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1 Introduction

It is generally excepted that for investigation of different physical phenom-
ena in quantum crystals one can consider an infinite system of interacting
anharmonic oscillators, which are situated in the sites of ν-dimensional lat-
tice ZZν. The heuristic Hamiltonian of such a system (in the case of 2-body
interaction) has the following form:

H = − ~
2

2m

∑

j∈ZZν
∆j +

∑

j∈ZZν
W (qj) +

J

2

∑

i,j∈ZZν ,i6=j
Q(qi, qj)−

∑

j∈ZZν
h · qj, (1.1)

where m is the mass of particles, the operator ∆j corresponds the kinetic
energy of the system and, in fact, is d-dimensional Laplace operator in the
one-particle Hilbert space L2(IRd, dq), where dq is the Lebesgue measure on
IRd, qj ∈ IRd for j ∈ ZZν is displacement of a particle from its position in
the site j ∈ ZZν. For general case d ≤ ν ≥ 1. But most results which where
obtained earlier are for d = 1. The particles are confined near their sites by
potential W (qj). A harmonic one-site potential Wharm(qj) = 1

2
aq2

j , a > 0
together with a harmonic two-particle interaction Q(·, ·) define a well-known
harmonic crystal model (1.1). To produce a model describing a (ferroelectric)
structural phase transition one usually takes for W (·) a double-well anhar-
monic potential, keeping Q(·, ·) harmonic (see e.g. [1,19,24]). For example,

W (q) =
1

4
b(q2)2 − 1

2
aq2, a, b ∈ IR1

+,

1
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or semibounded from below polynomials of higher degree with more than
two equal minima. Here q2 ≡ q · q is the scalar square of displacement vector
q ∈ IRd. The proof of existence of phase transition in such kind of systems
for harmonic interaction Q(qi, qj) were obtained in [12,15,26,34,40,47,53] for
the case

Q(qi, qj) = Qij(qi − qj)2, (1.2)

where Q̂ = (Qij)i,j∈ZZν is a matrix of non-negative harmonic-force constants.

The term h · qj =
∑d

α=1 h
αqαj break the symmetry in the direction of the

external field h. The non-uniqueness of Gibbs states for h = 0 is proved
when the mass of the particles m is sufficiently large and the temperature T
is sufficiently low, or β = (kT )−1 is sufficiently large.

From the other side, another interesting phenomenon, the suppression of
the long-range order by strong quantum fluctuations in such systems was
experimentally observed (see, e.g. [55]) and was discussing long time ago
from the physical point of view, see [51], or the books [1,19]. A rigorous
study of this phenomenon was given in the series of papers. For the d =
1 displacement and all ν ≥ 1 the suppression of the order parameter for
all temperatures including T = 0 (as soon as the particle mass is smaller
than some threshold: m < m∗) was proved in [58]. Later it was shown
in [3] for d = 1 and in [37-39] for d ∈ IN , that not only the long-range
order but also any critical behaviour of displacements of particles from the
equilibrium positions are suppressed at all temperatures T > 0 if the model
is “strongly quantum”, i.e., if the mass m is small enough. But a more
important problem is to prove the uniqueness of the Gibbs state for such
systems for sufficiently small mass of particles. It would imply the absence
of all critical anomalies in the regime of “strong quantumness”. The first
step in this direction was made in [44] for d = 1, where for small values
of m the convergence of corresponding cluster expansions was proved for
all values of temperature T ≥ 0. See also [8], where the cluster expansion
is constructed by another and simpler technique but for small m, which
depends on the positive T > 0. The result of [44] has been extended to
the multi-dimensional spin in [27]. This in particular implies that the order
parameter is always zero if m < m∗ for any values of T ≥ 0 [43]. It gives, also,
uniqueness of the EGM (we define it in the next section, see, also, [2,31,33]
and [7] for detailed description of the Euclidean approach) at least for so-
called “compact” boundary conditions for displacements. In particular, this
is true if displacements are reduced to a compact space (so-called compact
spins). This resumes the results of [44] and [43] about the suppression of
the displacement phase transition by the large quantum fluctuations in small

2
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mass domain m < m∗. For models with compact spin the uniqueness mass
was proved in [9]. Then in [4] the uniqueness of EGM was proved for d = 1
and for every fixed inverse temperature β <∞ if the mass is less than some
threshold: m < m∗(β). Finally, the dependence of the mass threshold on the
temperature was eliminated in recent papers [5],[6] for the set of tempered
EGM.

Remark 1.1 These results were obtained for the case of polynomial anhar-
monic one-site potential of the form:

W (q) = v(q2) =
s∑

p=1

a2p(q
2)p, a2s > 0, s > 1, s ∈ IN. (1.3)

with additional assumption on W (q) that v(·) is convex on IR1
+. For the proof

of these results the fact of smallness of the parameter m(s−1)/(s+1) for small
m, i.e. s > 1, is crucial. Recall that in this case, after an appropriate unitary
transformation of the Hamiltonian, the parameter m(s−1)/(s+1) stands in front
of the harmonic interaction term Q. So the light-mass regime corresponds
to the one-site energy domination and the weak interaction of anharmonic
oscillators defined by W , that implies the uniqueness of the EGM.

On the other hand, let us define s ≥ 0 by

s = inf
α≥0
{α : lim sup

q2→∞
v(q2)/(q2)α <∞}. (1.4)

If s ≤ 1, then in the light-mass domain (“strong quantumness”) the param-
eter m(s−1)/(s+1) is not small, i.e. the approach developed for s > 1 does not
work. So, the rate of the growth of anharmonic potential is an important
parameter distinguishing different regimes, see discussion in [43] and [58].

Remark 1.2 If s < 1, then in the light-mass limit the harmonic interaction
term dominates the one-site anharmonic potential, i.e. the system has to
behave close to a Debye harmonic crystal (not proved). In the marginal case
s = 1 the both harmonic interaction and harmonic part of W dominate the
anharmonicity. From the physical point of view the large-distant behaviour of
the one-site anharmonic potential is not well-justified. So, a priori all above
scenario are possible.

For example, the paper [54] proposed a model with the one-site non-
polynomial anharmonic potential of the form:

W (q) =
1

2
aq2 + be−δq

2/2, a, b, δ ∈ IR1
+. (1.5)

3
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corresponding to s = 1. It is easy to see that for a < bδ the minimum of
the potential (1.5) is not unique and the system may undergo a displacement
phase transition. For the case of so-called self-consistent phonon approxima-
tion [1], or for the displacement quantum spherical model it was proved in
[48] for (1.3) and in [54,58] for (1.5). In general case this follows from [15],
see also [47]. On the other hand, in [48] and [54,58] it is shown that there is
a non-zero threshold mass m∗ such that the phase transition in the displace-
ment quantum spherical model is suppressed by the “strong quantumness”
as soon as m < m∗.

The aim of the present paper is study the case of the quadratic growth,
s = 1, of the double-well anharmonic one-site potential W (1.5). We prove
that (similar to the case s > 1) there is a non-zero mass m∗ such that
in the light-mass domain: m < m∗ the critical behaviour of the quantum
anharmonic system (1.1) for h = 0 is suppressed for arbitrary dimension
of particles displacements d ≥ 1 and ν ≥ 3. More precisely, we prove the
uniqueness of the corresponding Gibbs state. Our result is based on the
proof of convergence of the cluster expansions for the quantum Euclidean
Gibbs Measure in the thermodynamic limit for arbitrary temperature T ≥ 0
and sufficiently small mass m < m∗ of particles (uniformly in temperature).
Notice that since for s = 1 the interaction in the light-mass limit m < m∗
is not negligible (Remark 1.2), our strategy of the proof the uniqueness is
different to that for s > 1, cf [44]. In that sense our result supplements the
recent proof of the Gibbs state uniqueness for s > 1, see [5,6].

Now there are few other remarks in order to outline our strategy of the
proof the uniqueness for the case s = 1.

The anharmonic perturbation in (1.5) can be re-written in the following
form

V (q) = be−δq
2/2 = b

∫
dµ(α)ei

√
δα·q, (1.6)

where dµ(α) = (2π)−d/2e−α
2/2dα is the Gaussian measure on IRd. So anhar-

monic term (1.6) is a gentle perturbation of the quantum harmonic system
in the sense of Albeverio–Høegh-Krohn [2]. Unfortunately, our situation is
similar to [2] only at the first glance. In fact, there are some essential differ-
ences. In [2] the bounded measure dµ has to have a compact support. Under
this condition the authors managed to apply the Kirkwood–Salsburg Equation
(KSE) technique to prove the existence of the corresponding correlation func-
tions in thermodynamic limit as well as their analyticity in coupling constant
λ (in our case λ ≡ b) in some domain |λ| < λ0 for all temperatures.

We can not apply this technique, since of the Gaussian measure in (1.6)
has infinite support. By consequence it is impossible to find a Banach space
Eξ for correlation functions and the corresponding KSE. As it was indicated

4
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in [2], Remark 2, for extension of the results to the measure with unbounded
support one needs a modification of the Banach space. But even that is not
essential, since the main difficulty for s = 1 is connected with the parameter
of analyticity. Instead of λ we have as the small parameter the particle mass
m, which is involved in the Hamiltonian via the kinetic-energy term, see
(1.1).

We overcome these difficulties by a cluster expansions technique. The
choice of the cluster expansions is defined by the dependence of the param-
eters in the Hamiltonian on the mass m after an appropriate rescaling, see
(2.12). In the case of anharmonic potential with harmonic asymptotics s = 1
the dependence on the mass m remains only in the rescaled temperature
and in the rescaled anharmonic potential (1.6). Therefore, the expansions
should be arranged with respect to (w.r.t.) the anharmonic part of the one-
site potential. (Recall that for s > 1 the corresponding cluster expansions
are constructed w.r.t. two-body harmonic interaction.)

To prove the uniqueness of the corresponding EGM we profit from Theo-
rem 3.1 of [6] and we use the cluster property of the EGM moments, which is
a consequence of the cluster expansion convergence established in the present
paper. Similar to [43] we prove the analyticity of the state w.r.t. the exter-
nal field h. As a consequence this immediately implies that the displacement
order parameter (in the region of convergence of the cluster expansions) is
equal to zero for all temperatures T ≥ 0 as soon as m < m∗.

A brief contents of this paper is the following. In Section 2 we describe our
system (1.5) in more details and we formulate the main results. In Section 3
we construct the cluster expansions w.r.t. the anharmonic part of the one-site
potential, and we give the proof of main theorems. In Section 4 we provide
all necessary estimates. Section 5 is devoted to the limiting Gibbs state
analyticity w.r.t. to the external field, and in Section 6 we briefly discuss
the proof of the convergence of cluster expansions and the uniqueness in the
case of high temperatures.

2 Description of the system and main results

We consider a ν(≥ 3)-dimensional quantum crystal model with d(≥ 1)-
component site displacements (or d-dimensional continuous infinite-spin vari-
ables) on the cubic lattice ZZν. With each site j ∈ ZZν we associate a one-
particle physical Hilbert space L2(IRd, dq), where dq is the Lebesgue measure
on IRd. Then

HΛ =
⊗

j∈Λ

L2(IRd, dqj) ' L2(IRd|Λ|, dqΛ),

5
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dqΛ =
∏

j∈Λ

dqj,

is the Hilbert space related to some given bounded set Λ ⊂ ZZν, with number
of sites |Λ| <∞.

For a finite set Λ ⊂ ZZν we consider in HΛ the Hamiltonian:

HΛ = HΛ
0 + V Λ. (2.1)

Here the harmonic part of the Hamiltonian has the form:

HΛ
0 = − 1

2m

∑

j∈Λ

∆j +
1

2
a
∑

j∈Λ

q2
j +

J

4

∑

〈i,j〉⊂Λ

(qi − qj)2 + CΛ, (2.2)

where m is the mass of particles (we put ~ = 1), ∆j is the Laplace operator in
L2(IRd, dqj), the sum is extended over all pairs 〈i, j〉 ⊂ Λ for which ‖i−j‖ = 1
and J > 0. We consider a nearest-neighbors interaction only for simplicity.
The constant CΛ we will be chosen later.

We put a one-site potential W (q) in (1.1) to be equal to (1.5) for q2 = q ·q,
i.e., for q ∈ IRd. So the anharmonic part of the one-site potential in (2.1) has
the form

V (q) = b e−δq
2/2, b ≥ 0, δ ≥ 0, q ∈ IRd. (2.3)

To prove an existence of the Gibbs states in the light-mass regime for
small temperatures, including T = 0, we need a supplementary argument
based on the cluster expansions. Below we do this first for the periodic
boundary conditions (p.b.c.), then we complete our construction by the case
of the empty boundary conditions. The last we use later to pass to tempered
non-empty boundary conditions. Notice that the cluster expansions for p.b.c.
prove also the clustering property of the corresponding EGM for m < m∗ and
for any T ≥ 0. Therefore, simultaneously with existence we get uniqueness
of EGM for all temperature T > 0, as soon as the particle mass is light
enough: m < m∗. We also discuss the case T = 0. So, first we assume in
(2.1), (2.2) the p.b.c.:

Λ = {j ∈ ZZν | −Nµ/2 < j(µ) ≤ Nµ/2, µ = 1, ..., ν;Nµ/2 ∈ IN}.

Thus, |Λ| = N1 · · ·Nν and

q
(α)

(j(1),...,j(µ)+Nµ,...,j(ν))
= q

(α)
j , α = 1, ..., d, µ = 1, ..., ν. (2.4)

Then, to complete the proof of the uniqueness of the EGM, in the next
section we consider also a general boundary conditions generated by some

6
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fixed configuration ω̄ from the set Ω̃t
β̂
, which includes so-called tempered

configurations, see [6,13,14] and [46].
Usually, equilibrium quantum Gibbs states are defined ( according to [18])

on C?-algebra A of quasi-local observables, which satisfy the KMS conditions
with respect to one-parameter group of automorphism αt, t ∈ IR, which de-
fines time evolution in A. Unfortunately, for the considered systems such
definition can not be used. Therefore, one can (see, for example, [2, 44])
treat it in the following way.

First we define the family of local Hamiltonians (2.1)-(2.2) for |Λ| < ∞,
which are defined as self-adjoint operators in HΛ. Then, one can construct
on the algebra of bounded linear operators L(HΛ) the group of local auto-
morphism

αΛ
τ (B) = e−iτĤΛBeiτĤΛ , B ∈ L(HΛ)

and define local Gibbs state for finite temperature β > 0 by the formula

ρβΛ(A) =
Tr(Ae−βHΛ)

Zβ(Λ)
, β =

1

kBT
, (2.5)

where Zβ(Λ) = Tre−βHΛ and A ∈ L(HΛ).
Note, that the algebras L(HΛ) (for different Λ) are isometrically embed-

ded into L(HΛ′) for Λ ⊂ Λ′. Using this fact we can define the inductive
limit

A0 = lim
Λ↗ZZν

L(HΛ),

which is a normed ∗– algebra of local observables. The closure of this algebra
in the operator norm forms the algebra of bounded quasi-local observables

A = Ā0.

The definition (2.5) is correct because operator Ae−tHΛ with t > 0 is of the
trace class (see [59]). Now, it would be reasonable to define (see e.g. [2]) the
temperature quantum Gibbs state as

ρβ(A) = lim
Λ↗ZZν

ρβΛ(A). (2.6)

However, it is necessary to stress that it is impossible to construct this limit
in the framework of the operator technique. To overcome these difficulties
funtional-integral approach was developed in [32, 2]. This approach is very
close to the Euclidean approach in investigating of models of the quantum
field theory. The main point of this approach is in the following.

7
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For every bounded measurable function A(xΛ) on IRd|Λ| we consider a
bounded operator A0 on HΛ defined as :

(A0f)(xΛ) = A(xΛ)f(xΛ), (2.7)

and for any t > 0 we consider the operator

At = e−tHΛA0e
tHΛ . (2.8)

Then for every set of bounded functions A(0), . . . ,A(n) and for increasing
sequence of the ”time” moments 0 = t0 ≤ t1 ≤ . . . ≤ tn ≤ tn+1 = β, we
define the operator

A =
n∏

l=0

A
(l)
tl

= A
(0)
0 e−t1HΛA

(1)
0 e−(t2−t1)HΛ . . . e−(tn−tn−1)HΛA

(n)
0 etnHΛ (2.9)

Then by (2.5) one gets:

ρβΛ(A) =
1

Zβ(Λ)
Tr(A

(0)
0 e−t1HΛA

(1)
0 e−(t2−t1)HΛ . . . e−(tn−tn−1)HΛA

(n)
0 e−(β−tn)HΛ).

(2.10)
The state (2.10) is obviously analytic in the domain

0 < Re t1 < Re t2 < ... < Re tn < β

with boundary values at Re ti = 0, i = 0, ..., n, and it is uniformly bounded
by the generalized Ginibre–Gruber inequality [23]:

Tr
( n∏

l=0

αΛ
Imtl

(A
(l)
0 )e−βHΛ

)
≤ ‖

n∏

l=0

A
(l)
0 ‖Tr

(
e−βHΛ

)
.

The r.h.s. of (2.10) defines so-called Matsubara functions (temperature
Euclidean Green’s functions). It was proved (see [32,7] for a detailed descrip-
tion) that, for a given Λ, |Λ| <∞, any operator B ∈ L(HΛ) may be approxi-

mated strongly by linear combinations of operators of the form αt1(A
(1)
0 ) · · ·

at1(A
(n)
0 ) and the Matsubara functions constructed from ρβΛ(A) with help the

operators (2.7)-(2.9) already determine completely the state ρβΛ.
The main technical tool to construct thermodynamic limit Λ ↗ ZZν for

ρβΛ(A) is the representation (2.10) by moments of some probability measure:

ρβΛ(
n∏

l=0

A
(l)
tl

) =

∫ n∏

l=0

A(l)(φΛ(tl))dµ
Λ(φ) := 〈

n∏

l=0

A(l)(·)〉µΛ. (2.11)

8
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Following [2] we will use the Feynman-Kac formula to get (2.11). But at first
we fulfil some preliminary constructions. Since we are going to consider do-
main of small masses, the following standard light-mass rescaling of variables
(appeared for the first time in this context in [58]) is relevant:

qj = αxj, α = m−
1
4 . (2.12)

This change of variables induces the unitary map :

U : HΛ → HΛ

(Uf)(xΛ) = α|Λ|/2f((αx)Λ), (αx)Λ = {αxj, j ∈ Λ}.

One can check that
UHΛU

−1 = m−
1
2 ĤΛ,

where
ĤΛ = ĤΛ

0 + V̂ Λ, (2.13)

ĤΛ
0 = −1

2

∑

j∈Λ

∆xj +
1

2
a
∑

j∈Λ

x2
j +

J

4

∑

〈i,j〉⊂Λ

(xi − xj)2 + CΛ
m, (2.14)

CΛ
m = CΛm

1/2, (2.15)

V̂ Λ = bm
∑

j∈Λ

e−δmx
2
j/2, bm = bm1/2, δm = δm−1/2. (2.16)

We also define a rescaled inverse temperature

β̂ = βm−
1
2 , (2.17)

which yields
UβHΛU

−1 = β̂ĤΛ.

Then the Gibbs state (2.10) takes the form:

ρβΛ(A) = ρ̂β̂Λ(Â), Â = UAU−1,

where
ρ̂β̂Λ(·) = Ẑ−1

β̂
(Λ)Tr

{
· exp(−β̂ĤΛ)

}
. (2.18)

To represent the state (2.10) in the form of the functional integral we
rewrite the operator ĤΛ

0 as follows

ĤΛ
0 =

d∑

α=1

Ĥ
(α),Λ
0 , (2.19)

9



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
S
T
A
T
_
0
2
3
P
_
0
4
0
6

Ĥ
(α),Λ
0 = −1

2
∆

(α)
Λ +

1

2
(x

(α)
Λ , B2

Λx
(α)
Λ )− 1

2
TrBΛ, (2.20)

where

∆
(α)
Λ =

∑

j∈Λ

∂2

∂x
(α)2

j

, B2
Λ = −J∆̂Λ + a11Λ, (2.21)

x
(α)
Λ = (x

(α)
j )j∈Λ ∈ IR|Λ|, and B2

Λ is a periodic |Λ| × |Λ| matrix, defined by the
elements:

(−∆̂Λ)jk =





2ν, for j = k,

−1, for |j − k| = 1,

0, otherwise ,

(2.22)

and
(11)jk = δjk = δj(1)k(1) · · · δj(ν)k(ν).

Now we fix the choice of the constant CΛ in (2.2),(2.14) by

CΛ =
d

2
√
m

TrBΛ. (2.23)

This choice is connected with the possibility to calculate spectrum of the
operator Ĥ

(α),Λ
0 and the correspondent trace of the operator exp[−βĤ(α),Λ

0 ]
by the eigenvalues of the operator BΛ (see [32] for details). By virtue of p.b.c.
the lattice operator BΛ is cyclic (see [30, Sec.16.4]), so we can calculate its
eigenvalues explicitly:

λk =
√
ε(k), ε(k) = a+ 4J

ν∑

µ=1

sin2(k(µ)/2), k ∈ Λ∗, (2.24)

where the set Λ∗ is dual to Λ, i.e.

Λ∗ = {k ∈ IRν | k = {k(µ)}νµ=1, k
(µ) =

2π

Nµ
n(µ), n(µ) = 0,±1, ...,±Nµ−1/2, Nµ/2}.

(2.25)
Now the Feynman-Kac formula (see e.g. [50],[52]) gives

Tre−β̂ĤΛ =

∫

IRd|Λ|
dxΛ

(
e−β̂ĤΛ

)
(xΛ; xΛ) =

=

∫

IRd|Λ|
dxΛ

∫

Ω
β̂,Λ

W β̂
xΛ;xΛ

(dωΛ)e−
R β̂
0
dτÛ(ωΛ(τ)), (2.26)
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with

Û(xΛ) =
1

2
(xΛ, B

2
ΛxΛ)− d

2
TrBΛ + V̂ (xΛ), (2.27)

where we put V̂ (xΛ) = V̂ Λ, see (2.16), and

W β̂
xΛ;xΛ

(dωΛ) =
∏

j∈Λ

W β̂
xj ;xj

(dωj),

here W β̂
xj ;xj

(dωj) is the conditional Wiener measures on the space of contin-
uous periodic trajectories

Ωβ̂,Λ = {ωΛ(·)|ωΛ : Sβ̂ → IRd|Λ|}, Sβ̂ := [0, β̂], (2.28)

ωΛ(·) = {ωj(·), j ∈ Λ|ωj ∈ Ωβ̂, Ωβ̂ := C(Sβ̂ → IRd)}.
Now, following [2] the unperturbed measure in the right-hand side of (2.26)

(i.e. V̂ Λ = 0) can be rewritten with the help of the measure on the space of
continuous periodic functions Ωβ̂,Λ obtained from the Gaussian distribution
indexed by the real Hilbert space

Hβ̂,Λ := {ωΛ ∈ (Ωβ̂,Λ,Σβ̂,Λ) | ‖ωΛ‖2 <∞}. (2.29)

Here Σβ̂,Λ is the standard σ-algebra of Ωβ̂,Λ-subsets generated by Borel cylin-
der subsets and norm is defined by

‖ωΛ‖2 =

∫ β̂

0

dτ
[(dωΛ(τ)

dτ
,
dωΛ(τ)

dτ

)
+
(
ωΛ(τ), B2

ΛωΛ(τ)
)]
,

where (·, ·) is the scalar product in l2(IRd|Λ|). Then for any real continuous
function F defined on Ωβ̂ one can get:

∫

IRd|Λ|
dxΛ

∫

Ω
β̂,Λ

W β̂
xΛ;xΛ

(dωΛ)e−
1
2

R β̂
0 dτ(ωΛ(τ),B2

ΛωΛ(τ))+ d
2
TrBΛF (ωΛ) :=

= C0

∫
dµΛ

0 (φΛ | p)F (φΛ) = C0

∫
dµΛ

0 (φΛ)F (φΛ), (2.30)

where C0 is a normalization constant and dµΛ
0 (φΛ | p) is the Gaussian measure

which corresponds to p.b.c.. We skip the index p in the following. By (2.26)
and (2.30) it is clear that

C0 = Z0
β̂
(Λ) = Tre−β̂Ĥ

Λ
0 . (2.31)
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Hence the right-hand side of (2.30) is the expectation:

〈F 〉µΛ
0

=

∫
dµΛ

0 (φΛ)F (φΛ) (2.32)

with respect to the Gaussian measure on the space of continuous periodic
functions generated by the corresponding Gaussian process with the zero
mean and the covariance GΛ

0 :

GΛ;αα′

0;jk (τ − τ ′) =

∫
dµΛ

0 (φΛ)φ
(α)
j (τ)φ

(α′)
k (τ ′) = δαα′G

Λ
0;jk(τ − τ ′).

Here α, α′ ∈ {1, 2, ..., d}, and GΛ
0;jk(τ − τ ′) is the Green function of the oper-

ator
(
− d2

dτ2

)
11Λ +B2

Λ on L2(Λ⊗ Sβ̂; IRd) with p.b.c. More explicitly [50]:

GΛ
0;jk(τ − τ ′) =

1

|Λ|
∑

l∈Λ∗

ei(j−k)·l 1

β̂

∑

n∈ZZ1

cos(2π(τ − τ ′)n/β̂)

(4π2n2/β̂2) + ε(l)
, (2.33)

or taking the sum over n, we get (see e.g.[50])

GΛ
0;jk(τ − τ ′) =

1

|Λ|
∑

l∈Λ∗

ei(j−k)·l e
(β̂−|τ−τ ′|)

√
ε(l) + e|τ−τ

′|
√
ε(l)

2
√
ε(l)(eβ̂

√
ε(l) − 1)

. (2.34)

It is important to note that GΛ
0 depends on the mass m only via rescaled

temperature β̂ = βm−1/2.

Remark 2.1 From (2.33)-(2.34) one gets that for Λ ↗ ZZν the covari-
ance GΛ

0;jk(τ − τ ′) converges pointwise to a translation invariant function
G0;|j−k|(τ − τ ′) which is also a bounded continuous function and in fact it is
the kernel of a positive self-adjoint operator

− d2

dt2
+B2

ZZν

in L2(ZZν ⊗ Sβ̂; IRd). From this convergence it follows that the corresponding
process(measure) converges weakly to a limit process, which is a homogeneous
Gaussian process on ZZν and periodic on Sβ̂ with values in IRd.

By virtue of (2.26) and (2.30) it is clear that

ZΛ = TrΛe
−β̂ĤΛ = Z0

Λ

∫
dµΛ

0 (φΛ)e−
R β̂
0 dτV̂ (φΛ(τ)), (2.35)
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Now, it is clear that the measure in (2.11) is the Gibbsian modification of
the measure dµΛ

0 (φΛ):

dµΛ(φΛ) = Zβ̂(Λ)−1e−
R β̂
0 dτV̂ (φΛ(τ))dµΛ

0 (φΛ). (2.36)

Following [7] we shall call this measure the Local Euclidean Gibbs Mea-
sure (LEGM), which corresponds to our particular model (2.1)-(2.3) in this
context. According to [6], a probability measure µ on the measure space
(Ωβ̂,Σβ̂,Λ) is said to be an EGM of the model (2.1)-(2.3) considered at the

temperature β̂ if it satisfies DLR equation. The measure dµΛ(φΛ) corresponds
to the model (2.1)-(2.3) with p.b.c..

To prove the uniqueness of the limit measure for non-periodic boundary
conditions, we keep the DLR language (see [25]) and consider EGM, with
some general boundary conditions ξ, from a class studied already in [6,7]. To
this end we define the set of tempered configurations:

Ω̃t
β̂

:=
⋃

ρ>0

Ω̃ρ

β̂
=
⋃

ρ>0

{
ξ ∈ Ωβ̂,ZZν |

∑

l∈ZZν
e−ρ|l| ‖ξl‖L2[0,β̂] <∞

}
. (2.37)

Remark 2.2 For tempered configurations Ωt
β̂

defined in [6] one has: Ωt
β̂
⊂

Ω̃t
β̂
, since we include also configurations that may have an exponential growth

at infinity.

First we define the harmonic measure with zero boundary conditions
µΛ

0 (· | 0) in the same way as it was done in (2.30) for µΛ
0 (· | p). Then for any

ξ ∈ Ω̃ρ

β̂
with ρ <

√
a, where a is the one-site harmonic constant from (2.2),

we define the perturbed measure with non-zero boundary conditions by

dµΛ(φ | ξ) := Zβ̂(Λ | ξ)−1e−
R β̂
0 dτV̂ (φΛ(τ))+J

2

P∂Λ
〈l,l′〉

R β̂
0 dτφl(τ)ξl′ (τ)dµΛ

0 (φ | 0),
(2.38)

where

∂Λ∑

〈l,l′〉
(...) :=

∑

l∈Λ,l′∈Λc,|l−l′|=1

(...). (2.39)

The main result of the present paper is the following theorem.

Theorem 2.1 For the system of quantum particles with Hamiltonian (2.1)–
(2.3) there exists a sufficiently small mass m∗ such that for any 0 < m < m∗

13
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the weak limit of measures (2.38)

lim
Λ↗ZZν

µΛ(· | ξ) = µ, (2.40)

exists and µ is a unique EGM on (Ωβ̂,ZZν , Σβ̂,ZZν ) in the set of tempered
Gibbs measures, for all temperatures T > 0. For T = 0 the limit (2.40) also
exists, but it is not clear if it is EGM. This measure defines the corresponding
quantum Gibbs state on the algebra A0, which can be by continuity extended
to the algebra A.

Remark 2.3 To prove the existence of the limit measure we are going to ap-
ply a cluster expansions procedure to the perturbed measure µΛ (2.34), which
is constructed by the Hamiltonian (2.1)-(2.3) with p.b.c.(2.4). But, in fact,
one can prove the convergence (in the thermodynamic limit) of cluster ex-
pansions for some non-empty set of boundary configurations of tempered type
(see (2.37) ), and so to prove the existence of the limit measure in the class
of measures supported on these tempered configurations (the set of tempered
Gibbs measures).

To prove the uniqueness of the limit measure in this set we use one elegant
criterium of uniqueness due to [6] (Theorem 3.1).

Remark 2.4 To prove the existence of the limit measure µ it is sufficient to
prove the convergence of the averages

〈AB(·)〉µ = lim
Λ↗ZZν

〈AB(·)〉µΛ , (2.41)

for local observables

AB(φB) =
∏

j∈B
Aj(φτj) (2.42)

for any bounded subsets B ⊂ Λ, τj ∈ Sβ̂ and linear span of infinitely differ-
entiable functions

Aj(φτj ) = eiαφj(τj ), j ∈ B, τj ∈ Sβ, α ∈ IR (2.43)

3 Cluster expansions and proof of main The-

orem

Remark 3.1 Before we construct the cluster expansions, which we need for
the proof of Theorem 2.2 we recall the difference between the case s > 1

14
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in (1.3) and our case (1.5) with harmonic growth at infinity (see Section 1
and discussion in [43,44]). Notice that for harmonic interaction (i.e. for
polynomials of the second degree) the rescaling (2.12) implies, for s > 1,
a week interaction between oscillators proportional to m(s−1)/(s+1). But for
the harmonic growth of the one-site potential and for harmonic interaction
the rescaling (2.12) leads to smallness of anharmonic perturbation V̂ Λ, see
(2.16).

Remark 3.2 Notice that the cluster expansions developed in [8,36,44] for
s > 1 are suited for small interaction between oscillators. In contrast to
that the cluster expansions presented in the present paper are relevant for
small one-site anharmonism and harmonic oscillators interaction. Therefore,
it is suitable to arrange our reference measure in such a way it includes
this interaction. Following the paper [2] it gives us the Gaussian measure
representation for the state.

The cluster expansions technique for the Gaussian integrals with non-
diagonal covariance was developed in [29] (see also [30,49]). Then it was
applied in [20,22] for the proof of the Debye screening in dilute charged
particle systems. This type of cluster expansions includes derivatives acting
on the Gibbs factor exp[−V̂ Λ]. Since the coefficient bm is proportional to
m1/2, and the coefficient δm is proportional to m−1/2 (see (2.10)), we have no
analyticity at m = 0. Therefore, the estimates are delicate in the small-mass
domain.

To prove the convergence of the measure dµΛ in the thermodynamic limit
it is sufficient to prove the existence of limit state for observables AB (2.35).

We would like to notice that similar to non-polynomial quantum field
theory (see e.g. [30,49]) our cluster expansions correspond to a one-site per-
turbation, and not to the interaction between sites. To start the construction
of cluster expansions we define new configuration space. First we consider
Sβ̂ for large β̂ including β̂ = ∞. So for a fixed m we consider sufficiently
low temperature such that critical behavior (if any) might be in the interval
[0, β̂]. Then just for convenience we consider β̂ ∈ IN to define the partition
of the interval [0, β̂] into unit intervals. So, we define

∆̄β̂ :=
{

∆τ̂ := [τ̂ , τ̂ + 1] | τ̂ = 0, 1, ..., β̂ − 1, β̂ ∈ IN
}
, (3.1)

Then we define
t := (j, τ), j ∈ ZZν , τ ∈ Sβ̂, (3.2)

and the box
T := Λ⊗ Sβ̂ ⊂ ZZν ⊗ IR+, (3.3)

15
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where Λ and Sβ̂ are defined in the previous section. With these notations we
introduce

GT
0 (t, t′) := GΛ

0;jj′(τ, τ
′). (3.4)

For any j ∈ ZZν and ∆τ̂ ∈ ∆̄β̂ we put

∆j,τ̂ := (j,∆τ̂ ), (3.5)

and consider T as finite union of ”rods” ∆j,τ̂ , j ∈ ZZν , τ̂ = 0, 1, ..., β̂ − 1.
To construct the cluster expansions for the expectations of (2.41) we

define (following [20]) a family of sets by the inductive procedure. Let for
n = 1

X1 = Y1 = (B,∆B), ∆B =
⋃

j∈B
∆j, (3.6)

where ∆j coincides with ∆τ̂ such that τj ∈ ∆τ̂ . For n ≥ 2 we put

Yn = (j,∆τ̂ ), j ∈ Λ \B, or ∆τ̂ ∈ ∆̄β̂ \∆B, (3.7)

and define
Xn := Xn−1

⋃
Yn, Xc

n := T \Xn. (3.8)

So, Yn for n ≥ 2 are ”rods” ∆j,τ̂ , and Xn are their unions.
Now define the sequence of new covariances (for 0 ≤ si ≤ 1, i = 1, ..., n):

GT
0 (t, t′; (s)n) = GT

0 (t, t′)p(t, t′; (s)n), (3.9)

where

p(t, t′; (s)n) =

n+1∑

m=1

11Ym(t)11Ym(t′)+

∑

1≤l<m≤n+1

slsl+1 · · · sm−1

[
11Yl(t)11Ym(t′) + 11Ym(t)11Yl(t

′)
]
. (3.10)

Here 11Y (t) is indicator of the “rod” Y , and the “rod” Yn+1 we identify with
Xc
n.

One can treat GT
0 (t, t′; (s)n) as a kind of “interaction potential” in the

space of ”cluster” configurations Λ× ∆̄β̂. Then the interpolation parameters
si specify the intensity of this “interaction” between ”rods” of Xi and of Xc

i .
Putting sn = 0 we get that there is no “interaction” between the “rods” of Xn

and “rods” of Xc
n. Then let µT0;(s)n

be the Gaussian measure with covariance

GT
0 (t, t′; (s)n). This is the kernel of a positive-definite operator in L2(T ; IRd)

because it is a linear combination with positive coefficients of operators of the
form 11XG

T
0 11X , where X is some of the unions of Ym, see [21], [30, Sec.18.2]
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and Section 4 for details. It is clear from (3.10) that µT0;(1)n
= µΛ

0 . For sn = 0

one gets that the measure dµT0;(s)n−1,0
becomes the product measure

dµT0;(s)n−1,0
= dµΛ,Xn

0;(s)n−1
dµ

Λ,Xc
n

0;0 , (3.11)

where the covariance of dµΛ,Xn
0;(s)n−1

is

GΛ,Xn
0 (t, t′; (s)n−1, 0) = GT

0 (t, t′; (s)n−1, 0)− 11Xc
n
(t)GT

0 (t, t′)11Xc
n
(t′), (3.12)

and the covariance of dµ
Λ,Xc

n
0;0 is

GΛ,Xn
0 (t, t′) = 11Xc

n
(t)GT

0 (t, t′)11Xc
n
(t′). (3.13)

Notice, also, that (s)n−1

∣∣∣
n=1

= ∅ and dµΛ,Xn
0;(s)n−1

∣∣∣
n=1

=: dµΛ,X1

0 , and that

each step in the expansion can be obtained by applying the Newton-Leibnitz
formula:

〈AB(·)〉µΛ = Z−1
T

∫
dµT0;0(φ)AB(φB)e−V̂ (φT )+

Z−1
T

∫ 1

0

ds1
d

ds1

∫
dµT0;s1

(φ)AB(φB)e−V̂ (φT ) =

∫
dµΛ,X1

0 (φX1)AB(φB)e−V̂ (φX1
)ZT (Xc

1)

ZT
+RΛ

1 , (3.14)

where ZT := Zβ̂(Λ) and

ZT (X) =

∫
dµT0 (φ)e−V̂ (φX). (3.15)

Using integration by parts formula to calculate the derivative w.r.t. param-
eter s1 (see, for example, [30, Sec.9.1]) we obtain

RΛ
1 = Z−1

T

∫ 1

0

ds1

∫
dµT0;s1

(φ)∆φAB(φB)e−V̂ (φT ), (3.16)

where

∆φ =
d∑

α=1

∆
(α)
φ , (3.17)

∆
(α)
φ =

1

2

∑

j,k∈Λ

∫ β̂

0

dτ

∫ β̂

0

dτ ′GΛ
0;jk(τ−τ ′)

d

ds1
p
(
(j, τ), (k, τ ′); s1

) δ2

δφ
(α)
j (τ)δφ

(α)
k (τ ′)
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=:
1

2

∫

T

dt

∫

T

dt′GT
0 (t, t′)

d

ds1
p(t, t′; s1)

δ2

δφ(α)(t)δφ(α)(t′)

=

∫

Y1

dt

∫

Xc
1

dt′GT
0 (t, t′)

( d
ds1

s1

) δ2

δφ(α)(t)δφ(α)(t′)

=
∑

Y2∈Xc
1

( d
ds1

s1

)
∆

(α)
1,2 . (3.18)

For definition of ∆
(α)
p,p′ (p, p′ ∈ IN) see (3.24). Then, taking into account that

e−V̂ (φT ) = e−V̂ (φX2
)e
−V̂ (φXc

2
)

(3.19)

with X2 = X1∪Y2 = Y1∪Y2, and putting (3.17)-(3.19) in to (3.16) we repeat
the procedure in each term of the sum over Y2 to carry out the second step
of expansion. After nT = |T \ X1| steps all ”rods” in T will be exhausted
and we get the identity:

〈AB(·)〉µΛ =

nT∑

n=1

∑

Ȳ⊂T
KTȲ (AB)F T

n (Ȳ ), (3.20)

where

KTȲ (AB) =

∫
(ds)n−1f(η; (s)n−2)I

T
n (Ȳ , η,AB; (s)n−1), (3.21)

ITn (Ȳ , η,AB; (s)n−1) =

∫
dµΛ,Xn

0;(s)n−1
(φXn)∆(η, Ȳ )AB(φB)e−V̂ (φXn ), (3.22)

with

∆(η, Ȳ ) =
n∏

l=2

∆η(l),l, ∆p,p′ =
d∑

α=1

∆
(α)
p,p′, (3.23)

where η := {(η(l), l)nl=2} is a sequence of couples with η(l) < l, which we use
to construct the trees estimates according the standard procedure, see e.g.
[21], or [42] Ch.II.4. Here

∆
(α)
p,p′ =

∫

Yp

dt

∫

Yp′
dt
′
GT

0 (t, t
′
)

δ2

δφ(α)(t)δφ(α)(t′)
, (3.24)

f(η; (s)n−2) =
∏

2≤m≤n
(sη(m)sη(m)+1 · · · sm−2), (3.25)
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η(m) ≤ m− 2, s = (s1, . . . , sn−1), 0 ≤ sj ≤ 1. (3.26)

The second sum in (3.20) is over all possible sets Ȳ = {Y2, ..., Yn} in T . The
product in (3.25) is equal to 1 if η(m) = m− 1. Finally

F T
n (Ȳ ) =

ZT (Xc
n)

ZT
, ZT (Xc

n) = ZT (T \Xn). (3.27)

(For more details about construction of this type of expansions see, for ex-
ample the survey [49].)

To prove Theorem 2.2 we use the representation (3.20) and the following
collection of lemmas.

Lemma 3.1 With the same assumptions as in Theorem 2.2 there exists a
sufficiently small value of the mass m∗, and constant CB which does not
depend on T and on m, such that for all 0 < m < m∗

∑

Ȳ⊂ZZν⊗S
β̂

KTȲ (AB) ≤ CBε
n−1, (3.28)

where ε = ε(m)→ 0 as m→ 0 and

lim
Λ↗ZZν

KTȲ (AB) = Kβ
Ȳ

(AB). (3.29)

Lemma 3.2 With the same assumptions as in Theorem 2.2 there exists a
constant c such that

F T
n (Ȳ ) ≤ ec(|B|+n−1). (3.30)

The constant c does not depend on Λ, β̂, B, m, and one has the limit:

lim
Λ↗ZZν

F T
n (Ȳ ) = F β̂

n (Ȳ ). (3.31)

We also need the following corollary of Lemmas 3.1 and 3.2.

Corollary 3.1 Let B′ ⊂ Λ and B ∩ B′ = ∅ and let B̃′ = B′ ∪∆B′ (∆B′ as
in (3.6)) and the sum over Ȳ be restricted so that Xn ∩ B̃′ 6= ∅. Then

∞∑

n=1

∑

Ȳ ,Xn∩B̃′ 6=∅

|KTȲ (AB)|F T
n (Ȳ ) ≤ C ′Be

−√adist(B,B′), (3.32)

where a is the constant of the one-site harmonic potential.

Now, using the standard “doubling measure” trick by J. Ginibre [28] (or
[30, Sec.18.3]) we obtain from Corollary 3.1 the exponential clustering of
correlations:
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Lemma 3.3 With the same assumptions as in Theorem 2.1 and for any
measurable functions AB1,AB2 w.r.t. σ-algebras Σβ̂,B1

and Σβ̂,B2
respectively,

where B1, B2 ⊂ Λ and B1 ∩B2 = ∅, there exists a sufficiently small value of
m∗, such that for 0 < m < m∗ and any temperature one has the estimate

〈AB1(·)AB2(·)〉µΛ − 〈AB1(·)〉µΛ〈AB2(·)〉µΛ ≤

≤ C1(AB1)C2(AB2)e−
√
adist(B1,B2). (3.33)

uniformly in Λ.

The proofs of Lemmas 3.1-3.2 and Corollary 3.1 are presented in the next
Section. They imply the proof of our Theorem 2.1 for the case of p.b.c.

We also need the following auxiliary measure µ̃Λ(· | yΛ) which depends
on some fixed trajectories yΛ ∈ Ωβ̂,Λ:

dµ̃Λ(xΛ | yΛ) := Z̃β̂(Λ | yΛ)−1e−
R β̂
0 dτṼ (xΛ(τ)|yΛ(τ))dµΛ

0 (xΛ | 0), (3.34)

where (see (2.16)):

Ṽ (xΛ(τ) | yΛ(τ)) = bm
∑

j∈Λ

[
e−δm(xj(τ)+yj(τ))2/4 + e−δm(xj(τ)−yj(τ))2/4

]
. (3.35)

It is clear that with the measure µ̃Λ(· | yΛ) one can construct the same cluster
expansion as in (3.20), but with additional dependence on configurations yΛ:

〈AB(·)〉µ̃Λ(·|yΛ) =

nT∑

n=1

∑

Ȳ⊂T
KTȲ (AB | yΛ)F T

n (Ȳ | yΛ), (3.36)

In the next Section we prove the following lemma:

Lemma 3.4 Let m < m∗ as in Lemmas 3.1-3.3. Then for the measure
µ̃Λ(· | yΛ), defined by (3.34)-(3.35), the estimates (3.30)-(3.33) are true with
the same constants which do not depend on configurations yΛ.

Proof of Theorem 2.1.
Existence. First we prove the existence of measures with p.b.c. and zero
boundary conditions As we mentioned in Remark 2.1 the covariance GΛ

0;jk(τ−
τ ′) converges pointwise to the translation invariant function G0;|j−k|(τ − τ ′)
and the corresponding measures dµ0 and dµXn0;(s)(n−1)

are defined on Σβ̂. So,
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using Lemmas 3.1 and 3.2 we can rewrite the expansion (3.20) in the ther-
modynamic limit :

〈AB(·)〉µ =
∑

n≥1

∑

Ȳ⊂ZZν⊗S
β̂

Kβ̂
Ȳ

(AB)F β̂
n (Ȳ ), (3.37)

with the same definitions of In and ∆(η, ȳ) (see (3.22), (3.23)), but with G0

and µXn0;(s)n−1
instead of GT

0 and µΛ,Xn
0;(s)n−1

.
Hence, there exists probability measures µB indexed by B ⊂ ZZν such

that

〈AB〉 =

∫
AB(φ) dµB(φ).

All these measures are consistent and consequently by the Kolmogorov The-
orem one can construct a unique limit measure µ on the σ-algebra Σβ̂,ZZν .
The fact that limit measure is just tempered EGM follows from arguments
based on superstability (see [11]) which are true for our model. ¤

Remark 3.3 In the case of general boundary conditions ξ ∈ Ω̃ρ

β̂
with ρ <

√
a, the factors Kβ̂

Ȳ
, F β̂

n , and the constants c, CB in the Lemmas 3.1-3.2 will
depend on ξ. This means that from convergence of the cluster expansions we
can obtain only existence of the limit measure, but not uniqueness.

Uniqueness. To prove the uniqueness we use the following

Proposition 3.1 (see Theorem 3.1 of [6])
Suppose that for every l0 ∈ ZZν and τ0 ∈ [0, β̂], for every increasing sequence
of boxes Λn ⊂ ZZν (Λn → ZZν), such that l0 ∈ Λn for all n, and for any two
configurations ξ, η ∈ Ω̃ρ

β̂
, ρ <

√
a, one has the convergence:

〈φl0(τ0)〉µΛn (·|ξ) − 〈φl0(τ0)〉µΛn (·|η) → 0 (3.38)

as n→∞. Then there exist a unique limit measure µ which does not depend
on configurations ξ, η.

This statement is a quantum version of some known previous results,
namely, the monotonicity arguments [41] for the measures on the configura-
tions in the Classical Statistical Mechanics and a priori estimates for EGM
due to [10,11]. These arguments are true for the wide class of anharmonic
potentials with ferromagnetic type of interaction. We use this statement as
follows. Consider

〈φl0(τ0)〉µΛn (·|ξ) − 〈φl0(τ0)〉µΛn (·|η) =
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=

∫ 1

0

ds
d

ds
〈φl0(τ0)〉µΛn (·|η+sζ), ζ = ξ − η. (3.39)

After differentiation we obtain:

|〈φl0(τ0)〉µΛn (·|ξ) − 〈φl0(τ0)〉µΛn (·|η)| ≤

sup
s∈[0,1]

J

2

∂Λ∑

〈l,l′〉

∫ β̂

0

dτKΛ
ll0

(τ, τ0 | η + sζ)ζl′(τ), (3.40)

where

KΛ
ll′(τ, τ

′ | η) = 〈φl(τ)φl′(τ
′)〉µΛ(·|η) − 〈φl(τ)〉µΛ(·|η)〈φl′(τ ′)〉µΛ(·|η). (3.41)

It is easy to see that the convergence (3.38) follows from the

Lemma 3.5 For m < m∗ there are constants Ci, i = 1, 2 independent of
τ, τ ′,Λ, η, such that

KΛ
ll′(i) ≤ Ci e

−√a|l−l′|, (3.42)

where

KΛ
ll′(1) = KΛ

ll′(τ, τ
′ | η), and KΛ

ll′(2) =

∫ β̂

0

dτ ′KΛ
ll′(τ, τ

′ | η). (3.43)

Finally, applying (similar to [6]) the Cauchy-Schwarz inequality in (3.40) and
using (3.42), we get (3.38). ¤

¤

4 Convergence of the cluster expansions

To prove the convergence of the cluster expansions (3.20) for Λ ↗ ZZν we
should first give demonstrations of Lemmas 3.1 and 3.2.
Proof of Lemma 3.1. To simplify the proof we omit indexes α = 1, ..., d
and we take into account that the number of derivatives for each order of n
should increase as dn−1. To write down the general term for any fixed tree η
(see (3.23)) let us introduce (following [16,17]) the numbers dη(k), k = 1, ..., n
which are the characteristics of tree η, i.e. dη(k) is a number of lines, coming
into the vertex k from vertices m (m > k). It is clear that n1 = dη(1),
nk = dη(k) + 1 for k = 2, ..., n, are exactly the number of lines coming
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from vertices k = 1, ..., n and these numbers coincides with the numbers of
derivatives supported in Y1, Y2, ..., Yn. Hence,

n∑

k=1

dη(k) = n− 1 and

n∑

k=1

nk = 2(n− 1). (4.1)

Let us rewrite the operator ∆(η, Ȳ ) in the following form

∆(η, Ȳ ) =
( n∏

k=1

nk∏

l=1

∫

Yk

dt
(l)
k

) n∏

k=2

GT
0 (t

(ηk)
η(k) − t

(nk)
k )×

n∏

k=1

δnk

δφ(t
(1)
k ) · · · δφ(t

(nk)
k )

. (4.2)

Here we put

η2 := 1, ηk := 1 +

k−1∑

l=2

δη(l),η(k), k ≥ 3,

where δη(l),η(k) is the symbol of Kronecker. In the following we also put

t
(nk)
k := tk.

The main technical estimate is the following

Proposition 4.1 Let Dnk be parts of operator ∆(η, Ȳ ) and factor e−V̂ (φXn )

corresponding to the k-th vertex on the tree η:

Dnk = Dnk(t
(ηk)
η(k); t1, ..., tdη(k)) =

=

∫

(Yk)nk
GT

0 (t
(ηk)
η(k) − t

(nk)
k )GT

0 (t
(1)
k − t1) · · ·GT

0 (t
(dη(k))
k − tdη(k))×

× δnk

δφ(t
(1)
k ) · · · δφ(t

(nk)
k )

e−V̂ (φYk ). (4.3)

Then for bm < 1 the following estimate is true:

Dnk(t
(ηk)
η(k); t1, ..., tdη(k)) ≤ 2nkbmδ

nk/2
m nk!×

× sup
(∗)dη(k)

∫

Yk

dtkG
T
0 (t

(ηk)
η(k)−t

(nk)
k )G∗,T0 (·−t1) · · ·G∗,T0 (·−tdη(k))e

−δmφ(tk)2/4, (4.4)

here supremum is taken over all terms in the product, where one can choose
G∗,T0 (· − ti) equal either to GT

0 (tk − ti), or
∫
Yk
dt′GT

0 (t′ − ti).
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Proof. For simplicity we demonstrate this proposition for the case when in-
stead of functional derivatives we have the ordinary derivatives, since exactly
the same line of reasoning gives the proof for functional derivatives.

Let X = −bme−δmx2/2 denote the scalar prototype of our anharmonic
potential in (4.3), supported in Yk. Then it easy to estimate by induction
the value of n-th derivatives of X:

|X(n)| ≤ bm2nδn/2m

√
n!e−δmx

2/4. (4.5)

This inequality can be obtained by induction using the recursion relation:

In(x) = −δmxIn−1(x)− (n− 1)δmIn−2(x), In(x) = eδmx
2/4X(n)(x), (4.6)

and the inequality:

|x|ke−δmx2/4 ≤ 2k/2δ−k/2m

√
k!, .

Now using the Leibnitz formula for the productX (1)eX , where the first deriva-
tive X (1) = bmδmxe

−δmx2/2, and the estimate (4.5), again by induction one
obtains:

| d
n

dxn
eX | ≤ 2nbmδ

n/2
m n!e−δmx

2/4. (4.7)

We also used here the fact that eX ≤ 1.

Remark 4.1 The inequality (4.7) explains the provenance of the coefficient
in (4.4), since by the same way this coefficient appears when one passes to
functional derivatives (as in (4.3)), instead of the ordinary ones.

Remark 4.2 Notice that we also should consider the terms in which some
derivatives act on the factor AB. But, since AB is supported only in Y1 =
X1, then even in the case, when for a given tree η one has all η(k) = 1,
for k = 2, ..., n, and (n − 1) derivatives act only on AB, the other (n − 1)
derivatives in ∆(η, Ȳ ) act on the factor exp[−V̂a(φXn)]. Hence, we obtain
the powers of the small parameter bm, that we need.

This finishes the proof of Proposition. ¤
As a result we can write for ITn the following estimate:

ITn (Ȳ , η,AB; (s)n−1) ≤ C(AB)(8dbmδm)n−1

n−1∏

k=1

dη(k)!× (4.8)

×
n∏

k=2

(
sup
t′k

∫

Yk

dtkG
T
0 (t′k, tk)

)∫
dµΛ,Xn

0;(s)n−1
(φXn)

n∏

k=1

e−δmφ(tk)2/4, tk ∈ Yk.

The next step is to estimate the Gaussian integral in (4.8).
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Proposition 4.2 Let

Ĩn =

∫
dµΛ,Xn

0,(s)n−1
(φXn)

n∏

k=1

e−δmφ(tk)2/4, tk ∈ Yk, n ≥ 2, (4.9)

then there exists a constant c, which depends on parameters d, J, a such that

Ĩn ≤ ec|Xn|
( 2

√
a

2
√
a+ δm

)d|Xn|/4
. (4.10)

Proof. Write the product in (4.9) as new a Gaussian integral w.r.t. the
measure dγ(z) = 1/(2π)dn/2 exp[−z2/2], z ∈ IRdn:

Ĩn =

∫
dµΛ,Xn

0;(s)n−1
(φXn)

∫

IRdn
dγ(z)ei

√
δm/2

Pn
k=1 zk·φ(tk). (4.11)

Interchanging integrals one obtains

Ĩn =

∫

IRdn
dγ(z)e−δm/4

Pn
k,k′=1 zkzk′G

Λ,Xn
0 (tk ,tk′ ;(s)n−1,0), (4.12)

where GΛ,Xn
0 is defined by (3.12). By construction (3.9)-(3.10) the function

GΛ,Xn
0 (tk, tk′; (s)n−1, 0) is a convex combination of “diagonalized” covariances

(see [21], or [30, Sec.18.2]):

GΛ,Xn
0 (tk, tk′; (s)n−1, 0) =

∑

i

λiG
(i)
0 ,

∑

i

λi = 1, (4.13)

where coefficients λi are monomials of the form sk1 · · · skp(1−sl1) · · · (1−slp′ )
and

G
(i)
0 =

∑

k

11Zk(i)G
T
0 11Zk(i),

⋃

k

Zk(i) = Xn for all i. (4.14)

Substituting (4.13) into (4.12), applying then the Hölder inequality, and re-
turning back to the measure dµΛ,Xn

G
(i)
0

, defined by the covariance (4.14), one

gets:

Ĩn ≤
∏

i

(∫

IRdn
dγ(z)e−δm/4

Pn
k,k′=1 zkzk′G

Λ,Xn
0 (tk ,tk′ )

)λi
=

∏

i

(∫
dµΛ,Xn

G
(i)
0

(φXn)

n∏

k=1

e−δmφ(tk)2/4
)λi

=:
∏

i

Kλi
i . (4.15)

By virtue of (4.14) we have:
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Ki =
∏

k

(∫
dµ

Λ,Zk(i)

G
(i)
0

(φXn)
∏

Y ∈Zk(i)

e−δmφ(tY )2/4
)

=:
∏

k

Jk(Zk(i)). (4.16)

By definition (2.23) one gets for Λ = Zk(i) and F (φZk(i)) =
∏

Y ∈Zk(i) e
−δmφ(tY )2/4:

Jk(Zk(i)) = C0(Zk(i); J)−1

∫

Ω
β̂,Λ

dωZk(i)e
−J

4

R ∗
Zk(i)

dt(ω(t)−ω(t∗))2 ∏

Y ∈Zk(i)

e−δmωY (τY )2/4.

(4.17)
Here the measure dωZk(i) is defined by l.h.s. of (2.26), with J = 0 in definition
of operator BΛ (2.21) and with Λk(i) := Zk(i) ∩ Λ, Sk(i) := Zk(i) ∩ Sβ̂:

∫

Ω
β̂,Λ

dωZk(i)(...) =

∫

IRd|Λ|
dxΛ

∫

Ω
β̂,Λ

W β̂
xΛ;xΛ

(dωΛ)e−
a
2

R β̂
0
dτ(ωΛ(τ),ωΛ(τ))+ d

2
TrBΛ(...) .

We put also :

∫ ∗

Zk(i)

dt(ω(t)− ω(t∗))
2 :=

∑

〈l,l′〉⊂Λk(i)

∫

Sk(i)

dτ(ωl(τ)− ωl′(τ))2. (4.18)

The normalization factor C0 := C0(Zk(i); J) is the integral (4.17) calculated
for δm = 0. By the Cauchy-Schwarz inequality we get from integral (4.17)
that

Jk(Zk(i)) ≤
C0(Zk(i); 2J)1/2

C0(Zk(i); J)

( ∏

Y ∈Zk(i)

∫

Ω
β̂

dωY e
−δmωY (τY )2/2

)1/2

. (4.19)

The factors C0 for J and 2J can be calculated explicitly using (2.27), (2.21).
The integral in the product (4.19) can be estimated (for |Y | = 1) by

∫

Ω
β̂

dωY e
−δmω(tY )2/2 = C0(Y, 0)

∫
dµYGΛ

0
(φY )e−δmφlY /2(τY )2

∣∣∣
J=0

=

C0(Y, 0)
(

1 +
δm

2
√
a
· e

β̂
√
a + 1

eβ̂
√
a − 1

)−d/2
≤ econst|Y |

( 2
√
a

2
√
a+ δm

)d/2
. (4.20)

This finishes the proof of the Proposition. ¤
Now we return to the proof of Lemma 3.1. Since
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∑

Y

∫

Y

dtGT
0 (t′ − t) =

∫

T

dtGT
0 (t′ − t) =

∑

j∈Λ

∫ β̂

0

dτGΛ
0,ij(τ

′ − τ) =

=:
∑

j∈Λ

DΛ
0 (i− j) ≤

∑

j∈ZZν
D0,(j) =: CG , (4.21)

then taking into account dependence of bm and δm on m (see (2.16)) and
definition (3.21), we obtain by summing over trees η the estimate:

|KTȳ (AB)| ≤ C ′(AB)
(
16b
√
aCGm

d/8
)n−1×

×
∑

η

n∏

p=1

dη(p)!

∫ 1

0

(ds)n−1f(η; (s)n−1).

The last step of the proof is due to the Battle–Federbush inequality [16,17]:

∑

η

n∏

p=1

dη(p)!

∫ 1

0

(ds)n−1f(η; (s)n−2) ≤ 4n, n = |η|.

This yields (3.28) with

ε(m) = 64b
√
aCGm

d/8.

Now taking into account (3.30), we obtain the value of the small-mass thresh-
old m∗:

m∗ = (64b
√
aCGe

c)−8/d. (4.22)

¤
Proof of Lemma 3.2. The proof is standard. One can use general theory of
polymer-type expansions [42] (or, equivalently, the Kirkwood–Salsburg type
technique [30, Sec.18.5]), see, also, [49]. ¤
Proof of Corollary 3.1. If we restrict the sum in the cluster expansion
(3.20)–(3.27) in such a way that, for example, Y2 ⊂ B′, then all terms in this
expansion are proportional to GT

0 (t1, t2), where t1 ∈ B, t2 ∈ B′, then (3.32)
follows from the asymptotic behaviour of G0,|i−j|(τ) in the variable |i − j|.
Note, also, that in the case of p.b.c. (see e.g.[30])

G0;|i−j|(τ | p) ≤ G0;|i−j|(τ | 0),

and it has exponential decay of G0;|i−j|(τ | 0) in |i− j|, which is uniform in
τ . ¤
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Proof of Lemma 3.4. To prove this lemma one has to check that Proposi-
tions 4.1 and 4.2 are true for the auxiliary potential (3.38). It is easy to verify
that (4.5)-(4.7) are true for X± = X±(x | y) = −bme−δm(x±y)2/4 with δm/2
instead of δm. So, the estimate (4.4) is the same but with [e−δm(x(tk)+y(tk))2/8+
e−δm(x(tk)−y(tk))2/8] instead of e−δmφ(tk)2/4. Then in the proof of Proposition
4.2 we have to modify the integral (4.20) to

∫
dµYGΛ

0
(xY )e−

δm
8

(xlY (τY )±yY (τY ))2
∣∣∣
J=0

, (4.23)

which gives

C0(Y, 0)
(

1 +
δm
4
GΛ

0 (0)
)−d/2

e
− δmy

2

8(1+δmG
Λ
0 (0)/4)

∣∣∣
J=0

.

Since the last exponent is less than one, the dependence on the configuration
y disappears, and this finishes the proof. ¤
Proof of Lemma 3.5. We follow the line of reasoning in the proof of
Theorem 3.2 [6]. Let dµ̃Λ

0 (φ, φ′ | 0) := dµΛ
0 (φ | 0)⊗ dµΛ

0 (φ′ | 0). Then we can
rewrite (3.46) as

KΛ
ll′(τ, τ

′ | η) = Z(Λ | η)−2

∫ ∫
φl(τ)− φ′l(τ)√

2
· φl′(τ

′)− φ′l′(τ ′)√
2

×

×e−V̂ (φΛ)−V̂ (φ′Λ)e
J
2

P∂Λ
〈l,l′〉

R β̂
0
dτ(φl(τ)−φ′l(τ))ηl′ (τ)dµ̃Λ

0 (φ, φ′ | 0). (4.24)

After change of variables:

xl(τ) =
φl(τ)− φ′l(τ)√

2
, yl(τ) =

φl(τ) + φ′l(τ)√
2

,

by definition of the measures it is clear that

dµ̃Λ
0 (φ, φ′ | 0) = dµ̃Λ

0 (x, y | 0). (4.25)

Then, using definition (3.44) we get:

KΛ
ll′(τ, τ

′ | η) = Z(Λ | η)−2

∫ ∫
xl(τ)xl′(τ

′)e−Ṽ (xΛ|yΛ)× (4.26)

×eJ2
P∂Λ
〈l,l′〉

R β̂
0
dτyl(τ)ηl′ (τ)dµ̃Λ

0 (x, x′ | 0).

Define the measure

µ̃Λ(dxΛ | yΛ) = Z̃(yΛ)−1e−Ṽ (xΛ|yΛ)dµΛ
0 (xΛ | 0). (4.27)
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Then

KΛ
ll′(τ, τ

′ | η) = Z(Λ | η)−2

∫
dµΛ

0 (yΛ | 0)Z̃(yΛ)e
J
2

P∂Λ
〈l,l′〉

R β̂
0 dτyl(τ)ηl′ (τ)×

×〈xl(τ)xl′(τ
′)〉µ̃Λ(·|yΛ). (4.28)

Now the proof follows from Lemma 3.4, or more explicitly from (3.33) with
AB1 = xl and AB2 = xl′ . ¤

5 External field analyticity of the Gibbs state

In the previous sections we have proved uniqueness of the equilibrium state
for our model (in the DLR-sense) in the set of tempered EGM, see (3.34).
In this section we consider the model (2.1), (2.2) in the presence of external
field h:

HΛ(h) = HΛ
0 + V Λ +

∑

j∈Λ

h · qj, h ∈ IRd. (5.1)

Here HΛ
0 and V Λ are defined by (2.1)–(2.3). After rescaling (2.12) one gets:

ĤΛ(h) = ĤΛ
0 + V̂ Λ +

∑

j∈Λ

ĥ · xj, ĥ = m−1/4h. (5.2)

Then the following statement is true:

Theorem 5.1 For the system of quantum particles with Hamiltonian (5.1)
there is m∗, such that for any 0 < m < m∗, T ≥ 0 and |h(α)| < h0(m∗), α =
1, ..., d, the limit

lim
Λ↗ZZν

ρβ,hΛ (A) = ρβ,h(A), A ∈ A0,

exists. The limit ρβ,h(A) gives a unique state on the algebra A0, which can be
continuously extended to the algebra A. Moreover, the functions ρβ,h(A) , A ∈
A are analytic in the domain {h(α) ∈ Cd | |h(α)| < h0(m∗)}.

Proof. The proof is close to that of Theorem 2.1. The only remark one has to
do is that in expansions (3.20)-(3.27) the factor exp[−V̂ (φXn)] exp[ĥ

∫
Xn
φ(t)dt]

appears instead exp[−V̂ (φXn)] and the operator ∆(η, Ȳ ) in (3.22) acts on
the product AB(φB) exp[−V̂ (φXn)] exp[hm

∫
Xn
φ(t)dt]. When the derivatives

from ∆(η, Ȳ ) act on the factor exp[ĥ
∫
Xn
φ(t)dt], the convergence is guaran-

teed by the small factors h = m1/4ĥ from {h ∈ Cd | |h(α)| < h0(m∗), α =
1, ..., d}. In principle this implies a new value of the light-mass threshold mh

∗ :
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mh
∗ = min{m∗, m∗(hCGec+1)−4}, (5.3)

where m∗ is defined in (4.22), CG is from the estimate of the product of
covariances in ∆(η, Ȳ ), ec is from the estimate of F T

n (Ȳ ), and additional e is
from the inequality (cf. [21]):

∑

η

∫ 1

0

(ds)n−1f(η; (s)n−2) ≤ en, n = |η|.

But by virtue of (5.3) there is h0(m∗) such that mh
∗ = m∗ for |h(α)| < h0(m∗),

which finishes the proof. ¤
As a consequence of the above theorem we obtain the following result (cf.
[43]):

Theorem 5.2 Let Λn be the sequence Λ1 ⊂ Λ2 ⊂ ... ⊂ Λn..., ∪∞n=1Λn = ZZν,
and let h = e‖h‖, where e is a unit vector in Rd. By

σ(β) := lim
h→0

lim
n→∞

ρβ,hΛ

( 1

|Λn|
∑

j∈Λn

qj · e
)

(5.4)

we define the order parameter for the model (5.1). Then there exists mass
m∗ > 0 such that for any 0 < m < m∗ and for all temperatures, including
β = ∞, the order parameter is trivial for any tempered boundary condition
defined in (2.37), i.e.:

σ(β) = 0. (5.5)

Proof. The proof follows directly from the Theorem 5.1 and cluster expansion
for the state

ρ̂β̂,ĥΛ

( 1

|Λn|
∑

j∈Λn

xj · e
)
. (5.6)

Indeed, if derivatives from ∆(η, Ȳ ) act on the factor

exp

{∫

Xn

ĥ · φ(t)dt

}
,

then after thermodynamic limit the corresponding terms are proportional to
h = m−1/4ĥ. If derivatives act on the factor φl exp[−V̂ (φXn)], then in the
limit we obtain a Gaussian integration with zero mean and with odd numbers
of fields. So, taking into account that ρβ,h is analytic in h (Theorem 5.1), in
the limit h = 0 we get zero value (5.5) for the order parameter. ¤
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6 Convergence of cluster expansions. Unique-

ness of the Gibbs state for high tempera-

tures

The problem of the existence and uniqueness of the quantum state (EGM) at
high temperatures for the model (2.1)-(2.3) can be solved in the framework
of a general approach, developed e.g. in [13,14]. But there exist an indepen-
dent question of construction of high temperature expansions for quantum
state (2.5) and of the proof of its convergence in thermodynamic limit. This
question is related to a specificity of the one-site potential (2.3) behaviour
at infinity. For the quantum systems with unbounded spins the correspond-
ing expansions were considered in [35,36,45,46,53]. All these results were
obtained for the models with the one-site polynomial anharmonic potentials
of the form (1.3). Then the convergence is insured by the small parameter
β(s−1)/2s. Since in (2.1)-(2.3) we have s = 1, there is no such parameter
in our case. We recall that 2s is degree of one-site anharmonic polynomial
interaction in (1.3).

In the present section we show that approach we developed in Sections
3–5 (the choice of reference measure and the type of cluster expansion) can
be adapted to obtain convergent cluster expansions in powers of β > 0, and
to prove analyticity of the state in domain |β − β∗/2| < β∗/2 of the complex
values of β around the point β∗/2 > 0.

The construction of cluster expansions is absolutely the same as above,
but instead of partition of the interval [0, β] = Sβ into unit intervals we
consider it as one unit with variable τ running in Sβ. In another words,
instead of ”rods” ∆j,τ̂ (see (3.5)) we consider for every site j ∈ Λ we consider
”rods” ∆j,β := (j, Sβ). Then the measure dµΛ

0;(s)n
is constructed in the same

way as in Section 3 with help of the covariance GΛ
0;j,k(τ, τ

′; (s)n), see (3.12),
where Xn = ∅ and T = Λ . Then following the line of reasoning of Section 3
we obtain:

〈AB(·)〉µΛ =

nΛ∑

n=1

∑

Ȳ⊂Λ

KΛ
Ȳ (AB)FΛ

n (Ȳ ), (6.1)

with the same definitions as in (3.24)-(3.30), and with only difference that

∆
(α)
p,p′ =

∫ β

0

dτ

∫ β

0

dτ
′
GΛ

0;Yp,Yp′
(τ, τ

′
)

δ2

δφ
(α)
Yp

(τ)δφ
(α)
Yp′

(τ ′)
, (6.2)

and Yp, Yp′ are the sites of the lattice ZZν ∩ Λ. The main result then is the
following
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Theorem 6.1 For the quantum system with Hamiltonian (2.1)–(2.3) there
exists a sufficiently small (independent of mass m) value of inverse temper-
ature β∗ such that for all 0 < β < β∗ the weak limit of the measures

lim
Λ↗ZZν

µΛ = µ,

exists and µ is a unique EGM on (Ωβ,ZZν ,Σβ,ZZν) in the set of tempered mea-
sures. Here µΛ as in Theorem 2.1.

Proof. It is very close to the proof of Theorem 2.2. The only difference is
that in the estimate (4.20) one should take

(
1 +

δm
2
√
a
· e

β̂
√
a + 1

eβ̂
√
a − 1

)−d/2
≤
( 2β̂

√
a

2β̂
√
a + δm

)d/2
≤ (

2β
√
a

δ
)d/2. (6.3)

This gives for the small parameter of cluster expansion the value

ε = 64b
√
aCGβ

d/2. (6.4)

Therefore,
β∗ = (64b

√
aCGe

c)−2/d, (6.5)

¤

7 Conclusions

In the present paper we construct the Gibbs states for quantum crystal with
nonpolynomial anharmonic potential (1.5) and with nearest neighbour har-
monic interaction in the light-mass regime. These states are constructed on
the algebra of quasi-local observables described in Section 2. Our analysis
is based on a reformulation of the quantum Gibbs states problem into the
study of Euclidean Gibbs Measures (EGM) [2,7,31,33].

The main technical tool we use to get the main result is the cluster ex-
pansions for EGM. They allow us (Theorem 2.1) to prove the existence and
uniqueness of EGM in the light-mass domain, for all temperatures T , includ-
ing T = 0 (β = ∞). But for T = 0 we can not state that the limit measure
satisfies DLR equation.

To prove the existence of a unique translation-invariant measure we start
with periodic boundary conditions (Section 2). Then we prove convergence
of the corresponding cluster expansions and the cluster property of the EGM
in the light-mass domain for all temperatures T . This gives the uniqueness
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in the class of translation-invariant measures for small mass m < m∗ and all
T ≥ 0. Next we establish that convergence of the EGM cluster expansions
and their cluster properties hold also for zero boundary conditions. This
again implies uniqueness in this case. Finally, following the arguments of
[6,11] we prove the uniqueness of EGM on the set of tempered configurations
(Section 3).
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54. S. Stamenković, N.S. Tonchev, and V.A. Zagrebnov, Exactly soluble
model for structural phase transition with a Gaussian type anharmonic-
ity, Physica A, 145, 262–272 (1987).

55. J. E. Tibballs, R. J. Nelmes, and G. J. McIntyre, The crystal structure
of tetragonal KH2PO4 and KD2PO4 as a function of temperature and
pressure, J. Phys. C: Solid State Phys., 15, 37–58 (1982).

56. V.G. Vaks, Introduction to the microscopic theory of ferroelectrics,
Nauka, Moscow 1973 (in Russian).

57. A. Verbeure and V.A. Zagrebnov, Phase transitions and algebra of fluc-
tuation operators in an exactly soluble model of a quantum anharmonic
crystal, J. Stat. Phys., 69, 329–359 (1992).

37



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
S
T
A
T
_
0
2
3
P
_
0
4
0
6

58. A. Verbeure and V.A. Zagrebnov, No-go theorem for quantum struc-
tural phase transitions, J. Phys. A: Math. Gen., 28, 5415–5421 (1995).

59. V.A. Zagrebnov, Perturbations of Gibbs semigroups. Commun. Math.
Phys., 120, 653-664 (1989).

38


