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We consider the time evolution of states for continuous infinite particle systems
which corresponds to nonequilibrium diffusion dynamics. For initial staigs
which are perturbations of the equilibrium we obtain a bound for finite volume
nonequilibrium correlation functions and their continuity in time uniformly in vol-
ume for any finite time interval. This gives the possibility to construct the time
evolution of correlation functions and corresponding states in the thermodynamic
limit. © 2004 American Institute of Physic§DOI: 10.1063/1.1690489

I. INTRODUCTION

A diffusion of an interacting infinite particle system can be described by an infinite system of
stochastic differential equations of the so-called gradient type:

2
dx(t)=— 2 Vo(x(t)—x(1)dt+ \[ﬁ dw(t). (1.1
Ji#]

Here ¢:RN\{0}—R (4(x)=¢(—x)) is an interaction potentialy;(t) are independent standard
Wiener processes itY and the parameteB>0 is the inverse temperature of the system. The
physical background and motivation can be found in the article by Spafhreferences therein.
The set of positiongx;}; . of identical particles is a locally finite subseti{ and the set of all
such subsets is theonfiguration spacéd’:

I={yCRY | |yNK|<e for any compact K RY},

where|A| is the cardinality ofA. Heuristically, any Gibbs measugeon I" corresponding to the
interactione and the inverse temperatugds a stationary measure of the Markov process defined
by (1.1). The corresponding Markov generator can be calculated by Ito’s formula and defined in
L?(I", ) on some domain of smooth cylinder functioRsby the following expression:

1
HR) (= |-=

IBAX+VXU¢('V)‘VX F(y), (1.2
Xey
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where

Ug(y)= 2 d(x—y), WUu(n= 2 Vo(x—y), Xxe7. (1.3
{xy}Cy ye y\x

Under some natural restrictions on the class of interaction potentidlte generatoH has a
self-adjoint extension im?(I", ) (see Ref. 2

A rigorous study of(1.1) has been initiated by Larigvho has proved the existence of the
so-called equilibrium stochastic dynamics which corresponds.ip for a superstable, three times
continuously differentiable potential with finite range. In more recent works by Js¥dshida
and Albeverioet al? the equilibrium stochastic dynamics was constructed by Dirichlet form
methods for a wide class of potentiafs The existence of the nonequilibrium dynamics was
proved by Ro$tand Lippnef in the one-dimensional case and by Ftitar smooth superstable
finite range potentials in the case<4.

To construct the nonequilibrium dynamics one can consider the corresponding semigroup

=e "M on some classF(I") of observables:I'— R defined by the Kolmogorov equation
—=—HF,, FoeAD), (1.4

whereH is the Friedrichs extension ¢f on L?(I",x) for some fixed Gibbs measuge On the

other hand, instead of the evolution of observables one can consider the evolution of states, i.e.,
the evolution of probability measures dnSuch evolution is defined by the adjoint semigroup via

the following equation:

d
Ji=—H (15

In the case of a finite particle system this equation can be rewritten in terms of the densities
D(t,y) w.r.t. Lebesgue measutey=dx; --- dxy (|y|=N<x). Then(1.5) is, sometimes, called
the generalized Smoluchowski equati@ee, e.g., Ref.)9

For infinite particle systems initial statgg, are not absolutely continuous w.r.t. any standard
measure and the time evolution of densities has no rigorous sense. Below we consider an alter-
native approach in terms of correlation functions which correspond to the states of the system. To
define these correlation functions we introduce the spadimitdé configurationd’:

Ige= U IT™ TM={yel | |yl=n}, Ny=Nu{0}. (1.6
nelN,

I'y is naturally equipped with the Boret-algebra®3(I'y) given by the disjoint union of the
measurable space§ (V,B(I'(M)). For any bounded e B(RY) the topology of

Fg(n)::{yer | yﬂ(Rd\Y)=®, |y|=n}

is induced by the bijection betwedi”) and the symmetrizatio"/S, of Y" (see Ref. 10 for
detailg, whereS, is the permutation group ovéd, . .. n},

Yh={(X1, ... X)) | XieY, x#x,i#jl,

and we denote by, =U7_,I'{") the set of configurations iN.

Starting with an intensity measure=zdx (z>0) on B(RY we introduce the product-
measures®" on (RY,B(R") and denotesM:=0®"(s,)"!, wheres, is the maps,:R"
5 (Xqy ... Xn)—={Xq, ... Xote ™. The Lebesgue—Poisson meashpeon B(I',) is defined by
the formula
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1
n_ (1.7

=2,

Definition 1.1: Let GI'y— R be a measurable function with local support [i.e., there exists a
boundedA e B(RY) such that G(I',\I',) =0]. Define the function KGT'—R as

(KG)<y>==WZ@ G(7). (1.9

The summation in (1.8) is taken over all finite subconfiguratignsy.

Remark 1.1Functions orl’ can be considered adbservable®f our infinite particle system,
and functions ol can be interpreted agiasi-observable§ he mappind1.8) was introduced by
Lenard? in order to give an abstract definition of the correlation functions in classical statistical
mechanics. For a detailed study of properties of Khransform in the framework of harmonic
analysis on configuration spaces we refer to Refs. 12-14.

For a given probability measure on B(I") one can define the correlation measprgon
B(I'o) by

u(A):= JF(KJIA)(V)M(OW), (1.9

wherel, is the indicator function of a sét e B(I'). Assuming thap,, is absolutely continuous
w.r.t. A, we can define the correlation functional

kK(n)=K,(n)= ( 7). (1.10

In statistical physics it is useful to work with the corresponding family of correlation functions
k™M:=kT™, n=0. (1.11

Under certain general conditions on the interaction potential the correlation fundt/Bhs
=kM(xy, ... X,):=kMW(x), are bounded measurable functions on some Banach $fmcex-
ample,E, in Ref. 15. For anyGe Ll(l“o,p#) the following formula is true(see Ref. 12 for
detaily:

J(KG)(Y),U«(d?’):J G(n)p#(dn)=J G(mk(n)\(dn). (1.12
r 1) )

To construct the dynamics for correlation functions, let us consideKtt@nsform of the
generatoH which is defined by

H=K 1HK (1.13

on a proper sefy(I'y) of functions onl', (quasi-observablesThe corresponding evolution of
guasi-observables is given then by the following equation:

G, -
TZ_HG“ Goefo(ro). (114)

We can define the time evolution of correlation functions via the duality relation:

fGt(n)ko(n)M(anf Go(mki(m)As(d7). (1.19
Iy o
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Then the adjoint operatoi{)* =:Hg in L2(I'g,\,) is the generator of the evolution semigroup for
the correlation functional, i.e.,

J
Ekt:_HBkt' (116)

Using (1.2) and(1.13—(1.15 we can show thafl.16) has the following form(see Ref. 1%

kt(ﬂ)_E Vi th(n)+V U¢(7I)kt(7l)+fdX’V¢(X—X’)kt(X’U7]) , mely.
(1.17)

In terms of the correlation functions this equation has the following hierarchical structure:

1 m m m
In=g 2, Ak 00mt 2 21 (V)04 = x0T+ (A ) (= X)K ™ (0

+j21fﬁddx'[ww(xj—x')vxj+(A¢><xj—x')]kﬁm“)((x)m.x'). (118

This equation appeared for the first time on a heuristic level in Ref. 16. In the present context
the hierarchy(1.16—(1.18 is a direct consequence of the Kolmogorov equatib#). It is called
sometimes the Bogoliubov diffusion hierarchy and it is analogous to the BBGKY hierarchy for
Hamiltonian dynamics. Note that some approaches to investigating this chain of equations in the
case of a smooth interaction potentigwere proposed in Refs. 17-20.

The problem of existence of solutions of hierardiyl8) is additionally complicated by the
fact that one should check that the obtained solukipoorresponds to some statg. Otherwise
we cannot prove that we construct the evolution of some initial gigteThis problem was not
discussed in Refs. 17—20. More precisely, for regular types of interaction potentials, low particle
density and sufficiently small interval of time evolution the solution of the diffusion hierarchy
(1.18 in the thermodynamic limit was obtained without any analysis of the existence of the
dynamics for the corresponding states. In this article we obtain the existence ofistaang a
general theorem about the connection between states and positive-definiteness of the correspond-
ing correlations function&*?!

Remark 1.2:Note that in theoretical physics a hierarchical system of equations is accepted
very often as the definition of the dynamics of an infinite particle system. Such situation takes
place, e.g., in Hamiltonian dynamics where the BBGKY hierarchy is considered as the definition
of the evolution. Let us mention that, in general, connections between the BBGKY hierarchy
approach and the state evolution are not investigated enough as pointed out in Ref. 22, Sec. 3.3.
From the physical point of view the property of positivity for correlation functions is very impor-
tant. But it is not enough to reconstruct the corresponding Stadteonstructive condition which
guarantees such reconstruction was proposed in Refsde also Ref. 21 This is the positive-
definiteness of the sequence of correlation functjeee below(2.25—-(2.27)]. The situation is the
same as in the classical problem of momentsee, e.g., Ref. 23From this point of view many
results on existence of solutions of the BBGKY hierarchge, e.g., Refs. 24 and )28hould be
completed by a proof for the existence of the dynamics of states for every particular class of
models, as it has been done for stationary solutions in Ref. 26 and for the one-dimensional
nonstationary case in Ref. 27.

In this article we consider some class of singular superstable intera¢teasSec. I). Our
main strategy is based on a construction of the semigp@uwhich corresponds to the evolution
equation(1.16). For appropriate initial dat&, it provides a global solution to the diffusion
hierarchy(1.16—(1.18:
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ki(7)=(Pgko) (7). (1.19

We obtain an expression for the operap%r which can be easily defined on the Banach space
L};(FO,)\@) of \,-integrable functionals for some appropriate weightsee Sec. )l But for

most cases, which are interesting from a physical point of view, the correlation functionals of
initial particle distributions do not belong to}g(l“o \¢o). Typically, they are only bounded and we
need to extend the domain of the opergigrto some class of bounded functionals. But from our
point of view it would be very naive to hope that a global solution to the hieraftiy—(1.18

can be obtained for all initial data. Even in the case of a finite number of particles the singularity
of the interaction potential does not allow us to define the evolution of arbitrary initial state.
Generally speaking one can expect existence of a solution only if the initial correlation functions
are chosen in a proper way. In this article we consider a class of initial functionals which corre-
spond to some perturbations of the equilibrium sjateu , which is constructed by. The idea

is that, as the equilibrium state is a perturbation of the free gRaiEsson ideal gasthe nonequi-
librium state should be some perturbation of the equilibrium Gibbs state. Such a choice of the
initial state is very natural from a physical point of view and were used by many authors. Our
main result(Theorem 4.1 is the following. Consider an initial staje, which corresponds to a
superstable potential

V=¢+, (1.20

where ¢ is the potential by which our dynamic4.l) is governed andy is a superstable, lower
regular interaction potentidgbee Sec. I)l. For the given measure, we consider a family of finite
volume measureg,, [for boundedA e B(RRY)] and the corresponding family of initial correlation

functionalsk ( 7):%°
ko(7)= froxgwwé(nu 7) (1.21)
with
Do(m) =2, p (e PV, 5eTy, (1.22
ZA=L No(dn)1p, ()e” PV, (1.23
0

For such initial correlation functionals we construct a solutiorflo1 6 as

ki (7)=(pks) (7). (1.24

Our main technical result consists in the proof of a bound, uniform irfor these correlation
functionals:

kMp)<c, 5ely ci=ci(z.B8,T), te[0T], (1.25

for any time interva[ 0,T]. We obtain this result using the well-known technique of superstability
estimates in classical statistical mechafficand its generalization to the quantum case with
Boltzman statistic4®

In our case this technique needs some modification. We should also note that as in Ref. 29 we
need the restrictionl<3 on the dimensionl of the system. It is connected with estimating the
contribution of long Wiener trajectories in a functional integral representation for the correlation
functions. Using(1.25 and the continuity in timéuniformly in A) [see(4.27)] we conclude that
there exists a thermodynamic limit fhf and these limit functionalk, satisfy the equatiofiL.16)
in a weak sense.
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The structure of this paper is as follows: In Sec. Il we construct the opgugtand derive a
representation fok' . In Sec. Ill we discuss the class of interactions. In Sec. IV we recall some
auxiliary constructions and formulate our main result. The proof of the main theorem is presented
in Sec. V. The basic technical lemmas are outlined in the Appendix.

II. CORRELATION FUNCTIONS

In this section we construct the semigroup connected with the diffusion hiergich§—
(1.18 and derive a representation for the finite volume correlation functib:2g)). Let us define
an operatoiK, on quasi-observables as

KoG:=(KG)IT,. (2.1
Then we can construct the operator
He:=KoHK . (2.2)
On smooth quasi-observables the oper&tpracts by the following formulas
HEG=((HEG)M(¥)n)r=0, G=((G) M (X)n)n=o. (2.3

where

(HEG) ™ (x),=(HMGM)(x) Z ( 20+ U0V, X)G(”)(x)n. (2.4

H(F”) is the generator of the stochastic dynamics fomagparticle system:

dxi(t):—ig:lV¢(xi(t)—xj(t))dt+\/% dw(t), i=1,...n. (2.5

The problem of existence of the stochastic dynanis) with a singular potential is analyzed in
Refs. 30 and 31. The operatdit" is generated by the Dirichlet form

(H(F”)G(“),G(“))Lz(rgn),M(qp)—B] 1J(n)|VG(”)|2d,u(“’ (2.6)

where
Mg‘):ze’ﬁuaﬁ(')no(”) 2.7

ando(™ is defined in(1.7).
Then using(1.14—(1.15 and(2.1)—(2.2) one can write forptB the following representation:

py=e Me=Kje MF(K,1)* =De "MFD L, 2.8

Here the operator®:=K§ andD ~* are defined il.*(I'g,\¢,), £>2, by the following formulas
(see Ref. 12 for details

(DF)(77)=fF N (dy)F(nUy), (2.9
0

(D‘lF)(n>=fF Ao(dy)(—D)IE(pUy). (2.10

0
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Remark 2.1:n our approach the representatithg) for pg is a direct consequence of the
Kolmogorov equatioril.4) without any reference to the hierarchical structur¢lot?) and(1.18.
In the same way from the Liouville equation one can obtain the corresponding representation for
the Hamiltonian dynamic¥: Representations |ik€2.8) appeared earlier. They were obtained by
application of the method of “creation” and “annihilation” operators for classical statistical me-
chanics(see Refs. 32—35For connections with the diffusion hierarchy see Ref. 19.

Remark 2.2:1t will be clear from the considerations below that in the case of a stable
interaction potential for which — A ¢ is also stable, the operatpk can be defined on a Banach
spaceL g  with the norm

IGll g &= fr Neo(d7)e M2 AU G( )| <0, Gelj,. (2.11)
0

To obtain a representation for finite volume correlation functighsve take into account the
definition of the operatoD and rewrite(1.21) in the form

ks (m)=(DD3)(7). (2.12

Then due ta2.8) and(1.20 the following representation is true:
1 —tHg o= BU - BU
7. ¢ Fle” " vlp e "=¢| (7)),

)(77)=(D
(2.13

where we use the fact that the operatb: [see (2.4)] is a self-adjoint operator in
L2(I'g,e AYN,).

Now, to get an integral representation kﬁ‘rwe use a functional integral representation for the
operatore” ' in (2.13). First of all, note that the operatéty has the Fock structure.3) and

(2.4), so we only need a representation & in L2(I'{" 1), To get it we use the well-
known ground state transformatigsee, e.g., Ref. 36, Sec. 2, and Ref. 23, Chap. 7

*
e tHE

1
@ BUya—pU
e se w]
Zy FA)

k?<n>=(D

LT, u§)) s froe™ M2 8% c L2(TE) o), (2.14

The corresponding generatEIr(F“) in LZ(FS‘) ,‘M) has the following form,

- 1L -
A=—22> A, +V(0,, (2.15
Bi=1 7
with the effective potential
n B 1
V0=V 000+ VE2A000= 2 | 719U 40001~ 38,0400 . (2.1

For the domain of the operatdi!™ we have®(H™)>Cy(I'{"), where C;(I'{") denotes
C”-functions onl“g‘) with compact supports. It can be shown that for any superstable potential

the effective potentiaV/(x), is bounded from below for any fixeul But for the class of potentials
under consideration it is even superstasiee Sec. I)l. Therefore, we can apply the Feynman-—

Kac formula for the kernel of the semigroep ™, whereH(™ is considered in the sense of a
form sum(2.15 Ref. 37, Chap. 2. As a result, we get

n

() _ t V(e
(e MEY((X),:(y),y) = e 12 BU4(n (1/2),3U¢(Y)nf 1T W?;yj(dw,-)e Bl fdrV(o())n

(2.17

Q's"j=1 j
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where
: _+p-1
Q'8:=C([0tg]—RY), tz=tp~ 1, (2.18

Wff_"y is the conditional Wiener measure on the spgXie with conditionswj(t) =x; and w;(0)
=y;. It implies the following useful representation:

A _ t A
= [ e[ | W ol (2.19
where n={X1, ... Xm}, €={Y1, ... Ym}, dé=dy;---dy,,, and

1 ~ ~
p0in= 3 = [ Faom [ Faom DY @(O) e e (220

In (2.20 we use the following notations:

~ 1 t
U(w>m+n==gﬁu¢<x>m+n+foﬁdr[u_w(ww))mﬁU$¢<w<r>>m+n], (2.21)
USs00ment= 2 | 7 81%Us(¥menl? |20, (2.22
Do (0(0)) =2 AUaleOmnD 3 (0 (0)) s n, (2.23
and
f aA(dw)(---)zzf dfodyf WE (dw) (). (2.24

A representation liké2.19 and(2.20 was obtained also in Refs. 17 and 18 as the generalized
solution of the finite volume diffusion hierarch.18).

Remark 2.31t is not hard to show that the sequerkf%( 7) is positive-definite in the sense of
Refs. 12 and 13, which is the following.

Definition 2.11% The sequenck’(7) is positive-definite if

f (GxG) (kM )N, (dp)=0 for all GeByy(ly). (2.25
1)

HereB,(I') is the set of all bounded measurable functions with bounded suiiaienotes the
complex conjugate o6, andx-star is the convolution, which is defined in the following way:

K(G1*G,)=KG;-KG,. (2.26

(See Ref. 13 for details.
Now, inserting(1.24) into (2.25 and using the representati@®.8), (2.12), (2.17 and the
property(2.26 (which is true, also, foK, [see(2.1)] we obtain
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fr (G*G)(7)pDDy (7N ,(d7n)
0
=L (GxG)(n)KEe MED DD (7N ,(d7)
0

_ fr & HE(KoG) (1) (KoB)(m DA\ o)

- [ nan | dne i@ IPpim=0 @227
Lo (R

Positive definiteness together with the bouid?5 gives a possibility to reconstruct the corre-
sponding sequence of stat(eseasure)su?.

Representatioi2.19 and (2.20 is reminiscent to the representation of reduced density ma-
trices by correlation functionals in quantum statistical mechanics with Boltzman statsties
Refs. 38 and 3P This analogy enables us to apply powerful techniques from quantum statistical
mechanics in the considered model. Following Ref. 40, we construct the configurationl'space
over the spacd)'s of Wiener trajectories ifRY. Define configuratiorfy as the infinite set of
trajectoriesw € Q' such that the set of values of these trajectories at tim@ is a configuration
Yel. dThen define the configuration space of trajectories with initial pom{®) in A
€ B.(RY):

anf’={7€ Fﬂtﬁ| Yel ).

In the same way the Lebesgue—Poisson mea)s@]rwith intensity measur& , is defined by

(1.7). Then for the “correlation functionalsp;' (%), 7el'gt, the following representation is
A
true:

P (%)= f AN Uy)e VO, 229
a's

whereU(%U%) is defined by(2.21) with 7U5={w1, ... ,om.n} andDj as defined in2.23.
Remark 2.41n the following we write,y,£,...,Q,Q, , instead of7,%,, . . . ,QtB,QtAB and

7, y&", ...,... 7e[0}g] for the sets of values of the corresponding configurations at time

Note that these sets fot>0 are not configurations i because some points of their values can

coincide(intersection of trajectories

lll. THE CLASS OF INTERACTION POTENTIALS

In this section we describe a class of interaction potentials which allow us to solve the
problem formulated in the Introduction. As it was mentioned in Remark 2.2, even to define the
operatorptB on Léf we have to consider a rather narrow class of interaction potentials. The
restrictions on the potential imposed below are, however, rather dictated by the technique of the
superstability estimates for functional integrals. We hope that the stochastic dynamics, actually,
exists for a more wide class of potentials and initial states. This point of view is supported by the
fact that the equilibrium stochastic dynamics exists for a wide class of physically reasonable
potentials(see, e.g., Ref.)2

To define the said class of superstable interactions we denateapartition ofR¢ into half
open unit cubed\ centered at the pointse Z¢ (see Ref. 28 for details

Ri= U A, VAA'€A, ANA'=0Q.
ACa
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We assume the following conditions to hold:
(A1) Smoothness:

¢, e C3RA[0}).
(A2) Superstability:
Vi=123 3A>0, B=0: U, (9= (Alyal>~Bi|n),
AeA
W|th Ulz¢, 02:_A¢ andU3: lﬁ'

(A3) Lower-regularity:
For anyX,YCRY and configurationsx e 'y, yye Ty, define

W, (x| vy) = > vilx=y). (3.1
Xeyx.yery
Then
W, (yxlw)s 2 W (A0 yallyal, (3.2
AA €A
where
Y, (AA")= sup v_(x—x'),
xeA,x ' eA’
andv_=-—min(,0). We also require the existence of positive decreasing functigiik) on
positive integers such that
Vi (k)= sup v, (AA7) (3.3

AA A d(AAT) =K
and

©

> Wi(k)kITHTI=F <+ (3.9)
k=0 !

With w,=u3>3, u,>—2and

d(A,A’)= max inf |X(a)—x’(a)|_

lsasd o Ax e’

Now we describe some clads of potentials which satisfyA.1)—(A.3). Let

D(X) = (X) + ds(X),
(3.9
¢, (0)=+x, ¢, (x)>0,

—A¢.(0)=+x, —A¢. (x)>0,
(3.6)

1 K
P50~ e | B0, 0020,
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Jdk?i)(k)<oo, jdkk%(k)@o. (3.7

As an examplgfor d=3) of such a potential we can choose some function which has an
asymptotic behavior near the origin like

C
¢+(x)~ﬁ, 0<as<1 for |x|<ry, re>0,

and is sufficiently fast decreasing ja$,” + . This is clear from a direct calculation which gives

1 a(l—a)
AR @9

which is positive fora<<1.

IV. RUELLE'S CONSTRUCTIONS. MAIN RESULT

Our main technical tool is the technique of superstability estimates proposed by°Roell
classical statistical mechanics. Later Esposital?® generalized this technique for the case of
quantum statistical mechanics and proved the boundedness of the reduced density matrices
(RDMs) for the Maxwell-Boltzmann statistics.

In this section we briefly recall some basic constructions which were made in Refs. 28 and 29.

A. A ,-cubs
For somea>0 (to be fixed later let
lq:[eaq]v qE N1 (41)
where[x] is the integer part oke R™ and
Ag=[—1q= 3.1q+ 31% [Agl=(24+1)° (4.2)

We also set the origin in the center of some cihe= A. So, every cube\ is the union of

cubesA from A. And for convenience we suppose that for one of the trajecteries; we have
w(0)=0eA;CRY Following Ref. 29 we also introduce the sequence

e(a) =g Al (4.3

We extensively use the following properti¢see Ref. 29 for details For givene>0, «
>0 3sq such that fors=s,

|
1+ a< S|+1

< ea(l+£)
S

o(s+1)
GD(S) <ea(d+a(d+l))’ (44)

or for e<ego=1—2ae?® (a is sufficiently smal

|s+1

<1+4+2a,
ls
o(s+1)

d+1
oe ~(Ir2atth (4.5
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We also need the following lemma:
Lemma 4.1 (see Ref. 29): Let

r(k)=min{re N[l >lq+k, Vg=1, kel}. (4.6

Then
1
r(k)ys1+ Elog(k+2). 4.7

B. An extension of the functionals  p™(#)

The function::lISptA are defined on the configuration spalégA, where(}, is the space of

continuous trajectories(7) [see(2.18] with w(0)e A. But in the construction we are going to
apply we need to consider functionaié on the trajectories which take values in the bounded
cubeA g orinits complimentAg . In this case some trajectories can be discontinuous because they
take their values in\ 4 not for all 7€ [0,tz] but only in some intervalgry, 7], [ 73,74], etc. So

for re(75,73), ... they are not defined. In this case the definitiorthnyAqU v) and therefore
ptA(nAq) becomes ambiguous. To avoid these difficulties we repeat the construction proposed in
Ref. 29.

Let B([0tz]) be theo-algebra of Borel sets if0tz] with Qg the set of all measurable
functions:

®:B—RY  BeB([0tg]). (4.9
Now we define a new configuration space by

ra=ury, 4.9

n=0

where forn=0 Fg)) is a nonempty set which, however, consists of the trajectdbieshose
domainB have zero Lebesgue measure and

r=peremm D= U Q. (410
Be%([O,tB])

Then, instead ofU(@)m:n=U(7U7y), 7={01,... 0mn Y={0mi1, ... om.n We define
U(7Uy) by the same formuld2.21) and (2.22, but instead ofJ, (&(7))m+n, k=12 (vy
=¢,v,=—A¢) we set forw;e (1,

XD(ai)mD(Z)j)(T)Uk(a)i(T)—a)j(T)), (4.11

l<i<jsm+n
whereD (®) is the domain ofw. For fixed7 e 'y the function
U(muU-):Tg—R

is measurable oh', w.r.t. theo-algebra of Borel sets corresponding to the topology of point-wise
convergencdsee Ref. 29 for detailsFinally, we define

()= f A2 (dP) DY (HPUy)e VU7, (4.12

Ta,
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which is an extension of definitiof2.28 [here7 has a different sense than (.28 (see Remark
2.49)].
It is clear that forye FQX

(=P (7). (4.13
Then for any bounded measurab{e A we define the maprx:FQ\—d“ﬁA, such that for any
yela,
TxY=(TxW1, . . ., TXO|y|), (4.19

where myw; eﬁA and its domain is the measurable set
B={re[0tz]lw(7) e X}.

If B has nonzero Lebesgue measure, theRd)(7)=w(7), 7e B, and if B has zero measure,
then wxwel“g)). We need also the maEpI‘QAHF;)A, which is

y—s(y)= U my. (4.15
AEZ

The union is taken over alt € A, such thatr, y has a domain of nonzero Lebesgue measure. It
is clear that

PR =D (s(7)). (4.16
C. Partitions of I'g

For everyre[0t;] and a given configuratiof Fﬁ« we introduce some characteristics of a
given configurationy e Iq:

E{&=EL (H= 2 &% &=7uy, (4.17
ACAq
where| £} is the number of all trajectories frog§which take values i at timer. We also denote

E"(£) by the same expressidd.17) with summation over all\ € A.
Then we define three factors

EP(H=EL(), (4.18

t
E@(&)- fOBdTE;@), (4.19
EC/(6)=Eq(&), (4.20

which correspond to the factors gxpl/28U ,(7'5U '8}, exp{BU,4(7Uv)} and Dy (7°U 19,
respectively, to be controlled, and define

3
Eq@):; EQ(). (4.21)

Following Ref. 29 we can now construct a partitionIQ};A in the following way. For some
large integer, (to be fixed later we introduce
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Fg-1={relq,|En(é)<e(m) for all m=qo—1}, (4.22
and forg=qq
I'y={yelq,|Eq-1(§)>e(q—1), but Epn(§)<¢(m) for m=q}. (4.23
Then forq=q,—1 let x4(y) be an indicator function of the sét, and for the partition

o= U Iy (4.29

A
q=qp—1

we consider the partition of the unity:

1= 2 Xq( ). (4.29
q=q

=qp—1

D. Main result

Theorem 4.1: For the interactions¢(x) (xeRY, d=3), which satisfy (A1}(A3), and for
initial distributions (1.21}-(1.23) there exist constantg<€c4(z,8,T) and ¢,=c,(z,8,T) such
that

KA)m=cl, 7={X1,... Xmtel,. (4.26
For any t;,t,e[0,T]
(ks @) — (ke o) =c3lellmlts—tal, (4.27)

uniformly in A and te[0,T]. Here

<ktAa<P>:fRdmktA(X)mﬂX)m(dX)m, (4.28
where(dx)M=dx;- - - - Xy, for (X)m={X1, ... Xm}, @€ Cq(RM,
cl=max{meTB~L, m(m-1)&l, mertly, (4.29

and

lellm= max Ao 1gmey+ ma}:ﬂV] @ Vil 2gamey + m_a>¢|V¢||L1(Hd)||Vj @llLirme . (4.30
j# j

1<j<m

Remark 4.1For potentials e ® it is clear that|V ¢ 1zey < (see Sec. Il

Remark 4.2from (4.26), by compactness, we can choose a sequefgg.(;,, AyCApyiq,
A, /RY, so that we get a limit poirin the weak sengdor kf\". Hence by diagonal argument we
obtain the existence of a corresponding limit for any ratidra]0,T]. Then from the continuity
property(4.27) the existence of a weak-limit fd(tA follows for all t e[ 0,T]. And, finally, using
positive-definitenesgsee Remark 2.32.25—(2.27)] of ktA for any ACRY we get a limit stateu,
(not unique, such thatk* w=p,, =k,

V. PROOF OF THE MAIN THEOREM

First we note that neglecting the positive part of the effective pote¥i(ia),, [see(2.16] we
get
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P () <A, (n), (5.
where
5&(%A)=5{;(%A)|\~/+EO-
Then, the main technical point of the proof is the following proposition.
Proposition 5.1: Under the same hypothesis as in Theorem 4.1 there exist acsm@jla

sufficiently large integer g= qo(«), constants Kqg),K(qo), and a positive decreasing function
£(q) such that

Piy(n)=Coe” WIPAEMIB (e )+ X, Cqe” WIPAEMIGL (o), (5.2
0 g=do

with
A=min{A1, 2A2, A3},

Co= €M@ +K(@0) ¢ =g~ (U8 AACA-D+e(@e(a-1)+K(@0)  g=qq.

The proof of Theorem 4.1 follows from the next lemma.
Lemma 5.1: Let

S('77)={AEK|E|TE[OI,B] and we7 such that o(7)eA}.
Then

p{\ﬂ(*ﬁ)se* (1/4) BAE() + 61S()| (5.3
with 6>logD, D=Cq+24=q,Cq-
Proof: We shall proceed by induction. L&' be a subconfiguration ¢%. We assume that
(5.2 is true for any suchy’. Then from(5.2)
5& (Tp)<Coe AE(IA,) ~AE(MAL )+ 3IS(nal )l 4 qzq Coe AEOIY ~AEGIAD +oIS(r9)
=do

< e~ AE(TA) +4IS(ny) ,

since|S(7;Ag)|$|S(7;A)| —1. Taking into account5.1) we get(5.3). O
Proof of Theorem 4.1Using (5.3) from (2.19 we get

m
kKA m=z"[] fdy,-fw‘j y_(dwj)e—AE<w1>+5\S(wJ>\.
=1 i
Using the Schwartz inequality, the estimasee Ref. 29(A.21)]
f W‘X/fy(dw)e%lS(w)‘s(2mﬂ)—d/2|(25), |(25)=J W daw)e?? (@),
and the trivial estimate

1/2
/ dy“ Wi‘?y<dw>) et
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we obtain(4.26 with
c,=2z((4m)91(268))"2

In the same way one can prove E4.27). Indeed, we have byl.18 that
t, [dk}
A A — _
<ktl,¢>—<kt2,<p>—ftld7< - -<P>
o A A A
- [ FarS, 1t 2100~k T MU ~ (K T )T
A

Using (4.26) we get(4.27) with the constant$4.29 and(4.30. O
Proof of Proposition 5.1inserting(4.25 into (4.12 we get

= 2 147, (5.4)
a=qgp—1
with
1= | MA@y xg(BAGRUe S50, 55
where
U(7Uy)=0(5Uy) -V (nUy). (5.6

To estimate(5.5) we construct a further partition df,:*°
_ _ s |
Fq_rq,A_Fq,AqUFq,AaUFq,ﬁAqUFq,aAqr

Wherqu_Aq is the configuration of those trajectories which are completely containég jrf‘q,Ag
are trajectories completely outside®f, i.e., in Ag, FZ’ﬂAq are short trajectories, which cross the
boundary ofA , but do not leave\ , , andl“'ehaAq are long trajectories, which crogs ; and leave

Ag+2. By the infinite-divisibility of the Poisson—-Lebesgue measage for any functionF(1y)
€ Ll(FQA,)\;Ar) which can be represented as

F(7)=F (72 )F2(7a0)Fa(Zon)Fa(lon) (5.7
for
— — — - |
7:7AqU7AgU§aAqU§aAqa '}’AqEFAqi YAZEFAE: faAqEFf)Aq, §aAq€FaAq

the following formula is true:

| Mavre= [ MR [ e
T Fq,/\g

q,/\CI

xfs x?,(dg)Fa(g)Ll N5 (dDF4(0).

T
q,9A4 a,0A g

But in our case the function
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F(y)=xq(»)D3(@U»3)e VW7 (5.9

does not satisfy5.7). So, our next step is to estimatg.8) as a product of some functions as in

(5.7).
Due to(5.6), (2.21) and(2.22 we have

(@)

- 1 - ts ~
(PU7)=5BU,, (78U 7“*)+BJO drU,,(77U ),

with v, = ¢, andv,= —A¢. Then for anyre[0tz] we can write for the energvui(%fu v") the
following decomposition:

Uy, (77U = Uy, (TR, U 7R V(7 07U (ma )+ Uy, (U710 Uy ((maed) U (7))
W, (TR U 7R U7 OV D TH LU U (maed) U (macd))

W, (ﬂAcU VAcl(WAC§)T)+W (ﬂAcU VAc|(7TAC§)) (5.9

where in the same way as for we use the substitutiof#.11) to define the interaction enerdy,

for wte Now to estimate the various terms (5.9 we prove some lemmas.
Lemma 5.2: For each positive, integer q ane [0, ]

_ 1 1 2
U (77,073,070 07U D)= ZAEL O+ SAE )~ 1 1AL (510

Proof: The proof follows from Lemma A.1see the Appendixand the definition of (§)

By the stability condition we have
Uui((ﬂ'Agg)TU(ﬂ-A;Z)T)Z—Bi(|§|+|Z|). (5.10)

Lemma 5.3: Let, and &, be subconfigurations @fe I'q and &, contained inA ., and; in
Ag. Then for anyre[0ftg] there exist a small enough, sufficiently large él), a constant
h(®(g{") and a decreasing functioa®(q) on the integers, such that for eacteq"—1

h®(af?)  for q=qf-1,

(5.12
e@(q)e(q—1) for q=qY.

- Wvl(gg géT) =

Remark 5.1\We use Lemma 5.3 wita=0 for the fourth term in(5.9) (§0=”i;AqU YAy &
=TacUTacUmroEU WAEZ) and with a=2 for the fifth term of (5.9 (&=mycl, &
:7IA°U7A°)

Proof Let us prove the lemma fa=0,i=1 and forq>q(1) which we chose later. Taking
i=1,a=0 and7=tgz in Lemma A.2 and using the fact that

E1q-1(69)=Eq:1q-1(6)=Eq:1(8) ~Eq-1(é)

and because dfe 'y, Eq_1(§)>¢(q—1) andEy(£)<¢(m) for m=q, we have
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g rtp L PR
~ W, (é¢1€0 )= 5Fu[e(a+ ) —e(q=1)]+ 5 Be17(a)¢(q)

1 o]
+ 588 e 2 (@ -aldye(a+k+1), (5.13

Wherea(k1)=‘If1(Iq+k—lq). Then from(4.5) we have
e(q+1)—e(q—1)<[(1+2a)* >~ 1]e(q—1), (5.14

e(q)<(1+2a) e(q—1). (5.19

From the definitiong4.1)—(4.3), choosinga sufficiently small and
(1) 2 —2a
o>~ log(1—e "), (5.16

it is easy to calculate thaf+k+ 1<(2/a)log(lq+k+1—1q+1) and

gl (a&”—aﬁlﬁocp(wk+1)<c(a>l 2| W, (m)(2m+1)¢log(m+1)=c(a)eo(q)

q+17'q
(5.17
with c(@)=2a"*(1+ ). Now from (5.13—(5.16 we have(5.12 for q=q{" with
()= 3F, [(1+22)2"2-1]+1Be{M(q)(1+2a)?*1
+5BeS(a)(1+2a)" Lc(a)eg(q). (5.18

The proofs for the casés=2 anda=2,=1,2 are the same.
Now we consider the casp= qgl)—l. The only difference in the proof lies in estimating the
first term in Eq.(A2). As ye I'q,—1 this term cannot be very small and we estimate it by

t
E g o(€9)=<Eq ()= e(ap").

Then inequality(5.12 for g=q{"’—1 holds with
h®=[3pF, +3B:1(af”) +3 B9 (af) Je(af).
O

And finally the sixth term 0f5.9) can be estimated by

Lemma 5.4: Let be some subconfiguration ¢fe I'y, contained inA,,, m>q. Then there
exist a ¢? large enough and some constantb(a,d), such that for each gq{®

—. i _
= 2BW,, (mre) |7 (U (maey)'8) < 3 BDF,, [ Ll @(m)*2, (5.19
q
= BW, (macdTneUmacy) <tbF,, [ o(m)*2 (5.20
Proof: The proofs 0f(5.19 and(5.20)_ are almost the same. Let us prove for exan(pla9.

Using Lemma A.3. withr=tg, §1=77Ag§, §2=?/A3U TASY and taking into account that fon
>q

Downloaded 18 Jun 2009 to 131.91.96.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



1844 J. Math. Phys., Vol. 45, No. 5, May 2004 Kondratiev, Rebenko, and Rockner

s 1o (O =Emiro(&)=e(m+r(K)),

asé=mUyandyel’y we get

1 1
- EﬁWvl(---l---K E:Bbl|§|gl W, (K) (k+1) 4" Y20(m+r (k)2

[See forr(k) Egs. (4.6) and (4.7).] Using (4.4), (4.7 and (3.4 we get (5.19 with b

=b; exga/2(d+e(d+1))]29" 1 #, e =min{1-20€’*,(2u—1)(a+1)"} andq{®=s, (see(4.4),

(4.5) for definition of sg). O
And finally we present some inequalities for the initial density distributib21)—(1.23.
Lemma 5.5: Let the potentials and ¢ satisfy(A.1)—(A.3). Then

1°. For any A(CA, q=qo—1, and &} €T’ there exist A>0 and B;>0 such that

Do (&3)=elAsrZaca &l +Bapach JAND A (£2,) (5.21)
q
2°. For any partition
—0 ~0 —0 ~0
SAngA ﬁACUSACa §A m\cﬂgAc=@, S>q, (522
q s q q s q q
there exists G=0 such that
~ ) o\~
Dé\(gi;)seC3ﬁ\§ASmA;|<P(S)1ZDé\(g?\g)_ (5.23

Proof: The proof is a direct consequence of Ruelle’s techni§ue.
Now we collect all the estimatg$.10—(5.12, (5.19), (5.20, (5.21), and(5.23 to obtain for

q=do=maxa’ o’} [see(5.16)]:

|q(;7A)$e—<1/4>BAEq(%Aqu/&BAqo(qflwso(q)so(qf1)+sl(q)<o(qfl)f )\gq(dy)f )\équ(dg)eBlzl

c = — ~ AC — i -
Xf Apudye VeI a5 1 J NS T(dZ(m) eBlé I+ CleMle(m ™
q

m=q+3
(5.24)
with
A=min{A1, 2A2, 2A3},
Bzmax{%,BBl, TB,, PBBs},
C=max{%,8bFMl, TbF,,, Cs},
and
_ (1+2a)?*1[pB TB; B3
€o(q) = q oA A, AL
e1(0)= > (). (5.29
ie{1,2 ac{0,2
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Now from the definition of the Poisson—Lebesgue measure we get

zZ(142a)9tt
j)\gq(dy)sew(qwmfl), Sz(q)z(T), (5.2
3d+3
J')\i\q+2(dé’)e3‘§‘ge83(Q)<P(q*1), 83(q):&es, (5.27)
o q
Ag ~0(7 cu?)~A°~0 —0\— =A [~
- d(dy)e Vg Doq(nA;Uv)Sptﬂ(m;)- (5.28

Applying the same arguments as(B126) and (5.27), making a partition of all long trajectorigs
in (5.24) according to their lengths and using the resummation formula we get

=] f A () GBIl Mot

m=q+3

1 = k
f '&Aml(dg(ml)) T (dg(mk))eCZj:l‘p(mj)l/Z.

k=0 k! my, ..., mc=q+3 Mk
Then we usdsee Ref. 29 or 38

[ Al

— 2
f ;;Am(dg(m)) <7z (27rtﬁ) e ¢ (|m/2tﬁ)(a2/(1+2a)4

with c=c(d) and get

|D<e2®1Tp), T,=T/p, (5.29
where
2 a?
f(TB)=m§0+3 (20 1)dexp{ —cz—;“ﬁ(1+T)44r(:m1"4’(2|m4r 1)92).

Obviously we have (T ) < for d<3.
As a result we get5.1) for q=qo with £(q) =Z0<j<3¢;(q) andK=zer(T5).
In the same way we have for=qo—1

— 1/4BAE, (7 +h(qgg) +K zA (~
q-1=€ MR TR T GRG0 ),
0

with

h(ge)= > > h®(q).

ie{l,2 ac{0,2

As a result we get5.1) from (5.24), (5.26—(5.29 with &(q)=Zo<j<3&;(q) and K(qo)
=ze(Tp). O
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APPENDIX: PROOF OF THE BASIC LEMMAS
Lemma A.1: For anyre[Ottg] and ge N and 7", y"C A4,

1 1 B?
Vo (73, U (T 1)) = GAELED + SAEG(R) — 2 [Ad- (A1)

Proof: From the superstability conditiof.2) (see Sec. Il we obtain
U ~T U T ;A T|2__ B T )
o (TR V(T 7)) 'Acqu £l .ACEAQ £l

Then (A1) follows from the inequalities- n=— A;n?/4B;,—B; /A, and Eq(§)=E4(7). O
Lemma A.2: Letre[0tg], geN and &, e Fn with a=0 or a=2, §eF§AC , E1UECE

eT'y. Then there exist positive, decreasing functlel‘ilé(q) £9)(q) such that

~ W, (E11€D) <F . Efvarnq-1(O) + oL (EG (O +ef (@ e(a) 2 (B ac1)Eqrarisa(),

(A2)
with 8 =Wi(lq:ark—lg+a)-
Proof: From the regularity assumptidi3),
-w, (51'52)\1 > 2 WA (A3)

Agra A’ CA

According to the partitions\ g, a=Agia-1U(Agia\Agra-1), Ag=(Agrari\Mg)UAg a1 WE
write down the r.h.s. ofA3) as

1
“W,(gleg=5 X 2 WAA)gP

CAg+a\hg-1 A'CAgyar1\Ag

1 1
t5 2 m@AgPey X X waan)g)?

CAg-1 A'CAgiar1\g CAg+a A’ CAgiat1

1
+5 2 2 w@anlgP

CAgra A'CAgiar1\g

1
+> > E Wi(AA)|EL |2

2 ACR
a+a A’ CAq+a+1

1 1 1
2F Ea+a\q—1(§)+EF(I)(lq_qul)Ea—l(é‘)‘l'EF(I)(Iq+a+1_|q+a)Ea+a(§)

1 T
+ 2F/"|E +a+1\q(§)+ A E 2 Wi (|q+a+k q+a)Eq+a+k+1\q+a+k(§)

q+a =

<FuEq+arna- WO FFO(g=1q-1)Eq.4(£)

[

1 T
+ ElAq+a|kZl (ay— ak+1)Eq+a+k+1(f)y
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where we have used the summation over laye§$, . k+1\Ag+a+k, SOMe resummation formula.
As a result we obtaifA2) with s(l')(q)zF(')(Iq—Iq,l)=supAEAq712A,EAg\Ifi(A,A’) ande$)
=2"Yq+a) L. O

Lemma A.3: Letre[Otgz], gelN, §; contained inAg, s>q, &, contained inAg and
£UECEeT . Then there exists{f) such that for g=qf

— W, (£1]€5)=<bu|¢]] 2 Wilk)(kt D) TVHES, (€)1 (A4)

with b;=Db4(d) and r(k), which is defined in (4.6)
Proof: Using the regularity assumptiqi.3) and Schwartz inequality we get
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