On diffusion dynamics for continuous systems with singular superstable interaction

Yuri G. Kondratiev ${ }^{\text {a) }}$
Fakultät für Mathematik, Universität Bielefeld, Forschungszentrum BiBoS, Universität Bielefeld, 33615 Bielefeld, Germany and Institute of Mathematics, Ukrainian National Academy of Sciences, 3 Tereshchenkivs'ka St, Kyiv-4, GSP, 01601, Ukraine

Alexei L. Rebenko ${ }^{\text {b) }}$
Institute of Mathematics, Ukrainian National Academy of Sciences, 3 Tereshchenkivs'ka St, Kyiv-4, GSP, 01601, Ukraine
Michael Röckner ${ }^{\text {c }}$
Fakultät für Mathematik, Universität Bielefeld, Forschungszentrum BiBoS, Universität Bielefeld, 33615 Bielefeld, Germany
(Received 20 May 2002; accepted 5 February 2004; published 2 April 2004)
We consider the time evolution of states for continuous infinite particle systems which corresponds to nonequilibrium diffusion dynamics. For initial states μ_{0} which are perturbations of the equilibrium we obtain a bound for finite volume nonequilibrium correlation functions and their continuity in time uniformly in volume for any finite time interval. This gives the possibility to construct the time evolution of correlation functions and corresponding states in the thermodynamic limit. © 2004 American Institute of Physics. [DOI: 10.1063/1.1690489]

I. INTRODUCTION

A diffusion of an interacting infinite particle system can be described by an infinite system of stochastic differential equations of the so-called gradient type:

$$
\begin{equation*}
d x_{i}(t)=-\sum_{j, i \neq j} \nabla \phi\left(x_{i}(t)-x_{j}(t)\right) d t+\sqrt{\frac{2}{\beta}} \quad d w_{i}(t) \tag{1.1}
\end{equation*}
$$

Here $\phi: \mathbb{R}^{d} \backslash\{0\} \rightarrow \mathbb{R}(\phi(x)=\phi(-x))$ is an interaction potential, $w_{i}(t)$ are independent standard Wiener processes in \mathbb{R}^{d} and the parameter $\beta>0$ is the inverse temperature of the system. The physical background and motivation can be found in the article by Spohn ${ }^{1}$ and references therein. The set of positions $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ of identical particles is a locally finite subset in \mathbb{R}^{d} and the set of all such subsets is the configuration space Γ :

$$
\Gamma:=\left\{\gamma \subset \mathbb{R}^{d} \quad|\quad| \gamma \cap K \mid<\infty \quad \text { for any compact } K \subset \mathbb{R}^{d}\right\}
$$

where $|A|$ is the cardinality of A. Heuristically, any Gibbs measure μ on Γ corresponding to the interaction ϕ and the inverse temperature β is a stationary measure of the Markov process defined by (1.1). The corresponding Markov generator can be calculated by Ito's formula and defined in $L^{2}(\Gamma, \mu)$ on some domain of smooth cylinder functions F by the following expression:

$$
\begin{equation*}
(H F)(\gamma)=\sum_{x \in \gamma}\left(-\frac{1}{\beta} \Delta_{x}+\nabla_{x} U_{\phi}(\gamma) \cdot \nabla_{x}\right) F(\gamma) \tag{1.2}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
U_{\phi}(\gamma)=\sum_{\{x, y\} \subset \gamma} \phi(x-y), \quad \nabla_{x} U_{\phi}(\gamma)=\sum_{y \in \gamma \backslash x} \nabla \phi(x-y), \quad x \in \gamma \tag{1.3}
\end{equation*}
$$

\]

Under some natural restrictions on the class of interaction potentials ϕ the generator H has a self-adjoint extension in $L^{2}(\Gamma, \mu)$ (see Ref. 2).

A rigorous study of (1.1) has been initiated by Lang 3 who has proved the existence of the so-called equilibrium stochastic dynamics which corresponds to (1.1) for a superstable, three times continuously differentiable potential with finite range. In more recent works by Osada, ${ }^{4}$ Yoshida ${ }^{5}$ and Albeverio et al. ${ }^{2}$ the equilibrium stochastic dynamics was constructed by Dirichlet form methods for a wide class of potentials ϕ. The existence of the nonequilibrium dynamics was proved by Rost 6 and Lippner ${ }^{7}$ in the one-dimensional case and by Fritz ${ }^{8}$ for smooth superstable finite range potentials in the case $d \leqslant 4$.

To construct the nonequilibrium dynamics one can consider the corresponding semigroup T_{t} $=e^{-t \tilde{H}}$ on some class $\mathcal{F}(\Gamma)$ of observables $F: \Gamma \rightarrow \mathbb{R}$ defined by the Kolmogorov equation

$$
\begin{equation*}
\frac{\partial F_{t}}{\partial t}=-\widetilde{H} F_{t}, \quad F_{0} \in \mathcal{F}(\Gamma) \tag{1.4}
\end{equation*}
$$

where \widetilde{H} is the Friedrichs extension of H on $L^{2}(\Gamma, \mu)$ for some fixed Gibbs measure μ. On the other hand, instead of the evolution of observables one can consider the evolution of states, i.e., the evolution of probability measures on Γ. Such evolution is defined by the adjoint semigroup via the following equation:

$$
\begin{equation*}
\frac{d}{d t} \mu_{t}=-H^{*} \mu_{t} \tag{1.5}
\end{equation*}
$$

In the case of a finite particle system this equation can be rewritten in terms of the densities $\mathcal{D}(t, \gamma)$ w.r.t. Lebesgue measure $d \gamma=d x_{1} \cdots d x_{N}(|\gamma|=N<\infty)$. Then (1.5) is, sometimes, called the generalized Smoluchowski equation (see, e.g., Ref. 9).

For infinite particle systems initial states μ_{0} are not absolutely continuous w.r.t. any standard measure and the time evolution of densities has no rigorous sense. Below we consider an alternative approach in terms of correlation functions which correspond to the states of the system. To define these correlation functions we introduce the space of finite configurations Γ_{0} :

$$
\begin{equation*}
\Gamma_{0}:=\bigcup_{n \in \mathbb{N}_{0}} \Gamma^{(n)}, \quad \Gamma^{(n)}:=\{\gamma \in \Gamma \quad|\quad| \gamma \mid=n\}, \quad \mathbb{N}_{0}=\mathbb{N} \cup\{0\} . \tag{1.6}
\end{equation*}
$$

Γ_{0} is naturally equipped with the Borel σ-algebra $\mathfrak{B}\left(\Gamma_{0}\right)$ given by the disjoint union of the measurable spaces $\left(\Gamma^{(n)}, \mathfrak{B}\left(\Gamma^{(n)}\right)\right)$. For any bounded $Y \in \mathfrak{B}\left(\mathbb{R}^{d}\right)$ the topology of

$$
\Gamma_{Y}^{(n)}:=\left\{\gamma \in \Gamma \quad\left|\quad \gamma \cap\left(\mathbb{R}^{d} \backslash Y\right)=\varnothing, \quad\right| \gamma \mid=n\right\}
$$

is induced by the bijection between $\Gamma_{Y}^{(n)}$ and the symmetrization $\widetilde{Y}^{n} / S_{n}$ of \widetilde{Y}^{n} (see Ref. 10 for details), where S_{n} is the permutation group over $\{1, \ldots, n\}$,

$$
\widetilde{Y}^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \quad \mid \quad x_{i} \in Y, \quad x_{i} \neq x_{j}, i \neq j\right\},
$$

and we denote by $\Gamma_{Y}=\cup_{n=0}^{\infty} \Gamma_{Y}^{(n)}$ the set of configurations in Y.
Starting with an intensity measure $\sigma=z d x(z>0)$ on $\mathfrak{B}\left(\mathbb{R}^{d}\right)$ we introduce the productmeasure $\sigma^{\otimes n}$ on $\left(\mathbb{R}^{d}, \mathfrak{B}\left(\mathbb{R}^{d n}\right)\right.$) and denote $\sigma^{(n)}:=\sigma^{\otimes n_{o}}\left(s_{n}\right)^{-1}$, where s_{n} is the map $s_{n}: \mathbb{R}^{d n}$ $\ni\left(x_{1}, \ldots, x_{n}\right) \mapsto\left\{x_{1}, \ldots, x_{n}\right\} \in \Gamma^{(n)}$. The Lebesgue-Poisson measure λ_{σ} on $\mathfrak{B}\left(\Gamma_{0}\right)$ is defined by the formula

$$
\begin{equation*}
\lambda_{\sigma}:=\sum_{n \geqslant 0} \frac{1}{n!} \sigma^{(n)} . \tag{1.7}
\end{equation*}
$$

Definition 1.1: Let $G: \Gamma_{0} \rightarrow \mathbb{R}$ be a measurable function with local support [i.e., there exists a bounded $\Lambda \in \mathfrak{B}\left(\mathbb{R}^{d}\right)$ such that $\left.G \upharpoonright\left(\Gamma_{0} \backslash \Gamma_{\Lambda}\right)=0\right]$. Define the function $K G: \Gamma \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
(K G)(\gamma):=\sum_{\eta \Subset \gamma} G(\eta) . \tag{1.8}
\end{equation*}
$$

The summation in (1.8) is taken over all finite subconfigurations $\eta \subset \gamma$.
Remark 1.1: Functions on Γ can be considered as observables of our infinite particle system, and functions on Γ_{0} can be interpreted as quasi-observables. The mapping (1.8) was introduced by Lenard ${ }^{11}$ in order to give an abstract definition of the correlation functions in classical statistical mechanics. For a detailed study of properties of the K-transform in the framework of harmonic analysis on configuration spaces we refer to Refs. 12-14.

For a given probability measure μ on $\mathfrak{B}(\Gamma)$ one can define the correlation measure ρ_{μ} on $\mathfrak{B}\left(\Gamma_{0}\right)$ by

$$
\begin{equation*}
\rho_{\mu}(A):=\int_{\Gamma}\left(K \rrbracket_{A}\right)(\gamma) \mu(d \gamma), \tag{1.9}
\end{equation*}
$$

where 1_{A} is the indicator function of a set $A \in \mathfrak{B}\left(\Gamma_{0}\right)$. Assuming that ρ_{μ} is absolutely continuous w.r.t. λ_{σ} we can define the correlation functional

$$
\begin{equation*}
k(\eta)=k_{\mu}(\eta):=\frac{d \rho_{\mu}}{d \lambda_{\sigma}}(\eta) \tag{1.10}
\end{equation*}
$$

In statistical physics it is useful to work with the corresponding family of correlation functions

$$
\begin{equation*}
k^{(n)}:=k \upharpoonright \Gamma^{(n)}, \quad n \geqslant 0 . \tag{1.11}
\end{equation*}
$$

Under certain general conditions on the interaction potential the correlation functions $k^{(n)}$ $=k^{(n)}\left(x_{1}, \ldots, x_{n}\right):=k^{(n)}(x)_{n}$ are bounded measurable functions on some Banach space (for example, E_{ξ} in Ref. 15). For any $G \in L^{1}\left(\Gamma_{0}, \rho_{\mu}\right)$ the following formula is true (see Ref. 12 for details):

$$
\begin{equation*}
\int_{\Gamma}(K G)(\gamma) \mu(d \gamma)=\int_{\Gamma_{0}} G(\eta) \rho_{\mu}(d \eta)=\int_{\Gamma_{0}} G(\eta) k(\eta) \lambda_{\sigma}(d \eta) \tag{1.12}
\end{equation*}
$$

To construct the dynamics for correlation functions, let us consider the K-transform of the generator H which is defined by

$$
\begin{equation*}
\hat{H}=K^{-1} H K \tag{1.13}
\end{equation*}
$$

on a proper set $\mathcal{F}_{0}\left(\Gamma_{0}\right)$ of functions on Γ_{0} (quasi-observables). The corresponding evolution of quasi-observables is given then by the following equation:

$$
\begin{equation*}
\frac{\partial G_{t}}{\partial t}=-\hat{H} G_{t}, \quad G_{0} \in \mathcal{F}_{0}\left(\Gamma_{0}\right) \tag{1.14}
\end{equation*}
$$

We can define the time evolution of correlation functions via the duality relation:

$$
\begin{equation*}
\int_{\Gamma_{0}} G_{t}(\eta) k_{0}(\eta) \lambda_{\sigma}(d \eta)=\int_{\Gamma_{0}} G_{0}(\eta) k_{t}(\eta) \lambda_{\sigma}(d \eta) . \tag{1.15}
\end{equation*}
$$

Then the adjoint operator $(\hat{H})^{*}=: H_{B}$ in $L^{2}\left(\Gamma_{0}, \lambda_{\sigma}\right)$ is the generator of the evolution semigroup for the correlation functional, i.e.,

$$
\begin{equation*}
\frac{\partial}{\partial t} k_{t}=-H_{B} k_{t} . \tag{1.16}
\end{equation*}
$$

Using (1.2) and (1.13)-(1.15) we can show that (1.16) has the following form (see Ref. 14):

$$
\begin{equation*}
\frac{\partial}{\partial t} k_{t}(\eta)=\sum_{x \in \eta} \nabla_{x}\left[\frac{1}{\beta} \nabla_{x} k_{t}(\eta)+\nabla_{x} U_{\phi}(\eta) k_{t}(\eta)+\int d x^{\prime} \nabla \phi\left(x-x^{\prime}\right) k_{t}\left(x^{\prime} \cup \eta\right)\right], \quad \eta \in \Gamma_{0} \tag{1.17}
\end{equation*}
$$

In terms of the correlation functions this equation has the following hierarchical structure:

$$
\begin{align*}
\frac{\partial}{\partial t} k_{t}^{(m)}(x)_{m}= & \frac{1}{\beta} \sum_{j=1}^{m} \Delta_{x_{j}} k_{t}^{(m)}(x)_{m}+\sum_{j=1}^{m} \sum_{k \neq j}^{m}\left((\nabla \phi)\left(x_{j}-x_{k}\right) \nabla_{x_{j}}+(\Delta \phi)\left(x_{j}-x_{k}\right)\right) k_{t}^{(m)}(x)_{m} \\
& +\sum_{j=1}^{m} \int_{\mathbb{R}^{d}} d x^{\prime}\left[(\nabla \phi)\left(x_{j}-x^{\prime}\right) \nabla_{x_{j}}+(\Delta \phi)\left(x_{j}-x^{\prime}\right)\right] k_{t}^{(m+1)}\left((x)_{m}, x^{\prime}\right) \tag{1.18}
\end{align*}
$$

This equation appeared for the first time on a heuristic level in Ref. 16. In the present context the hierarchy (1.16)-(1.18) is a direct consequence of the Kolmogorov equation (1.4). It is called sometimes the Bogoliubov diffusion hierarchy and it is analogous to the BBGKY hierarchy for Hamiltonian dynamics. Note that some approaches to investigating this chain of equations in the case of a smooth interaction potential ϕ were proposed in Refs. 17-20.

The problem of existence of solutions of hierarchy (1.18) is additionally complicated by the fact that one should check that the obtained solution k_{t} corresponds to some state μ_{t}. Otherwise we cannot prove that we construct the evolution of some initial state μ_{0}. This problem was not discussed in Refs. 17-20. More precisely, for regular types of interaction potentials, low particle density and sufficiently small interval of time evolution the solution of the diffusion hierarchy (1.18) in the thermodynamic limit was obtained without any analysis of the existence of the dynamics for the corresponding states. In this article we obtain the existence of state μ_{t} using a general theorem about the connection between states and positive-definiteness of the corresponding correlations functions. ${ }^{14,21}$

Remark 1.2: Note that in theoretical physics a hierarchical system of equations is accepted very often as the definition of the dynamics of an infinite particle system. Such situation takes place, e.g., in Hamiltonian dynamics where the BBGKY hierarchy is considered as the definition of the evolution. Let us mention that, in general, connections between the BBGKY hierarchy approach and the state evolution are not investigated enough as pointed out in Ref. 22, Sec. 3.3. From the physical point of view the property of positivity for correlation functions is very important. But it is not enough to reconstruct the corresponding state. ${ }^{11}$ A constructive condition which guarantees such reconstruction was proposed in Ref. 12 (see also Ref. 21). This is the positivedefiniteness of the sequence of correlation functions [see below (2.25)-(2.27)]. The situation is the same as in the classical problem of momentum (see, e.g., Ref. 23). From this point of view many results on existence of solutions of the BBGKY hierarchy (see, e.g., Refs. 24 and 25) should be completed by a proof for the existence of the dynamics of states for every particular class of models, as it has been done for stationary solutions in Ref. 26 and for the one-dimensional nonstationary case in Ref. 27.

In this article we consider some class of singular superstable interactions (see Sec. III). Our main strategy is based on a construction of the semigroup p_{B}^{t} which corresponds to the evolution equation (1.16). For appropriate initial data k_{0} it provides a global solution to the diffusion hierarchy (1.16)-(1.18):

$$
\begin{equation*}
k_{t}(\eta)=\left(p_{B}^{t} k_{0}\right)(\eta) \tag{1.19}
\end{equation*}
$$

We obtain an expression for the operator p_{B}^{t} which can be easily defined on the Banach space $L_{\beta}^{1}\left(\Gamma_{0}, \lambda_{\xi \sigma}\right)$ of $\lambda_{\xi \sigma}$-integrable functionals for some appropriate weight ξ (see Sec. II). But for most cases, which are interesting from a physical point of view, the correlation functionals of initial particle distributions do not belong to $L_{\beta}^{1}\left(\Gamma_{0}, \lambda_{\xi \sigma}\right)$. Typically, they are only bounded and we need to extend the domain of the operator p_{B}^{t} to some class of bounded functionals. But from our point of view it would be very naive to hope that a global solution to the hierarchy (1.16)-(1.18) can be obtained for all initial data. Even in the case of a finite number of particles the singularity of the interaction potential does not allow us to define the evolution of arbitrary initial state. Generally speaking one can expect existence of a solution only if the initial correlation functions are chosen in a proper way. In this article we consider a class of initial functionals which correspond to some perturbations of the equilibrium state $\mu=\mu_{\phi}$ which is constructed by ϕ. The idea is that, as the equilibrium state is a perturbation of the free state (Poisson ideal gas), the nonequilibrium state should be some perturbation of the equilibrium Gibbs state. Such a choice of the initial state is very natural from a physical point of view and were used by many authors. Our main result (Theorem 4.1) is the following. Consider an initial state μ_{0} which corresponds to a superstable potential

$$
\begin{equation*}
V=\phi+\psi, \tag{1.20}
\end{equation*}
$$

where ϕ is the potential by which our dynamics (1.1) is governed and ψ is a superstable, lower regular interaction potential (see Sec. III). For the given measure μ_{0} we consider a family of finite volume measures μ_{0}^{Λ} [for bounded $\left.\Lambda \in \mathfrak{B}\left(\mathbb{R}^{d}\right)\right]$ and the corresponding family of initial correlation functionals $k_{0}^{\Lambda}(\eta):^{15}$

$$
\begin{equation*}
k_{0}^{\Lambda}(\eta)=\int_{\Gamma_{0}} \lambda_{\sigma}(d \gamma) \mathcal{D}_{0}^{\Lambda}(\eta \cup \gamma) \tag{1.21}
\end{equation*}
$$

with

$$
\begin{align*}
\mathcal{D}_{0}^{\Lambda}(\eta) & =Z_{\Lambda}^{-1} 1_{\Gamma_{\Lambda}}(\eta) e^{-\beta U_{V}(\eta)}, \quad \eta \in \Gamma_{0}, \tag{1.22}\\
Z_{\Lambda} & =\int_{\Gamma_{0}} \lambda_{\sigma}(d \eta) 1_{\Gamma_{\Lambda}}(\eta) e^{-\beta U_{V}(\eta)} . \tag{1.23}
\end{align*}
$$

For such initial correlation functionals we construct a solution of (1.16) as

$$
\begin{equation*}
k_{t}^{\Lambda}(\eta)=\left(p_{B}^{t} k_{0}^{\Lambda}\right)(\eta) . \tag{1.24}
\end{equation*}
$$

Our main technical result consists in the proof of a bound, uniform in Λ, for these correlation functionals:

$$
\begin{equation*}
k_{t}^{\Lambda}(\eta) \leqslant c_{1}^{|\eta|}, \quad \eta \in \Gamma_{0} \quad c_{1}=c_{1}(z, \beta, T), \quad t \in[0, T] \tag{1.25}
\end{equation*}
$$

for any time interval $[0, T]$. We obtain this result using the well-known technique of superstability estimates in classical statistical mechanics ${ }^{28}$ and its generalization to the quantum case with Boltzman statistics. ${ }^{29}$

In our case this technique needs some modification. We should also note that as in Ref. 29 we need the restriction $d \leqslant 3$ on the dimension d of the system. It is connected with estimating the contribution of long Wiener trajectories in a functional integral representation for the correlation functions. Using (1.25) and the continuity in time (uniformly in Λ) [see (4.27)] we conclude that there exists a thermodynamic limit for k_{t}^{Λ} and these limit functionals k_{t} satisfy the equation (1.16) in a weak sense.

The structure of this paper is as follows: In Sec. II we construct the operator p_{B}^{t} and derive a representation for k_{t}^{Λ}. In Sec. III we discuss the class of interactions. In Sec. IV we recall some auxiliary constructions and formulate our main result. The proof of the main theorem is presented in Sec. V. The basic technical lemmas are outlined in the Appendix.

II. CORRELATION FUNCTIONS

In this section we construct the semigroup connected with the diffusion hierarchy (1.16)(1.18) and derive a representation for the finite volume correlation functions (1.24). Let us define an operator K_{0} on quasi-observables as

$$
\begin{equation*}
K_{0} G:=(K G) \upharpoonright \Gamma_{0} . \tag{2.1}
\end{equation*}
$$

Then we can construct the operator

$$
\begin{equation*}
H_{F}:=K_{0} \hat{H} K_{0}^{-1} \tag{2.2}
\end{equation*}
$$

On smooth quasi-observables the operator H_{F} acts by the following formulas

$$
\begin{equation*}
H_{F} G=\left(\left(H_{F} G\right)^{(n)}(x)_{n}\right)_{n=0}^{\infty}, \quad G=\left((G)^{(n)}(x)_{n}\right)_{n=0}^{\infty} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(H_{F} G\right)^{(n)}(x)_{n}=\left(H_{F}^{(n)} G^{(n)}\right)(x)_{n}=\sum_{j=1}^{n}\left(-\frac{1}{\beta} \Delta_{x_{j}}+\nabla_{x_{j}} U_{\phi}(x)_{n} \cdot \nabla_{x_{j}}\right) G^{(n)}(x)_{n} \tag{2.4}
\end{equation*}
$$

$H_{F}^{(n)}$ is the generator of the stochastic dynamics for an n-particle system:

$$
\begin{equation*}
d x_{i}(t)=-\sum_{i \neq j=1}^{n} \nabla \phi\left(x_{i}(t)-x_{j}(t)\right) d t+\sqrt{\frac{2}{\beta}} \quad d w_{i}(t), \quad i=1, \ldots, n \tag{2.5}
\end{equation*}
$$

The problem of existence of the stochastic dynamics (2.5) with a singular potential is analyzed in Refs. 30 and 31. The operator $H_{F}^{(n)}$ is generated by the Dirichlet form

$$
\begin{equation*}
\left(H_{F}^{(n)} G^{(n)}, G^{(n)}\right)_{L^{2}\left(\Gamma_{0}^{(n)}, \mu_{\phi}^{(n)}\right)}=\frac{1}{\beta} \sum_{j=1}^{n} \int_{\Gamma_{0}^{(n)}}\left|\nabla_{j} G^{(n)}\right|^{2} d \mu_{\phi}^{(n)} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{\phi}^{(n)}:=e^{-\beta U_{\phi}(\cdot)_{n}} \sigma^{(n)} \tag{2.7}
\end{equation*}
$$

and $\sigma^{(n)}$ is defined in (1.7).
Then using (1.14)-(1.15) and (2.1)-(2.2) one can write for p_{B}^{t} the following representation:

$$
\begin{equation*}
p_{B}^{t}=e^{-t H_{B}}=K_{0}^{*} e^{-t H_{F}^{*}}\left(K_{0}^{-1}\right)^{*}=D e^{-t H_{F}^{*}} D^{-1} \tag{2.8}
\end{equation*}
$$

Here the operators $D:=K_{0}^{*}$ and D^{-1} are defined in $L^{1}\left(\Gamma_{0}, \lambda_{\xi \sigma}\right), \xi>2$, by the following formulas (see Ref. 12 for details):

$$
\begin{gather*}
(D F)(\eta)=\int_{\Gamma_{0}} \lambda_{\sigma}(d \gamma) F(\eta \cup \gamma) \tag{2.9}\\
\left(D^{-1} F\right)(\eta)=\int_{\Gamma_{0}} \lambda_{\sigma}(d \gamma)(-1)^{|\gamma|} F(\eta \cup \gamma) \tag{2.10}
\end{gather*}
$$

Remark 2.1: In our approach the representation (2.8) for p_{B}^{t} is a direct consequence of the Kolmogorov equation (1.4) without any reference to the hierarchical structure of (1.17) and (1.18). In the same way from the Liouville equation one can obtain the corresponding representation for the Hamiltonian dynamics. ${ }^{14}$ Representations like (2.8) appeared earlier. They were obtained by application of the method of "creation" and "annihilation" operators for classical statistical mechanics (see Refs. 32-35). For connections with the diffusion hierarchy see Ref. 19.

Remark 2.2: It will be clear from the considerations below that in the case of a stable interaction potential ϕ for which $-\Delta \phi$ is also stable, the operator p_{B}^{t} can be defined on a Banach space $L_{\beta, \xi}$ with the norm

$$
\begin{equation*}
\|G\|_{\beta, \xi}=\int_{\Gamma_{0}} \lambda_{\xi \sigma}(d \eta) e^{(1 / 2) \beta U_{\phi}(\eta)}|G(\eta)|<\infty, \quad G \in L_{\beta, \xi}^{1} . \tag{2.11}
\end{equation*}
$$

To obtain a representation for finite volume correlation functions k_{t}^{Λ} we take into account the definition of the operator D and rewrite (1.21) in the form

$$
\begin{equation*}
k_{0}^{\Lambda}(\eta)=\left(D \mathcal{D}_{0}^{\Lambda}\right)(\eta) \tag{2.12}
\end{equation*}
$$

Then due to (2.8) and (1.20) the following representation is true:

$$
\begin{equation*}
\left.k_{t}^{\Lambda}(\eta)=\left(D\left[e^{-t H_{F}^{*}}\left(\frac{1}{Z_{\Lambda}} e^{-\beta U_{\phi}} e^{-\beta U_{\psi}}\right]_{\Gamma_{\Lambda}}\right)\right]\right)(\eta)=\left(D\left[\frac{1}{Z_{\Lambda}} e^{-t H_{F}}\left(e^{\left.-\beta U_{\psi}\right]_{\Gamma_{\Lambda}}}\right) e^{-\beta U_{\phi}}\right]\right)(\eta) \tag{2.13}
\end{equation*}
$$

where we use the fact that the operator H_{F} [see (2.4)] is a self-adjoint operator in $L^{2}\left(\Gamma_{0}, e^{-\beta U_{\phi}} \lambda_{\sigma}\right)$.

Now, to get an integral representation for k_{t}^{Λ} we use a functional integral representation for the operator $e^{-t H_{F}}$ in (2.13). First of all, note that the operator H_{F} has the Fock structure (2.3) and (2.4), so we only need a representation for $e^{-t H_{F}^{(n)}}$ in $L^{2}\left(\Gamma_{0}^{(n)}, \mu_{\phi}^{(n)}\right)$. To get it we use the wellknown ground state transformation (see, e.g., Ref. 36, Sec. 2, and Ref. 23, Chap. 7)

$$
\begin{equation*}
L^{2}\left(\Gamma_{0}^{(n)}, \mu_{\phi}^{(n)}\right) \ni f \mapsto e^{-(1 / 2)} \beta U_{\phi f} \in L^{2}\left(\Gamma_{0}^{(n)}, \sigma^{(n)}\right) . \tag{2.14}
\end{equation*}
$$

The corresponding generator $\widetilde{H}_{F}^{(n)}$ in $L^{2}\left(\Gamma_{0}^{(n)}, \sigma^{(n)}\right)$ has the following form,

$$
\begin{equation*}
\widetilde{H}_{F}^{(n)}=-\frac{1}{\beta} \sum_{j=1}^{n} \Delta_{x_{j}}+\widetilde{V}(x)_{n}, \tag{2.15}
\end{equation*}
$$

with the effective potential

$$
\begin{equation*}
\widetilde{V}(x)_{n}=\widetilde{V}^{+}(x)_{n}+\widetilde{V}^{(-\Delta \phi)}(x)_{n}:=\sum_{j=1}^{n}\left(\frac{\beta}{4}\left|\nabla_{x_{j}} U_{\phi}(x)_{n}\right|^{2}-\frac{1}{2} \Delta_{x_{j}} U_{\phi}(x)_{n}\right) . \tag{2.16}
\end{equation*}
$$

For the domain of the operator $\widetilde{H}_{F}^{(n)}$ we have $\mathfrak{D}\left(\widetilde{H}_{F}^{(n)}\right) \supset C_{0}^{\infty}\left(\Gamma_{0}^{(n)}\right)$, where $C_{0}^{\infty}\left(\Gamma_{0}^{(n)}\right)$ denotes C^{∞}-functions on $\Gamma_{0}^{(n)}$ with compact supports. It can be shown that for any superstable potential ϕ the effective potential $\widetilde{V}(x)_{n}$ is bounded from below for any fixed n. But for the class of potentials under consideration it is even superstable (see Sec. III). Therefore, we can apply the FeynmanKac formula for the kernel of the semigroup $e^{-t \tilde{H}_{F}^{(n)}}$, where $\widetilde{H}_{F}^{(n)}$ is considered in the sense of a form sum (2.15) Ref. 37, Chap. 2. As a result, we get

$$
\begin{equation*}
\left(e^{-t H_{F}^{(n)}}\right)\left((x)_{n} ;(y)_{n}\right)=e^{(1 / 2) \beta U_{\phi}(x)_{n}-(1 / 2) \beta U_{\phi}(y)_{n}} \int_{\left(\Omega^{t} \beta\right)^{n}} \prod_{j=1}^{n} W_{x_{j} ; y_{j}}^{t_{\beta}}\left(d \omega_{j}\right) e^{-\beta \int_{0}^{t_{\beta}} d \tau \tilde{V}(\omega(\tau))_{n}}, \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega^{t_{\beta}:=C\left(\left[0, t_{\beta}\right] \rightarrow \mathbb{R}^{d}\right), \quad t_{\beta}=t \beta^{-1}, ~} \tag{2.18}
\end{equation*}
$$

$W_{x ; y}^{t_{\beta}}$ is the conditional Wiener measure on the space $\Omega^{t_{\beta}}$ with conditions $\omega_{j}\left(t_{\beta}\right)=x_{j}$ and $\omega_{j}(0)$ $=y_{j}$. It implies the following useful representation:

$$
\begin{equation*}
k_{t}^{\Lambda}(\eta)=\int_{\mathbb{R}^{d m}} d \xi \int_{\left(\Omega^{t} \beta\right)^{m}} W_{\eta ; \xi}^{t_{\beta}}(d \omega)_{m} \rho_{t}^{\Lambda}(\omega)_{m} \tag{2.19}
\end{equation*}
$$

where $\eta=\left\{x_{1}, \ldots, x_{m}\right\}, \xi=\left\{y_{1}, \ldots, y_{m}\right\}, d \xi=d y_{1} \cdots d y_{m}$, and

$$
\begin{equation*}
\rho_{t}^{\Lambda}(\omega)_{m}=\sum_{n \geqslant 0} \frac{1}{n!} \int \widetilde{\sigma}_{\Lambda}\left(\omega_{m+1}\right) \cdots \int \widetilde{\sigma}_{\Lambda}\left(\omega_{m+n}\right) \widetilde{D}_{0}^{\Lambda}(\omega(0))_{m+n} e^{-\tilde{U}(\omega)_{m+n}} \tag{2.20}
\end{equation*}
$$

In (2.20) we use the following notations:

$$
\begin{align*}
& \widetilde{U}(\omega)_{m+n}:=\frac{1}{2} \beta U_{\phi}(x)_{m+n}+\int_{0}^{t_{\beta}} d \tau\left[U_{-\Delta \phi}(\omega(\tau))_{m+n}+U_{\nabla \phi}^{+}(\omega(\tau))_{m+n}\right], \tag{2.21}\\
& U_{\nabla \phi}^{+}(x)_{m+n}:=\sum_{j=1}^{m+n}\left[\frac{1}{4} \beta\left|\nabla_{x_{j}} U_{\phi}(x)_{m+n}\right|^{2}\right] \geqslant 0, \tag{2.22}\\
& \widetilde{D}_{0}^{\Lambda}(\omega(0))_{m+n}:=e^{(1 / 2)} \beta U_{\phi}(\omega(0))_{m+n} \mathcal{D}_{0}^{\Lambda}(\omega(0))_{m+n}, \tag{2.23}
\end{align*}
$$

and

$$
\begin{equation*}
\int \widetilde{\sigma}_{\Lambda}(d \omega)(\cdots)=z \int d x \int_{\Lambda} d y \int W_{x ; y}^{t_{\beta}}(d \omega)(\cdots) \tag{2.24}
\end{equation*}
$$

A representation like (2.19) and (2.20) was obtained also in Refs. 17 and 18 as the generalized solution of the finite volume diffusion hierarchy (1.18).

Remark 2.3: It is not hard to show that the sequence $k_{t}^{\Lambda}(\eta)$ is positive-definite in the sense of Refs. 12 and 13, which is the following.

Definition 2.1: ${ }^{13}$ The sequence $k_{t}^{\Lambda}(\eta)$ is positive-definite if

$$
\begin{equation*}
\int_{\Gamma_{0}}(G \star \bar{G})(\eta) k_{t}^{\Lambda}(\eta) \lambda_{\sigma}(d \eta) \geqslant 0 \quad \text { for all } G \in B_{b s}\left(\Gamma_{0}\right) \tag{2.25}
\end{equation*}
$$

Here $B_{b s}\left(\Gamma_{0}\right)$ is the set of all bounded measurable functions with bounded support, \bar{G} denotes the complex conjugate of G, and \star-star is the convolution, which is defined in the following way:

$$
\begin{equation*}
K\left(G_{1} \star G_{2}\right)=K G_{1} \cdot K G_{2} . \tag{2.26}
\end{equation*}
$$

(See Ref. 13 for details.)
Now, inserting (1.24) into (2.25) and using the representation (2.8), (2.12), (2.17) and the property (2.26) (which is true, also, for K_{0} [see (2.1)] we obtain

$$
\begin{align*}
\int_{\Gamma_{0}} & (G \star \bar{G})(\eta) p_{t} D \mathcal{D}_{0}^{\Lambda}(\eta) \lambda_{\sigma}(d \eta) \\
& =\int_{\Gamma_{0}}(G \star \bar{G})(\eta) K_{0}^{*} e^{-t H_{F}^{*}} D^{-1} D \mathcal{D}_{0}^{\Lambda}(\eta) \lambda_{\sigma}(d \eta) \\
& =\int_{\Gamma_{0}} e^{-t H_{F}}\left(K_{0} G\right)(\eta)\left(K_{0} \bar{G}\right)(\eta) \mathcal{D}_{0}^{\Lambda}(\eta) \lambda_{\sigma}(\eta) \\
& =\int_{\Gamma_{0}} \lambda_{\sigma}(d \eta) \int_{\left(\mathbb{R}^{d}\right)^{|\eta|}} d \eta^{\prime}\left(e^{-t H_{F}^{|\eta|}}\right)\left(\eta \mid \eta^{\prime}\right)\left|\left(K_{0} G\right)\left(\eta^{\prime}\right)\right|^{2} \mathcal{D}_{0}^{\Lambda}(\eta) \geqslant 0 \tag{2.27}
\end{align*}
$$

Positive definiteness together with the bound (1.25) gives a possibility to reconstruct the corresponding sequence of states (measures) μ_{t}^{Λ}.

Representation (2.19) and (2.20) is reminiscent to the representation of reduced density matrices by correlation functionals in quantum statistical mechanics with Boltzman statistics (see Refs. 38 and 39). This analogy enables us to apply powerful techniques from quantum statistical mechanics in the considered model. Following Ref. 40, we construct the configuration space $\Gamma_{\Omega^{t}}{ }_{\beta}$ over the space $\Omega^{t_{\beta}}$ of Wiener trajectories in \mathbb{R}^{d}. Define configuration $\widetilde{\gamma}$ as the infinite set of trajectories $\omega \in \Omega^{t_{\beta}}$ such that the set of values of these trajectories at time $\tau=0$ is a configuration $\gamma^{0} \in \Gamma$. Then define the configuration space of trajectories with initial points $\omega(0)$ in Λ $\in \mathfrak{B}_{c}\left(\mathbb{R}^{d}\right)$:

$$
\Gamma_{\Omega_{\Lambda}^{t}}:=\left\{\tilde{\gamma} \in \Gamma_{\Omega^{t_{\beta}}} \mid \gamma^{0} \in \Gamma_{\Lambda}\right\} .
$$

In the same way the Lebesgue-Poisson measure $\lambda_{\tilde{\sigma}}^{\Lambda}$ with intensity measure $\widetilde{\sigma}_{\Lambda}$ is defined by (1.7). Then for the "correlation functionals" $\rho_{t}^{\Lambda}(\widetilde{\eta}), \widetilde{\eta} \in \Gamma_{\Omega_{\Lambda}^{t},}$, the following representation is true:

$$
\begin{equation*}
\rho_{t}^{\Lambda}(\widetilde{\eta})=\int_{\Gamma_{\Omega_{\Lambda}^{t} \beta}} \lambda_{\tilde{\sigma}}^{\Lambda}(d \widetilde{\gamma}) \widetilde{D}_{0}^{\Lambda}\left(\eta^{0} \cup \gamma^{0}\right) e^{-\tilde{U}(\tilde{\eta} \cup \tilde{\gamma})}, \tag{2.28}
\end{equation*}
$$

where $\widetilde{U}(\widetilde{\eta} \cup \widetilde{\gamma})$ is defined by (2.21) with $\widetilde{\eta} \cup \widetilde{\gamma}=\left\{\omega_{1}, \ldots, \omega_{m+n}\right\}$ and $\widetilde{D}_{0}^{\Lambda}$ as defined in (2.23).
Remark 2.4: In the following we write $\eta, \gamma, \xi, \ldots, \Omega, \Omega_{\Lambda}$, instead of $\widetilde{\eta}, \widetilde{\gamma}, \widetilde{\xi}, \ldots, \Omega^{t_{\beta}}, \Omega_{\Lambda}^{t_{\beta}}$ and $\eta^{\tau}, \gamma^{\tau}, \xi^{\tau}, \ldots, \ldots, \tau \in\left[0, t_{\beta}\right]$ for the sets of values of the corresponding configurations at time τ. Note that these sets for $\tau>0$ are not configurations in Γ_{0} because some points of their values can coincide (intersection of trajectories).

III. THE CLASS OF INTERACTION POTENTIALS

In this section we describe a class of interaction potentials which allow us to solve the problem formulated in the Introduction. As it was mentioned in Remark 2.2, even to define the operator p_{B}^{t} on $L_{\beta, \xi}^{1}$ we have to consider a rather narrow class of interaction potentials. The restrictions on the potential imposed below are, however, rather dictated by the technique of the superstability estimates for functional integrals. We hope that the stochastic dynamics, actually, exists for a more wide class of potentials and initial states. This point of view is supported by the fact that the equilibrium stochastic dynamics exists for a wide class of physically reasonable potentials (see, e.g., Ref. 2).

To define the said class of superstable interactions we denote by $\bar{\Delta}$ a partition of \mathbb{R}^{d} into half open unit cubes Δ centered at the points $r \in \mathbb{Z}^{d}$ (see Ref. 28 for details):

$$
R^{d}=\bigcup_{\Delta \subset \bar{\Delta}} \Delta, \quad \forall \Delta, \Delta^{\prime} \in \bar{\Delta}, \quad \Delta \cap \Delta^{\prime}=\varnothing
$$

We assume the following conditions to hold:
(A1) Smoothness:

$$
\phi, \quad \psi \in C^{3}\left(\mathbb{R}^{d} \backslash\{0\}\right)
$$

(A2) Superstability:

$$
\forall i=1,2,3 \quad \exists A_{i}>0, \quad B_{i} \geqslant 0: \quad U_{v_{i}}(\gamma) \geqslant \sum_{\Delta \in \bar{\Delta}}\left(A_{i}\left|\gamma_{\Delta}\right|^{2}-B_{i}\left|\gamma_{\Delta}\right|\right)
$$

with $v_{1}=\phi, v_{2}=-\Delta \phi$ and $v_{3}=\psi$.
(A3) Lower-regularity:
For any $X, Y \subset \mathbb{R}^{d}$ and configurations $\gamma_{X} \in \Gamma_{X}, \gamma_{Y} \in \Gamma_{Y}$, define

$$
\begin{equation*}
W_{v_{i}}\left(\gamma_{X} \mid \gamma_{Y}\right)=\sum_{x \in \gamma_{X}, y \in \gamma_{Y}} v_{i}(x-y) \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
-W_{v_{i}}\left(\gamma_{X} \mid \gamma_{Y}\right) \leqslant \sum_{\Delta, \Delta^{\prime} \in \bar{\Delta}} \Psi_{v_{i}}\left(\Delta, \Delta^{\prime}\right)\left|\gamma_{\Delta}\right|\left|\gamma_{\Delta^{\prime}}\right| \tag{3.2}
\end{equation*}
$$

where

$$
\Psi_{v}\left(\Delta, \Delta^{\prime}\right)=\sup _{x \in \Delta, x^{\prime} \in \Delta^{\prime}} v_{-}\left(x-x^{\prime}\right)
$$

and $v_{-}=-\min (v, 0)$. We also require the existence of positive decreasing functions $\Psi_{i}(k)$ on positive integers such that

$$
\begin{equation*}
\Psi_{i}(k) \geqslant \sup _{\Delta, \Delta^{\prime} \in \bar{\Delta} ; d\left(\Delta, \Delta^{\prime}\right)=k} \Psi_{v_{i}}\left(\Delta, \Delta^{\prime}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{\infty} \Psi_{i}(k) k^{d+\mu_{i}-1}=F_{\mu_{i}}<+\infty \tag{3.4}
\end{equation*}
$$

with $\mu_{1}=\mu_{3}>\frac{1}{2}, \mu_{2}>-\frac{3}{2}$ and

$$
d\left(\Delta, \Delta^{\prime}\right)=\max _{1 \leqslant \alpha \leqslant d} \inf _{x \in \Delta, x^{\prime} \in \Delta^{\prime}}\left|x^{(\alpha)}-x^{\prime(\alpha)}\right| .
$$

Now we describe some class Φ of potentials which satisfy (A.1)-(A.3). Let

$$
\begin{gather*}
\phi(x)=\phi_{+}(x)+\phi_{s t}(x) \\
\phi_{+}(0)=+\infty, \quad \phi_{+}(x)>0 \tag{3.5}\\
-\Delta \phi_{+}(0)=+\infty, \quad-\Delta \phi_{+}(x)>0, \\
\phi_{s t}(x)=\frac{1}{(2 \pi)^{d}} \int d k e^{i x k} \widetilde{\phi}(k), \quad \phi(k) \geqslant 0, \tag{3.6}
\end{gather*}
$$

$$
\begin{equation*}
\int d k \widetilde{\phi}(k)<\infty, \quad \int d k k^{2} \widetilde{\phi}(k)<\infty . \tag{3.7}
\end{equation*}
$$

As an example (for $d=3$) of such a potential we can choose some function which has an asymptotic behavior near the origin like

$$
\phi_{+}(x) \sim \frac{C_{1}}{|x|^{\alpha}}, \quad 0<\alpha \leqslant 1 \quad \text { for } \quad|x|<r_{0}, \quad r_{0}>0
$$

and is sufficiently fast decreasing as $|x| \nearrow+\infty$. This is clear from a direct calculation which gives

$$
\begin{equation*}
-\Delta \frac{1}{|x|^{\alpha}}=\frac{\alpha(1-\alpha)}{|x|^{\alpha+2}} \tag{3.8}
\end{equation*}
$$

which is positive for $\alpha<1$.

IV. RUELLE'S CONSTRUCTIONS. MAIN RESULT

Our main technical tool is the technique of superstability estimates proposed by Ruell ${ }^{28}$ for classical statistical mechanics. Later Esposito et al. ${ }^{29}$ generalized this technique for the case of quantum statistical mechanics and proved the boundedness of the reduced density matrices (RDMs) for the Maxwell-Boltzmann statistics.

In this section we briefly recall some basic constructions which were made in Refs. 28 and 29.
A. Λ_{q}-cubs

For some $\alpha>0$ (to be fixed later) let

$$
\begin{equation*}
l_{q}=\left[e^{\alpha q}\right], \quad q \in \mathbb{N}, \tag{4.1}
\end{equation*}
$$

where $[x]$ is the integer part of $x \in \mathbb{R}^{+}$and

$$
\begin{equation*}
\Lambda_{q}=\left[-l_{q}-\frac{1}{2}, l_{q}+\frac{1}{2}\right]^{d}, \quad\left|\Lambda_{q}\right|=\left(2 l_{q}+1\right)^{d} . \tag{4.2}
\end{equation*}
$$

We also set the origin in the center of some cube $\Delta_{1} \in \bar{\Delta}$. So, every cube Λ_{q} is the union of cubes Δ from $\bar{\Delta}$. And for convenience we suppose that for one of the trajectories $\omega \in \eta$ we have $\omega(0)=0 \in \Delta_{1} \subset \mathbb{R}^{d}$. Following Ref. 29 we also introduce the sequence

$$
\begin{equation*}
\varphi(q)=q\left|\Lambda_{q}\right| . \tag{4.3}
\end{equation*}
$$

We extensively use the following properties (see Ref. 29 for details). For given $\varepsilon>0, \alpha$ $>0 \exists s_{0}$ such that for $s \geqslant s_{0}$

$$
\begin{gather*}
1+\alpha<\frac{l_{s+1}}{l_{s}}<e^{\alpha(1+\varepsilon)} \\
\frac{\varphi(s+1)}{\varphi(s)}<e^{\alpha(d+\varepsilon(d+1))} \tag{4.4}
\end{gather*}
$$

or for $\varepsilon<\varepsilon_{0}=1-2 \alpha e^{2 \alpha}$ (α is sufficiently small)

$$
\begin{gather*}
\frac{l_{s+1}}{l_{s}}<1+2 \alpha, \\
\frac{\varphi(s+1)}{\varphi(s)}<(1+2 \alpha)^{d+1} . \tag{4.5}
\end{gather*}
$$

We also need the following lemma:
Lemma 4.1 (see Ref. 29): Let

$$
\begin{equation*}
r(k)=\min \left\{r \in \mathbb{N} \mid l_{q+r}>l_{q}+k, \quad \forall q \geqslant 1, \quad k \in \mathbb{N}\right\} . \tag{4.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
r(k) \leqslant 1+\frac{1}{\alpha} \log (k+2) . \tag{4.7}
\end{equation*}
$$

B. An extension of the functionals $\boldsymbol{\rho}_{\boldsymbol{t}}^{\boldsymbol{\Lambda}}(\boldsymbol{\eta})$

The functionals ρ_{t}^{Λ} are defined on the configuration space $\Gamma_{\Omega_{\Lambda}}$, where Ω_{Λ} is the space of continuous trajectories $\omega(\tau)$ [see (2.18)] with $\omega(0) \in \Lambda$. But in the construction we are going to apply we need to consider functionals ρ_{t}^{Λ} on the trajectories which take values in the bounded cube Λ_{q} or in its compliment Λ_{q}^{c}. In this case some trajectories can be discontinuous because they take their values in Λ_{q} not for all $\tau \in\left[0, t_{\beta}\right]$ but only in some intervals [$\left.\tau_{1}, \tau_{2}\right],\left[\tau_{3}, \tau_{4}\right]$, etc. So for $\tau \in\left(\tau_{2}, \tau_{3}\right), \ldots$ they are not defined. In this case the definition of $\widetilde{U}\left(\eta_{\Lambda_{q}} \cup \gamma\right)$ and therefore $\rho_{t}^{\Lambda}\left(\eta_{\Lambda_{q}}\right)$ becomes ambiguous. To avoid these difficulties we repeat the construction proposed in Ref. 29.

Let $\mathfrak{B}\left(\left[0, t_{\beta}\right]\right)$ be the σ-algebra of Borel sets in $\left[0, t_{\beta}\right]$ with Ω_{B} the set of all measurable functions:

$$
\begin{equation*}
\widetilde{\omega}: B \rightarrow \mathbb{R}^{d}, \quad B \in \mathfrak{B}\left(\left[0, t_{\beta}\right]\right) . \tag{4.8}
\end{equation*}
$$

Now we define a new configuration space by

$$
\begin{equation*}
\Gamma_{\tilde{\Omega}}=\bigcup_{n \geqslant 0} \Gamma_{\tilde{\Omega}}^{(n)} \tag{4.9}
\end{equation*}
$$

where for $n=0 \Gamma_{\tilde{\Omega}}^{(0)}$ is a nonempty set which, however, consists of the trajectories $\widetilde{\omega}$ whose domain B have zero Lebesgue measure and

$$
\begin{equation*}
\Gamma_{\Omega}^{(n)}=\widetilde{\Omega}_{1}^{\otimes n-s y m m}, \quad \widetilde{\Omega}_{1}=\bigcup_{B \in \mathfrak{B}\left(\left[0, t_{\beta}\right]\right)} \Omega_{B} \tag{4.10}
\end{equation*}
$$

Then, instead of $\widetilde{U}(\omega)_{m+n}=\widetilde{U}(\eta \cup \gamma), \quad \eta=\left\{\omega_{1}, \ldots, \omega_{m}\right\}, \quad \gamma=\left\{\omega_{m+1}, \ldots, \omega_{m+n}\right\}$ we define $\widetilde{U}(\widetilde{\eta} \cup \gamma)$ by the same formula (2.21) and (2.22), but instead of $U_{v_{k}}(\omega(\tau))_{m+n}, k=1,2\left(v_{1}\right.$ $\left.=\phi, v_{2}=-\Delta \phi\right)$ we set for $\widetilde{\omega}_{j} \in \widetilde{\Omega}_{1}$

$$
\begin{equation*}
\sum_{1 \leqslant i<j \leqslant m+n} \chi_{D\left(\widetilde{\omega}_{i}\right) \cap D\left(\widetilde{\omega}_{j}\right)}(\tau) v_{k}\left(\widetilde{\omega}_{i}(\tau)-\widetilde{\omega}_{j}(\tau)\right), \tag{4.11}
\end{equation*}
$$

where $D(\widetilde{\omega})$ is the domain of $\widetilde{\omega}$. For fixed $\widetilde{\eta} \in \Gamma_{\widetilde{\Omega}}$ the function

$$
\widetilde{U}(\widetilde{\eta} \cup \cdot): \Gamma_{\Omega} \rightarrow \mathbb{R}
$$

is measurable on Γ_{Ω} w.r.t. the σ-algebra of Borel sets corresponding to the topology of point-wise convergence (see Ref. 29 for details). Finally, we define

$$
\begin{equation*}
\widetilde{\rho}_{t}^{\Lambda}(\widetilde{\eta})=\int_{\Gamma_{\Omega_{\Lambda}}} \lambda_{\tilde{\sigma}}^{\Lambda}(d \widetilde{\gamma}) \widetilde{D}_{0}^{\Lambda}\left(\widetilde{\eta}^{0} \cup \gamma^{0}\right) e^{-\tilde{U}(\tilde{\eta} \cup \gamma)} \tag{4.12}
\end{equation*}
$$

which is an extension of definition (2.28) [here $\widetilde{\eta}$ has a different sense than in (2.28) (see Remark 2.4)].

It is clear that for $\eta \in \Gamma_{\Omega_{\Lambda}}$

$$
\begin{equation*}
\rho_{t}^{\Lambda}(\eta)=\tilde{\rho}_{t}^{\Lambda}(\widetilde{\eta}) . \tag{4.13}
\end{equation*}
$$

Then for any bounded measurable $X \subset \Lambda$ we define the map $\pi_{X}: \Gamma_{\Omega_{\Lambda}} \rightarrow \Gamma_{\Omega_{\Lambda}}$, such that for any $\gamma \in \Gamma_{\Omega_{\Lambda}}$

$$
\begin{equation*}
\pi_{X} \gamma=\left(\pi_{X} \omega_{1}, \ldots, \pi_{X} \omega_{|\gamma|}\right) \tag{4.14}
\end{equation*}
$$

where $\pi_{X} \omega_{j} \in \tilde{\Omega}_{\Lambda}$ and its domain is the measurable set

$$
B=\left\{\tau \in\left[0, t_{\beta}\right] \mid \omega(\tau) \in X\right\} .
$$

If B has nonzero Lebesgue measure, then $\left(\pi_{X} \omega\right)(\tau)=\omega(\tau), \tau \in B$, and if B has zero measure, then $\pi_{X} \omega \in \Gamma_{\tilde{\Omega}}^{(0)}$. We need also the map $s: \Gamma_{\Omega_{\Lambda}} \rightarrow \Gamma_{\Omega_{\Lambda}}$, which is

$$
\begin{equation*}
\gamma \rightarrow s(\gamma)=\bigcup_{\Delta \in \bar{\Delta}} \pi_{\Delta} \gamma \tag{4.15}
\end{equation*}
$$

The union is taken over all $\Delta \in \bar{\Delta}$, such that $\pi_{\Delta} \gamma$ has a domain of nonzero Lebesgue measure. It is clear that

$$
\begin{equation*}
\widetilde{\rho}_{t}^{\Lambda}(\widetilde{\eta})=\widetilde{\rho}_{t}^{\Lambda}(s(\eta)) . \tag{4.16}
\end{equation*}
$$

C. Partitions of $\Gamma_{\Omega_{\Lambda}}$

For every $\tau \in\left[0, t_{\beta}\right]$ and a given configuration $\tilde{\eta} \in \Gamma_{\Omega_{\Lambda}}$ we introduce some characteristics of a given configuration $\gamma \in \Gamma_{\Omega_{\Lambda}}$:

$$
\begin{equation*}
E_{q}^{\tau}(\xi)=E_{\Lambda_{q}}^{\tau}(\xi)=\sum_{\Delta \subset \Lambda_{q}}\left|\xi_{\Delta}^{\tau}\right|^{2}, \quad \xi=\tilde{\eta} \cup \gamma, \tag{4.17}
\end{equation*}
$$

where $\left|\xi_{\Delta}^{\tau}\right|$ is the number of all trajectories from ξ which take values in Δ at time τ. We also denote $E^{\tau}(\xi)$ by the same expression (4.17) with summation over all $\Delta \in \bar{\Delta}$.

Then we define three factors

$$
\begin{gather*}
E_{q}^{(1)}(\xi)=E_{q}^{t_{\beta}}(\xi), \tag{4.18}\\
E_{q}^{(2)}(\xi)=\int_{0}^{t_{\beta}} d \tau E_{q}^{\tau}(\xi), \tag{4.19}\\
E_{q}^{(3)}(\xi)=E_{q}^{0}(\xi), \tag{4.20}
\end{gather*}
$$

which correspond to the factors $\exp \left\{-1 / 2 \beta U_{\phi}\left(\widetilde{\eta}^{t} \cup \gamma^{t} \beta\right\}, \exp \left\{\beta U_{\Delta \phi}(\widetilde{\eta} \cup \gamma)\right\}\right.$ and $\widetilde{D}_{0}^{\Lambda}\left(\widetilde{\eta}^{0} \cup \gamma^{0}\right)$, respectively, to be controlled, and define

$$
\begin{equation*}
E_{q}(\xi)=\sum_{i=1}^{3} E_{q}^{(i)}(\xi) \tag{4.21}
\end{equation*}
$$

Following Ref. 29 we can now construct a partition of $\Gamma_{\Omega_{\Lambda}}$ in the following way. For some large integer q_{0} (to be fixed later) we introduce

$$
\begin{equation*}
\Gamma_{q_{0}-1}=\left\{\gamma \in \Gamma_{\Omega_{\Lambda}} \mid E_{m}(\xi) \leqslant \varphi(m) \quad \text { for all } \quad m \geqslant q_{0}-1\right\} \tag{4.22}
\end{equation*}
$$

and for $q \geqslant q_{0}$

$$
\begin{equation*}
\Gamma_{q}=\left\{\gamma \in \Gamma_{\Omega_{\Lambda}} \mid E_{q-1}(\xi)>\varphi(q-1), \quad \text { but } \quad E_{m}(\xi) \leqslant \varphi(m) \quad \text { for } \quad m \geqslant q\right\} \tag{4.23}
\end{equation*}
$$

Then for $q \geqslant q_{0}-1$ let $\chi_{q}(\gamma)$ be an indicator function of the set Γ_{q} and for the partition

$$
\begin{equation*}
\Gamma_{\Omega_{\Lambda}}=\bigcup_{q \geqslant q_{0}-1} \Gamma_{q} \tag{4.24}
\end{equation*}
$$

we consider the partition of the unity:

$$
\begin{equation*}
1=\sum_{q \geqslant q_{0}-1} \chi_{q}(\gamma) \tag{4.25}
\end{equation*}
$$

D. Main result

Theorem 4.1: For the interactions $\phi(x)\left(x \in \mathbb{R}^{d}, d \leqslant 3\right)$, which satisfy (A1)-(A3), and for initial distributions (1.21)-(1.23) there exist constants $c_{1}=c_{1}(z, \beta, T)$ and $c_{2}=c_{2}(z, \beta, T)$ such that

$$
\begin{equation*}
k_{t}^{\Lambda}(x)_{m} \leqslant c_{1}^{m}, \quad \eta \equiv\left\{x_{1}, \ldots, x_{m}\right\} \in \Gamma_{\Lambda} . \tag{4.26}
\end{equation*}
$$

For any $t_{1}, t_{2} \in[0, T]$

$$
\begin{equation*}
\left|\left\langle k_{t_{1}}^{\Lambda}, \varphi\right\rangle-\left\langle k_{t_{2}}^{\Lambda}, \varphi\right\rangle\right| \leqslant c_{2}^{m}\|\varphi\|_{m}\left|t_{1}-t_{2}\right| \tag{4.27}
\end{equation*}
$$

uniformly in Λ and $t \in[0, T]$. Here

$$
\begin{equation*}
\left\langle k_{t}^{\Lambda}, \varphi\right\rangle=\int_{\mathbb{R}^{d m}} k_{t}^{\Lambda}(x)_{m} \varphi(x)_{m}(d x)^{m} \tag{4.28}
\end{equation*}
$$

where $(d x)^{m}=d x_{1} \cdots \cdot d x_{m}$, for $(x)_{m}=\left\{x_{1}, \ldots, x_{m}\right\}, \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{d m}\right)$,

$$
\begin{equation*}
c_{2}^{m}=\max \left\{m \xi_{1}^{m} \beta^{-1}, \quad m(m-1) \xi_{1}^{m}, \quad m \xi_{1}^{m+1}\right\} \tag{4.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\varphi\|_{m}=\max _{1 \leqslant j \leqslant m}\left\|\Delta_{j} \varphi\right\|_{L^{1}\left(\mathbb{R}^{m d}\right)}+\max _{j \neq k}\left\|\nabla_{j} \varphi \cdot \nabla_{k} \phi\right\|_{L^{1}\left(\mathbb{R}^{m d}\right)}+\max _{j}\|\nabla \phi\|_{L^{1}\left(\mathbb{R}^{d}\right)}\left\|\nabla_{j} \varphi\right\|_{L^{1}\left(\mathbb{R}^{m d}\right)} \tag{4.30}
\end{equation*}
$$

Remark 4.1: For potentials $\phi \in \Phi$ it is clear that $\|\nabla \phi\|_{L^{1}\left(\mathbb{R}^{d}\right)}<\infty$ (see Sec. III).
Remark 4.2: From (4.26), by compactness, we can choose a sequence $\left(\Lambda_{n}\right)_{n=1}^{\infty}, \Lambda_{n} \subset \Lambda_{n+1}$, $\Lambda_{n} \nearrow R^{d}$, so that we get a limit point (in the weak sense) for $k_{t}^{\Lambda_{n}}$. Hence by diagonal argument we obtain the existence of a corresponding limit for any rational $t \in[0, T]$. Then from the continuity property (4.27) the existence of a weak-limit for k_{t}^{Λ} follows for all $t \in[0, T]$. And, finally, using positive-definiteness [see Remark 2.3, (2.25)-(2.27)] of k_{t}^{Λ} for any $\Lambda \subset \mathbb{R}^{d}$ we get a limit state μ_{t} (not unique), such that $K^{*} \mu_{t}=\rho_{\mu_{t}}=k_{t} \lambda_{\sigma}$.

V. PROOF OF THE MAIN THEOREM

First we note that neglecting the positive part of the effective potential $\widetilde{V}(x)_{n}$ [see (2.16)] we get

$$
\begin{equation*}
\tilde{\rho}_{t_{\beta}}^{\Lambda}\left(\tilde{\eta}_{\Lambda}\right) \leqslant \tilde{\tilde{\rho}}_{t_{\beta}}^{\Lambda}\left(\widetilde{\eta}_{\Lambda}\right) \tag{5.1}
\end{equation*}
$$

where

$$
\tilde{\tilde{\rho}}_{t_{\beta}}^{\Lambda}\left(\tilde{\eta}_{\Lambda}\right)=\left.\tilde{\rho}_{t_{\beta}}^{\Lambda}\left(\tilde{\eta}_{\Lambda}\right)\right|_{\tilde{V}^{+} \equiv 0} .
$$

Then, the main technical point of the proof is the following proposition.
Proposition 5.1: Under the same hypothesis as in Theorem 4.1 there exist a small $\alpha>0, a$ sufficiently large integer $q_{0}=q_{0}(\alpha)$, constants $h\left(q_{0}\right), K\left(q_{0}\right)$, and a positive decreasing function $\varepsilon(q)$ such that

$$
\begin{equation*}
\tilde{\tilde{\rho}}_{t_{\beta}}^{\Lambda}\left(\tilde{\eta}_{\Lambda}\right) \leqslant C_{0} e^{-(1 / 4) \beta A E\left(\eta_{\Lambda_{q}}\right)} \tilde{\tilde{\rho}}_{t_{\beta}}^{\Lambda}\left(\tilde{\eta}_{\Lambda_{q_{0}}^{c}}\right)+\sum_{q \geqslant q_{0}} C_{q} e^{-(1 / 4) \beta A E\left(\tilde{\eta}_{\Lambda_{q}}\right)} \tilde{\tilde{\rho}}_{t_{\beta}}^{\Lambda}\left(\tilde{\eta}_{\Lambda_{q}^{c}}\right), \tag{5.2}
\end{equation*}
$$

with

$$
\begin{aligned}
A & =\min \left\{A_{1}, \quad 2 A_{2}, \quad A_{3}\right\}, \\
C_{0}=e^{h\left(q_{0}\right)+K\left(q_{0}\right)}, \quad C_{q} & =e^{-(1 / 8) \beta A \varphi(q-1)+\varepsilon(q) \varphi(q-1)+K\left(q_{0}\right)}, \quad q \geqslant q_{0} .
\end{aligned}
$$

The proof of Theorem 4.1 follows from the next lemma.
Lemma 5.1: Let

$$
S(\widetilde{\eta})=\left\{\Delta \in \bar{\Delta} \mid \exists \tau \in\left[0, t_{\beta}\right] \quad \text { and } \quad \omega \in \widetilde{\eta} \quad \text { such that } \quad \omega(\tau) \in \Delta\right\} .
$$

Then

$$
\begin{equation*}
\rho_{t_{\beta}}^{\Lambda}(\widetilde{\eta}) \leqslant e^{-(1 / 4) \beta A E(\tilde{\eta})+\delta|S(\tilde{\eta})|} \tag{5.3}
\end{equation*}
$$

with $\delta>\log D, D=C_{0}+\Sigma_{q \geqslant q_{0}} C_{q}$.
Proof: We shall proceed by induction. Let $\widetilde{\eta}^{\prime}$ be a subconfiguration of $\widetilde{\eta}$. We assume that (5.2) is true for any such $\widetilde{\eta}^{\prime}$. Then from (5.2)

$$
\begin{aligned}
\tilde{\tilde{\rho}}_{t_{\beta}}^{\Lambda}\left(\widetilde{\eta}_{\Lambda}\right) & \leqslant C_{0} e^{-A E\left(\tilde{\eta}_{\Lambda_{q_{0}}}\right)-A E\left(\tilde{\eta}_{\Lambda_{q_{0}}^{c}}\right)+\delta\left|S\left(\tilde{\eta}_{\Lambda_{q_{0}}^{c}}\right)\right|}+\sum_{q \geqslant q_{0}} C_{q} e^{-A E\left(\tilde{\eta}_{\Lambda_{q}}\right)-A E\left(\tilde{\eta}_{\Lambda_{q}}^{c)}+\delta \mid S\left(\tilde{\eta}_{\Lambda_{q}}^{c)} \mid\right.\right.} \\
& \leqslant e^{-A E\left(\tilde{\eta}_{\Lambda}\right)+\delta\left|S\left(\tilde{\eta}_{\Lambda}\right)\right|},
\end{aligned}
$$

since $\left|S\left(\widetilde{\eta}_{\Lambda_{q}^{c}}\right)\right| \leqslant\left|S\left(\widetilde{\eta}_{\Lambda}\right)\right|-1$. Taking into account (5.1) we get (5.3).
Proof of Theorem 4.1: Using (5.3) from (2.19) we get

$$
k_{t}^{\Lambda}(x)_{m} \leqslant z^{m} \prod_{j=1}^{m} \int d y_{j} \int W_{x_{j}, y_{j}}^{t_{\beta}}\left(d \omega_{j}\right) e^{-A E\left(\omega_{j}\right)+\delta\left|S\left(\omega_{j}\right)\right|} .
$$

Using the Schwartz inequality, the estimate [see Ref. 29, (A.21)]

$$
\int W_{x, y}^{t_{\beta}}(d \omega) e^{2 \delta|S(\omega)|} \leqslant\left(2 \pi t_{\beta}\right)^{-d / 2} I(2 \delta), \quad I(2 \delta)=\int W_{0,0}^{t_{\beta}}(d \omega) e^{2 \delta|S(\omega)|}
$$

and the trivial estimate

$$
\int d y\left(\int W_{x, y}^{t_{\beta}}(d \omega)\right)^{1 / 2} \leqslant 2^{3 d / 4} \pi^{d / 4} t^{d / 4}
$$

we obtain (4.26) with

$$
c_{1}=z\left((4 \pi)^{d} I(2 \delta)\right)^{1 / 2}
$$

In the same way one can prove Eq. (4.27). Indeed, we have by (1.18) that

$$
\begin{aligned}
\left\langle k_{t_{1}}^{\Lambda}, \varphi\right\rangle-\left\langle k_{t_{2}}^{\Lambda}, \varphi\right\rangle & =\int_{t_{1}}^{t_{2}} d \tau\left\langle\frac{d k_{\tau}^{\Lambda}}{d \tau}, \varphi\right\rangle \\
& =\int_{t_{1}}^{t_{2}} d \tau \sum_{j=1}^{m}\left[\left\langle k_{\tau}^{\Lambda}, \Delta_{j} \varphi\right\rangle-\left\langle k_{\tau}^{\Lambda}, \nabla_{j} \varphi \cdot \nabla_{j} U_{\phi}\right\rangle-\left\langle\left\langle k_{\tau}^{\Lambda}, \nabla_{j} \phi\right\rangle \nabla_{j} \varphi\right\rangle\right]
\end{aligned}
$$

Using (4.26) we get (4.27) with the constants (4.29) and (4.30).
Proof of Proposition 5.1: Inserting (4.25) into (4.12) we get

$$
\begin{equation*}
\tilde{\tilde{\rho}}_{t}^{\Lambda}\left(\tilde{\eta}_{\Lambda}\right)=\sum_{q \geqslant q_{0}-1} I_{q}\left(\tilde{\eta}_{\Lambda}\right), \tag{5.4}
\end{equation*}
$$

with

$$
\begin{equation*}
I_{q}\left(\tilde{\eta}_{\Lambda}\right)=\int \lambda_{\tilde{\sigma}}^{\Lambda}(d \gamma) \chi_{q}(\gamma) \widetilde{D}_{0}^{\Lambda}\left(\widetilde{\eta}_{\Lambda}^{0} \cup \gamma^{0}\right) e^{-\tilde{\tilde{U}}(\tilde{\eta} \cup \gamma)} \tag{5.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{U}(\tilde{\eta} \cup \gamma)=\widetilde{U}(\tilde{\eta} \cup \gamma)-\widetilde{V}^{+}(\eta \cup \gamma) \tag{5.6}
\end{equation*}
$$

To estimate (5.5) we construct a further partition of $\Gamma_{q}:{ }^{29}$

$$
\Gamma_{q}=\Gamma_{q, \Lambda}=\Gamma_{q, \Lambda_{q}} \cup \Gamma_{q, \Lambda_{q}^{c}} \cup \Gamma_{q, \partial \Lambda_{q}}^{s} \cup \Gamma_{q, \partial \Lambda_{q}}^{l},
$$

where $\Gamma_{q, \Lambda_{q}}$ is the configuration of those trajectories which are completely contained in $\Lambda_{q}, \Gamma_{q, \Lambda_{q}^{c}}$ are trajectories completely outside of Λ_{q}, i.e., in $\Lambda_{q}^{c}, \Gamma_{q, \partial \Lambda_{q}}^{s}$ are short trajectories, which cross the boundary of Λ_{q} but do not leave Λ_{q+2} and $\Gamma_{q, \partial \Lambda_{q}}^{l}$ are long trajectories, which cross $\partial \Lambda_{q}$ and leave Λ_{q+2}. By the infinite-divisibility of the Poisson-Lebesgue measure $\lambda_{\tilde{\sigma}}$, for any function $F(\gamma)$ $\in L^{1}\left(\Gamma_{\Omega_{\Lambda}}, \lambda_{\tilde{\sigma}}^{\Lambda}\right)$ which can be represented as

$$
\begin{equation*}
F(\gamma)=F_{1}\left(\gamma_{\Lambda_{q}}\right) F_{2}\left(\bar{\gamma}_{\Lambda_{q}^{c}}\right) F_{3}\left(\zeta_{\partial \Lambda_{q}}\right) F_{4}\left(\bar{\zeta}_{\partial \Lambda_{q}}\right) \tag{5.7}
\end{equation*}
$$

for

$$
\gamma=\gamma_{\Lambda_{q}} \cup \bar{\gamma}_{\Lambda_{q}^{c}} \cup \zeta_{\partial \Lambda_{q}} \cup \bar{\zeta}_{\partial \Lambda_{q}}, \quad \gamma_{\Lambda_{q}} \in \Gamma_{\Lambda_{q}}, \quad \bar{\gamma}_{\Lambda_{q}^{c} \in} \in \Gamma_{\Lambda_{q}^{c}}, \quad \zeta_{\partial \Lambda_{q}} \in \Gamma_{\partial \Lambda_{q}}^{s}, \quad \bar{\zeta}_{\partial \Lambda_{q}} \in \Gamma_{\partial \Lambda_{q}}^{l}
$$

the following formula is true:

$$
\begin{aligned}
\int \lambda_{\tilde{\sigma}}^{\Lambda}(d \gamma) F(\gamma)= & \int_{\Gamma_{q, \Lambda_{q}}} \lambda_{\tilde{\sigma}}^{\Lambda_{q}}(d \gamma) F_{1}(\gamma) \int_{\Gamma_{q, \Lambda_{q}^{c}}} \lambda_{\tilde{\sigma}}^{\Lambda_{q}^{c}}(d \bar{\gamma}) F_{2}(\bar{\gamma}) \\
& \times \int_{\Gamma_{q, \partial \Lambda_{q}}^{s}} \lambda_{\tilde{\sigma}}^{\Lambda}(d \zeta) F_{3}(\zeta) \int_{\Gamma_{q, \partial \Lambda_{q}}^{l}} \lambda_{\tilde{\sigma}}^{\Lambda}(d \bar{\zeta}) F_{4}(\bar{\zeta})
\end{aligned}
$$

But in our case the function

$$
\begin{equation*}
F(\gamma)=\chi_{q}(\gamma) \widetilde{D}_{0}^{\Lambda}\left(\widetilde{\eta}_{\Lambda}^{0} \cup \gamma_{\Lambda}^{0}\right) e^{-\tilde{\tilde{U}}(\tilde{\eta} \cup \gamma)} \tag{5.8}
\end{equation*}
$$

does not satisfy (5.7). So, our next step is to estimate (5.8) as a product of some functions as in (5.7).

Due to (5.6), (2.21) and (2.22) we have

$$
\tilde{U}(\tilde{\eta} \cup \gamma)=\frac{1}{2} \beta U_{v_{1}}\left(\widetilde{\eta}^{t} \beta \cup \gamma^{t} \beta\right)+\beta \int_{0}^{t_{\beta}} d \tau U_{v_{2}}\left(\widetilde{\eta}^{\tau} \cup \gamma^{\tau}\right),
$$

with $v_{1}=\phi$, and $v_{2}=-\Delta \phi$. Then for any $\tau \in\left[0, t_{\beta}\right]$ we can write for the energy $U_{v_{i}}\left(\tilde{\eta}^{\tau} \cup \gamma^{\tau}\right)$ the following decomposition:

$$
\begin{align*}
U_{v_{i}}\left(\widetilde{\eta}^{\tau} \cup \gamma^{\tau}\right)= & U_{v_{i}}\left(\widetilde{\eta}_{\Lambda_{q}}^{\tau} \cup \gamma_{\Lambda_{q}}^{\tau} \cup\left(\pi_{\Lambda_{q}} \zeta\right)^{\tau} \cup\left(\pi_{\Lambda_{q}} \bar{\zeta}\right)^{\tau}\right)+U_{v_{i}}\left(\tilde{\eta}_{\Lambda_{q}^{c}}^{\tau} \cup \bar{\gamma}_{\Lambda_{q}^{c}}^{\tau}\right)+U_{v_{i}}\left(\left(\pi_{\Lambda_{q}^{c} \zeta}\right)^{\tau} \cup\left(\pi_{\Lambda_{q}^{c} \bar{\zeta}}\right)^{\tau}\right) \\
& +W_{v_{i}}\left(\tilde{\eta}_{\Lambda_{q}}^{\tau} \cup \gamma_{\Lambda_{q}}^{\tau} \cup\left(\pi_{\Lambda_{q}} \zeta\right)^{\tau} \cup\left(\pi_{\Lambda_{q}} \bar{\zeta}\right)^{\tau} \mid \tilde{\eta}_{\Lambda_{q}^{c}}^{\tau} \cup \bar{\gamma}_{\Lambda_{q}^{c}}^{\tau} \cup\left(\pi_{\Lambda_{q}^{c} \zeta}\right)^{\tau} \cup\left(\pi_{\left.\left.\Lambda_{q}^{c} \bar{\zeta}\right)^{\tau}\right)}\right.\right. \\
& +W_{v_{i}}\left(\tilde{\eta}_{\Lambda_{q}^{c}}^{\tau} \cup \bar{\gamma}_{\Lambda_{q}^{c}}^{\tau} \mid\left(\pi_{\Lambda_{q}^{c} \zeta}\right)^{\tau}\right)+W_{v_{i}}\left(\tilde{\eta}_{\Lambda_{q}^{c}}^{\tau} \cup \bar{\gamma}_{\Lambda_{q}^{c}}^{\tau} \mid\left(\pi_{\Lambda_{q}^{c} \bar{\zeta}}\right)^{\tau}\right) \tag{5.9}
\end{align*}
$$

where in the same way as for \widetilde{U} we use the substitution (4.11) to define the interaction energy $W_{v_{i}}$ for $\widetilde{\omega} \in \widetilde{\Omega}_{1}$. Now to estimate the various terms in (5.9) we prove some lemmas.

Lemma 5.2: For each positive, integer q and $\tau \in\left[0, t_{\beta}\right]$

$$
\begin{equation*}
U_{v_{i}}\left(\tilde{\eta}_{\Lambda_{q}}^{\tau} \cup \gamma_{\Lambda_{q}}^{\tau} \cup\left(\pi_{\Lambda_{q}} \zeta\right)^{\tau} \cup\left(\pi_{\Lambda_{q}} \bar{\zeta}\right)^{\tau}\right) \geqslant \frac{1}{4} A_{i} E_{q}^{\tau}(\xi)+\frac{1}{2} A_{i} E_{q}^{\tau}\left(\tilde{\eta}_{\Lambda_{q}}\right)-\frac{B_{i}^{2}}{A_{i}}\left|\Lambda_{q}\right| \tag{5.10}
\end{equation*}
$$

Proof: The proof follows from Lemma A. 1 (see the Appendix) and the definition of $E_{q}^{\tau}(\xi)$.
By the stability condition we have

$$
\begin{equation*}
U_{v_{i}}\left(\left(\pi_{\Lambda_{q}^{c}}\right)^{\tau} \cup\left(\pi_{\Lambda_{q}^{c}} \bar{\zeta}\right)^{\tau}\right) \geqslant-B_{i}(|\zeta|+|\bar{\zeta}|) \tag{5.11}
\end{equation*}
$$

Lemma 5.3: Let ξ_{a} and ξ_{a}^{\prime} be subconfigurations of $\xi \in \Gamma_{q}$ and ξ_{a} contained in Λ_{q+a} and ξ_{a}^{\prime} in Λ_{q}^{c}. Then for any $\tau \in\left[0, t_{\beta}\right]$ there exist a small enough α, sufficiently large $q_{0}^{(1)}$, a constant $h_{i}^{(a)}\left(q_{0}^{(1)}\right)$ and a decreasing function $\varepsilon_{i}^{(a)}(q)$ on the integers, such that for each $q \geqslant q_{0}^{(1)}-1$

$$
-W_{v_{i}}\left(\xi_{a}^{\tau} \mid \xi_{a}^{\prime \tau}\right) \leqslant\left\{\begin{array}{l}
h_{i}^{(a)}\left(q_{0}^{(1)}\right) \quad \text { for } q=q_{0}^{(1)}-1 \tag{5.12}\\
\varepsilon_{i}^{(a)}(q) \varphi(q-1) \quad \text { for } q \geqslant q_{0}^{(1)}
\end{array}\right.
$$

Remark 5.1: We use Lemma 5.3 with $a=0$ for the fourth term in (5.9) ($\xi_{0}=\widetilde{\eta}_{\Lambda_{q}} \cup \gamma_{\Lambda_{q}}, \xi_{0}^{\prime}$ $=\widetilde{\eta}_{\Lambda_{q}^{c}} \cup \bar{\gamma}_{\Lambda_{q}^{c}} \cup \pi_{\Lambda_{q}^{c}} \xi \cup \pi_{\Lambda_{q}^{c} \bar{\zeta}}$) and with $a=2$ for the fifth term of (5.9) ($\xi_{2}=\pi_{\Lambda_{q}^{c} \zeta}, \xi_{2}^{\prime}$ $\left.=\widetilde{\eta}_{\Lambda_{q}^{c}} \cup \bar{\gamma}_{\Lambda_{q}^{c}}\right)$.

Proof: Let us prove the lemma for $a=0, i=1$ and for $q \geqslant q_{0}^{(1)}$ which we chose later. Taking $i=1, a=0$ and $\tau=t_{\beta}$ in Lemma A. 2 and using the fact that

$$
E_{q+1 \backslash q-1}^{(1)}\left(\xi^{t} \beta\right) \leqslant E_{q+1 \backslash q-1}(\xi)=E_{q+1}(\xi)-E_{q-1}(\xi)
$$

and because of $\xi \in \Gamma_{q}, E_{q-1}(\xi)>\varphi(q-1)$ and $E_{m}(\xi) \leqslant \varphi(m)$ for $m \geqslant q$, we have

$$
\begin{align*}
-W_{v_{1}}\left(\xi_{0}^{t_{\beta}} \mid \xi_{0}^{\prime t}\right) \leqslant & \frac{1}{2} F_{\mu_{1}}[\varphi(q+1)-\varphi(q-1)]+\frac{1}{2} \beta \varepsilon_{1}^{(1)}(q) \varphi(q) \\
& +\frac{1}{2} \beta \varepsilon_{2}^{(2)}(q) \varphi(q) \sum_{k=1}^{\infty}\left(a_{k}^{(1)}-a_{k+1}^{(1)}\right) \varphi(q+k+1) \tag{5.13}
\end{align*}
$$

where $a_{k}^{(1)}=\Psi_{1}\left(l_{q+k}-l_{q}\right)$. Then from (4.5) we have

$$
\begin{gather*}
\varphi(q+1)-\varphi(q-1)<\left[(1+2 \alpha)^{2 d+2}-1\right] \varphi(q-1) \tag{5.14}\\
\varphi(q)<(1+2 \alpha)^{d+1} \varphi(q-1) \tag{5.15}
\end{gather*}
$$

From the definitions (4.1)-(4.3), choosing α sufficiently small and

$$
\begin{equation*}
q_{0}^{(1)}>-\frac{2}{\alpha} \log \left(1-e^{-2 \alpha}\right), \tag{5.16}
\end{equation*}
$$

it is easy to calculate that $q+k+1<(2 / \alpha) \log \left(l_{q+k+1}-l_{q}+1\right)$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(a_{k}^{(1)}-a_{k+1}^{(1)}\right) \varphi(q+k+1) \leqslant c(\alpha) \sum_{l_{q+1}-l_{q}}^{\infty} \Psi_{1}(m)(2 m+1)^{d} \log (m+1)=c(\alpha) \varepsilon_{0}(q) \tag{5.17}
\end{equation*}
$$

with $c(\alpha)=2 \alpha^{-1}(1+\alpha)$. Now from (5.13)-(5.16) we have (5.12) for $q \geqslant q_{0}^{(1)}$ with

$$
\begin{align*}
\varepsilon_{1}^{(0)}(q)= & \frac{1}{2} \beta F_{\mu_{1}}\left[(1+2 \alpha)^{2 d+2}-1\right]+\frac{1}{2} \beta \varepsilon_{1}^{(1)}(q)(1+2 \alpha)^{d+1} \\
& +\frac{1}{2} \beta \varepsilon_{2}^{(1)}(q)(1+2 \alpha)^{d+1} c(\alpha) \varepsilon_{0}(q) \tag{5.18}
\end{align*}
$$

The proofs for the cases $i=2$ and $a=2, i=1,2$ are the same.
Now we consider the case $q=q_{0}^{(1)}-1$. The only difference in the proof lies in estimating the first term in Eq. (A2). As $\gamma \in \Gamma_{q_{0}-1}$ this term cannot be very small and we estimate it by

$$
E_{q_{0}^{(1) \backslash q_{0}^{(1)}-2}}^{t_{\beta}}\left(\xi^{t} \beta\right) \leqslant E_{q_{0}}(\xi) \leqslant \varphi\left(q_{0}^{(1)}\right)
$$

Then inequality (5.12) for $q=q_{0}^{(1)}-1$ holds with

$$
h_{i}^{(a)}=\left[\frac{1}{2} \beta F_{\mu_{i}}+\frac{1}{2} \beta \varepsilon_{1}^{(i)}\left(q_{0}^{(1)}\right)+\frac{1}{2} \beta \varepsilon_{2}^{(i)}\left(q_{0}^{(i)}\right)\right] \varepsilon\left(q_{0}^{(1)}\right)
$$

And finally the sixth term of (5.9) can be estimated by
Lemma 5.4: Let $\bar{\zeta}$ be some subconfiguration of $\gamma \in \Gamma_{q}$, contained in $\Lambda_{m}, m>q$. Then there exist a $q_{0}^{(2)}$ large enough and some constant $b=b(\alpha, d)$, such that for each $q \geqslant q_{0}^{(2)}$

$$
\begin{gather*}
-\frac{1}{2} \beta W_{v_{1}}\left(\left(\pi_{\left.\Lambda_{q}^{c} \bar{\zeta}\right)^{t} \beta} \mid \tilde{\eta}_{\Lambda_{q}^{c}}^{t_{\beta}} \cup\left(\pi_{\Lambda_{q}^{c}} \gamma\right)^{t} \beta\right) \leqslant \frac{1}{2} \beta b F_{\mu_{1}}|\bar{\zeta}| \varphi(m)^{1 / 2}\right. \tag{5.19}\\
-\beta W_{v_{2}}\left(\pi_{\Lambda_{q}^{c} \bar{\zeta} \mid} \tilde{\eta}_{\Lambda_{q}^{c}} \cup \pi_{\Lambda_{q}^{c}} \gamma\right) \leqslant t b F_{\mu_{2}}|\bar{\zeta}| \varphi(m)^{1 / 2} \tag{5.20}
\end{gather*}
$$

Proof: The proofs of (5.19) and (5.20) are almost the same. Let us prove for example (5.19). Using Lemma A.3. with $\tau=t_{\beta}, \xi_{1}=\pi_{\Lambda_{q}^{c}} \bar{\zeta}, \xi_{2}=\tilde{\eta}_{\Lambda_{q}^{c}} \cup \pi_{\Lambda_{q}^{c}} \gamma$ and taking into account that for m $>q$

$$
E_{m+r(k)}^{t_{\beta}}(\xi) \leqslant E_{m+r(k)}(\xi) \leqslant \varphi(m+r(k))
$$

as $\xi=\tilde{\eta} \cup \gamma$ and $\gamma \in \Gamma_{q}$ we get

$$
-\frac{1}{2} \beta W_{v_{1}}(\cdots \mid \cdots) \leqslant \frac{1}{2} \beta b_{1}|\bar{\zeta}| \sum_{k=1}^{\infty} \Psi_{1}(k)(k+1)^{(d-1) / 2} \varphi(m+r(k))^{1 / 2} .
$$

[See for $r(k)$ Eqs. (4.6) and (4.7).] Using (4.4), (4.7) and (3.4) we get (5.19) with b $=b_{1} \exp [\alpha / 2(d+\varepsilon(d+1))] 2^{d-1+\mu}, \varepsilon=\min \left\{1-2 \alpha e^{2 \alpha},(2 \mu-1)(\alpha+1)^{-1}\right\}$ and $q_{0}^{(2)}=s_{0}$ (see (4.4), (4.5) for definition of s_{0}).

And finally we present some inequalities for the initial density distribution (1.21)-(1.23).
Lemma 5.5: Let the potentials ϕ and ψ satisfy (A.1)-(A.3). Then
1^{o}. For any $\Lambda_{q} \subset \Lambda, q \geqslant q_{0}-1$, and $\xi_{\Lambda}^{0} \in \Gamma_{q}$ there exist $A_{3}>0$ and $B_{3} \geqslant 0$ such that

$$
\begin{equation*}
\widetilde{D}_{0}^{\Lambda}\left(\xi_{\Lambda}^{0}\right) \leqslant e^{\left[-A_{3} \beta \Sigma_{\Delta \subset \Lambda_{q}}\left|\xi_{\Delta}^{0}\right|^{2}+B_{3} \beta \Sigma_{\Delta \subset \Lambda_{q}}\left|\xi_{\Delta}^{0}\right|\right]} \widetilde{D}_{0}^{\Lambda}\left(\xi_{\Lambda_{q}^{c}}^{0}\right) \tag{5.21}
\end{equation*}
$$

2°. For any partition

$$
\begin{equation*}
\xi_{\Lambda_{q}^{c}}=\bar{\xi}_{\Lambda_{s} \cap \Lambda_{q}^{c}}^{0} \cup \widetilde{\xi}_{\Lambda_{q}^{c}}^{0}, \quad \bar{\xi}_{\Lambda_{s} \cap \Lambda_{q}^{c}}^{0} \cap \widetilde{\xi}_{\Lambda_{q}^{c}}^{0}=\varnothing, \quad s>q \tag{5.22}
\end{equation*}
$$

there exists $C_{3} \geqslant 0$ such that

$$
\begin{equation*}
\widetilde{D}_{0}^{\Lambda}\left(\xi_{\Lambda_{q}^{c}}^{0}\right) \leqslant e^{C_{3} \beta\left|\bar{\xi}_{\Lambda_{s} \cap \Lambda_{q}^{c}}^{c}\right| \varphi(s)^{1 / 2}} \widetilde{D}_{0}^{\Lambda}\left(\widetilde{\xi}_{\Lambda_{q}^{c}}^{0}\right) . \tag{5.23}
\end{equation*}
$$

Proof: The proof is a direct consequence of Ruelle's technique. ${ }^{28}$
Now we collect all the estimates (5.10)-(5.12), (5.19), (5.20), (5.21), and (5.23) to obtain for $q \geqslant q_{0}=\max \left\{q_{0}^{(1)}, q_{0}^{(2)}\right\}[$ see (5.16)]:

$$
\begin{align*}
I_{q}\left(\widetilde{\eta}_{\Lambda}\right) \leqslant & e^{-(1 / 4) \beta A E_{q}\left(\tilde{\eta}_{\Lambda_{q}}\right)-(1 / 8) \beta A \varphi(q-1)+\varepsilon_{0}(q) \varphi(q-1)+\varepsilon_{1}(q) \varphi(q-1)} \int \lambda_{\tilde{\sigma}}^{\Lambda_{q}}(d \gamma) \int \lambda_{\tilde{\sigma}}^{\Lambda_{q+2}}(d \zeta) e^{B|\zeta|} \\
& \times \int \lambda_{\tilde{\sigma}}^{\Lambda_{q}^{c}}(d \bar{\gamma}) e^{-\tilde{U}\left(\tilde{\eta}_{\left.\Lambda_{q}^{c} \cup \bar{\gamma}\right)}\right.} \widetilde{D}_{0}^{\Lambda_{q}^{c}}\left(\widetilde{\eta}_{\Lambda_{q}^{c}}^{0} \cup \bar{\gamma}^{0}\right) \prod_{m \geqslant q+3} \int \lambda_{\tilde{\sigma}}^{\Lambda_{m}}\left(d \bar{\zeta}^{(m)}\right) e^{B\left|\bar{\zeta}^{(m)}\right|+C\left|\bar{\zeta}^{(m)}\right| \varphi(m)^{1 / 2}} \tag{5.24}
\end{align*}
$$

with

$$
\begin{gathered}
A=\min \left\{A_{1}, \quad 2 A_{2}, \quad 2 A_{3}\right\}, \\
B=\max \left\{\frac{1}{2} \beta B_{1}, \quad T B_{2}, \quad \beta B_{3}\right\}, \\
C=\max \left\{\frac{1}{2} \beta b F_{\mu_{1}}, \quad T b F_{\mu_{2}}, \quad C_{3}\right\},
\end{gathered}
$$

and

$$
\begin{gather*}
\epsilon_{0}(q)=\frac{(1+2 \alpha)^{d+1}}{q}\left[\frac{\beta B_{1}^{2}}{2 A_{1}}+\frac{T B_{2}^{2}}{A_{2}}+\frac{\beta B_{3}^{2}}{A_{3}}\right], \\
\varepsilon_{1}(q)=\sum_{i \in\{1,2\}} \sum_{a \in\{0,2\}} \varepsilon_{i}^{(a)}(q) . \tag{5.25}
\end{gather*}
$$

Now from the definition of the Poisson-Lebesgue measure we get

$$
\begin{gather*}
\int \lambda_{\tilde{\sigma}}^{\Lambda_{q}}(d \gamma) \leqslant e^{\varepsilon_{2}(q) \varphi(q-1)}, \quad \varepsilon_{2}(q)=\frac{z(1+2 \alpha)^{d+1}}{q} \tag{5.26}\\
\int \lambda_{\tilde{\sigma}}^{\Lambda_{q+2}}(d \zeta) e^{B|\zeta|} \leqslant e^{\varepsilon_{3}(q) \varphi(q-1)}, \quad \varepsilon_{3}(q)=\frac{z(1+2 \alpha)^{3 d+3}}{q} e^{B} \tag{5.27}\\
\iint \lambda_{\tilde{\sigma}}^{\Lambda_{q}^{c}}(d \bar{\gamma}) e^{-\tilde{U}\left(\tilde{\eta}_{\Lambda_{q}}^{c} \cup \bar{\gamma}\right)} \widetilde{D}_{0}^{\Lambda_{q}^{c}\left(\widetilde{\eta}_{\Lambda^{c}}^{c} \cup \bar{\gamma}^{0}\right) \leqslant \tilde{\tilde{\rho}}_{t_{\beta}}^{\Lambda}\left(\widetilde{\eta}_{\Lambda_{q}^{c}}^{c}\right)} \tag{5.28}
\end{gather*}
$$

Applying the same arguments as in (5.26) and (5.27), making a partition of all long trajectories $\bar{\zeta}$ in (5.24) according to their lengths and using the resummation formula we get

$$
\begin{aligned}
I_{q}^{(4)} & \equiv \prod_{m \geqslant q+3} \int \lambda_{\tilde{\sigma}, \partial \Lambda_{q}}^{\Lambda_{m}}\left(d \bar{\zeta}^{(m)}\right) e^{B\left|\bar{\zeta}^{(m)}\right|+C\left|\bar{\zeta}^{(m)}\right| \varphi(m)^{1 / 2}} \\
& =\sum_{k=0}^{\infty} \frac{e^{B k}}{k!} \sum_{m_{1}, \ldots, m_{k} \geqslant q+3} \int \widetilde{\sigma}_{\Lambda_{m_{1}}}\left(d \bar{\zeta}^{\left(m_{1}\right)}\right) \cdots \widetilde{\sigma}_{\Lambda_{m_{k}}}\left(d \bar{\zeta}^{\left(m_{k}\right)}\right) e^{C \Sigma_{j=1}^{k} \varphi\left(m_{j}\right)^{1 / 2}}
\end{aligned}
$$

Then we use (see Ref. 29 or 38)

$$
\int \widetilde{\sigma}_{\Lambda_{m}}\left(d \bar{\zeta}^{(m)}\right) \leqslant z \frac{\left|\Lambda_{m}\right|}{\left(2 \pi t_{\beta}\right)^{d / 2}} e^{-c\left(l_{m}^{2} / 2 t_{\beta}\right)\left(\alpha^{2} /(1+2 \alpha)^{4}\right.}
$$

with $c=c(d)$ and get

$$
\begin{equation*}
I_{q}^{(4)} \leqslant e^{z e^{B} f\left(T_{\beta}\right)}, \quad T_{\beta}=T / \beta \tag{5.29}
\end{equation*}
$$

where

$$
f\left(T_{\beta}\right)=\sum_{m \geqslant q_{0}+3}\left(2 l_{m}+1\right)^{d} \exp \left\{-c \frac{l_{m}^{2}}{2 t_{\beta}} \frac{\alpha^{2}}{(1+2 \alpha)^{4}}+C m^{1 / 2}\left(2 l_{m}+1\right)^{d / 2}\right\}
$$

Obviously we have $f\left(T_{\beta}\right)<\infty$ for $d \leqslant 3$.
As a result we get (5.1) for $q \geqslant q_{0}$ with $\varepsilon(q)=\Sigma_{0 \leqslant j \leqslant 3} \varepsilon_{j}(q)$ and $K=z e^{B} f\left(T_{\beta}\right)$.
In the same way we have for $q=q_{0}-1$

$$
I_{q_{0}-1} \leqslant e^{-1 / 4 \beta A E_{q_{0}}\left(\tilde{\eta}_{\Lambda_{0}}\right)+h\left(q_{0}\right)+K} \tilde{\tilde{\rho}}^{\Lambda}\left(\tilde{\eta}_{q_{0}}^{c}\right)
$$

with

$$
h\left(q_{0}\right)=\sum_{i \in\{1,2\}} \sum_{a \in\{0,2\}} h_{i}^{(a)}\left(q_{0}\right) .
$$

As a result we get (5.1) from (5.24), (5.26)-(5.29) with $\varepsilon(q)=\Sigma_{0 \leqslant j \leqslant 3} \varepsilon_{j}(q)$ and $K\left(q_{0}\right)$ $=z e^{B} f\left(T_{\beta}\right)$.

ACKNOWLEDGMENTS

The second author was partially supported by the project BMBF Nr UKR-044-99 and DFG 436 UKR 113/57/0-1. He also gratefully acknowledges the kind hospitality of the Research Center BiBoS, Bielefeld University.

APPENDIX: PROOF OF THE BASIC LEMMAS

Lemma A.1: For any $\tau \in\left[0, t_{\beta}\right]$ and $q \in \mathbb{N}$ and $\tilde{\eta}^{\tau}, \gamma^{\tau} \subset \Lambda_{q}$,

$$
\begin{equation*}
U_{v_{i}}\left(\tilde{\eta}_{\Lambda_{q}}^{\tau} \cup\left(\pi_{\Lambda_{q}} \gamma\right)^{\tau}\right) \geqslant \frac{1}{4} A_{i} E_{q}^{\tau}\left(\xi^{\tau}\right)+\frac{1}{2} A_{i} E_{q}^{\tau}\left(\tilde{\eta}_{\Lambda_{q}}^{\tau}\right)-\frac{B_{i}^{2}}{A_{i}}\left|\Lambda_{q}\right| . \tag{A1}
\end{equation*}
$$

Proof: From the superstability condition (A.2) (see Sec. III) we obtain

$$
U_{v_{i}}\left(\tilde{\eta}_{\Lambda_{q}}^{\tau} \cup\left(\pi_{\Lambda_{q}} \gamma\right)^{\tau}\right) \geqslant A_{i} \sum_{\Delta \subset \Lambda_{q}}\left|\xi_{\Delta}^{\tau}\right|^{2}-B_{i} \sum_{\Delta \subset \Lambda_{q}}\left|\xi_{\Delta}^{\tau}\right| .
$$

Then (A1) follows from the inequalities $-n \geqslant-A_{i} n^{2} / 4 B_{i}-B_{i} / A_{i}$ and $E_{q}^{\tau}(\xi) \geqslant E_{q}^{\tau}(\widetilde{\eta})$.
Lemma A.2: Let $\tau \in\left[0, t_{\beta}\right], q \in \mathbb{N}$ and $\xi_{1} \in \Gamma_{\tilde{\Omega}_{\Lambda_{q+a}}}$ with $a=0$ or $a=2, \xi \in \Gamma_{\Omega_{\Lambda_{q}^{c}}}, \xi_{1} \cup \xi_{2} \subset \xi$ $\in \Gamma_{q}$. Then there exist positive, decreasing functions $\varepsilon_{1}^{(i)}(q), \varepsilon_{2}^{(I)}(q)$ such that

$$
\begin{equation*}
-W_{v_{i}}\left(\xi_{1}^{\tau} \mid \xi_{2}^{\tau}\right) \leqslant F_{\mu_{i}} E_{q+a+1 \backslash q-1}^{\tau}(\xi)+\varepsilon_{1}^{(i)}(q) E_{q+a}^{\tau}(\xi)+\varepsilon_{2}^{(i)}(q) \varphi(q) \sum_{k=1}^{\infty}\left(a_{k}^{i}-a_{k+1}^{i}\right) E_{q+a+k+1}^{\tau}(\xi), \tag{A2}
\end{equation*}
$$

with $a_{k}^{i}=\Psi_{i}\left(l_{q+a+k}-l_{q+a}\right)$.
Proof: From the regularity assumption (A3),

$$
\begin{equation*}
-W_{v_{i}}\left(\xi_{1}^{\tau} \mid \xi_{2}^{\tau}\right) \leqslant \frac{1}{2} \sum_{\Delta \subset \Lambda_{q+a}} \sum_{\Delta^{\prime} \subset \Lambda_{q}^{c}} \Psi_{i}\left(\Delta, \Delta^{\prime}\right)\left[\left|\xi_{\Delta}^{\tau}\right|^{2}+\left|\xi_{\Delta^{\prime}}^{\tau}\right|^{2}\right] \tag{A3}
\end{equation*}
$$

According to the partitions $\Lambda_{q+a}=\Lambda_{q+a-1} \cup\left(\Lambda_{q+a} \backslash \Lambda_{q+a-1}\right), \Lambda_{q}^{c}=\left(\Lambda_{q+a+1} \backslash \Lambda_{q}\right) \cup \Lambda_{q+a+1}^{c}$ we write down the r.h.s. of (A3) as

$$
\begin{aligned}
-W_{v_{i}}\left(\xi_{1}^{\tau} \mid \xi_{2}^{\tau}\right) \leqslant & \frac{1}{2} \sum_{\Delta \subset \Lambda_{q+a} \backslash \Lambda_{q-1}} \sum_{\Delta^{\prime} \subset \Lambda_{q+a+1} \backslash \Lambda_{q}} \Psi_{i}\left(\Delta, \Delta^{\prime}\right)\left|\xi_{\Delta}^{\tau}\right|^{2} \\
& +\frac{1}{2} \sum_{\Delta \subset \Lambda_{q-1}} \sum_{\Delta^{\prime} \subset \Lambda_{q+a+1} \backslash \Lambda_{q}} \Psi_{i}\left(\Delta, \Delta^{\prime}\right)\left|\xi_{\Delta}^{\tau}\right|^{2}+\frac{1}{2} \sum_{\Delta \subset \Lambda_{q+a}} \sum_{\Delta^{\prime} \subset \Lambda_{q+a+1}^{c}} \Psi_{i}\left(\Delta, \Delta^{\prime}\right)\left|\xi_{\Delta}^{\tau}\right|^{2} \\
& +\frac{1}{2} \sum_{\Delta \subset \Lambda_{q+a}} \sum_{\Delta^{\prime} \subset \Lambda_{q+a+1} \backslash \Lambda_{q}} \Psi_{i}\left(\Delta, \Delta^{\prime}\right)\left|\xi_{\Delta}^{\tau}\right|^{2} \\
& +\frac{1}{2} \sum_{\Delta \subset \Lambda_{q+a}} \sum_{\Delta^{\prime} \subset \Lambda_{q+a+1}^{c}} \Psi_{i}\left(\Delta, \Delta^{\prime}\right)\left|\xi_{\Delta^{\prime}}^{\tau}\right|^{2} \\
\leqslant & \frac{1}{2} F_{\mu_{i}} E_{q+a \backslash q-1}^{\tau}(\xi)+\frac{1}{2} F^{(i)}\left(l_{q}-l_{q-1}\right) E_{q-1}^{\tau}(\xi)+\frac{1}{2} F^{(i)}\left(l_{q+a+1}-l_{q+a}\right) E_{q+a}^{\tau}(\xi) \\
& +\frac{1}{2} F_{\mu_{i}} E_{q+a+1 \backslash q}^{\tau}(\xi)+\frac{1}{2} \sum_{\Delta \in \Lambda_{q+a}} \sum_{k=1}^{\infty} \Psi_{i}\left(l_{q+a+k}-l_{q+a}\right) E_{q+a+k+1 \backslash q+a+k}(\xi) \\
\leqslant & F_{\mu_{i}} E_{q+a+1 \backslash q-1}^{\tau}(\xi)+F^{(i)}\left(l_{q}-l_{q-1}\right) E_{q+a}^{\tau}(\xi) \\
& +\frac{1}{2}\left|\Lambda_{q+a}\right| \sum_{k=1}^{\infty}\left(a_{k}-a_{k+1}\right) E_{q+a+k+1}^{\tau}(\xi),
\end{aligned}
$$

where we have used the summation over layers $\Lambda_{q+a+k+1} \backslash \Lambda_{q+a+k}$, some resummation formula. As a result we obtain (A2) with $\varepsilon_{1}^{(i)}(q)=F^{(i)}\left(l_{q}-l_{q-1}\right)=\sup _{\Delta \in \Lambda_{q-1}} \Sigma_{\Delta^{\prime} \in \Lambda_{q}^{c}} \Psi_{i}\left(\Delta, \Delta^{\prime}\right)$ and $\varepsilon_{2}^{(i)}$ $=2^{-1}(q+a)^{-1}$.

Lemma A.3: Let $\tau \in\left[0, t_{\beta}\right], q \in \mathbb{N}$, ξ_{1} contained in $\Lambda_{s}, s>q, \xi_{2}$, contained in Λ_{q}^{c} and $\xi_{1} \cup \xi_{2} \subset \xi \in \Gamma_{q}$. Then there exists $q_{0}^{(2)}$ such that for $q \geqslant q_{0}^{(2)}$

$$
\begin{equation*}
-W_{v_{i}}\left(\xi_{1}^{\tau} \mid \xi_{2}^{\tau}\right) \leqslant b_{1}\left|\xi_{1}^{\tau}\right| \sum_{k=0}^{\infty} \Psi_{i}(k)(k+1)^{(d-1) / 2}\left(E_{s+r(k)}^{\tau}(\xi)\right)^{1 / 2} \tag{A4}
\end{equation*}
$$

with $b_{1}=b_{1}(d)$ and $r(k)$, which is defined in (4.6).
Proof: Using the regularity assumption (A.3) and Schwartz inequality we get

$$
\begin{aligned}
-W_{v_{i}}\left(\xi_{1}^{\tau} \mid \xi_{2}^{\tau}\right) & \leqslant \sum_{\Delta \in \Lambda_{s}} \sum_{\Delta^{\prime} \in \Lambda_{q}^{c}} \Psi\left(\Delta, \Delta^{\prime}\right)\left|\xi_{1, \Delta}^{\tau}\right|\left|\xi_{2, \Delta^{\prime}}^{\tau}\right| \\
& \leqslant \sum_{k=0}^{\infty} \Psi_{i}(k) \sum_{\Delta \in \Lambda_{s}}\left|\xi_{1, \Delta}^{\tau}\right|\left(\sum_{\Delta^{\prime}, d\left(\Delta, \Delta^{\prime}\right)=k} 1^{2}\right)^{1 / 2}\left(\sum_{\Delta^{\prime}, d\left(\Delta, \Delta^{\prime}\right)=k}\left|\xi_{2, \Delta^{\prime}}^{\tau}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

${ }^{1}$ H. Spohn, Commun. Math. Phys. 103, 1 (1986).
${ }^{2}$ S. Albeverio, Y. G. Kondratiev, and M. Röckner, J. Funct. Anal. 157, 242 (1998).
${ }^{3}$ R. Lang, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 38, 55 (1977).
${ }^{4}$ H. Osada, Commun. Math. Phys. 176, 117 (1996).
${ }^{5}$ M. W. Yoshida, Probab. Theory Relat. Fields 106, 265 (1996).
${ }^{6}$ H. Rost, Lect. Notes Control Inf. Sci. 25, 297 (1980).
${ }^{7}$ G. Lipner, in Point Processes and Queueing Problems (North-Holland, Amsterdam, 1981), pp. 277-289.
${ }^{8}$ J. Fritz, Ann. Prob. 15, 478 (1987).
${ }^{9}$ S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
${ }^{10}$ S. Albeverio, Y. G. Kondratiev, and M. Röckner, J. Funct. Anal. 154, 444 (1998).
${ }^{11}$ A. Lenard, Arch. Ration. Mech. Anal. 59, 219 (1975); 59, 241 (1975).
${ }^{12}$ Y. G. Kondratiev and T. Kuna, Infinite Dimen. Anal., Quantum Probab., Relat. Top. 5 (2), 201 (2002).
${ }^{13}$ Y. G. Kondratiev and T. Kuna, "Harmonic analysis on configuration space II. Gibbs states," Preprint BiBoS, Bielefeld (2003).
${ }^{14}$ Y. G. Kondratiev and T. Kuna, "Harmonic analysis on configuration space III," in preparation, 2004.
${ }^{15}$ D. Ruelle, Statistical Mechanics. Rigorous Results (Benjamin, New York, 1969).
${ }^{16}$ E. A. Streltsova, Ukr. Math. J. 11, 83 (1959).
${ }^{17}$ W. I. Skrypnik, J. Stat. Phys. 35 (5/6), 587 (1984).
${ }^{18}$ V. I. Skripnik, Teor. Mat. Fiz. 58 (3), 398 (1984).
${ }^{19}$ V. I. Skripnik, Teor. Mat. Fiz. 69 (1), 128 (1986) (in Russian).
${ }^{20}$ A. I. Pilyavskii, A. L. Rebenko, and V. I. Skripnik, Teor. Mat. Fiz. 93 (1), 119 (1992) (in Russian).
${ }^{21}$ Y. M. Berezansky, Y. G. Kondratiev, T. Kuna, and E. Lytvynov, Methods Funct. Anal. Topol. 5 (4), 87 (1999)
${ }^{22}$ R. L. Dobrushin, Y. G. Sinai, and Y. M. Suhov, Itogi Nauki Tekh. Ser Sovrem. Probl. Mat. Fundam. Napravleniya 2, 235 (1985).
${ }^{23}$ Y. M. Berezansky and Y. G. Kondratiev, Spectral Methods in Infinite-Dimensional Analysis (Naukova Dumka, Kiev, 1988) (in Russian); English translation (Kluwer Academic, Dordrecht, 1995).
${ }^{24}$ D. Y. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics (Naukova Dumka, Kiev, 1985) (in Russian).
${ }^{25}$ C. Cercignani, V. I. Gerasimenko, and D. Y. Petrina, Many-Particle Dynamics and Kinetic Equations (Kluver Academic, Dordrecht, 1997).
${ }^{26}$ B. M. Gurevich and Y. M. Suhov, Commun. Math. Phys. 49, 69 (1976); 54, 81 (1977); 56, 225 (1976).
${ }^{27}$ B. M. Gurevich and Y. M. Suhov, Dokl. Akad. Nauk SSSR 242 (2), 276 (1978).
${ }^{28}$ D. Ruelle, Commun. Math. Phys. 18, 127 (1970).
${ }^{29}$ R. Esposito, F. Nicolo, and M. Pulvirenti, Ann. Inst. Henri Poincare, Sect. A 36 (2), 127 (1982).
${ }^{30}$ A. Skorokhod, J. Appl. Math. Stoch. Anal. 9, 427 (1996).
${ }^{31}$ S. Albeverio, Y. G. Kondratiev, and M. Röckner, Contemp. Math. 317, 15 (2003).
${ }^{32}$ R. M. Lewis, J. Math. Phys. 2, 222 (1961).
${ }^{33}$ D. Y. Petrina and A. K. Vidybida, Trudy Mosk. Inst. Steklova Akad. Nauk SSSR 136, 370 (1975).
${ }^{34}$ A. K. Vidybida and D. Y. Petrina, Dokl. Akad. Nauk SSSR 228, 573 (1976) [Sov. Phys. Dokl. 21 (1), 259 (1976)].
${ }^{35}$ V. P. Maslov and S. E. Tariverdiev, Itogi Nauki Tekh. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern. 19, 85 (1982).
${ }^{36}$ S. Albeverio, R. Hoegh-Krohn, and L. Streit, J. Math. Phys. 18, 907 (1977).
${ }^{37}$ B. Simon, Functional Integration and Quantum Physiks (Academic, New York, 1979).
${ }^{38}$ J. Ginibre, in Statistical Mechanics and Field Theory, edited by C. de Witt and R. Stora (Gordon and Breach, New York, 1971).
${ }^{39}$ J. Ginibre, J. Math. Phys. 6, 238 (1965); 6, 252 (1965); 6, 1432 (1965).
${ }^{40}$ Y. G. Kondratiev, E. W. Lytvynov, A. L. Rebenko, M. Röckner, and G. V. Shchepan'uk, Methods Funct. Anal. Topol. 3 (1), 1 (1997).

[^0]: ${ }^{\text {a) }}$ Electronic mail: kondrat@mathematik.uni-bielefeld.de
 ${ }^{\text {b }}$) Author to whom correspondence should be addressed. Electronic mail: rebenko@faust.kiev.ua
 ${ }^{\text {c) }}$ Electronic mail: roeckner@mathematik.uni-bielefeld.de

