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Abstract
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1 Introduction

Stability (S) of the interaction is a necessary condition for the correct thermodynamic
description of infinite statistical systems. This condition can be formulated by infinite
system of inequalities on the interaction energy of an arbitrary finite subsystem, consisting
of N particles, which are situated in the points x1, ..., xN of the space Rd.

(S)Stability. There exists B ≥ 0 such that

U(x1, ..., xN) ≥ −B N (1.1)

for any N ≥ 2 and {x1, ..., xN}.
In the present paper we consider an infinite system, which consists of identical point

particles interacting via 2-body potential

V2(x, y) = Φ(|x− y|), (1.2)

where |x− y| means Euclidean distance between points x, y ∈ Rd. In this case

U(x1, ..., xN) =
∑

1≤i<j≤N

Φ(|x− y|). (1.3)

One of the most important conditions is the condition of integrability at the infinity. This
means that for any R > 0 ∫

|x|≥R

Φ(|x|) dx < +∞. (1.4)

The conditions (1.1) and (1.4) are sufficient for the construction of Gibbs measure of an
infinite system of particles in the area of small values of parameters β = 1

kBT
and z, where

T is a temperature of a system and z is a chemical activity, which is directly connected
with a density of the system of particles(see for example [25], ch.4). In order to solve the
problem of construction of Gibbs state(Gibbs measure) of an infinite system for all positive
values of parameters β and z, it is necessary to impose more restrictive conditions on the
interaction. Such a condition is the condition of superstability (SS)(see [8], [26]). At first
we give several necessary definitions.
For each λ ∈ R+ one can define the partition ∆λ of the space Rd into cubes ∆ with a rib
λ and center in r ∈ Zd:

∆ = ∆λ(r) :=
{
x ∈ Rd | λ

(
ri − 1/2

) ≤ xi < λ
(
ri + 1/2

)}
. (1.5)

Let Γ be a phase space of an infinite statistical system of identical point particles. In
the case of an equilibrium system Γ coincides with the space of configurations (in our
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situation coordinates of particles) γ which are locally finite subsets of Rd. In other words

Γ :=
{
γ ⊂ Rd | |γ ∩ Λ| < ∞, for allΛ ∈ Bc(Rd)

}
, (1.6)

where Bc(Rd) is a set of all bounded Borel subsets of Rd, and |X| is the cardinality of a
set X b Rd. Let us define also the subset Γ0 of all finite configurations:

Γ0 =
∐

n∈N0

Γ(n) , Γ(n) := {γ ∈ Γ | |γ| = n} , N0 = N ∪ {0}. (1.7)

Besides, let
γΛ := γ ∩ Λ, γ ∈ Γ, Λ ∈ Bc(Rd). (1.8)

(SS) Superstability. There exist A > 0, B ≥ 0 and the partition ∆λ such that for any
γ = {x1, . . . , xN} ∈ Γ0 the following holds:

U(γ) ≥
∑

∆∈∆λ

[
A|γ∆|2 −B|γ∆|

]
. (1.9)

Remark 1.1. A slightly different definition was introduced by Ginibre (see [8] ):
An interaction is superstable if there exist two real constants B ≥ 0 and A1 ≥ 0 such that
for any γ ∈ Γ0 the following is true:

U(γ) ≥ A1
|γ|2
ξd

−B|γ|, (1.10)

where ξ = max
{x,y}⊂γ

|x − y|. Let us consider a box Λ with a volume V = vol (Λ) such that

γ ⊂ Λ. Then the condition (1.10) can be rewritten in the following form:

U(γ) ≥ AΛ
|γ|2
V

−B|γ|, (1.11)

where the constant AΛ does not depend on the volume V for the given shape, but it may be
shape dependent. It is easy to notice, that if we consider the box Λ as a union of the cubes
∆, defined by (1.5) and containing at least one point of the configuration γ, then, using
Cauchy-Schwarz inequality, one can write the following inequality:

|γ|2 =


 ∑

∆∈∆λ

|γ∆|



2

≤
∑

∆∈∆λ∩γ

1 ·
∑

∆∈∆λ

|γ∆|2 =
V

λd

∑

∆∈∆λ

|γ∆|2.

So, the condition (1.11) follows directly from (1.9) with AΛ = Aλd.
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There is a stronger condition on the interaction than (1.9).
(SSS) Strong superstability. There exist A > 0, B ≥ 0, p ≥ 2 and the partition ∆λ0

such that for any γ = {x1, . . . , xN} ∈ Γ0 the following holds:

U(γ) ≥
∑

∆∈∆λ

[A|γ∆|p −B|γ∆|] . (1.12)

for any λ ≤ λ0

V. M. Park (see [19]) was the first, who used the condition (1.12) with p > 2 for the
proof of bounds on exponentials of local number operators of quantum systems of inter-
acting Bose gas.
In connection with the conditions (1.1), (1.9), (1.12) there is a problem to describe the
behavior of interaction potentials, which ensure the stability, superstability or strong su-
perstability of the statistical systems. Putting in (1.1) - (1.3) N = 2, we deduce that the
function Φ must be bounded from below:

Φ(|x|) ≥ −2B. (1.13)

In addition to this, R.L.Dobrushin (see [6]) proposed a necessary condition of stability
of interaction in the form: ∫

Rd

Φ(|x|) dx ≥ 0. (1.14)

Consequently, a positive part of interaction must be big enough. As a rule, for neutral
physical systems, the potential with the behavior as on the Figure 1 is considered.

Fig. 1

A behavior of the potentials at the infinity (|x| → ∞) is determined by the condition (1.4),
but the behavior near the initial point depends on the chosen model and as we will see
later, it actually defines (S), (SS), (SSS) type of interaction. D. Ruelle was the first, who
introduced the conditions, which ensure the estimate (1.11) for the systems of particles,
which are situated in the cube Λ with a volume V (see [24]). He proposed the potential
Φ in the following form:

Φ(|x|) = Φ1(|x|) + Φ2(|x|), (1.15)
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where Φ1 is Lebesgue measurable function with values in the closed interval [0;∞] and
satisfies the condition (1.4); Φ2 is a continuous function of positive type and:

∼
Φ2(0) =

∫

Rd

Φ2(x) dx > 0. (1.16)

The above mentioned conditions and their direct consequence - the inequality (1.11)were
used in works [24] for the proof of existence of a thermodynamic limit (Λ ↗ Rd) for a free
energy (canonical ensemble) and a pressure (grand canonical ensemble). Later M. Fisher
noticed(see remarks in [24]) that these results can be proved using less restrictive assump-
tions on the potential Φ:

Φ(|x|) ≥ c

|x|d+ε
for |x| < a1, (1.17)

Φ(|x|) ≥ −w for a1 ≤ |x| ≤ a2, (1.18)

Φ(|x|) ≥ − c′

|x|d+ε′ for |x| > a2, (1.19)

where a1, a2, c, c′, w, ε, ε′ are some positive constants. See also the article [7] for the
systems of particles with different species and "charged" systems. As the authors pointed
out,the conditions (1.17) - (1.19) ensure (S) stability of a system, in other words the con-
dition (1.1) holds. In fact, these conditions guarantee also superstability of interaction.
But at that time such a notion was not yet introduced.
Independently, and at the same time A.Ya. Povzner(communication at the Moscow State
University seminar on Statistical Mechanics (1963)) found the conditions on the potential,
which ensure the existence of the estimate (1.1)(and even (1.9)). One can find his argu-
ments in [28] where they have been refined for the analysis of stability of the classical
statistical systems with highly singular potentials. Later R.L.Dobrushin proposed more
general condition on the potential Φ, which in contrast to (1.17) included also integrable
at the origin potentials (see [6], formula (1.17)). Having modified Povzner conditions he
proved, that stability and an existence of limit values of thermodynamic potentials follow
from these conditions. In order to complete this short survey we have to mention the
criterion of stability, which was proposed by Basuev [2]. Note that it is rather close to the
Povzner’s conditions (see also [20] ).
In terms of usage of the conditions (1.9), (1.11) it is important to obtain the optimal
values of the constants A, B. In this area we have to mention the article [17] in which
for continuous L1(Rd) potentials of positive type, which satisfy the condition (1.16), the
inequality (1.11) was proved with

A =
1

2

(∼
Φ(0)− ε

)
, B =

1

2
Φ(0), and V = V (ε)
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for any small ε > 0. The constants A,B are best possible.
The purpose of the present article is not only to make an overview of the previous results,
but to obtain some new sufficient conditions on the 2-body interaction potential, which
make a system stable, superstable or strong superstable. It is important to notice that
the remark about the possible behavior of singular potentials, which ensures the condition
(1.12) for p > 2 was firstly proposed by D.Ruelle (see [25], ch.3, formula(2.28)). It seems
to be just an intuitive assumption, which one can guess on the physical level of rigor, if we
accept the following hypothesis: the configuration that minimizes energy of N particles,
which are situated in the cube with a volume V is uniformly distributed. It means, that
all particles are situated in the sites of a lattice on the distances∼ (

V
N

) 1
d . Implicitly such

estimate of the energy was calculated also by Dobrushin (see [5] formulas (4.1), (3.2)).
Therefore, the present work can be considered as a new proof of Ruelle’s conjecture [25].
We used rigorous results, that have been obtained during last several years(see [10], [9],
[11], [3] ) and some facts of the classical potential theory (see, for example [13]). Besides,
exact values of the constants A and B in the Eqs. (1.9), (1.12) are established.

2 Notations and main results

Following [13] let us propose several new notations, some of them will be denoted in ac-
cordance with the chapter 1 of the present article. Let K be a compact in Rd. For any
configuration γK(|γK | = N) in K we define the Riesz s-energy:

E(N)
s (γK) :=

∑

{x,y}⊂γK

1

|x− y|s , s > 0. (2.1)

In the case s < d consider the energy integral

Is(µ; K) :=
1

2

∫ ∫

K×K

1

|x− y|s µ(dx)µ(dy), (2.2)

w. r. t. some probability measure µ, support of which is K ( µ(K) = 1).
One of the most important problems in modern potential theory is to find a measureµ∗ that
minimizes the integral (2.2).
There is a fact (see [13], ch. 2) that if the configuration γmin

K = {ξ1, . . . , ξN} minimizes
the energy (2.2), then a sequence of measures:

µN(·) :=
1

N

N∑
i=1

δξi
(·), (2.3)

6



where δξi
is a point Dirac measure, converges in the weak-star topology to the mea-

sureµ∗ (minimizing measure of the integral (2.2)).

A sequence e
(N)
s,K =

E
(N)
s (γmin

K )

N2 is monotonically increasing and:

lim
N→∞

e
(N)
s,K = lim

N→∞
E

(N)
s (γmin

K )

N2
= Is(µ

∗) < ∞. (2.4)

There are two different behaviors of the minimizing configurations in the limit N →∞:
1)if s ≤ d − 2, then suppµN ⊂ ∂K, suppµ∗ ⊂ ∂K, where ∂K is a border of a compact
K; 2) for d− 2 < s < d suppµ∗ ⊂ K.

Let K = Bd(0; r) be a d-dimensional ball with a radius r and ∂K = Sd(0; r) be a
surface of the corresponding sphere. Than for the case 1) for s ≤ d − 2 minimizing
measure is distributed uniformly on the surface of the ball Bd(0; r) and:

µ∗(dx;Bd(0; r)) =
m(dx)|Sd(0;r)

m(Sd(0; r))
, m(Sd(0; r)) =

2π
d
2

Γ
(

d
2

)rd−1; (2.5)

2) for d− 2 < s < d

µ∗(dx;Bd(0; r) =
A(d; s)

(r2 − x2)
d−s
2

m(dx), A(d; s) =
Γ

(
1 + s

2

)

π
d
2 Γ

(
1− d−s

2

) , (2.6)

where m(·) is the Lebesgue measure in Rd. Corresponding values of the energy integral
(2.2) are:
1) for s ≤ d− 2

Is(µ
∗;Bd(0; r)) =

1

rs

2d−s−3 Γ
(

d−s−1
2

)
Γ

(
d
2

)
√

π Γ
(
d− 1− s

2

) , (2.7)

2) if d− 2 < s < d

Is(µ
∗;Bd(0; r)) =

1

rs

Γ
(
1 + s

2

)
Γ

(
d−s
2

)

2 Γ
(
1 + d

2

) . (2.8)

See for details [13].

The cases s = d and s > d are essentially different from the case s < d, which is
considered in the classical potential theory. The construction of the minimizing measure
and the estimates for the minimal energy of the configuration if s ≥ d are proposed in [9]
- [11] (see, also, [3]). Let us formulate the most important points:
1) the energy integral Is(µ) = +∞ for all probability measures on the compact K ⊂ Rd;
2) for any arbitrary compact K ⊂ Rd the following is true:

µN(·) → m(·)|K
m(K)

. (2.9)

7



or in other words point particles are asymptotically uniformly distributed;
3) if s = d the following holds:

Cd = lim
N→∞

EN
s (γmin

K )

N2 ln N
=

ϕ0

λs

π
d
2

d · Γ (
d
2

) ; (2.10)

4) if s > d then:

lim
N→∞

EN
s (γmin

K )

N1+ s
d

=
ϕ0

λs

Cs,d

2
. (2.11)

In the case d = 1 and K = [0, 1] Cs,1 = 2ξ(s), where ξ(s) is a classical Riemann zeta-
function;
5) let K be a d-dimensional cube with a rib λ, then if s > d the following holds:

EN
s (γK) ≥ ϕ0

λs

1

22s+1

(
2π

d
2

d · Γ (
d
2

)
) s

d

N1+ s
d . (2.12)

(A): Assumption on the interaction potential. In this article we consider a
general type of potentials Φ, which are continuous on R+ \ {0}, and for which there exists
λ > 0, R > λ, ϕ0 > 0, ϕ1 > 0, and ε > 0 such that :

1) Φ(|x|) ≡ Φ−(|x|) ≥ − ϕ1

|x|d+ε
for |x| ≥ R, ; (2.13)

2) Φ(|x|) ≡ Φ+(|x|) ≥ ϕ0

|x|s , s ≥ 0 for |x| ≤ λ. (2.14)

where
Φ+(|x|) := max{0, Φ(|x|)}, Φ−(|x|) := min{0, Φ(|x|)}. (2.15)

In contrast to [9], [13] we consider also the case s = 0, which looks probably trivial from
the point of view of potential theory , but it will take place also in our description(see
Remark 2.1 below).
Now we can formulate the following theorems.

Theorem 2.1. Let interaction potential satisfy the conditions (A). Then for 0 ≤ s < d

any γ ∈ Γ0 and sufficiently small ε > 0 there exists constant B = B(ε) such that the
following inequality holds :

U(γ) ≥
∑

∆∈∆λ,
|γ∆|≥2

(
Is(µ

∗; ∆)ϕ0 − v0

2
− ε

)
|γ∆|2 −B|γ|, (2.16)

where
v0 = v0(λ) := sup

x∈Rd

∑

∆∈∆λ

sup
y∈∆

∣∣Φ−(|x− y|)
∣∣ . (2.17)
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Corollary 2.1. In the case: 0 ≤ s < d the potential Φ yields the condition (SS)(see (1.9)
if the following holds:

Is(µ
∗; ∆)ϕ0 >

v0

2
. (2.18)

Remark 2.1. The condition (2.18) can be rewritten in simpler form if we consider that
minimal Riesz energy of a configuration with fixed number of particles |γ∆| in the cube
∆ ∈ ∆λ is always bigger than minimal Riesz energy of a configuration with the same
number of particles in the described ball with a radius r =

√
dλ
2
. Consequently, one can

substitute the formulas (2.7), (2.8) with r =
√

dλ
2

for Is(µ
∗; ∆) in the l.h.s of (2.18) (cases:

s ≤ d − 2, d − 2 < s < d respectively). The r.h.s of (2.18) can be changed by C
λd , where

a constant C ≈ ∫
Rd |Φ−(|x|)| dx for sufficiently small λ. Then for the given configuration

in the d-dimensional space and for the potential, which satisfies the condition (2.14) the
system is superstable if there exists such λ (in other words such a partition ∆λ of the space
Rd), that the condition (2.18) holds. The set of potentials, which satisfy the condition
(SS), is not empty, as one can choose sufficiently big ϕ0, in order to make (2.18) true for
any fixed λ > 0. For the case s = 0 I0(µ

∗; ∆) = 1/2.

Theorem 2.2. Let interaction potential satisfy conditions (A). Then for s = d, any
γ ∈ Γ0 and sufficiently small ε > 0 there exists constant B = B(ε) such that the following
inequality holds :

U(γ) ≥
∑

∆∈∆λ,
|γ∆|≥2

(
Cd ln |γ∆| − v0

2
− ε ln |γ∆|

)
|γ∆|2 −B|γ|, (2.19)

where (see [9])

Cd =
1

λd

π
d
2

d Γ
(

d
2

) ϕ0. (2.20)

Theorem 2.3. Let interaction potential satisfy conditions (A). Then for s > d any
γ ∈ Γ0 there exists constant B = B(ε) such that the following inequality holds:

U(γ) ≥
∑

∆∈∆λ,
|γ∆|≥2

(
Cs,d |γ∆|1+ s

d − v0

2
|γ∆|2

)
−B|γ|, (2.21)

where (see [9])

Cs,d =
1

λs

1

22s+1

(
2π

d
2

d Γ
(

d
2

)
) s

d

ϕ0. (2.22)
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Remark 2.2. In the case s = d the system of particles is superstable (SS) for all partitions
∆λ since for any ε > 0 and v0 one can find N0 ≥ 2 and B = B(N0) such that for N > N0

Cd ln N >
v0

2
. (2.23)

In the case s > d system of particles is strong superstable (SSS), since one can always
choose sufficiently small λ > 0 and some A = A(λ) such that:

Cs,d|γ∆|1+ s
d − v0

2
|γ∆|2 ≥ A|γ∆|1+ s

d (2.24)

for |γ∆| ≥ 2.

3 Proof of the results

3.1 Proof of Theorem 2.1

We have for any γ ∈ Γ0 and any partition ∆λ:

U(γ) =
∑

{x,y}⊂ γ

Φ(|x− y|) =
∑

∆∈∆λ:|γ∆|≥2

U(γ∆) +
∑

{∆,∆′}⊂∆λ

∑
x∈γ∆
y∈γ∆′

Φ(|x− y|). (3.1)

Taking into account the assumptions (A) on the interaction potential , definitions (2.1),
(2.17) and the inequality |γ∆| |γ∆′| ≤ 1

2
(|γ∆|2 + |γ∆′|2) we obtain from (3.1):

U(γ) ≥
∑

∆∈∆λ:|γ∆|≥2

[
E(N∆(γ))

s (γmin
∆ )ϕ0 − v0

2
|γ∆|2

]
− v0

2
|γ|, N∆(γ) = |γ∆|. (3.2)

For the fixed ε > 0 let’s define N0 such that Is(µ
∗; ∆)− e

(N)
s,∆ > ε if N < N0

and Is(µ
∗; ∆)− e

(N)
s,∆ < ε if N ≥ N0 (see (2.4)). Let’s also define a sequence:

BN =





(
e
(N0)
s,∆ − e

(N)
s,∆

)
·N0, N ≤ N0;

0, N > N0.
(3.3)

For N ≤ N0 : e
(N)
s,∆ − e

(N0)
s,∆ ≤ 0 and N2 ≤ N N0. As a result we have:

1) if N ≤ N0: (
e
(N)
s,∆ − e

(N0)
s,∆

)
N2 ≥

(
e
(N)
s,∆ − e

(N0)
s,∆

)
N0 N = −BN N ;

2) if N > N0:
e
(N)
s,∆ N2 ≥ e

(N0)
s,∆ N2.
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Then for any N ≥ 2 :
e
(N)
s,∆ ·N2 ≥ e

(N0)
s,∆ ·N2 −BN ·N, (3.4)

Because of B2 > BN for any N ≥ 2we deduce from (3.4) that for all N ≥ 2:

e
(N)
s,∆ N2 ≥ e

(N0)
s,∆ N2 −B2N =

=Is(µ
∗, ∆)N2 +

(
e
(N0)
s,∆ − Is(µ

∗, ∆)
)
·N2 −B2N ≥

≥ (Is(µ
∗, ∆)− ε) ·N2 −B2N. (3.5)

The inequality (3.5) proves the Theorem (2.1) for the partition ∆λ such that for the given
γ ∈ Γ0 there exists at least one cube with |γ∆| ≥ 2. In this case:

B = B2(ε) =
(
e
(N0)
s,∆ − e

(2)
s,∆

)
·N0, N0 = N0(ε). (3.6)

For γ ∈ Γ0 with |γ∆| = 1 or 0 it is clear that B2 = v0/2. So, one can choose:

B = max
{(

e
(N0)
s,∆ − e

(2)
s,∆

)
·N0;

v0

2

}
. (3.7)

The end of the proof.

¥

3.2 Proof of Theorem 2.2 and Theorem 2.3

In our case K is a d-dimensional cube ∆ with a rib λ. As in the previous case we start

from (3.1), (3.2). For the fixed ε > 0 let us define N0 such that
∣∣∣∣Cd − EN

s (γmin
K )

N2 ln N

∣∣∣∣ > ε if

N < N0 and
∣∣∣∣Cd − EN

s (γmin
K )

N2 ln N

∣∣∣∣ < ε if N ≥ N0( the constant Cd is taken from (2.10)). Using

(3.1), (3.2), (2.10) and neglecting in (3.1) the part of interaction energy
∑

∆∈∆λ,
|γ∆|<N0

U(γ∆) one

can write an estimate for the total energy of the system in the following form:

U(γ) ≥
∑

∆∈∆λ,
|γ∆|≥2

[
Cd ln |γ∆| − v0

2
− ε ln |γ∆|

]
|γ∆|2 −

∑

∆∈∆λ,
|γ∆|=1

v0

2
|γ∆|2−

−
N0−1∑
i=2

∑

∆∈∆λ,
|γ∆|=i

[Cd − ε] |γ∆|2 ln |γ∆|. (3.8)
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Number of cubes with |γ∆| = i is not more than |γ|
i
. That’s why:

N0−1∑
i=2

∑

∆∈∆λ,
|γ∆|=i

[Cd − ε] |γ∆|2 ln |γ∆| ≤ |γ|
N0−1∑
i=2

[Cd − ε] i2 ln i

i
. (3.9)

As a result, we can put:

B =
v0

2
+

N0−1∑
i=2

[Cd − ε] i ln i. (3.10)

The end of the proof.

¥

Remark 3.1. The proof of the Theorem 2.3 is very similar to the previous proof of the
Theorem 2.2. In this case according to (2.14) the minimal energy of N∆(γ) particles which
are situated in the d-dimensional cube ∆ ∈ ∆λ can be estimated from below by the inequality
(2.12)(see [10] and [3]). Substituting this inequality in (3.2) we obtain Eq.(2.21) with
B = v0

2
.
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