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We consider the time evolution of states for continuous infinite particle systems
which corresponds to nonequilibrium diffusion dynamics. For initial statesm0

which are perturbations of the equilibrium we obtain a bound for finite volume
nonequilibrium correlation functions and their continuity in time uniformly in vol-
ume for any finite time interval. This gives the possibility to construct the time
evolution of correlation functions and corresponding states in the thermodynamic
limit. © 2004 American Institute of Physics.@DOI: 10.1063/1.1690489#

I. INTRODUCTION

A diffusion of an interacting infinite particle system can be described by an infinite system of
stochastic differential equations of the so-called gradient type:

dxi~ t !52 (
j ,iÞ j

¹f~xi~ t !2xj~ t !!dt1A2

b
dwi~ t !. ~1.1!

Here f:Rd\$0%→R (f(x)5f(2x)) is an interaction potential,wi(t) are independent standard
Wiener processes inRd and the parameterb.0 is the inverse temperature of the system. The
physical background and motivation can be found in the article by Spohn1 and references therein.
The set of positions$xi% i PN of identical particles is a locally finite subset inRd and the set of all
such subsets is theconfiguration spaceG:

Gª$g,Rd u ugùKu,` for any compact K,Rd%,

whereuAu is the cardinality ofA. Heuristically, any Gibbs measurem on G corresponding to the
interactionf and the inverse temperatureb is a stationary measure of the Markov process defined
by ~1.1!. The corresponding Markov generator can be calculated by Ito’s formula and defined in
L2(G,m) on some domain of smooth cylinder functionsF by the following expression:

~HF !~g!5 (
xPg

S 2
1

b
Dx1¹xUf~g!•¹xDF~g!, ~1.2!
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where

Uf~g!5 (
$x,y%,g

f~x2y!, ¹xUf~g!5 (
yPg\x

¹f~x2y!, xPg. ~1.3!

Under some natural restrictions on the class of interaction potentialsf the generatorH has a
self-adjoint extension inL2(G,m) ~see Ref. 2!.

A rigorous study of~1.1! has been initiated by Lang3 who has proved the existence of the
so-called equilibrium stochastic dynamics which corresponds to~1.1! for a superstable, three times
continuously differentiable potential with finite range. In more recent works by Osada,4 Yoshida5

and Albeverioet al.2 the equilibrium stochastic dynamics was constructed by Dirichlet form
methods for a wide class of potentialsf. The existence of the nonequilibrium dynamics was
proved by Rost6 and Lippner7 in the one-dimensional case and by Fritz8 for smooth superstable
finite range potentials in the cased<4.

To construct the nonequilibrium dynamics one can consider the corresponding semigroupTt

5e2tH̃ on some classF~G! of observablesF:G→R defined by the Kolmogorov equation

]Ft

]t
52H̃Ft , F0PF~G!, ~1.4!

whereH̃ is the Friedrichs extension ofH on L2(G,m) for some fixed Gibbs measurem. On the
other hand, instead of the evolution of observables one can consider the evolution of states, i.e.,
the evolution of probability measures onG. Such evolution is defined by the adjoint semigroup via
the following equation:

d

dt
m t52H* m t . ~1.5!

In the case of a finite particle system this equation can be rewritten in terms of the densities
D(t,g) w.r.t. Lebesgue measuredg5dx1 ¯ dxN (ugu5N,`). Then~1.5! is, sometimes, called
the generalized Smoluchowski equation~see, e.g., Ref. 9!.

For infinite particle systems initial statesm0 are not absolutely continuous w.r.t. any standard
measure and the time evolution of densities has no rigorous sense. Below we consider an alter-
native approach in terms of correlation functions which correspond to the states of the system. To
define these correlation functions we introduce the space offinite configurationsG0 :

G0ª ø
nPN0

G (n), G (n)
ª$gPG u ugu5n%, N05Nø$0%. ~1.6!

G0 is naturally equipped with the Borels-algebraB(G0) given by the disjoint union of the
measurable spaces (G (n),B(G (n))). For any boundedYPB(Rd) the topology of

GY
(n)
ª$gPG u gù~Rd\Y!5B, ugu5n%

is induced by the bijection betweenGY
(n) and the symmetrizationỸn/Sn of Ỹn ~see Ref. 10 for

details!, whereSn is the permutation group over$1, . . . ,n%,

Ỹn
ª$~x1 , . . . ,xn! u xiPY, xiÞxj ,iÞ j %,

and we denote byGY5øn50
` GY

(n) the set of configurations inY.
Starting with an intensity measures5zdx (z.0) on B(Rd) we introduce the product-

measures ^ n on (Rd,B(Rdn)) and denotes (n)
ªs ^ n+(sn)21, where sn is the mapsn :Rdn

{(x1 , . . . ,xn)°$x1 , . . . ,xn%PG (n). The Lebesgue–Poisson measurels on B(G0) is defined by
the formula
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lsª(
n>0

1

n!
s (n). ~1.7!

Definition 1.1: Let G:G0→R be a measurable function with local support [i.e., there exists a
boundedLPB(Rd) such that G�(G0\GL)50] . Define the function KG: G→R as

~KG!~g!ª (
hbg

G~h!. ~1.8!

The summation in (1.8) is taken over all finite subconfigurationsh,g.
Remark 1.1:Functions onG can be considered asobservablesof our infinite particle system,

and functions onG0 can be interpreted asquasi-observables. The mapping~1.8! was introduced by
Lenard11 in order to give an abstract definition of the correlation functions in classical statistical
mechanics. For a detailed study of properties of theK-transform in the framework of harmonic
analysis on configuration spaces we refer to Refs. 12–14.

For a given probability measurem on B~G! one can define the correlation measurerm on
B(G0) by

rm~A!ªE
G
~K1A!~g!m~dg!, ~1.9!

where1A is the indicator function of a setAPB(G0). Assuming thatrm is absolutely continuous
w.r.t. ls we can define the correlation functional

k~h!5km~h!ª
drm

dls
~h!. ~1.10!

In statistical physics it is useful to work with the corresponding family of correlation functions

k(n)
ªk�G (n), n>0. ~1.11!

Under certain general conditions on the interaction potential the correlation functionsk(n)

5k(n)(x1 , . . . ,xn)ªk(n)(x)n are bounded measurable functions on some Banach space~for ex-
ample,Ej in Ref. 15!. For anyGPL1(G0 ,rm) the following formula is true~see Ref. 12 for
details!:

E
G
~KG!~g!m~dg!5E

G0

G~h!rm~dh!5E
G0

G~h!k~h!ls~dh!. ~1.12!

To construct the dynamics for correlation functions, let us consider theK-transform of the
generatorH which is defined by

Ĥ5K21HK ~1.13!

on a proper setF0(G0) of functions onG0 ~quasi-observables!. The corresponding evolution of
quasi-observables is given then by the following equation:

]Gt

]t
52ĤGt , G0PF0~G0!. ~1.14!

We can define the time evolution of correlation functions via the duality relation:

E
G0

Gt~h!k0~h!ls~dh!5E
G0

G0~h!kt~h!ls~dh!. ~1.15!
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Then the adjoint operator (Ĥ)* 5..HB in L2(G0 ,ls) is the generator of the evolution semigroup for
the correlation functional, i.e.,

]

]t
kt52HBkt . ~1.16!

Using ~1.2! and~1.13!–~1.15! we can show that~1.16! has the following form~see Ref. 14!:

]

]t
kt~h!5 (

xPh
¹xF 1

b
¹xkt~h!1¹xUf~h!kt~h!1E dx8¹f~x2x8!kt~x8øh!G , hPG0 .

~1.17!

In terms of the correlation functions this equation has the following hierarchical structure:

]

]t
kt

(m)~x!m5
1

b (
j 51

m

Dxj
kt

(m)~x!m1(
j 51

m

(
kÞ j

m

~~¹f!~xj2xk!¹xj
1~Df!~xj2xk!!kt

(m)~x!m

1(
j 51

m E
Rd

dx8@~¹f!~xj2x8!¹xj
1~Df!~xj2x8!#kt

(m11)~~x!m ,x8!. ~1.18!

This equation appeared for the first time on a heuristic level in Ref. 16. In the present context
the hierarchy~1.16!–~1.18! is a direct consequence of the Kolmogorov equation~1.4!. It is called
sometimes the Bogoliubov diffusion hierarchy and it is analogous to the BBGKY hierarchy for
Hamiltonian dynamics. Note that some approaches to investigating this chain of equations in the
case of a smooth interaction potentialf were proposed in Refs. 17–20.

The problem of existence of solutions of hierarchy~1.18! is additionally complicated by the
fact that one should check that the obtained solutionkt corresponds to some statem t . Otherwise
we cannot prove that we construct the evolution of some initial statem0 . This problem was not
discussed in Refs. 17–20. More precisely, for regular types of interaction potentials, low particle
density and sufficiently small interval of time evolution the solution of the diffusion hierarchy
~1.18! in the thermodynamic limit was obtained without any analysis of the existence of the
dynamics for the corresponding states. In this article we obtain the existence of statem t using a
general theorem about the connection between states and positive-definiteness of the correspond-
ing correlations functions.14,21

Remark 1.2:Note that in theoretical physics a hierarchical system of equations is accepted
very often as the definition of the dynamics of an infinite particle system. Such situation takes
place, e.g., in Hamiltonian dynamics where the BBGKY hierarchy is considered as the definition
of the evolution. Let us mention that, in general, connections between the BBGKY hierarchy
approach and the state evolution are not investigated enough as pointed out in Ref. 22, Sec. 3.3.
From the physical point of view the property of positivity for correlation functions is very impor-
tant. But it is not enough to reconstruct the corresponding state.11 A constructive condition which
guarantees such reconstruction was proposed in Ref. 12~see also Ref. 21!. This is the positive-
definiteness of the sequence of correlation functions@see below~2.25!–~2.27!#. The situation is the
same as in the classical problem of momentum~see, e.g., Ref. 23!. From this point of view many
results on existence of solutions of the BBGKY hierarchy~see, e.g., Refs. 24 and 25! should be
completed by a proof for the existence of the dynamics of states for every particular class of
models, as it has been done for stationary solutions in Ref. 26 and for the one-dimensional
nonstationary case in Ref. 27.

In this article we consider some class of singular superstable interactions~see Sec. III!. Our
main strategy is based on a construction of the semigrouppB

t which corresponds to the evolution
equation~1.16!. For appropriate initial datak0 it provides a global solution to the diffusion
hierarchy~1.16!–~1.18!:
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kt~h!5~pB
t k0!~h!. ~1.19!

We obtain an expression for the operatorpB
t which can be easily defined on the Banach space

Lb
1(G0 ,ljs) of ljs-integrable functionals for some appropriate weightj ~see Sec. II!. But for

most cases, which are interesting from a physical point of view, the correlation functionals of
initial particle distributions do not belong toLb

1(G0 ,ljs). Typically, they are only bounded and we
need to extend the domain of the operatorpB

t to some class of bounded functionals. But from our
point of view it would be very naive to hope that a global solution to the hierarchy~1.16!–~1.18!
can be obtained for all initial data. Even in the case of a finite number of particles the singularity
of the interaction potential does not allow us to define the evolution of arbitrary initial state.
Generally speaking one can expect existence of a solution only if the initial correlation functions
are chosen in a proper way. In this article we consider a class of initial functionals which corre-
spond to some perturbations of the equilibrium statem5mf which is constructed byf. The idea
is that, as the equilibrium state is a perturbation of the free state~Poisson ideal gas!, the nonequi-
librium state should be some perturbation of the equilibrium Gibbs state. Such a choice of the
initial state is very natural from a physical point of view and were used by many authors. Our
main result~Theorem 4.1! is the following. Consider an initial statem0 which corresponds to a
superstable potential

V5f1c, ~1.20!

wheref is the potential by which our dynamics~1.1! is governed andc is a superstable, lower
regular interaction potential~see Sec. III!. For the given measurem0 we consider a family of finite
volume measuresm0

L @for boundedLPB(Rd)] and the corresponding family of initial correlation
functionalsk0

L(h):15

k0
L~h!5E

G0

ls~dg!D 0
L~høg! ~1.21!

with

D 0
L~h!5ZL

211GL
~h!e2bUV(h), hPG0 , ~1.22!

ZL5E
G0

ls~dh!1GL
~h!e2bUV(h). ~1.23!

For such initial correlation functionals we construct a solution of~1.16! as

kt
L~h!5~pB

t k0
L!~h!. ~1.24!

Our main technical result consists in the proof of a bound, uniform inL, for these correlation
functionals:

kt
L~h!<c1

uhu , hPG0 c15c1~z,b,T!, tP@0,T#, ~1.25!

for any time interval@0,T#. We obtain this result using the well-known technique of superstability
estimates in classical statistical mechanics28 and its generalization to the quantum case with
Boltzman statistics.29

In our case this technique needs some modification. We should also note that as in Ref. 29 we
need the restrictiond<3 on the dimensiond of the system. It is connected with estimating the
contribution of long Wiener trajectories in a functional integral representation for the correlation
functions. Using~1.25! and the continuity in time~uniformly in L! @see~4.27!# we conclude that
there exists a thermodynamic limit forkt

L and these limit functionalskt satisfy the equation~1.16!
in a weak sense.
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The structure of this paper is as follows: In Sec. II we construct the operatorpB
t and derive a

representation forkt
L . In Sec. III we discuss the class of interactions. In Sec. IV we recall some

auxiliary constructions and formulate our main result. The proof of the main theorem is presented
in Sec. V. The basic technical lemmas are outlined in the Appendix.

II. CORRELATION FUNCTIONS

In this section we construct the semigroup connected with the diffusion hierarchy~1.16!–
~1.18! and derive a representation for the finite volume correlation functions~1.24!. Let us define
an operatorK0 on quasi-observables as

K0Gª~KG!�G0 . ~2.1!

Then we can construct the operator

HFªK0ĤK0
21 . ~2.2!

On smooth quasi-observables the operatorHF acts by the following formulas

HFG5~~HFG!(n)~x!n!n50
` , G5~~G!(n)~x!n!n50

` , ~2.3!

where

~HFG!(n)~x!n5~HF
(n)G(n)!~x!n5(

j 51

n S 2
1

b
Dxj

1¹xj
Uf~x!n•¹xj DG(n)~x!n . ~2.4!

HF
(n) is the generator of the stochastic dynamics for ann-particle system:

dxi~ t !52 (
iÞ j 51

n

¹f~xi~ t !2xj~ t !!dt1A2

b
dwi~ t !, i 51, . . . ,n. ~2.5!

The problem of existence of the stochastic dynamics~2.5! with a singular potential is analyzed in
Refs. 30 and 31. The operatorHF

(n) is generated by the Dirichlet form

~HF
(n)G(n),G(n)!L2(G

0
(n) ,m

f
(n))5

1

b (
j 51

n E
G0

(n)
u¹jG

(n)u2dmf
(n) , ~2.6!

where

mf
(n)
ªe2bUf(•)ns (n) ~2.7!

ands (n) is defined in~1.7!.
Then using~1.14!–~1.15! and ~2.1!–~2.2! one can write forpB

t the following representation:

pB
t 5e2tHB5K0* e2tHF* ~K0

21!* 5De2tHF* D21. ~2.8!

Here the operatorsDªK0* andD21 are defined inL1(G0 ,ljs), j.2, by the following formulas
~see Ref. 12 for details!:

~DF !~h!5E
G0

ls~dg!F~høg!, ~2.9!

~D21F !~h!5E
G0

ls~dg!~21! uguF~høg!. ~2.10!
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Remark 2.1:In our approach the representation~2.8! for pB
t is a direct consequence of the

Kolmogorov equation~1.4! without any reference to the hierarchical structure of~1.17! and~1.18!.
In the same way from the Liouville equation one can obtain the corresponding representation for
the Hamiltonian dynamics.14 Representations like~2.8! appeared earlier. They were obtained by
application of the method of ‘‘creation’’ and ‘‘annihilation’’ operators for classical statistical me-
chanics~see Refs. 32–35!. For connections with the diffusion hierarchy see Ref. 19.

Remark 2.2:It will be clear from the considerations below that in the case of a stable
interaction potentialf for which 2Df is also stable, the operatorpB

t can be defined on a Banach
spaceLb,j with the norm

iGib,j5E
G0

ljs~dh!e~1/2! bUf(h)uG~h!u,`, GPLb,j
1 . ~2.11!

To obtain a representation for finite volume correlation functionskt
L we take into account the

definition of the operatorD and rewrite~1.21! in the form

k0
L~h!5~DD 0

L!~h!. ~2.12!

Then due to~2.8! and ~1.20! the following representation is true:

kt
L~h!5S DFe2tHF* S 1

ZL
e2bUfe2bUc1GL

D G D ~h!5S DF 1

ZL
e2tHF~e2bUc1GL

!e2bUfG D ~h!,

~2.13!

where we use the fact that the operatorHF @see ~2.4!# is a self-adjoint operator in
L2(G0 ,e2bUfls).

Now, to get an integral representation forkt
L we use a functional integral representation for the

operatore2tHF in ~2.13!. First of all, note that the operatorHF has the Fock structure~2.3! and

~2.4!, so we only need a representation fore2tHF
(n)

in L2(G0
(n) ,mf

(n)). To get it we use the well-
known ground state transformation~see, e.g., Ref. 36, Sec. 2, and Ref. 23, Chap. 7!

L2~G0
(n) ,mf

(n)!{ f °e2 ~1/2! bUf f PL2~G0
(n) ,s (n)!. ~2.14!

The corresponding generatorH̃F
(n) in L2(G0

(n) ,s (n)) has the following form,

H̃F
(n)52

1

b (
j 51

n

Dxj
1Ṽ~x!n , ~2.15!

with the effective potential

Ṽ~x!n5Ṽ1~x!n1Ṽ(2Df)~x!nª(
j 51

n S b

4
u¹xj

Uf~x!nu22
1

2
Dxj

Uf~x!nD . ~2.16!

For the domain of the operatorH̃F
(n) we haveD(H̃F

(n)).C0
`(G0

(n)), where C0
`(G0

(n)) denotes
C`-functions onG0

(n) with compact supports. It can be shown that for any superstable potentialf

the effective potentialṼ(x)n is bounded from below for any fixedn. But for the class of potentials
under consideration it is even superstable~see Sec. III!. Therefore, we can apply the Feynman–

Kac formula for the kernel of the semigroupe2tH̃F
(n)

, whereH̃F
(n) is considered in the sense of a

form sum~2.15! Ref. 37, Chap. 2. As a result, we get

~e2tHF
(n)

!~~x!n ;~y!n!5e~1/2! bUf(x)n2 ~1/2! bUf(y)nE
(V tb)n)j 51

n

Wxj ;yj

tb ~dv j !e
2b*

0

tbdtṼ(v(t))n,

~2.17!
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where

V tb
ªC~@0,tb#→Rd!, tb5tb21, ~2.18!

Wx;y
tb is the conditional Wiener measure on the spaceV tb with conditionsv j (tb)5xj andv j (0)

5yj . It implies the following useful representation:

kt
L~h!5E

Rdm
djE

(V tb)m
Wh;j

tb ~dv!mr t
L~v!m , ~2.19!

whereh5$x1 , . . . ,xm%, j5$y1 , . . . ,ym%, dj5dy1¯dym , and

r t
L~v!m5 (

n>0

1

n! E s̃L~vm11!¯E s̃L~vm1n!D̃0
L~v~0!!m1ne2Ũ(v)m1n. ~2.20!

In ~2.20! we use the following notations:

Ũ~v!m1nª
1

2
bUf~x!m1n1E

0

tb
dt@U2Df~v~t!!m1n1U¹f

1 ~v~t!!m1n#, ~2.21!

U¹f
1 ~x!m1nª (

j 51

m1n F1

4
bu¹xj

Uf~x!m1nu2G>0, ~2.22!

D̃0
L~v~0!!m1nªe~1/2! bUf(v(0))m1nD 0

L~v~0!!m1n , ~2.23!

and

E s̃L~dv!~¯ !5zE dxE
L

dyE Wx;y
tb ~dv!~¯ !. ~2.24!

A representation like~2.19! and~2.20! was obtained also in Refs. 17 and 18 as the generalized
solution of the finite volume diffusion hierarchy~1.18!.

Remark 2.3:It is not hard to show that the sequencekt
L(h) is positive-definite in the sense of

Refs. 12 and 13, which is the following.
Definition 2.1:13 The sequencekt

L(h) is positive-definite if

E
G0

~G!Ḡ!~h!kt
L~h!ls~dh!>0 for all GPBbs~G0!. ~2.25!

HereBbs(G0) is the set of all bounded measurable functions with bounded support,Ḡ denotes the
complex conjugate ofG, and!-star is the convolution, which is defined in the following way:

K~G1!G2!5KG1•KG2 . ~2.26!

~See Ref. 13 for details.!
Now, inserting~1.24! into ~2.25! and using the representation~2.8!, ~2.12!, ~2.17! and the

property~2.26! ~which is true, also, forK0 @see~2.1!# we obtain
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E
G0

~G!Ḡ!~h!ptDD 0
L~h!ls~dh!

5E
G0

~G!Ḡ!~h!K0* e2tHF* D21DD 0
L~h!ls~dh!

5E
G0

e2tHF~K0G!~h!~K0Ḡ!~h!D 0
L~h!ls~h!

5E
G0

ls~dh!E
(Rd) uhu

dh8~e2tHF
uhu

!~huh8!u~K0G!~h8!u2D 0
L~h!>0 ~2.27!

Positive definiteness together with the bound~1.25! gives a possibility to reconstruct the corre-
sponding sequence of states~measures! m t

L .
Representation~2.19! and ~2.20! is reminiscent to the representation of reduced density ma-

trices by correlation functionals in quantum statistical mechanics with Boltzman statistics~see
Refs. 38 and 39!. This analogy enables us to apply powerful techniques from quantum statistical
mechanics in the considered model. Following Ref. 40, we construct the configuration spaceGV tb

over the spaceV tb of Wiener trajectories inRd. Define configurationg̃ as the infinite set of
trajectoriesvPV tb such that the set of values of these trajectories at timet50 is a configuration
g0PG. Then define the configuration space of trajectories with initial pointsv(0) in L
PBc(R

d):

GV
L

tbª$g̃PGV tbug0PGL%.

In the same way the Lebesgue–Poisson measurels̃
L with intensity measures̃L is defined by

~1.7!. Then for the ‘‘correlation functionals’’r t
L(h̃), h̃PGV

L

tb , the following representation is

true:

r t
L~h̃ !5E

GV
L

tb

ls̃
L~dg̃ !D̃0

L~h0øg0!e2Ũ(h̃øg̃), ~2.28!

whereŨ(h̃øg̃) is defined by~2.21! with h̃øg̃5$v1 , . . . ,vm1n% and D̃0
L as defined in~2.23!.

Remark 2.4:In the following we writeh,g,j,...,V,VL , instead ofh̃,g̃,j̃, . . . ,V tb,VL
tb and

ht,gt,jt, . . . , . . . ,tP@0,tb# for the sets of values of the corresponding configurations at timet.
Note that these sets fort.0 are not configurations inG0 because some points of their values can
coincide~intersection of trajectories!.

III. THE CLASS OF INTERACTION POTENTIALS

In this section we describe a class of interaction potentials which allow us to solve the
problem formulated in the Introduction. As it was mentioned in Remark 2.2, even to define the
operatorpB

t on Lb,j
1 we have to consider a rather narrow class of interaction potentials. The

restrictions on the potential imposed below are, however, rather dictated by the technique of the
superstability estimates for functional integrals. We hope that the stochastic dynamics, actually,
exists for a more wide class of potentials and initial states. This point of view is supported by the
fact that the equilibrium stochastic dynamics exists for a wide class of physically reasonable
potentials~see, e.g., Ref. 2!.

To define the said class of superstable interactions we denote byD̄ a partition ofRd into half
open unit cubesD centered at the pointsr PZd ~see Ref. 28 for details!:

Rd5 ø
D, D̄

D, ;D,D8PD̄, DùD85B.
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We assume the following conditions to hold:
~A1! Smoothness:

f, cPC3~Rd\$0%!.

~A2! Superstability:

; i 51,2,3 'Ai.0, Bi>0: Uv i
~g!> (

DPD̄

~Ai ugDu22Bi ugDu!,

with v15f, v252Df andv35c.
~A3! Lower-regularity:
For anyX,Y,Rd and configurationsgXPGX , gYPGY , define

Wv i
~gXugY!5 (

xPgX ,yPgY

v i~x2y!. ~3.1!

Then

2Wv i
~gXugY!< (

D,D8PD̄

Cv i
~D,D8!ugDuugD8u, ~3.2!

where

Cv~D,D8!5 sup
xPD,x8PD8

v2~x2x8!,

and v252min(v,0). We also require the existence of positive decreasing functionsC i(k) on
positive integers such that

C i~k!> sup
D,D8PD̄;d~D,D8!5k

Cv i
~D,D8! ~3.3!

and

(
k50

`

C i~k!kd1m i215Fm i
,1` ~3.4!

with m15m3. 1
2, m2.2 3

2 and

d~D,D8!5 max
1<a<d

inf
xPD,x8PD8

ux(a)2x8~a!u.

Now we describe some classF of potentials which satisfy~A.1!–~A.3!. Let

f~x!5f1~x!1fst~x!,
~3.5!

f1~0!51`, f1~x!.0,

2Df1~0!51`, 2Df1~x!.0,
~3.6!

fst~x!5
1

~2p!d E dkeixkf̃~k!, f~k!>0,
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E dkf̃~k!,`, E dkk2f̃~k!,`. ~3.7!

As an example~for d53) of such a potential we can choose some function which has an
asymptotic behavior near the origin like

f1~x!;
C1

uxua
, 0,a<1 for uxu,r 0 , r 0.0,

and is sufficiently fast decreasing asuxu↗1`. This is clear from a direct calculation which gives

2D
1

uxua
5

a~12a!

uxua12 , ~3.8!

which is positive fora,1.

IV. RUELLE’S CONSTRUCTIONS. MAIN RESULT

Our main technical tool is the technique of superstability estimates proposed by Ruell28 for
classical statistical mechanics. Later Espositoet al.29 generalized this technique for the case of
quantum statistical mechanics and proved the boundedness of the reduced density matrices
~RDMs! for the Maxwell–Boltzmann statistics.

In this section we briefly recall some basic constructions which were made in Refs. 28 and 29.

A. Lq-cubs

For somea.0 ~to be fixed later! let

l q5@eaq#, qPN, ~4.1!

where@x# is the integer part ofxPR1 and

Lq5@2 l q2 1
2 ,l q1 1

2#
d, uLqu5~2l q11!d. ~4.2!

We also set the origin in the center of some cubeD1PD̄. So, every cubeLq is the union of
cubesD from D̄. And for convenience we suppose that for one of the trajectoriesvPh we have
v(0)50PD1,Rd. Following Ref. 29 we also introduce the sequence

w~q!5quLqu. ~4.3!

We extensively use the following properties~see Ref. 29 for details!. For given «.0, a
.0 's0 such that fors>s0

11a,
l s11

l s
,ea(11«),

w~s11!

w~s!
,ea(d1«(d11)), ~4.4!

or for «,«05122ae2a ~a is sufficiently small!

l s11

l s
,112a,

w~s11!

w~s!
,~112a!d11. ~4.5!
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We also need the following lemma:
Lemma 4.1 (see Ref. 29): Let

r ~k!5min$r PNu l q1r. l q1k, ;q>1, kPN%. ~4.6!

Then

r ~k!<11
1

a
log~k12!. ~4.7!

B. An extension of the functionals r t
L
„h…

The functionalsr t
L are defined on the configuration spaceGVL

, whereVL is the space of
continuous trajectoriesv~t! @see~2.18!# with v(0)PL. But in the construction we are going to
apply we need to consider functionalsr t

L on the trajectories which take values in the bounded
cubeLq or in its complimentLq

c . In this case some trajectories can be discontinuous because they
take their values inLq not for all tP@0,tb# but only in some intervals@t1 ,t2#, @t3 ,t4#, etc. So
for tP(t2 ,t3), . . . they are not defined. In this case the definition ofŨ(hLq

øg) and therefore

r t
L(hLq

) becomes ambiguous. To avoid these difficulties we repeat the construction proposed in
Ref. 29.

Let B(@0,tb#) be thes-algebra of Borel sets in@0,tb# with VB the set of all measurable
functions:

ṽ:B→Rd, BPB~@0,tb#!. ~4.8!

Now we define a new configuration space by

GṼ5ø
n>0

G
Ṽ

(n)
, ~4.9!

where for n50 G
Ṽ

(0)
is a nonempty set which, however, consists of the trajectoriesṽ whose

domainB have zero Lebesgue measure and

G
Ṽ

(n)
5Ṽ1

^ n2symm, Ṽ15 ø
BPB([0,tb])

VB . ~4.10!

Then, instead ofŨ(v)m1n5Ũ(høg), h5$v1 , . . . ,vm%, g5$vm11 , . . . ,vm1n% we define
Ũ(h̃øg) by the same formula~2.21! and ~2.22!, but instead ofUvk

(v(t))m1n , k51,2 (v1

5f,v252Df) we set forṽ jPṼ1

(
1< i , j <m1n

xD(ṽ i )ùD(ṽ j )
~t!vk~ṽ i~t!2ṽ j~t!!, ~4.11!

whereD(ṽ) is the domain ofṽ. For fixedh̃PGṼ the function

Ũ~ h̃ø• !:GV→R

is measurable onGV w.r.t. thes-algebra of Borel sets corresponding to the topology of point-wise
convergence~see Ref. 29 for details!. Finally, we define

r̃ t
L~h̃ !5E

GVL

ls̃
L~dg̃ !D̃0

L~h̃0øg0!e2Ũ(h̃øg), ~4.12!
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which is an extension of definition~2.28! @hereh̃ has a different sense than in~2.28! ~see Remark
2.4!#.

It is clear that forhPGVL

r t
L~h!5 r̃ t

L~h̃ !. ~4.13!

Then for any bounded measurableX,L we define the mappX :GVL
→GṼL

, such that for any
gPGVL

pXg5~pXv1 , . . . ,pXv ugu!, ~4.14!

wherepXv jPṼL and its domain is the measurable set

B5$tP@0,tb#uv~t!PX%.

If B has nonzero Lebesgue measure, then (pXv)(t)5v(t), tPB, and if B has zero measure,
thenpXvPG

Ṽ

(0)
. We need also the maps:GVL

→GṼL
, which is

g→s~g!5 ø
DPD̄

pDg. ~4.15!

The union is taken over allDPD̄, such thatpDg has a domain of nonzero Lebesgue measure. It
is clear that

r̃ t
L~h̃ !5 r̃ t

L~s~h!!. ~4.16!

C. Partitions of GVL

For everytP@0,tb# and a given configurationh̃PGṼL
we introduce some characteristics of a

given configurationgPGVL
:

Eq
t~j!5ELq

t ~j!5 (
D,Lq

ujD
t u2, j5h̃øg, ~4.17!

whereujD
t u is the number of all trajectories fromj which take values inD at timet. We also denote

Et(j) by the same expression~4.17! with summation over allDPD̄.
Then we define three factors

Eq
(1)~j!5Eq

tb~j!, ~4.18!

Eq
(2)~j!5E

0

tb
dtEq

t~j!, ~4.19!

Eq
(3)~j!5Eq

0~j!, ~4.20!

which correspond to the factors exp$21/2bUf(h̃ tbøg tb%, exp$bUDf(h̃øg)% and D̃0
L(h̃0øg0),

respectively, to be controlled, and define

Eq~j!5(
i 51

3

Eq
( i )~j!. ~4.21!

Following Ref. 29 we can now construct a partition ofGVL
in the following way. For some

large integerq0 ~to be fixed later! we introduce
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Gq0215$gPGVL
uEm~j!<w~m! for all m>q021%, ~4.22!

and forq>q0

Gq5$gPGVL
uEq21~j!.w~q21!, but Em~j!<w~m! for m>q%. ~4.23!

Then forq>q021 let xq(g) be an indicator function of the setGq and for the partition

GVL
5 ø

q>q021

Gq ~4.24!

we consider the partition of the unity:

15 (
q>q021

xq~g!. ~4.25!

D. Main result

Theorem 4.1: For the interactionsf(x) (xPRd, d<3), which satisfy (A1)–(A3), and for
initial distributions (1.21)–(1.23) there exist constants c15c1(z,b,T) and c25c2(z,b,T) such
that

kt
L~x!m<c1

m , h[$x1 , . . . ,xm%PGL . ~4.26!

For any t1 ,t2P@0,T#

u^kt1
L ,w&2^kt2

L ,w&u<c2
miwimut12t2u, ~4.27!

uniformly in L and tP@0,T#. Here

^kt
L ,w&5E

Rdm
kt

L~x!mw~x!m~dx!m, ~4.28!

where(dx)m5dx1• ••• • dxm , for (x)m5$x1 , . . . ,xm%, wPC0
`(Rdm),

c2
m5max$mj1

mb21, m~m21!j1
m, mj1

m11%, ~4.29!

and

iwim5 max
1< j <m

iD jwiL1(Rmd)1max
j Þk

i¹jw•¹kfiL1(Rmd)1max
j

i¹fiL1(Rd)i¹jwiL1(Rmd) . ~4.30!

Remark 4.1:For potentialsfPF it is clear thati¹fiL1(Rd),` ~see Sec. III!.
Remark 4.2:From ~4.26!, by compactness, we can choose a sequence (Ln)n51

` , Ln,Ln11 ,
Ln↗Rd, so that we get a limit point~in the weak sense! for kt

Ln . Hence by diagonal argument we
obtain the existence of a corresponding limit for any rationaltP@0,T#. Then from the continuity
property~4.27! the existence of a weak-limit forkt

L follows for all tP@0,T#. And, finally, using
positive-definiteness@see Remark 2.3,~2.25!–~2.27!# of kt

L for anyL,Rd we get a limit statem t

~not unique!, such thatK* m t5rm t
5ktls .

V. PROOF OF THE MAIN THEOREM

First we note that neglecting the positive part of the effective potentialṼ(x)n @see~2.16!# we
get
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r̃ tb
L ~h̃L!<r5 tb

L ~h̃L!, ~5.1!

where

r5 tb
L ~h̃L!5 r̃ tb

L ~h̃L!uṼ1[0 .

Then, the main technical point of the proof is the following proposition.
Proposition 5.1: Under the same hypothesis as in Theorem 4.1 there exist a smalla.0, a

sufficiently large integer q05q0(a), constants h(q0),K(q0), and a positive decreasing function
«(q) such that

r5 tb
L ~h̃L!<C0e2 ~1/4! bAE(hLq0

)r5 tb
L ~h̃L

q0

c !1 (
q>q0

Cqe2 ~1/4! bAE(h̃Lq
)r5 tb

L ~h̃L
q
c!, ~5.2!

with

A5min$A1 , 2A2 , A3%,

C05eh(q0)1K(q0), Cq5e2 ~1/8! bAw(q21)1«(q)w(q21)1K(q0), q>q0 .

The proof of Theorem 4.1 follows from the next lemma.
Lemma 5.1: Let

S~ h̃ !5$DPD̄u'tP@0,tb# and vPh̃ such that v~t!PD%.

Then

r tb
L ~h̃ !<e2 ~1/4! bAE(h̃)1duS(h̃)u, ~5.3!

with d. logD, D5C01(q>q0
Cq .

Proof: We shall proceed by induction. Leth̃8 be a subconfiguration ofh̃. We assume that
~5.2! is true for any suchh̃8. Then from~5.2!

r5 tb
L ~h̃L!<C0e2AE(h̃Lq0

)2AE(h̃Lq0

c )1duS(h̃Lq0

c )u1 (
q>q0

Cqe2AE(h̃Lq
)2AE(h̃Lq

c)1duS(h̃Lq
c)u

<e2AE(h̃L)1duS(h̃L)u,

sinceuS(h̃L
q
c)u<uS(h̃L)u21. Taking into account~5.1! we get~5.3!. h

Proof of Theorem 4.1:Using ~5.3! from ~2.19! we get

kt
L~x!m<zm)

j 51

m E dyjE Wxj ,yj

tb ~dv j !e
2AE(v j )1duS(v j )u.

Using the Schwartz inequality, the estimate@see Ref. 29,~A.21!#

E Wx,y
tb ~dv!e2duS(v)u<~2ptb!2d/2I ~2d!, I ~2d!5E W0,0

tb ~dv!e2duS(v)u,

and the trivial estimate

E dyS E Wx,y
tb ~dv! D 1/2

<23d/4pd/4td/4
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we obtain~4.26! with

c15z~~4p!dI ~2d!!1/2.

In the same way one can prove Eq.~4.27!. Indeed, we have by~1.18! that

^kt1
L ,w&2^kt2

L ,w&5E
t1

t2
dtK dkt

L

dt
,wL

5E
t1

t2
dt(

j 51

m

@^kt
L ,D jw&2^kt

L ,¹jw•¹jUf&2^^kt
L ,¹jf&¹jw&#.

Using ~4.26! we get~4.27! with the constants~4.29! and ~4.30!. h

Proof of Proposition 5.1:Inserting~4.25! into ~4.12! we get

r5 t
L~h̃L!5 (

q>q021
I q~ h̃L!, ~5.4!

with

I q~ h̃L!5E ls̃
L~dg!xq~g!D̃0

L~h̃L
0 øg0!e2U5 (h̃øg), ~5.5!

where

U5 ~ h̃øg!5Ũ~ h̃øg!2Ṽ1~høg!. ~5.6!

To estimate~5.5! we construct a further partition ofGq :29

Gq5Gq,L5Gq,Lq
øGq,L

q
cøGq,]Lq

s øGq,]Lq

l ,

whereGq,Lq
is the configuration of those trajectories which are completely contained inLq , Gq,L

q
c

are trajectories completely outside ofLq , i.e., inLq
c , Gq,]Lq

s are short trajectories, which cross the

boundary ofLq but do not leaveLq12 andGq,]Lq

l are long trajectories, which cross]Lq and leave

Lq12 . By the infinite-divisibility of the Poisson–Lebesgue measurels̃ , for any functionF(g)
PL1(GVL

,ls̃
L) which can be represented as

F~g!5F1~gLq
!F2~ ḡL

q
c!F3~z]Lq

!F4~ z̄]Lq
! ~5.7!

for

g5gLq
øḡL

q
cøz]Lq

ø z̄ ]Lq
, gLq

PGLq
, ḡL

q
cPGL

q
c, z]Lq

PG]Lq

s , z̄ ]Lq
PG]Lq

l

the following formula is true:

E ls̃
L~dg!F~g!5E

Gq,Lq

l
s̃

Lq~dg!F1~g!E
Gq,Lq

c
l

s̃

Lq
c

~dḡ !F2~ ḡ !

3E
Gq,]Lq

s
ls̃

L~dz!F3~z!E
Gq,]Lq

l
ls̃

L~dz̄ !F4~ z̄ !.

But in our case the function
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F~g!5xq~g!D̃0
L~h̃L

0 øgL
0 !e2U5 (h̃øg) ~5.8!

does not satisfy~5.7!. So, our next step is to estimate~5.8! as a product of some functions as in
~5.7!.

Due to ~5.6!, ~2.21! and ~2.22! we have

U5 ~ h̃øg!5
1

2
bUv1

~ h̃ tbøg tb!1bE
0

tb
dtUv2

~ h̃tøgt!,

with v15f, andv252Df. Then for anytP@0,tb# we can write for the energyUv i
(h̃tøgt) the

following decomposition:

Uv i
~ h̃tøgt!5Uv i

~ h̃Lq

t øgLq

t ø~pLq
z!tø~pLq

z̄ !t!1Uv i
~ h̃

L
q
c

t
øḡ

L
q
c

t
!1Uv i

~~pL
q
cz!tø~pL

q
cz̄ !t!

1Wv i
~ h̃Lq

t øgLq

t ø~pLq
z!tø~pLq

z̄ !tuh̃
L

q
c

t
øḡ

L
q
c

t
ø~pL

q
cz!tø~pL

q
cz̄ !t!

1Wv i
~ h̃

L
q
c

t
øḡ

L
q
c

t u~pL
q
cz!t!1Wv i

~ h̃
L

q
c

t
øḡ

L
q
c

t u~pL
q
cz̄ !t!, ~5.9!

where in the same way as forŨ we use the substitution~4.11! to define the interaction energyWv i

for ṽPṼ1 . Now to estimate the various terms in~5.9! we prove some lemmas.
Lemma 5.2: For each positive, integer q andtP@0,tb#

Uv i
~ h̃Lq

t øgLq

t ø~pLq
z!tø~pLq

z̄ !t!>
1

4
AiEq

t~j!1
1

2
AiEq

t~ h̃Lq
!2

Bi
2

Ai
uLqu. ~5.10!

Proof: The proof follows from Lemma A.1~see the Appendix! and the definition ofEq
t(j).

h

By the stability condition we have

Uv i
~~pL

q
cz!tø~pL

q
cz̄ !t!>2Bi~ uzu1u z̄u!. ~5.11!

Lemma 5.3: Letja andja8 be subconfigurations ofjPGq andja contained inLq1a andja8 in

Lq
c . Then for anytP@0,tb# there exist a small enougha, sufficiently large q0

(1) , a constant

hi
(a)(q0

(1)) and a decreasing function« i
(a)(q) on the integers, such that for each q>q0

(1)21

2Wv i
~ja

t uja8
t!<H hi

(a)~q0
(1)! for q5q0

(1)21,

« i
(a)~q!w~q21! for q>q0

(1) .
~5.12!

Remark 5.1:We use Lemma 5.3 witha50 for the fourth term in~5.9! (j05h̃Lq
øgLq

, j08

5h̃L
q
cøḡL

q
cøpL

q
cjøpL

q
cz̄) and with a52 for the fifth term of ~5.9! (j25pL

q
cz, j28

5h̃L
q
cøḡL

q
c).

Proof: Let us prove the lemma fora50, i 51 and forq>q0
(1) which we chose later. Taking

i 51, a50 andt5tb in Lemma A.2 and using the fact that

Eq11\q21
(1) ~j tb!<Eq11\q21~j!5Eq11~j!2Eq21~j!

and because ofjPGq , Eq21(j).w(q21) andEm(j)<w(m) for m>q, we have
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2Wv1
~j0

tbuj0
8tb!<

1

2
Fm1

@w~q11!2w~q21!#1
1

2
b«1

(1)~q!w~q!

1
1

2
b«2

(2)~q!w~q!(
k51

`

~ak
(1)2ak11

(1) !w~q1k11!, ~5.13!

whereak
(1)5C1( l q1k2 l q). Then from~4.5! we have

w~q11!2w~q21!,@~112a!2d1221#w~q21!, ~5.14!

w~q!,~112a!d11w~q21!. ~5.15!

From the definitions~4.1!–~4.3!, choosinga sufficiently small and

q0
(1).2

2

a
log~12e22a!, ~5.16!

it is easy to calculate thatq1k11,(2/a)log(lq1k112lq11) and

(
k51

`

~ak
(1)2ak11

(1) !w~q1k11!<c~a! (
l q112 l q

`

C1~m!~2m11!d log~m11!5c~a!«0~q!

~5.17!

with c(a)52a21(11a). Now from ~5.13!–~5.16! we have~5.12! for q>q0
(1) with

«1
(0)~q!5 1

2 bFm1
@~112a!2d1221#1 1

2 b«1
(1)~q!~112a!d11

1 1
2 b«2

(1)~q!~112a!d11c~a!«0~q!. ~5.18!

The proofs for the casesi 52 anda52,i 51,2 are the same.
Now we consider the caseq5q0

(1)21. The only difference in the proof lies in estimating the
first term in Eq.~A2!. As gPGq021 this term cannot be very small and we estimate it by

E
q

0
(1)\q

0
(1)22

tb ~j tb!<Eq0
~j!<w~q0

(1)!.

Then inequality~5.12! for q5q0
(1)21 holds with

hi
(a)5@ 1

2 bFm i
1 1

2 b«1
( i )~q0

(1)!1 1
2 b«2

( i )~q0
( i )!#«~q0

(1)!.

h

And finally the sixth term of~5.9! can be estimated by
Lemma 5.4: Letz̄ be some subconfiguration ofgPGq , contained inLm , m.q. Then there

exist a q0
(2) large enough and some constant b5b(a,d), such that for each q>q0

(2)

2 1
2 bWv1

~~pL
q
cz̄ ! tbuh̃

L
q
c

tb ø~pL
q
cg! tb!< 1

2 bbFm1
u z̄uw~m!1/2, ~5.19!

2bWv2
~pL

q
cz̄uh̃L

q
cøpL

q
cg!<tbFm2

u z̄uw~m!1/2. ~5.20!

Proof: The proofs of~5.19! and~5.20! are almost the same. Let us prove for example~5.19!.
Using Lemma A.3. witht5tb , j15pL

q
cz̄, j25h̃L

q
cøpL

q
cg and taking into account that form

.q
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Em1r (k)
tb ~j!<Em1r (k)~j!<w~m1r ~k!!,

asj5h̃øg andgPGq we get

2
1

2
bWv1

~¯u¯ !<
1

2
bb1u z̄u(

k51

`

C1~k!~k11!~d21!/2w~m1r ~k!!1/2.

@See for r (k) Eqs. ~4.6! and ~4.7!.# Using ~4.4!, ~4.7! and ~3.4! we get ~5.19! with b
5b1 exp@a/2(d1«(d11))#2d211m, «5min$122ae2a,(2m21)(a11)21% andq0

(2)5s0 ~see~4.4!,
~4.5! for definition of s0). h

And finally we present some inequalities for the initial density distribution~1.21!–~1.23!.
Lemma 5.5: Let the potentialsf and c satisfy~A.1!–~A.3!. Then

1o. For any Lq,L, q>q021, and jL
0 PGq there exist A3.0 and B3>0 such that

D̃0
L~jL

0 !<e[ 2A3b(D,Lq
ujD

0 u21B3b(D,Lq
ujD

0 u]D̃0
L~j

L
q
c

0
! ~5.21!

2o. For any partition

jL
q
c5 j̄

LsùL
q
c

0
ø j̃

L
q
c

0
, j̄

LsùL
q
c

0
ù j̃

L
q
c

0
5B, s.q, ~5.22!

there exists C3>0 such that

D̃0
L~j

L
q
c

0
!<eC3bu j̄

LsùLq
c

0
uw(s)1/2

D̃0
L~ j̃

L
q
c

0
!. ~5.23!

Proof: The proof is a direct consequence of Ruelle’s technique.28

Now we collect all the estimates~5.10!–~5.12!, ~5.19!, ~5.20!, ~5.21!, and~5.23! to obtain for
q>q05max$q0

(1),q0
(2)% @see~5.16!#:

I q~ h̃L!<e2 ~1/4! bAEq(h̃Lq
)2~1/8! bAw(q21)1«0(q)w(q21)1«1(q)w(q21)E l

s̃

Lq~dg!E l
s̃

Lq12~dz!eBuzu

3E l
s̃

Lq
c

~dḡ !e2U5 (h̃Lq
cøḡ)D̃

0
Lq

c

~ h̃
L

q
c

0
øḡ0! )

m>q13
E l

s̃

Lm~dz̄ (m)!eBu z̄(m)u1Cu z̄(m)uw(m)1/2

~5.24!

with

A5min$A1 , 2A2 , 2A3%,

B5max$ 1
2 bB1 , TB2 , bB3%,

C5max$ 1
2 bbFm1

, TbFm2
, C3%,

and

e0~q!5
~112a!d11

q FbB1
2

2A1
1

TB2
2

A2
1

bB3
2

A3
G ,

«1~q!5 (
i P$1,2%

(
aP$0,2%

« i
(a)~q!. ~5.25!
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Now from the definition of the Poisson–Lebesgue measure we get

E l
s̃

Lq~dg!<e«2(q)w(q21), «2~q!5
z~112a!d11

q
, ~5.26!

E l
s̃

Lq12~dz!eBuzu<e«3(q)w(q21), «3~q!5
z~112a!3d13

q
eB, ~5.27!

E l
s̃

Lq
c

~dḡ !e2U5 (h̃Lq
cøḡ)D̃

0
Lq

c

~ h̃
L

q
c

0
øḡ0!<r5 tb

L ~h̃L
q
c!. ~5.28!

Applying the same arguments as in~5.26! and~5.27!, making a partition of all long trajectoriesz̄
in ~5.24! according to their lengths and using the resummation formula we get

I q
(4)[ )

m>q13
E l

s̃,]Lq

Lm ~dz̄ (m)!eBu z̄(m)u1Cu z̄(m)uw(m)1/2

5 (
k50

`
eBk

k! (
m1 , . . . ,mk>q13

E s̃Lm1
~dz̄ (m1)! ¯ s̃Lmk

~dz̄ (mk)!eC( j 51
k w(mj )

1/2
.

Then we use~see Ref. 29 or 38!

E s̃Lm
~dz̄ (m)!<z

uLmu
~2ptb!d/2e2c ~ l m

2 /2tb!~a2/(112a)4

with c5c(d) and get

I q
(4)<ezeBf (Tb), Tb5T/b, ~5.29!

where

f ~Tb!5 (
m>q013

~2l m11!d expH 2c
l m
2

2tb

a2

~112a!4 1Cm1/2~2l m11!d/2J .

Obviously we havef (Tb),` for d<3.
As a result we get~5.1! for q>q0 with «(q)5(0< j <3« j (q) andK5zeBf (Tb).
In the same way we have forq5q021

I q021<e2 1/4bAEq0
(h̃Lq0

)1h(q0)1Kr5 L~h̃L
q0

c !,

with

h~q0!5 (
i P$1,2%

(
aP$0,2%

hi
(a)~q0!.

As a result we get~5.1! from ~5.24!, ~5.26!–~5.29! with «(q)5(0< j <3« j (q) and K(q0)
5zeBf (Tb). h
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APPENDIX: PROOF OF THE BASIC LEMMAS

Lemma A.1: For anytP@0,tb# and qPN and h̃t,gt,Lq ,

Uv i
~ h̃Lq

t ø~pLq
g!t!>

1

4
AiEq

t~jt!1
1

2
AiEq

t~ h̃Lq

t !2
Bi

2

Ai
uLqu. ~A1!

Proof: From the superstability condition~A.2! ~see Sec. III! we obtain

Uv i
~ h̃Lq

t ø~pLq
g!t!>Ai (

D,Lq

ujD
t u22Bi (

D,Lq

ujD
t u.

Then ~A1! follows from the inequalities2n>2Ain
2/4Bi2Bi /Ai andEq

t(j)>Eq
t(h̃). h

Lemma A.2: LettP@0,tb#, qPN and j1PGṼLq1a
with a50 or a52, jPGṼLq

c , j1øj2,j

PGq . Then there exist positive, decreasing functions«1
( i )(q),«2

(I )(q) such that

2Wv i
~j1

t uj2
t !<Fm i

Eq1a11\q21
t ~j!1«1

( i )~q!Eq1a
t ~j!1«2

( i )~q!w~q!(
k51

`

~ak
i 2ak11

i !Eq1a1k11
t ~j!,

~A2!

with ak
i 5C i( l q1a1k2 l q1a).

Proof: From the regularity assumption~A3!,

2Wv i
~j1

t uj2
t !<

1

2 (
D,Lq1a

(
D8,Lq

c
C i~D,D8!@ ujD

t u21ujD8
t u2#. ~A3!

According to the partitionsLq1a5Lq1a21ø(Lq1a\Lq1a21), Lq
c5(Lq1a11\Lq)øLq1a11

c we
write down the r.h.s. of~A3! as

2Wv i
~j1

t uj2
t !<

1

2 (
D,Lq1a\Lq21

(
D8,Lq1a11\Lq

C i~D,D8!ujD
t u2

1
1

2 (
D,Lq21

(
D8,Lq1a11\Lq

C i~D,D8!ujD
t u21

1

2 (
D,Lq1a

(
D8,Lq1a11

c
C i~D,D8!ujD

t u2

1
1

2 (
D,Lq1a

(
D8,Lq1a11\Lq

C i~D,D8!ujD
t u2

1
1

2 (
D,Lq1a

(
D8,Lq1a11

c
C i~D,D8!ujD8

t u2

<
1

2
Fm i

Eq1a\q21
t ~j!1

1

2
F ( i )~ l q2 l q21!Eq21

t ~j!1
1

2
F ( i )~ l q1a112 l q1a!Eq1a

t ~j!

1
1

2
Fm i

Eq1a11\q
t ~j!1

1

2 (
DPLq1a

(
k51

`

C i~ l q1a1k2 l q1a!Eq1a1k11\q1a1k~j!

<Fm i
Eq1a11\q21

t ~j!1F ( i )~ l q2 l q21!Eq1a
t ~j!

1
1

2
uLq1au(

k51

`

~ak2ak11!Eq1a1k11
t ~j!,
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where we have used the summation over layersLq1a1k11\Lq1a1k , some resummation formula.
As a result we obtain~A2! with «1

( i )(q)5F ( i )( l q2 l q21)5supDPLq21
(D8PL

q
cC i(D,D8) and «2

( i )

5221(q1a)21. h

Lemma A.3: LettP@0,tb#, qPN, j1 contained inLs , s.q, j2 , contained inLq
c and

j1øj2,jPGq . Then there exists q0
(2) such that for q>q0

(2)

2Wv i
~j1

t uj2
t !<b1uj1

t u(
k50

`

C i~k!~k11!~d21!/2~Es1r (k)
t ~j!!1/2, ~A4!

with b15b1(d) and r(k), which is defined in (4.6).
Proof: Using the regularity assumption~A.3! and Schwartz inequality we get

2Wv i
~j1

t uj2
t !< (

DPLs
(

D8PLq
c

C~D,D8!uj1,D
t uuj2,D8

t u

<(
k50

`

C i~k! (
DPLs

uj1,D
t uS (

D8,d(D,D8)5k

12D 1/2S (
D8,d(D,D8)5k

uj2,D8
t u2D 1/2
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