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Abstract. A new representation for distribution functions of the grand canonical
ensemble by the Poisson measure functional integral is obtained. Due to the ultralocal
nature of the measure, the construction of the cluster expansion is very simple. For
the convergence of the cluster expansion, the requirement of exponential decay of the
interaction potential is not necessary.

1. Introduction

The cluster expansion method, proposed by Glimm, Jaffe, and Spencer [1] for the
investigation of quantum field theory models, was greatly developed by Brydges and
Federbush [2,3] in statistical mechanics. It was especially fruitful in the classical
statistical mechanics for the study of screening effects in charged particle systems [4-
9]. However, the range of applicability of this method is restricted to exponentially
decreasing interactions, and in addition, the technique of construction of cluster
expansions is very complicated. The requirement of the exponential decay is needed
to compensate the large powers of JVΊ, where N is connected with the order of
decomposition. These factorials appear especially due to variational derivatives over
Gaussian fields (sine-Gordon variables). In turn, the variational derivatives arise on
each step of decomposition in the formula of replacing the initial Gaussian measure
by the new one which provides the factorization of Gaussian integrals (see [1, 4, 5,
10] for details).

In this paper, we propose a new representation for distribution functions of
the grand canonical ensemble. This representation gives an opportunity to simplify
considerably the construction of the cluster expansion and the proof of its convergence,
and also extends the set of admissible potentials up to the class of integrable functions
(or for slightly stronger condition). This representation is based on the fact that the
expression which is obtained after the sine-Gordon transformation and summing up
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over the number of particles is again the characteristic functional of some Poisson
process with independent values (infinitely divisible process). This allows to carry out
the integration with respect to sine-Gordon variables and obtain the representation of
distribution functions in terms of the ultralocal measure. Such a measure possesses
the needed factorization property and enables us to get easily the cluster expansion
which does not contain any derivatives over random fields. However, we should
note that this construction is applicable when the total interaction potential (including
short range forces) admits the approximation for which we can make the sine-Gordon
transformation. This means that the initial potential can be represented as a pointwise
limit of positive definite continuous functions, and then, after integration with respect
to sine-Gordon variables, one can go back to the original potential. However, in this
paper we consider only positive definite continuous potentials.

2. Functional Representation

Consider a system of identical particles interacting through a pair positive definite
potential V(x — y) with regularity condition

1/(0) = v0 < oo.

We start from the ordinary definition of m-particle distribution functions in a finite
volume box A for the grand canonical ensemble

Σ e-βU(x)n

n>™< Λn-m

where z is the fugacity of particles, ZΛ is the grand partition function, and

In (1) and below, we use the following abridged notations

(γ\ — (np γ np \ (rjrp\ — fjγ rjrp

The sine-Gordon transformation gives

/

iβl/2 Σ 0(^7)
dμ(φ)e •'•'

Then we directly obtain from (1) that

dμ(0)e ' ° cxpίz j eiβl/1«x)dx\ , (2)

with

ZΛ= dμ(φ)exp

z =

and due to the condition υ0 < oo the Gaussian measure dμ(φ) is defined on a
measurable space of continuous functions φ(x), x 6 A with covariance V.
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In the previous papers [4-9], Eq. (2) was the starting point for the cluster
expansion. In this work, we want to carry out one more transformation which will
allow to integrate over sine-Gordon variables. To do this we make the elementary
renormalization and define

Then

/
dμ(φ)e exp

L A

x)-l)dx\ . (3)

Now, one can easily find that the exponent in (3) is a characteristic functional of
some generalized Poisson-type process with independent values at every point x e A
[11, Chap. Ill], and by the Minlos theorem [11, Chap. IV], there exists a positive
countably additive measure dP(q) defined on the σ-algebra generated by cylindrical
sets of y'iR3) such that

exp z I ( e

ϊ / ( r c ) -\)dx\ = / dP(q)
J J
A \ y

ί fix)q(x)dx
(4)

We substitute (4) into the right-hand side of (3) and interchange integrals to obtain

QΛ(x)m = zme-^x)mρΛ(x)m1 (5)

dP(q) e
-β Σ I dxV(Xj-x)q(x)

x exp
β ί ί- - / / dxdyq(x)V(x-y)q(y)

A A

Z~\Λ) = ί dP(q)exp | j ί dxdyq(x)V(x - y)q(y)

A A

(6)

(7)

In fact, Eqs. (5)-(7) are the integral representation for the Poisson measure (1)
which defines the initial Gibbs distribution. The ultralocal nature of the measure dP(q)
makes it possible to simplify the construction of a cluster expansion and proceed to
A / R3 limit.

To conclude this section, we note that the transformations like (4) were used in
[12] for construction of generalized random fields which satisfy Osterwalder-Schrader
axioms.

3. Cluster Expansion

We fill R3 with a set of disjoint lattice unit cubes. All the subsets in R3 are given
as a union of unit lattice cubes. Let Xo = (xv . . . , xm) be some fixed variables of
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distribution functions ρ^, and let Xx = Yι be a minimal union of lattice cubes which
cover XQ. Let Y2, . . . , YnΛ, nΛ = \A\Yλ\ + 1 be disjoint unit cubes for which

U
The set Yι — Xx is fixed, but the cubes Ŷ  , j = 2, . . . , nΛ are the variables of
corresponding series and can change their positions. We now define the sequence of
these sets (see [4])

Xn = Yn U Xn-\ ? XnΛ

 = Λ > Xn = Λ\Xn -

To simplify the notation, we define

V0(X) = V0(X', q) = Σ / dxVfrj - x)q(x), (8)

V{X'\X") = W;X";g) - f dx f dyq(x)V(x - y)q(y) (9)

X' X"

and, in addition, Z(X) is the same expression as in (7) but with X instead of A. Then
we have for Eq. (6) in the notations (8)-(9),

dP(q)

Now, let us introduce the sequences

ί

V0(Xn;(s)n_ι)= 2^ Si . . V i W ) , (ID
\<j<n

V(Xn;(s)n_ι) = \ Σ V(y^YJ^ Σ V - V i ^ 1 * ) ' ( 1 2 )

The inteφolation parameters 1 < si < n — 1 specify the intensity of interaction
between the particles in Xi and in X2

C. Equation (12) corresponds to the sequence
of covariances of the sine-Gordon measure in [4]. In our case, it is used for the
factorization of exp [ — | βV(A; A)] in (19) at every step of the expansion and can be
obtained by applying the Newton-Leibniz formula. We now use the property of dP:

ί dPF'x(q)F£c(q) = ί dPFf

x(q) J dPF'^c(q), (13)

where Fx(q) depends on fields q(x) localized in X, and Fχc(q) depends on fields
q(x) localized in Xc. As a result, we obtain the cluster expansion

ρΛ(χ)m= Y^ Σ bn(XJFΛ(Xn)i (I4)
\<n<nA Y2,...,YnCΛ

1

1 ί Γ
bn(Xn) = (-β)n~ι I (ds)n_x I dP(q)

J J

Y3) + s2...sj_2V(Y2',Yj)

2,Yά) + v<yά_λ\Yβ

x exp(-/?yo(Xn; (s)n_λ) - βV(Xn; (s)n_x)), (15)
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To obtain an ordinary tree-graph representation, we define

Vι,j(Φ = vo(γj) + V(γi: Yj)>
V(Yi-Yj) = ViJ(q), * > 1 . (18)

Then we get for

1

bn(Xn) = (-β)n-ιΣ f (ds)n_Jη(8)n_2 ίdP(q) J ] VrwM
V o 2<j<n

x exp(-βV0(Xn, (*)„_,) - / ? n * n ; (*)„_!» (19)

Recall that (see [3, 4, 10] for details)

2<j<n

4. Thermodynamic Limit Λ / M . Proof of Convergence

The main result of this section is formulated by the following

Theorem. Let the interaction potential satisfy the following requirement

ϋ = max > VVf v < oo ,
γf Z-/ Y >Y '

yet3

1/2 (20)
Ϋy,tY = max ( j dy\V(x - y)\2\

\γ J

where Y and Y' are unit lattice cubes in R3. Then there exists the constant C(m, /?, z)
independent of A such that for sufficiently small β which satisfies the condition

64Cβΐ> < 1

the infinite volume limit ρ{x)m exists for ρΛ(x)m and can be represented by the series
(14) with A = R3, nA = oo, and f(Xn) = lim fΛ(Xn) instead of fΛ(Xn).

The Proof of the Theorem. We start from the estimation of bn(Xn). To estimate
bn(Xn), we apply the Schwarz inequality to the integral with respect to dP{q) in
(19):

\bn(Xn)\ < βn~ι Σ j\ds)n_Jη{s)nJ J dP

x (/ dPexp[-2βV0(Xn; (s)n_{) - 2βV(Xn; (s)n_{

The following two lemmas yield the final estimation.

1/2
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dP(φ Π Kj)M <<16 *6)n Π <**<*>' Π
J \<k<n-l 2<j<n

where Vγ γ is defined in (20), and d (k) is the number of vertices j in the "tree" η
for which η(j) = k (see [13] for details), and z0 = max(i, 1).

Proof First of all, in (4) we set

/ ( x ) = Σ OLjfjix), s u p p l e r , j = l, ...,AΓ

and define

= J q(x)fjq(fi)= / q(x)fΛx)dxJ3

Y

and

TΛ f (rλ (ΎΣ\

Differentiating now (4) with respect to α 1 ? . . . , α ^ and putting ax = ... = α N = 0,
we obtain the following formula for moments of the measure

J dP(q)q(fι)...q(fN)

- Σ v
Σ ^

1<1<N* mιVχ+...+mivι=N perm.

^ - [l/2((8iV + I) 1 / 2 - 1)], i[ι\ . . . , j ^ f € (1, . . . , N), (23)

where [x] is the integral part of x.
The number of terms on the right-hand side of (23) is

^ S " . . (24)

To use (23), let us integrate the product on the left-hand side of (21). We explain this
more explicitly. The product on the left-hand side of (21) is the contribution of the
tree-graph η (see the figure) in which each double line corresponds to the expression
Vη(j)J(q\ where Vη(j)J(q) is defined by (17)-(18) and (8)-(9). For example, the graph
77:77(2) = 77(3) = 7/(4) = 1; 77(5) = 2 can be drawn as follows
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Note here that for this graph we have

dη(l) = 3 , dη(2) = 1, dη(3) = dη(4) = dη(5) = 0.

In every kth circle 2dη(k) + 2 fields (for k = 1, 2dη(l))9 are located which are
integrated with the potential V(x — •) over the cube Yk. According to the condition
(13), the integral on the left-hand side of (21) factorizes into a product of n integrals.
If we now introduce "sewing" m points xiχ, . . . , xiγn, which are in the same circle
by the formula (22) [analytically, this means that we insert the product of ^-functions
δ(xi{ —xil)δ{xi — x 3 . . . δ(xi^_ι — xiγn) into (2d77(A;) + 2)-multiple integral], then we
obtain, according to (23), after integration with respect to dP(q) the sum of graphs
with all kinds of "sewing" in every circle. The number of such graphs, according to
(24), is less than

Y[ [2dη(k) + 2]\.
l<fc<n-l

We should note here that for k = 1 in the points which correspond to the variables
x{, ..., xm of the function ρm, there are no variables q as well as the integration
with respect to them; therefore, theses points cannot be "sewed."

Now we bound the contributions of all these graphs by the right-hand side of (21)
if we take into account the definition (20) of VYY, and the following expression:

([2d??(fc) + 2 ] ! ) 1 / 2 < 4

and

~ (k) = n - 1.dη(
l<fc<π-l

Lemma 2.

Iv = (JdP(q)exV[-2βV0(Xn'Λs)n_1) - 2βV(Xn'Λs)rι_ι)Ϋ/2 < Cm ,

Cm = exp [i mzc(2β)emυ"] , c(β) = / \e~^v^ - 1| dx,

where m is the number of variables of ρΛ(x)m.

( 2 5 )
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Proof. Recall that V0(Xn;(s)n_ι) and V(Xn;(s)n_ι) are convex combinations of
"diagonalized" terms (see the proof of Lemma 9.8 in [5])

V(Xn,

3

where λ̂  is a product of parameters sk and (1 — sz), and | J Z3; = X n , (J Zj = X n .

Now, we apply Holder's inequality to obtain the upper bound

Iv <
j

The positive definiteness of V(x — y) implies

Using (4) with

f(x) = i-2β

\<j<m

we obtain

/

Γ Γ
dP(q)e-2βVo(Z^ = exp 2 /

P Σ v(xt-x) -I
(e ^ ^ - - l)dx . (27)

J
The estimation of (27) gives (25) if we take into account (26). This proves Lemma
2.

Now, to prove the convergence of (14) as A / R3 we use the Battle-Federbush
estimate [13]

1

~ dη(k)\ < 4n

and the well-known method of Kirkwood-Salsburg type equation for the function
fΛ(Xn) on the sets of Λ. This gives the existence of the limit for the sequence (16)
(see [5, 6, 10]):

Ά hiXn)=f{Xn)

and the following estimate

\fΛ(Xn)\<ec-\

with some c independent of A. Now the proof of the theorem follows from these
lemmas with C(m,z,β) = C m z m e c .
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5. Concluding Remarks

We want to stress that the representation (5)-(7) turns out to be very useful for the

construction of cluster expansions in spite of the fact that the considered systems can

be investigated by traditional methods [14, 15]. But we expect that this representation

can be useful for studying more complicated models and various phenomena.
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