

for any positive z ,��0, ���0 and

lim
a→0

��−���;z,�,a� = ���;z,�� �2.36�

for small positive z, any ��0, and ���0.

III. PROOF OF THEOREM 2.1

The proof is based on the expansion which was proposed in Ref. 16. In order to arrange this

expansion let us define also an indicator of a dense configuration in any cube �� �̄a as
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�+
���� ª 1 − �−

���� .

Then we use the following partition of the unity for any ����:

1 = �
���

��−
���� + �+

����� = �
n=0

N�

�
��1,. . .,�n���

�
i=1

n

�+
�i��� �

���∖�i=1
n �i

�−
���� = �

X��

�̃+
X����̃−

�∖X��� ,

�3.1�

where N�= ��� /ad �here the symbol � · � means Lebesgue measure of the set �� is the number of
cubes � in the volume �, and

�̃�
X ��� ª �

��X

��
� ��� . �3.2�

Inserting �3.1� into �2.22� we obtain

Z��z,�� = �
X��



��

e−�U����̃+
X����̃−

�∖X���
z	�d�� . �3.3�

It is obvious that the first term in �3.3� �at X=�� coincides with Z�
�−��z ,� ,a� �see �2.25��. Using

infinite divisible property of the Lebesgue–Poisson measure �see, for example, �2.5� in Ref. 15�
one deduce that

Z��z,�� = Z�
�−��z,�,a��1 + �

��X��



�X

�̃�∖X
�−� ��;a��̃+

X���
z	�d���ª Z�
�−��z,�,a�Z�

�+��z,�,a� ,

�3.4�

where

�̃�∖X
�−� ��X;a� =

e−�U��X�

Z�
�−��z,�,a�



��∖X

e−�W��X����−�U�����̃−
�∖X����
z	�d��� . �3.5�

We also define p�+��z ,� ,a� in the same way as in �2.30�,

p�+��z,�,a� = lim
l→�

p�l

�+��z,�,a� =
1

�
lim
l→�

1

��l�
log Z�l

�+��z,�,a� . �3.6�

Consequently, in order to prove Theorem 2.1 we have to estimate the value of p�+��z ,� ,a�. Using
Proposition 2.1 �Eqs. �2.9� and �2.15�� one can obtain

e−�U��X� 
 �
���a�X

e−�A�a�����2+�B�a�����, A�a� =
b − 2�0

4
, B�a� =

�0

2
. �3.7�

Taking into account assumption �A� �Eq. �2.10�� and �2.13� we obtain

e−�W��X���� 
 �
���a�X

e��0����. �3.8�

Using the infinite divisible property of the measure 
z	 and using �3.7� and �3.8� we have



�X

�̃�∖X
�−� ��X;a��̃+

X���
z	�d�� 

Z�∖X

�−� �z,�,a�
Z�

�−��z,�,a� �
���a�X



��

e−�A����2+�B����+��0�����+
�����
z	�d��� .

As a result, using the definition of the Lebesgue–Poisson measure �see �2.1�� one can obtain the
following estimate:
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��

e−�A����2+��B+�0������+
�����
z	�d��� = �

n=2

�
�adz�n

n!
e−1/4��b−2�0�n2+3/2��0n 
 �1�a� , �3.9�

with

�1�a� = 1
2z2a2de−��b−5�0� exp�zade−��b−3�0�� . �3.10�

Now from the definition of N�, Z�
�+��z ,� ,a� �see �3.4�� and the above estimates we have

log Z�
�+��z,�,a� 
 log�1 + �

��X��

�1�a�NX� = log�1 + �
k=1

N� N�!

k ! �N� − k�!
�1�a�k� = log�1 + �1�a��N�

=
���
ad log�1 + �1�a�� .

As a result

p�+��z,�;a� 

1

�ad log�1 + �1�a�� .

It is important for the proof of the theorem to find the asymptotic behavior of �1�a� at a→0. It
follows from Eq. �3.10� and the corresponding behavior of b and �0 �see ��2.10�–�2.14��. As a
result we have

�1�a� � a2de−1/as
, s � d . �3.11�

So,

lim
a→0

p�+��z,�;a� = 0.

This ends the proof. �

IV. PROOF OF THEOREM 2.2

Using definitions �2.1� and �2.26� we can rewrite definition �2.24� for the family of correlation
functions ��

�−��· ;z ,� ,a� in the following form:

��
�−���;z,�,a� =

z���

Z�
�−��z,�,a�

e−�U��� �
����

�−
������1 + �

k=1

N�∖��

zk �
��1,. . .,�k����∖�����̄a

�

�1

¯

�k

e−�W��;�y1,. . .,yk��e−�U��y1,. . .,yk��dy1 ¯ dyk� , �4.1�

where �� is a union of cubes of �̄a which contain points from the configuration � �and in the

sequel we will use such a notation� and summation is taken over all possible sets of cubes from �̄a

that belong to the area �∖��. We prove the theorem using KS equations for the functions
��� ;z ,�� and ��−��� ;z ,� ,a�. Remind that KS equations for the functions ��� ;z ,�� can be written
in the form of a one operator equation �see Ref. 20�,

� = zK̃� + z� , �4.2�

where operator K̃ acts on an arbitrary function � according with the rule
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�K̃����x1�� = �
k=1

�
1

k!



Rd
¯


Rd
�
i=1

k

�e−����yi−x1�� − 1� � ���y1, . . . ,yk��dy1 ¯ dyk if��� = 1�� = �x1�� ,

�4.3�

�K̃����� = �
x��

�̃�x;� ∖ �x��e−�W�x;�∖�x������ ∖ �x�� + �
k=1

�
1

k!



Rd
¯


Rd

��
i=1

k

�e−����yi−x�� − 1���� ∖ �x� � �y1, . . . ,yk��dy1 ¯ dyk� if��� � 2, �4.4�

where

�̃�x;� ∖ �x�� =
�W�x;� ∖ �x��

�y��
�W�y ;� ∖ �y��

, �W�x;� ∖ �x�� = �1 if W�x;� ∖ �x�� � − 2B

0 otherwise,
�

�4.5�

� ª ����;z,������0
. �4.6�

����=1 if ���=1 and ����=0 otherwise.

Remark 4.1: Operator K̃=�K in Ruelle’s notation20 and (4.4) and (4.5) are exact realization
of the operator �.

Operator K̃ is a bounded operator in Banach space of measurable bounded functions E���
�0� with the norm

���� = sup
���0

�������−���. �4.7�

The solution of Eq. �4.2� can be represented in the form of convergent in E� �and point convergent
for any fixed ���0� series,

���;z,�� = �
n=0

�

zn+1�K̃n����;z,�� , �4.8�

if

�z� 
 e−2�B−1C���−1, C��� = 

Rd

�e−����x�� − 1�dx �4.9�

and the interaction satisfies the conditions �2.7�, �2.10�, and �2.11�.
One can write similar equations for the functions ��

�−��� ;z ,� ,a�. It can be easily done in the
way like it was shown in Ref. 13 for the case of lattice gas. Let us proceed with several new
notations that correspond to the notations in the space of configurations in the lattice gas system

�see Ref. 13�. Define the space C=C�̄a
of configurations of cubes from �̄a. Let s= ���

1 , . . . ,��
���� be

the finite configuration of ��� cubes from �̄a with all points from the configuration ���0 and
s�=s∖ ���

1�. Let us denote by C
�̄a

fin
a space of all finite configurations of cubes from C �see also Ref.

13� and c= ��1 , . . . ,�k��C
�̄a

fin
be any finite configuration of k cubes from �̄a �if k=0 c= ����.

For technical reason we also introduce a new potential,
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�̂�x,y� = ���x − y�� + �
�̄a

cor�x,y� ,

where

�
�̄a

cor�x,y� = �+ � if x,y � � � �̄a

0 if x � �, y � ��, and � � ��.
� �4.10�

As in definition �4.1� all points of the configurations �, � are situated in different cubes we can put
the potential �̂ instead of the potential � in definitions �2.24� and �2.25�. Let us define also a
potential �̂�� ,��� as the family of potentials �̂�x ,y�:

�̂��,��� = ��̂�x,y��x � �,y � ��� ,

�̂��,�� = + � for any � � �̄a. �4.11�

Remark 4.2: For c= ��1 , . . . ,�k�, s= ���
1 , . . . ,��

m�, m= ��� the functions U�c�, W�s ;c�,
��

�−��s ;z ,� ,a�, ��−��s ;z ,� ,a� are the families [see (4.10)] of the corresponding U���, W�� ;��,
��

�−��� ;z ,� ,a�, ��−��� ;z ,� ,a� with �= ���1
, . . . ,��k

�, �= ���
�
1 , . . . ,��

�
m� and at a→0 every cube

shrinks in the corresponding point so that c→�, s→�.
Configuration ���0 in the definition of the function ��� ;z ,�� is fixed and coordinates of

cubes ��
1 , . . . ,��

��� in Rd change, but Lebesgue measure of �� tends to zero �mess ���a�→0�.
The energy U��� of the configuration ���X, X�� in these notations is

U�c� = �
1
i�j
�c�

�̂��i,� j� . �4.12�

The energy of interaction between configurations of cubes s ,c�C
�̄a

fin
is

W�s;c� = �
��s,���c

�̂��,��� . �4.13�

Then definition �4.1� for the functions ��
�−��� ;z ,� ,a� takes the form

��
�−��s;z,�,a� =

1

Z�
�−��z,�,a� �


c��∖s

z�s�c�e−�U�s�c�, �4.14�

where we introduce the new notation

�

c�X

f�c� = �
k=0

�X�/ad

�
��1,. . .,�k���̄a�X



�1

¯

�k

f�x1, . . . ,xk�dx1 ¯ dxk. �4.15�

Following standard procedure �see Ref. 13� one can rewrite �4.14� in the form of the KS
equation for the family of correlation functions ��

�−��s ;z ,� ,a�:

��
�−��s;z,�,a� = ze−�W���

1 ;s�����
�−��s�;z,�,a� + �


Q��̄a,Q��

Q�s=�

�
���Q

�e−��̂���
1 ;��� − 1���

�−��s� � Q;z,�,a�� .

�4.16�

Like in the case of functions �� and � Eq. �4.16� can be modified and rewritten in the form of a
one operator equation,
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��
�−� = zK̃�

�−���
�−� + z��, �4.17�

and for the limit correlation functions ��−� we obtain

��−� = zK̃�−���−� + z� . �4.18�

Operator K̃�−� acts on an arbitrary function ��C
�̄a

fin
according with the rule

�K̃�−�������
1�;z,�,a� = �


Q��̄a,Q��

�
���Q

�e−��̂���
1 ;��� − 1���Q;z,�,a� �4.19�

for �s�=1 and

�K̃�−����s;z,�,a� = �
��s

�̃��;s��e−�W��;s��

����s�� + �

Q��̄a,Q��

Q�s=�

�
���Q

�e−��̂��,��� − 1���s� � Q�� for �s� � 2. �4.20�

Proof of existence of the solutions of Eqs. �4.17� and �4.18� in the form of the convergent
series

��
�−��· ;z,�,a� = �

n=0

�

zn+1��K̃�
�−��n���· ;z,�,a� , �4.21�

��−��· ;z,�,a� = �
n=0

�

zn+1��K̃�−��n���· ;z,�,a� �4.22�

and the equality

lim
�↗Rd

��
�−��s;z,�,a� = ��−��s;z,�,a�, s � C

�̄a

fin
, �4.23�

for z, � that yield conditions �4.9� can be done in a similar way as in Ref. 13. So, we have to show
that solution �4.22� of Eq. �4.18� converges to the solution of KS equation �4.2� if a→0.

In the sequel in the expressions for the operators K̃, K̃�−� we will consider only the case �s�
�2, as the case �s�=1 is rather similar.

Due to the convergence of the series �4.21� and �4.22� uniformly in a it is sufficient to prove

the point convergence �K̃�−��n�→ K̃n� for any n�1. It implies obviously
��−��· ;z ,� ,a�→��· ;z ,� ,a� if a→0 for sufficiently small values of a chemical activity z. To prove
this statement let us use the method of mathematical induction. Let us set n=1 �base of induction�.
We have from �4.3�, �4.4�, �4.19�, and �4.20�

�K̃�−����s� =�
Rd∖��
1

�e−����y−x1�� − 1�dy if�s� = 1


 �
���̄a

�−
�����e−����x2−x1��

if�s� = 2

0 if�s� � 2,
�

033301-12 A. L. Rebenko and M. V. Tertychnyi J. Math. Phys. 50, 033301 �2009�

Downloaded 18 Jun 2009 to 131.91.96.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



�K̃����� = �
Rd
�e−����y−x1�� − 1�dy if��� = 1

e−����x2−x1�� if��� = 2

0 if��� � 2.
�

It is clear that K̃�−��→ K̃� if a→0 in the sense of point convergence. It is useful to notice that

��K̃�−��n���s�= �K̃n�����=0 if �s��n+1 �����n+1�. Let us make the step of induction. Let

�K̃�−��n�→ K̃n� in the sense of point convergence. Using this assumption we have to prove that

�K̃�−��n+1�→ K̃n+1� in the same sense. It follows from �4.4� and �4.20� that ����= �s��2�

��K̃�−��n+1���s� = �
��s

�̃��;s��e−�W��;s�� �
���̄a

�−
�������K̃�−��n���s��

+ �
k=1

n−�s�+2

�

Q��̄a,Q��

Q�s=�,�Q�=k

�
���Q

�e−��̂����� − 1���K̃�−��n���s� � Q�� , �4.24�

�K̃n+1����� = �
x��

�̃�x;� ∖ �x��e−�W��x1�;�∖�x1����K̃n���� ∖ �x1�� + �
k=1

n−���+2
1

k!



�Rd�k
�

1
i
k

�e−����yi−x1��

− 1��K̃n���� ∖ �x1� � �y1, . . . ,yk��dy1 ¯ dyk� . �4.25�

Note that �K̃n����∖ �x1�� �y1 , . . . ,yk�� and ��K̃�−��n���s��Q� are measurable bounded functions as

operators K̃, K̃�−� are bounded in the spaces E� with some ��0. Besides because of stability
condition �2.7�: �

1
i
k

�e−����yi−x1��−1�
 �e2�B−1�k� +�. Then the proof of the theorem is based on

one technical lemma.
Lemma 4.1: Let F−�· ;a� ,F�·��L1�Rdk� be symmetric bounded functions of its variables and

lima→0 F−�x1 , . . . ,xk ;a�=F�x1 , . . . ,xk� for any �x1 , . . . ,xk�� �Rd�k. Then the following equality is
true:

lim
a→0

�
��1,. . .,�k���̄a∖��



�1

dx1¯

�k

dxkF−�x1, . . . ,xk;a� =
1

k!



�Rd�k
F�x1, . . . ,xk�dx1 ¯ dxk.

�4.26�

Proof: See the Appendix.
The step of induction follows directly from �4.15�, �4.24�, and �4.25� and the statement of the

lemma. The theorem is proven. �
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APPENDIX: PROOF OF THE LEMMA 4.1

We have to prove that for any ��0 there exists a� that for any a�a� the following estimate
holds:

033301-13 Quasilattice approximation of statistical systems J. Math. Phys. 50, 033301 �2009�

Downloaded 18 Jun 2009 to 131.91.96.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



� �
��1,. . .,�k���̄a∖��



�1

dx1¯

�k

dxkF−�x1, . . . ,xk;a� −
1

k!



�Rd�k
F�x1, . . . ,xk�dx1 ¯ dxk� � � .

�A1�

From the integrability conditions of the functions F−, F one can obtain that for any ��0 there
exists bounded ���Rd, such that

� �
��1,. . .,�k���̄a∖��



�1

dx1¯

�k

dxkF−�x1, . . . ,xk;a�

− �
��1,. . .,�k����̄a∖������



�1

dx1¯

�k

dxkF−�x1, . . . ,xk;a�� �
�

3
�A2�

and

� 1

k!



�Rd�k
F�x1, . . . ,xk�dx1 ¯ dxk −

1

k!



��
k

F�x1, . . . ,xk�dx1 ¯ dxk� �
�

3
. �A3�

Using �A1�–�A3� it is easy to notice that the proof of the lemma can be reduced to verification of
the fact that for any ��0 there exists a�= f����0 such that for any a�a� the following estimate
is true:

R = � �
��1,. . .,�k����̄a∖������



�1

dx1¯

�k

dxkF−�x1, . . . ,xk;a� −
1

k!



��
k

F�x1, . . . ,xk�dx1 ¯ dxk� �
�

3
.

�A4�

Dividing each integral over �� into the sum of integrals over �� �̄a��� one can arrange two
terms in �A4� into three ones to get the estimates

R 
 R1 + R2 + R3,

R1 = �
j=1

k−1

�
�k1,. . .,kj�,

k1+¯+kj=k

1

k1 ! ¯ kj!
�

��Pj

�
�

��1,. . .,�j���̄a���



�1

dx1¯

�1

dxk��1�
¯


�j

dxk−k��j�+1¯

�

�j

�F�x1, . . . ,xk��dxk, �A5�

R2 = �
��1,. . .,�k����̄a∖������



�1

dx1¯

�k

dxk�F−�x1, . . . ,xk;a� − F�x1, . . . ,xk�� , �A6�

R3 = �
��1,. . .,�k���̄a���,

��1,. . .,�k������



�1

dx1¯

�k

dxk�F�x1, . . . ,xk�� , �A7�

where Pj is a set of all permutations of numbers �1, . . . , j�, but the sum ���Pj
� means that we

consider only different permutations of numbers �k1 , . . . ,kj� �for example, if ki=kj the permutation
of numbers ki ,kj is considered only once�. Then for R1 we have
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R1 � �
j=1

k−1
1

j! �
�k1,. . .,kj�,

k1+¯+kj=k

1

k1 ! ¯ kj!
�

��Pj

�
�

�1��̄a���,. . .,�j��̄a���



�1

dx1¯

�1

dxk��1�
¯


�j

dxk−k��j�+1¯

�

�j

�F�x1, . . . ,xk��dxk

� �
j=1

k−1
adk

j! �
�k1,. . .,kj�,

k1+¯+kj=k

1

k1 ! ¯ kj!
�

��Pj

�
�

�1��̄a���,. . .,�j��̄a���

sup
�x1,. . .,xk���Rd�k

�F�x1, . . . ,xk��

� �
j=1

k−1
ad�k−j�

j!
���� j �

�k1,. . .,kj�,
k1+¯+kj=k

1

k1 ! ¯ kj!
�

��Pj

�
sup

�x1,. . .,xk���Rd�k
�F�x1, . . . ,xk�� → 0 if a → 0. �A8�

For R2:

R2 �
1

k! �
�1��̄a���,. . .,�k��̄a���



�1

dx1¯

�k

dxk�F−�x1, . . . ,xk;a� − F�x1, . . . ,xk��

�
����k

k!
sup

�x1,. . .,xk���Rd�k
�F−�x1, . . . ,xk;a� − F�x1, . . . ,xk�� → 0 if a → 0, �A9�

and for R3:

R3 = �
i=1

min����;k�

�
��1,. . .,�i����

�
��i+1,. . .,�k���a���∖��



�1

dx1¯

�k

dxk�F�x1, . . . ,xk��

� �
i=1

min����;k� ����i

i!

����k−i

�k − i�!
sup

�x1,. . .,xk���Rd�k
�F�x1, . . . ,xk�� → 0 �A10�

If a→0 as �mess ���a�→0� �see Remark 4.2�. Estimate �A1� is a consequence of �A8�–�A10�.
The lemma is proven.
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