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This paper is devoted to a study of a class of abstract Cauchy problems for semilinear nonautonomous
evolution equations involving nonlocal initial conditions. Combining the theory of evolution families and
the fixed point theorem due to Krasnoselskii, as well as a decomposition technique, we prove the existence
of the asymptotically periodic mild solutions to such problems. Our results generalize and improve some
previous results since the (locally) Lipschitz continuity on the nonlinearity is not required. A partial dif-
ferential equation is also presented as an application.

Cmammio npucea4eHo 8U84eHHIO Kaacy abcmpaxkmuux 3a0aq Kowi 04 HANiBAIHITIHUX HEA8MOHOMHUX
€80NFOUIIIHUX PIBHANHD 3 HEAOKAAbHUMU NOYAMKOBUMU YMOBAMU. 3 BUKOPUCAHHAM MeOPil e80.A10UilI-
Hux cimeti ma meopemu KpacHoceabcbko20 npo HepyXomy mouKy, a maKox mexHiku po3kaaoy 0oseoe-
HO ICHYBAHHA ACUMNIMOMUYHO NEePIOOUUHUX M AKUX PO368°A3KI8 makux 3aday. HaseOeni pezyavmamu
Y3a2aAbHIOIOMb Ma NOKPAWYIOMb NONEPeOHl Pe3yAbmamu, OCKIAbKU He 8UMAAEMbCH, W00 HeAlHill-
HICMb 3a0080.1bHAAA (A0KAABbHY) yMmo8Y Jlinuwuysa. Sk npuxkaad HasedeHo OugheperyianvbHe DIBHAHHA 3
YACMUHHUMU NOXIOHUMU.

1. Introduction. The study of asymptotically periodic solutions is one of the most attracting
topics in the qualitative theory of differential or integral equations. The motivation for this
study lies in both its mathematical interest and the applications in physics, mathematical bi-
ology, control theory, and so forth. Some recent contributions have been made. For instance,
de Andrade and Cuevas [1] studied the existence and uniqueness of asymptotically w-periodic
solutions to an abstract differential equation with linear part dominated by a Hille — Yosida
operator with non-dense domain, Pierri [2] established some conditions under which an S-
asymptotically w-periodic function is asymptotically w-periodic and discussed the existence of
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ASYMPTOTICALLY PERIODIC SOLUTIONS TO NONLOCAL CAUCHY PROBLEMS... 15

asymptotically w-periodic solutions to an abstract integral equation, and Agarwal et al. [3]
examined the asymptotically w-periodic solutions to an abstract neutral integro-differential
equation with infinite delay. However, we note that in the papers mentioned above, most results
were done under the (locally) Lipschitz continuity on the nonlinearity. It is also noted that
Henriquez et al. [4] gave a relationship between S-asymptotically w-periodic function and the
class of asymptotically w-periodic functions.

When dealing with parabolic evolution equation, it is usually assumed that the partial dif-
ferential operator in the linear part (possibly unbounded) depends on time (i.e., it is the case
of equations being non-autonomous), stimulated by the fact that this class of operators appears
very often in the applications (see, e.g., [S, 6]). In the present work we deal with the asymptoti-
cally periodic solutions for the Cauchy problem consisting in the standard nonautonomous
parabolic evolution equation supplied with a nonlocal initial condition in the Banach space
X with norm || - ||. The precise problem is

u'(t) = A(t)u(t) + F(t,u(t), t >0,
(1.1)

where F, H are given nonlinear functions to be specified later. As can be seen, H constitutes a
nonlocal condition. Throughout, it is assumed that A(¢) (usually unbounded) for each ¢, having
domain D(A(t)), is a closed and densely defined linear operator on X satisfying the Acqui-
stapace and Terreni conditions (A7T}) and (AT5):

(ATy) There are constants Ay > 0,6 € <%,7r> and K; > Osuch that £9U{0} C p(A(t)—Ao)
and forall A € ¥pU {0} andt € R,

K

[R(A, A(t) = o)l < TEN

(AT») There are constants Ky > 0and o, § € (0, 1] with o + 3 > 1such thatforall A € ¥y
andt,s € R

I(A(0) = 20) RO ALD) = Aa)[R (30, () ~ RO A < *225E
Here ¥y := {\ € C\{0};|\| < 6}. Conditions (AT}) and (AT3), which are initiated by Acqui-
stapace and Terreni [7, 8] for A\g = 0, are well understood and widely used in the literature.

As indicated in [9-15] and the related references given there, another motivation for the
study to the problem (1.1) is due to the fact that the nonlocal initial condition «(0) = H(u)
models many interesting nature phenomena, with which the normal initial condition u(0) = wug
may not fit in. It is mentioned that in some previous work such as Byszewski [16] (see also
Deng [17], Lin and Liu [18]), the function H (u) is given by H (u) = g(t1,...,tp, u(t1), ..., u(ty))—
—ug (here 0 < t; < ... < t, < 400 and g is a given function), which allows the measurements
att = 0,11, ...,t,, rather than just at ¢ = 0. So more information is available. Nonautonomous
problems of type (1.1) on a finite interval have been investigated in many papers; see, e.g., [19]
for the existence of mild solutions and [20] for the existence of classical solutions.

As we all know, the study of the existence of asymptotically w-periodic solutions for non-
autonomous problems of type (1.1) is a topic not yet considered in the literature. In this paper
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16 R.-N. WANG, Q.-M. XIANG, Y. ZHOU

we aim at extending the early investigations to the nonautonomous Cauchy problem (1.1). New
existence results of asymptotically w-periodic mild solutions are established, without imposing
(locally) Lipschitz condition on the nonlinearity F' with respect to the second variable. On
the way towards our main results, we make use of the theory of evolution families generated
by A(t) (including the compactness of evolution families) and the fixed point theorem due
to Krasnoselskii as well as a decomposition technique. The results obtained in this paper are
generalizations of related results. Moreover, even for the Cauchy problems of abstract evoluti-
on equations without nonlocal initial conditions, the results are also new.
We end this section with the following remark.

Remark 1.1. We mention that much less is known about the existence of asymptotically w-
periodic solutions to the problem (1.1) (including the autonomous case, i.e., A(t) = A) when
the nonlinearity F' as a whole loses the Lipschitz continuity with respect to the second variable.
As the reader will see, in our results (see Theorem 3.1) the nonlinearity F' does not satisfy
(locally) Lipschitz continuity with respect to the second variable.

2. Preliminaries. We begin this section, by recalling some definitions and fixing some notati-
ons. Throughout this paper, £(X) denotes the space of all bounded linear operators from X
to X.

Definition 2.1. A two parameter family of bounded linear operators {U(t,s)}i>s on X is
called an evolution family if

(1) U(t,r)U(r,s) = U(t,s) and U(t,t) = I forallt > r > sandt,r,s € R,

(2) the map (t,s) — U(t, s)z is continuous forall x € X,t > sandt,s € R.

It is worth pointing out that “evolution family” as a basic concept in the theory of non-
autonomous evolution equations is also called evolution system, evolution operator, evolution
process, propagator, or fundamental solution. More details can be found in, e.g., [6, 21, 22].

Definition 2.2. An evolution family {U (t, s) }+>s is said to be compact if for all t > s, U(t, s)
is continuous and maps bounded subsets of X into precompact subsets of X.

Remark 2.1. Let us note that if for each ¢ € R* and some A € p(A(t)) (the resolvent
set of A(t)), the resolvent R(\, A(t)) is a compact operator, then U(¢, s) is a compact operator
whenever ¢ > s (see [23], Proposition 2.1).

Similar to one-parameter semigroups, {U (¢, s) }+> verifies the following property.

Lemma 2.1. Let {U(t, s) }+>5 be a compact evolution family on X. Then for each s € R, the
function t — U(t, s) is continuous on (s, +00) in the uniform operator topology.

By an obvious rescaling from [7] (Theorem 2.3) and [24] (Theorem 2.1) (see also [8, 25]),
the Acquistapace and Terreni conditions (AT}) and (AT5) ensures that there exists a unique
evolution family {U (¢, s) };>s on X such that

U (t, s)

M U(s) € CH(s,00), £(X)), =5 = A(OU(t,s) fort > s, and

A Ut s)ll < Ot —5)7F

for0<t—s<1,k=0,1;
otu(t,s)r . ESYaTVansy
(I1) s = —U(t,s)A(s)x fort > sand z € D(A(s)) with A(s)z € D(A(s)).
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In this case we say that (A(t));cr generate the evolution family {U (¢, s) }+>s. It should be
mentioned that when (A(t)).cr have a constant domains D(A(t)), (AT5) can be replaced with
the following condition: there exist constants Ko > 0,0 < p < 1 such that

I(A(t) — A(s))R(Ao, A(r)) || < Kt — s/

forall s,t,r € R (see, e.g., [5, 6]). Throughout this paper, we further suppose that
(H1) the evolution family {U (¢, s) }+>s is exponentially stable, i.e., there exist constants M >
> 0,6 > 0such that

Ut s)l| < M=)

forallt > sandt,s € R, and
(H)U(t+T,s+T) =U(t,s)forallt > sand U(t, s) is compact for allt > sandt,s € R.
Below, C,(R™; X) stands for the Banach space of all bounded, continuous functions « from
R* to X equipped with the sup norm

lull, = sup{|lu(t)[;t € RT}.
Let C,(R*; X) and C,,(R; X) be the spaces of functions

CoR"; X) :={z € Cb(R+§X)§t£I+nOO||$(t)H = 0},

Co(R; X) := {z € C(R; X);x is w-periodic}.

It is easy to see that Co(R*; X) and C,,(R; X), endowed with the norms || - ||op and || - ||’ :
:= supyeg || - (¢)||, are Banach space, respectively. We abbreviate Co(R™; X) to Cp(R™) when
X = R*. Write
Q= {2 € Co(R™; X);||zllo < 7}
for some r > 0.
To continue, we establish without proof the following compact criterion.

Lemma 2.2. A set D C C,(R™; X) is relatively compact if

(1) D is equicontinuous,

(2) limy—, 4 oo u(t) = 0 uniformly foru € D;

(3) the set D(t) := {u(t);u € D} is relatively compact in X for everyt > 0.

Definition 2.3. A function u € Cy,(R™; X) is said to be asymptotically w-periodic if it can be
decomposed as

u = uy + ug,
whereu; € C(R; X) anduy € C,(RT; X). The set of such functions is denoted by AP,,(R™; X).

AP, (R*; X) turns out to be a Banach space with the supremum norm || - ||o. Write
S, = {u € AP,(RT; X);||ullo < 7}
for some r > 0.
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18 R.-N. WANG, Q.-M. XIANG, Y. ZHOU

Remark 2.2. Take u € AP, (R"; X). Let us note that the decomposition of u is unique.
Indeed, if there exist uy,u;” € C(R; X) and ug, us’ € C,(R*; X) such that

u(t) = ur(t) +u2(t) = ui'(t) +u2'(t), teRT,
then one can find that for fixed ¢ € R,
ur(t) —ur'(t) = wo'(t + nw) —us(t +nw), n €N with nw > —t

in view of w3 (t) = u1(t + nw) and u1’(t) = u1'(t + nw). Taking the limit as n — +o0, one has
that uy(t) = u1'(t), t € R, as required.

A continuous function f from R x X to X is said to be w-periodic if f(t + w,z) = f(t,x)
forallt € Rand z € X. The set of such functions will be denoted by C,,(R x X; X). Let the
notation Cp(R™ x X; X)) stand for the set of functions

Co(Rx X;X) = {f € CRx X;X); lim_|f(t,2)] = 0

uniformly for = in any bounded subset of X }

Definition 2.4. A function f : RT x X — X is said to be asymptotically w-periodic if it can
be decomposed as

f=rh+r,
where f1 € C,(R x X;X) and fy € C,(RT x X; X).

Definition 2.5. An asymptotically w-periodic function f : Rt x X — X is said to be semi-
Lipschitz continuous with the Lipschitz constant L if writing f = f1+ fowith fi € C,(RxX; X)
and fr € C)(RT x X; X), there exists a constant Ly > 0 such that

If1(t,2) = At y)ll < L[l =y

forallt € Rand x,y € X.

The following fixed point theorem plays a key role in the proofs of our main results, which
can be found in many books.

Lemma 2.3 (Krasnoselskii). Let E be a Banach space and B be a bounded closed and convex
subset of E, and let Jy, Jo be maps of B into E such that J,x + Joy € B for every pair x,y € B.
If Jy is a contraction and Js is completely continuous, then the equation Jix + Jox = x has a
solution on B.

3. Main results and their proofs. This section is devoted to the study of the existence of
asymptotically w-periodic mild solutions to the Cauchy problem (1.1).

Let us introduce the following assumptions:

(Hs) F = Fy + F» : Rt x X — X is asymptotically w-periodic and semi-Lipschitz conti-
nuous with the Lipschitz constant Lg, where F; € C,(R x X; X) and F» € Co(RT x X; X).
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ASYMPTOTICALLY PERIODIC SOLUTIONS TO NONLOCAL CAUCHY PROBLEMS... 19

Moreover, there exists a function § € Cy(R") and a nondecreasing function ¢ : Rt — RT
such that for all ¢ € R* and z € X satisfying |z|| < r,

()
1Bt 2)] < 60)e(r), and timinf 27 = 5, (3.1)
Hy)H : AP,(R*; X) — X is Lipschitz continuous with Lipschitz constant L, there exists
w p p
a nondecreasing function ¢ : R™ — R such that for allu € S,,
IH@W)| < 6(), and limint 27 — 4, (3.2)

r—+oo T

Let 0 be the function involved in assumption (Hs). It is not difficult to see that

/ e 0=9)0(s) ds € Co(RT). (3.3)
0

Put
t

o3 = sup /e_‘s(t_s)ﬁ(s) ds.

teR+
0

Before stating the existence theorem, we first prove the following lemma.

Lemma 3.1. Let the hypotheses (Hy) be satisfied. Given ug € X, v € C,(R; X) and w €
€ Co(RT; X). Write

0

W(t) = Ut,0)uo — / U, s)o(s) ds + / Ut syw(s)ds, t € RY.
0

—00

Then W belongs to Co(RT; X).

Proof. Given ¢ > 0. One can choose N > 0 such that |w(t)|| < eforallt > N, since
w € Co(R*; X). From (H;) we note that

0
U(t, 0)uo — / Ut 0)u(s) ds|| < M(Jjuo|l + 5 [[vll,)e — 0 as ¢ — +oo.

Also, we derive, by a similar reasoning,
N
/U(2t,3)w(s) ds|| < M6~ e =Ny — 0 as ¢ — +oo.
0

Moreover, it follows readily that for all ¢ > N,

2t
/U(Qt,s)w(s) ds|| < Ms e
N
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20 R.-N. WANG, Q.-M. XIANG, Y. ZHOU

We thus gain from the arguments above that

2t N
/U(Qt, s)w(s)ds|| < /U(2t,s)w(s) ds|| + /U(2t,s)w(s) ds|| = 0 as t — +o0.
0 0

2t

N
Accordingly, W belongs to Cy(R™; X).
Lemma 3.1 is proved.

Definition 3.1. By a mild solution of the Cauchy problem (1.1), we mean a function v €
€ C(R™T; X) satisfying the integral equation

u(t) = U(t,0)H (u) —i—/U(t, s)F(s,u(s))ds, t=>0.
0

Now we are in a position to present our first existence result.
Theorem 3.1. Assume that the hypotheses (H1)— (Hy) hold. Then the Cauchy problem (1.1)

admits at least an asymptotically w-periodic mild solution provided that

M max{Lg,09} + MLpd™ + Mojo3 < 1. (3.4)

Proof. As assumed in (Hj3), F' is asymptotically w-periodic and is split into F; + F5 with
F) € Cy(R x X;X) and F», € C,(R" x X; X). From this it follows at once that Fy(-,v(-)) €
€ Cu(R; X)) for every v € Cy,(R; X).

Let the mapping I'! be defined by

(Tl0)(t) = /U(t,s)Fl(s,v(s))ds, v € Cu(R; X).

By (H;) we obtain

/ U(t, 5)Fi(s,0(s)) ds| < Mo Fy(-0()) .

o0

which implies that I'! is well defined and continuous on R. Moreover, one easily calculates,
by (H>),

t+w t
(TM0) (t4-w) = / U(t—l—w,s)Fl(s,v(s))ds:/U(t—i—w,s—i—w)Fl(s—l—w,v(s—i—w))ds:(Flv)(t).

—0o0

Accordingly, I'' maps C,,(R; X) into itself.
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ASYMPTOTICALLY PERIODIC SOLUTIONS TO NONLOCAL CAUCHY PROBLEMS... 21
At the same time, for any vy, v € C,(R; X), we obtain, thanks to the semi-Lipschitz conti-
nuity of F,

t
[(Tro1)(t) = (THo2)(t)]] < MLp / e |uy(s) = va(s)|| ds < ML,5|v1 — va|L.

—0o0

As a result, we have
T o1 = Thog|ls, < MLpd™or = v2||%.

This, together with (3.4), allows us to conclude, using the Banach contraction principle, that I'!
has a unique fixed point v € C,,(R; X).
Now, on Cy(R"; X') we consider an integral equations in the form

w(t) = U(t,0)H (v|p+ +w) + / U(t,s)F(s,v(s) +w(s))ds—
0

_ / U(t, s)Fi(s,v(s)) ds, 1€ R*. (3.5)

—00

Here, our objective is to show that the integral equation (3.5) admits at least a solution in
Co(RT; X).
Let us define a mapping ['? = ', + ', as

(O, w)(t) = U(t,0)H (v|g+ + w) +/U(t7 s)[F1(s,v(s) + w(s))—
0

— Fi(s,0(s))]ds, w € Co(RT; X),

0 t
(Crpw)(t) ::—/ Ul(t,s)Fi(s,v(s)) ds—l—/U(t, s)Fy(s,v(s) +w(s))ds, w € Co(RT;X).
—0o0 0

It is clear that the result follows if we can show that the mapping I'? : Co(R™; X) — Co(R™; X)
has a fixed point. The proof will be divided into four steps.

Step 1. As above, Fi(-,v(-)) € C,(R;X) for every v € C,(R;X). Also, from the semi-
Lipschitz continuity of F' we observe that for allt € RT, z € X,

[E1(t, 0(t) + ) = Fa(t,o@)] < Lgll2]),

which implies that Fi(-,v(:) + w(-)) — Fi(-,v(-) € Co(RT;X) for every w € Cp(RT;X).
Moreover, we infer that Fy(-,v(-) + w(-)) € Co(R"; X) for every w € Co(R™; X), since Fy €
€ Cyg(R* x X; X). Hence, an application of Lemma 3.1 yields that I'? is well defined and maps
Co(RT; X) into itself.

ISSN 1562-3076. Heaninitini koausarnnsa, 2013, m. 16, N2 1



22 R.-N. WANG, Q.-M. XIANG, Y. ZHOU
Next, we claim that there exists a 9 > 0 such that I'p, w1 + I'p,ws € €, for every pair
wy,wy € §y,. Indeed, from (3.1), (3.2) and (3.4) it follows readily that there exists a ro > 0
such that
Me(ro+ ||vlls) + ML,6~rg + M§ sup 1E1(t, v() || + Mp(ro + [[v]5)os < ro.
te
Noticing this and the representation of o3, we obtain that for every pair wy, w2 € Q,,,

0
I wi) () + (Crw2) ()] < M|H (v]p+ +wi)] + M / eI By (s, v(s)) |l ds+

—00

-Hw/fwﬂwa@u@+m@»—ﬂwm@mm+

+M/€6(ts)|’F2(S,U(S) + wa(s))||ds <

< M(ro + |[vlls) + MLpo™ o + M5~ sup || Fy (¢, 0(t)) ||+
teR

t
+ Mo(ro + o) /e §)ds < ro.
0

Accordingly, the claim follows.

Step 2. Taking wi,we € £, from the Lipschitz continuity of H and the semi-Lipschitz
continuity of F' we obtain

[(Crw1)(t) = (Crw2)(t)]] < M| H(v|p+ +w1) — H(v|g+ +w2)|[+

+M/5WMwuwmwwmm—m@M@+m@mws
0

t
< MLg|lwi(t) — wa(t)]fo + MLF/C_é(t_S)le(S) —wz(s)| ds <
0

< M(Lg + Lpd™")|lwi — wallo,

from which together with (3.4) we see that ', is a strict contraction on ;..

Step 3. We show that I' F2 is completely continuous on €2,.,.
Given e > 0. Let {w;}; 2] C Qy, with wy, — wo in Co(R™; X) as k — +oo0.
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Since 6 € Cy(R™), one may choose a t; > 0 big enough such that
3Mp(ro + [[v]50)0(¢) < de

whenever ¢ > ¢;. Also, in view of (H3) we have F5(s,v(s) + wg(s)) — Fa(s,v(s) +w(s)) for all
s € [0,t;] as k — oo and

172, v() +wi()) = Fo(, v() + w())I| < 20(r0 + [[v]15)0() € L0, t1).

Hence, by the Lebesgue dominated convergence theorem we deduce that there existsan NV > 0
such that for any t € R™,

[(Crwe)(t) — (Crw) ()] < M/||F2(S7U(8) + wi(s)) — Fa(s, v(s) + w(s))| ds+
0

max{t,t1}

2
+ oMo+ [[v]L) / (s ds < S+ 2 = ¢

t1

whenever k > N. Accordingly, I', is continuous on €2, .
In the sequel, we consider the compactness of I',. Since that the function

0
t— /U(t,s)Fl(s,v(s))ds

belongs to Cyp(R™; X) due to Lemma 3.1 and is independent of w, it suffices to show that the
mapping I}, given by

(I‘;2w)(t) = /U(t s)Fy(s,v(s) +w(s))ds, w € Co(RT;X),
0

is compact.
Let¢ > 0 be fixed. For any ¢ € (0,t), note that U(t,t —¢/2) € L(X)and U(t —e/2,t — ¢)
is compact in X due to (H3). Therefore, for every w € §,,, as

(Trw)(t) = /U(t,S)Fz(s,v(s) +w(s))ds + U (t,t— g) U <t— %,t—e) x

€

x [ U(t—e,s)Fa(s,v(s) +w(s))ds,

O—T
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24 R.-N. WANG, Q.-M. XIANG, Y. ZHOU

and
¢ t
/ Ul(t, s)Fa(s,v(s) +w(s))ds|| < Me(ro+ |Jv]|5) / e =90(s)ds — 0 as ¢ = 0
t—e t—e

due to (Hy) and (3.1), we conclude, using the total boundedness, that for each ¢ > 0, the set
{(Tp,w)(t);w € Q,} is relatively compact in X.

Next, we verify the equicontinuity of the set {I'y w;w € Q,}. Let £ > 0 be small enough
and s1,s2 € RY, w € Q,,. Then by (H;) and (3.1) we have that for the case when s; < sa,

|(Tr,w)(s2) — (Trw) (sl < /HU(82,S)F2(S,U(S)+w(8))Hd8+

S1

/H (s2,5) = U(s1,5))Fa(s,v(s) +w(s))| ds+

/H (52,5) — U(s1,5))Fa(s,v(s) +w(s))||ds <

s2
< Mo(ro+ v]ly) / e~362=9)g(s) ds +

s1
+(ro + [[vllk) [Sup ]II(U(Sz,) (s1,s H/ s) ds+
s€l0,s1—kK

51
+ Mo(ro + ||v]|%) / (676(5278) + 676(8178)> O(s)ds — 0

S1—K
as ss—s; — 0, k—0,

and for the case when 0 = 57 < s9,

I(Tr,w)(s2) = (Trw)(s1)ll < Mep(ro + [[v][5) / *279f(s) ds — 0 as sy — 0,
0

which verifies that the result follows.
Finally, as

t
| w) ()| < Moo + |v||go)/e—5<t—s>9(s) ds — 0 as t — oo,
0
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uniformly for w € Q,, in view of (3.3), we conclude that I';, w vanishes at infinity uniformly
forw € Q.

Now an application of Lemma 2.2 justifies the compactness of ', , which together with the
representation of I' , implies that I' s, is compact.

Step 4. As shown in Step 2 and in Step 3, respectively, ', is a strict contraction and I'p, is
completely continuous. Accordingly, we deduce, thanks to Lemma 2.3, that the integral equati-
on (3.5) admits at least a solution w € Cy(R™; X).

Noting that w € Cy(R™; X) satisfies the integral equation (3.5) and v € C,,(R; X) satisfies
the integral equation

o(t) = /U(t,s)Fl(s,v(s))ds, ve LR X), tER,

—00

we deduce that v+w € AP, (R™; X) is an asymptotically w-periodic mild solution to the Cauchy
problem (1.1).

Theorem 3.1 is proved.

The following is a direct consequence of Theorem 3.1.

Corollary 3.1. Assume that the hypotheses (Hy) - (H3) hold, H(u) = uo € X and ML, 6+
+Moaoios < 1. Then there exists an asymptotically w-periodic mild solution to the Cauchy prob-
lem (1.1).

Below, we will establish the existence result of asymptotically w-periodic mild solutions to
the Cauchy problem (1.1) for the case of H being completely continuous.

Theorem 3.2. Let the hypotheses (H1)— (H3) hold. Assume in addition that
(H}) H : AP,(R"; X) — X is completely continuous, there exists a nondecreasing function
¢ : RT — RY such that for allu € S,,

\H@W)| < 6(r), and limint 27 — o,

r—+oo T

Then the Cauchy problem (1.1) admits at least an asymptotically w-periodic mild solution provi-
ded that

Moy + MLpé~t + Mooz < 1. (3.6)

Proof. Assume that the operator I'! is defined the same as in Theorem 3.1 and v € C,,(R; X),
coming from Theorem 3.1, is a unique fixed point of T'L.
Consider a mapping Q = Q' + Q? defined by

(Qlw)(t) = /U(t, s) [Fi(s,v(s) +w(s)) — Fi(s,v(s))] ds, w € Co(RT;X),
0
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0

(Q%*w)(t) := U(t,0)H (v|g+ + w) — / Ul(t,s)Fi(s,v(s))ds+

t
+/Ut s)Fy(s,v(s) +w(s))ds, w € Co(RT; X).
0

From our assumptions it follows that @ is well defined and maps Cy(R™; X) into itself and there
exists a rg > 0 such that Q'w; + Q?*ws € €, for every pair wy, ws € €2, (see the Step 1 in the
proof of Theorem 3.1 for more details). Thus, to be able to apply Lemma 2.3 to obtain a fixed
point of Q, we need to prove that Q! is a strict contraction and Q? is completely continuous
on .

From (3.6) and the Step 2 in the proof of Theorem 3.1 we see that Q' is a strict contraction.
Also, since H : AP,(RT; X) — X is completely continuous, it follows from the Step 3 in the
proof of Theorem 3.1 that Q? is completely continuous. Now, applying Lemma 2.3 we obtain
that @ has a fixed point w € Cy(R™; X), which gives rise to an asymptotically w-periodic mild
solution v + w.

Theorem 3.2 is proved.

As an application, let us consider a partial differential equation with homogeneous Dirichlet
boundary condition and nonlocal initial condition

Ou(t,§) 0%u(t,¢)

+ d(t)u(t,§) :Sin% sinu(t, &) +e tu(t, &) cosud(t, £), t >0, £ € [0,7],

ot €2
u(t,0) = u(t,7) =0, tc R, (3.7)
u(0,€) = uo(§ +Zcu si,€), € € (0,7,
where 0 < s1 < ... < s, < +ooand C;,i = 1,...,p, are given constants, ug € L?|0, ],

d : R — R is continuously differentiable, d(t +w) = d(t) for all ¢t € R, and

dmin := mind(t) > —1.
teR

Take X = L?|0, 7] with the norm || - | £2(0,- and inner product (-, -)2. Define
D(A(t)) := D(B), teR,
A(t)x :== Bu—d(t)z, x € D(A(t)),
where the operator B : D(B) C X — X is given by

0%x
Bx = 0752, x € D(B),

D(B) = {z € X;x,2 are absolutely continuous, z” € X, and 2(0) = x(m) = 0}.
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It is well-known that B has a discrete spectrum and its eigenvalues are —n?,n € N*, with the

2
corresponding normalized eigenvectors y,(§) = 4/ —sin(n). More details about these facts
™

can be seen from the monograph [6] of Pazy.
It is clear that (A(t)):cr satisfies the conditions (AT}) and (A7:), which ensure that it
generates an evolution family {U (¢, s) }+>s and

Ult,s)z = Ze_(fst d(r) dST+”2(t_S))(x,yn)2yn forall ¢t > s,z € X. (3.8)

n=1

A direct calculation gives
(U, s)|| < e”UFdmin)(t=5)  forall ¢ > s.

Note also that for each ¢t > s, the operator U(t, s) is a nuclear operator, which yields the
compactness of U (¢, s) for ¢t > s.
Now, we define

Fi(t,z(§)) = sin%sinx(f), teR, zeX,
By(t, (&) := e 'x(&) cosz®(€), teRY, z€ X,

H(u(t,€)) = uo(&) + Y _ Ciu(ti,€), u € AP,(RF; X).
i=1

It is easy to verify that 7 : Rx X — X and Fy : RT x X — X are continuous, F (t +w,z) =
= Fi(t,z) forallt € Rand z € X, and

|Fi(t,z) — Fi(t,y)|| < [lo —y| forall ¢eR", z,ye€ X,

| Fo(t,z)|| < e P|z|| forall ¢t € R, =z ¢ X,

p
1H (u) = H()|| < > |Cillu —v]lo forall wu,ve AP,(R*;X).

=1

Moreover, the assumptions (H;)— (H4) hold with
P P
Ly=o2= |Cl, Lr=1 o(r)=r¢(r)= lull+r) |Cil,
i=1 =1

1
H(t) = 67t7 o1 = 17 03 < ﬁa M = 17 0 = 1+dmin-
Therefore, (3.7) can be reformulated as the abstract Cauchy problem (1.1). Hence, when
P L1C + Trd < 1 such that condition (3.4) is satisfied, it follows from Theorem 3.1 that
the partial differerrrll‘érilal equation (3.7) at least has one asymptotically w-periodic mild solution.
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