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This paper is devoted to a study of a class of abstract Cauchy problems for semilinear nonautonomous
evolution equations involving nonlocal initial conditions. Combining the theory of evolution families and
the fixed point theorem due to Krasnoselskii, as well as a decomposition technique, we prove the existence
of the asymptotically periodic mild solutions to such problems. Our results generalize and improve some
previous results since the (locally) Lipschitz continuity on the nonlinearity is not required. A partial dif-
ferential equation is also presented as an application.

Статтю присвячено вивченню класу абстрактних задач Кошi для напiвлiнiйних неавтономних
еволюцiйних рiвнянь з нелокальними початковими умовами. З використанням теорiї еволюцiй-
них сiмей та теореми Красносельського про нерухому точку, а також технiки розкладу доведе-
но iснування асимптотично перiодичних м’яких розв’язкiв таких задач. Наведенi результати
узагальнюють та покращують попереднi результати, оскiльки не вимагається, щоб нелiнiй-
нiсть задовольняла (локальну) умову Лiпшиця. Як приклад наведено диференцiальне рiвняння з
частинними похiдними.

1. Introduction. The study of asymptotically periodic solutions is one of the most attracting
topics in the qualitative theory of differential or integral equations. The motivation for this
study lies in both its mathematical interest and the applications in physics, mathematical bi-
ology, control theory, and so forth. Some recent contributions have been made. For instance,
de Andrade and Cuevas [1] studied the existence and uniqueness of asymptotically ω-periodic
solutions to an abstract differential equation with linear part dominated by a Hille – Yosida
operator with non-dense domain, Pierri [2] established some conditions under which an S-
asymptotically ω-periodic function is asymptotically ω-periodic and discussed the existence of
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asymptotically ω-periodic solutions to an abstract integral equation, and Agarwal et al. [3]
examined the asymptotically ω-periodic solutions to an abstract neutral integro-differential
equation with infinite delay. However, we note that in the papers mentioned above, most results
were done under the (locally) Lipschitz continuity on the nonlinearity. It is also noted that
Henriquez et al. [4] gave a relationship between S-asymptotically ω-periodic function and the
class of asymptotically ω-periodic functions.

When dealing with parabolic evolution equation, it is usually assumed that the partial dif-
ferential operator in the linear part (possibly unbounded) depends on time (i.e., it is the case
of equations being non-autonomous), stimulated by the fact that this class of operators appears
very often in the applications (see, e.g., [5, 6]). In the present work we deal with the asymptoti-
cally periodic solutions for the Cauchy problem consisting in the standard nonautonomous
parabolic evolution equation supplied with a nonlocal initial condition in the Banach space
X with norm ‖ · ‖. The precise problem is

u′(t) = A(t)u(t) + F (t, u(t)), t > 0,
(1.1)

u(0) = H(u),

where F, H are given nonlinear functions to be specified later. As can be seen, H constitutes a
nonlocal condition. Throughout, it is assumed that A(t) (usually unbounded) for each t, having
domain D(A(t)), is a closed and densely defined linear operator on X satisfying the Acqui-
stapace and Terreni conditions (AT1) and (AT2):

(AT1) There are constants λ0 ≥ 0, θ ∈
(π

2
, π
)

andK1 ≥ 0 such that Σθ∪{0} ⊂ ρ(A(t)−λ0)
and for all λ ∈ Σθ ∪ {0} and t ∈ R,

‖R(λ,A(t)− λ0)‖ ≤
K1

1 + |λ|
.

(AT2) There are constants K2 ≥ 0 and α, β ∈ (0, 1] with α+ β > 1 such that for all λ ∈ Σθ

and t, s ∈ R

‖(A(t)− λ0)R(λ,A(t)− λ0)[R(λ0, A(t))−R(λ0, A(s))]‖ ≤ K2|t− s|α

|λ|β
.

Here Σθ := {λ ∈ C\{0}; |λ| ≤ θ}. Conditions (AT1) and (AT2), which are initiated by Acqui-
stapace and Terreni [7, 8] for λ0 = 0, are well understood and widely used in the literature.

As indicated in [9 – 15] and the related references given there, another motivation for the
study to the problem (1.1) is due to the fact that the nonlocal initial condition u(0) = H(u)
models many interesting nature phenomena, with which the normal initial condition u(0) = u0
may not fit in. It is mentioned that in some previous work such as Byszewski [16] (see also
Deng [17], Lin and Liu [18]), the functionH(u) is given byH(u) = g(t1, . . . , tp, u(t1), . . . , u(tp))−
−u0 (here 0 < t1 < . . . < tp < +∞ and g is a given function), which allows the measurements
at t = 0, t1, . . . , tp, rather than just at t = 0. So more information is available. Nonautonomous
problems of type (1.1) on a finite interval have been investigated in many papers; see, e.g., [19]
for the existence of mild solutions and [20] for the existence of classical solutions.

As we all know, the study of the existence of asymptotically ω-periodic solutions for non-
autonomous problems of type (1.1) is a topic not yet considered in the literature. In this paper
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16 R.-N. WANG, Q.-M. XIANG, Y. ZHOU

we aim at extending the early investigations to the nonautonomous Cauchy problem (1.1). New
existence results of asymptotically ω-periodic mild solutions are established, without imposing
(locally) Lipschitz condition on the nonlinearity F with respect to the second variable. On
the way towards our main results, we make use of the theory of evolution families generated
by A(t) (including the compactness of evolution families) and the fixed point theorem due
to Krasnoselskii as well as a decomposition technique. The results obtained in this paper are
generalizations of related results. Moreover, even for the Cauchy problems of abstract evoluti-
on equations without nonlocal initial conditions, the results are also new.

We end this section with the following remark.

Remark 1.1. We mention that much less is known about the existence of asymptotically ω-
periodic solutions to the problem (1.1) (including the autonomous case, i.e., A(t) ≡ A) when
the nonlinearity F as a whole loses the Lipschitz continuity with respect to the second variable.
As the reader will see, in our results (see Theorem 3.1) the nonlinearity F does not satisfy
(locally) Lipschitz continuity with respect to the second variable.

2. Preliminaries. We begin this section, by recalling some definitions and fixing some notati-
ons. Throughout this paper, L(X) denotes the space of all bounded linear operators from X
to X.

Definition 2.1. A two parameter family of bounded linear operators {U(t, s)}t≥s on X is
called an evolution family if

(1) U(t, r)U(r, s) = U(t, s) and U(t, t) = I for all t ≥ r ≥ s and t, r, s ∈ R,
(2) the map (t, s) 7→ U(t, s)x is continuous for all x ∈ X, t ≥ s and t, s ∈ R.

It is worth pointing out that “evolution family” as a basic concept in the theory of non-
autonomous evolution equations is also called evolution system, evolution operator, evolution
process, propagator, or fundamental solution. More details can be found in, e.g., [6, 21, 22].

Definition 2.2. An evolution family {U(t, s)}t≥s is said to be compact if for all t > s, U(t, s)
is continuous and maps bounded subsets of X into precompact subsets of X.

Remark 2.1. Let us note that if for each t ∈ R+ and some λ ∈ ρ(A(t)) (the resolvent
set of A(t)), the resolvent R(λ,A(t)) is a compact operator, then U(t, s) is a compact operator
whenever t > s (see [23], Proposition 2.1).

Similar to one-parameter semigroups, {U(t, s)}t≥s verifies the following property.

Lemma 2.1. Let {U(t, s)}t≥s be a compact evolution family on X. Then for each s ∈ R, the
function t 7→ U(t, s) is continuous on (s,+∞) in the uniform operator topology.

By an obvious rescaling from [7] (Theorem 2.3) and [24] (Theorem 2.1) (see also [8, 25]),
the Acquistapace and Terreni conditions (AT1) and (AT2) ensures that there exists a unique
evolution family {U(t, s)}t≥s on X such that

(I) U(·, s) ∈ C1((s,∞),L(X)),
∂U(t, s)

∂t
= A(t)U(t, s) for t > s, and

‖A(t)kU(t, s)‖ ≤ C(t− s)−k

for 0 < t− s ≤ 1, k = 0, 1;

(II)
∂+U(t, s)x

∂s
= −U(t, s)A(s)x for t > s and x ∈ D(A(s)) with A(s)x ∈ D(A(s)).
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In this case we say that (A(t))t∈R generate the evolution family {U(t, s)}t≥s. It should be
mentioned that when (A(t))t∈R have a constant domains D(A(t)), (AT2) can be replaced with
the following condition: there exist constants K2 > 0, 0 < µ ≤ 1 such that

‖(A(t)−A(s))R(λ0, A(r))‖ ≤ K2|t− s|µ

for all s, t, r ∈ R (see, e.g., [5, 6]). Throughout this paper, we further suppose that
(H1) the evolution family {U(t, s)}t≥s is exponentially stable, i.e., there exist constantsM >

> 0, δ > 0 such that
‖U(t, s)‖ ≤ Me−δ(t−s)

for all t ≥ s and t, s ∈ R, and
(H2) U(t+T, s+T ) = U(t, s) for all t ≥ s and U(t, s) is compact for all t > s and t, s ∈ R.
Below, Cb(R+;X) stands for the Banach space of all bounded, continuous functions u from

R+ to X equipped with the sup norm

‖u‖0 = sup{‖u(t)‖; t ∈ R+}.

Let C0(R+;X) and Cω(R;X) be the spaces of functions

C0(R+;X) := {x ∈ Cb(R+;X); lim
t→+∞

‖x(t)‖ = 0},

Cω(R;X) := {x ∈ C(R;X);x is ω-periodic}.

It is easy to see that C0(R+;X) and Cω(R;X), endowed with the norms ‖ · ‖0 and ‖ · ‖′∞ :=
:= supt∈R ‖ · (t)‖, are Banach space, respectively. We abbreviate C0(R+;X) to C0(R+) when
X = R+. Write

Ωr := {x ∈ C0(R+;X); ‖x‖0 ≤ r}

for some r > 0.
To continue, we establish without proof the following compact criterion.

Lemma 2.2. A set D ⊂ C0(R+;X) is relatively compact if
(1) D is equicontinuous;
(2) limt→+∞ u(t) = 0 uniformly for u ∈ D;
(3) the set D(t) := {u(t);u ∈ D} is relatively compact in X for every t ≥ 0.

Definition 2.3. A function u ∈ Cb(R+;X) is said to be asymptotically ω-periodic if it can be
decomposed as

u = u1 + u2,

where u1 ∈ Cω(R;X) and u2 ∈ C0(R+;X). The set of such functions is denoted byAPω(R+;X).

APω(R+;X) turns out to be a Banach space with the supremum norm ‖ · ‖0. Write

Sr := {u ∈ APω(R+;X); ‖u‖0 ≤ r}

for some r > 0.
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Remark 2.2. Take u ∈ APω(R+;X). Let us note that the decomposition of u is unique.
Indeed, if there exist u1, u1′ ∈ Cω(R;X) and u2, u2′ ∈ C0(R+;X) such that

u(t) = u1(t) + u2(t) = u1
′(t) + u2

′(t), t ∈ R+,

then one can find that for fixed t ∈ R,

u1(t)− u1′(t) = u2
′(t+ nω)− u2(t+ nω), n ∈ N with nω ≥ −t

in view of u1(t) = u1(t + nω) and u1′(t) = u1
′(t + nω). Taking the limit as n → +∞, one has

that u1(t) = u1
′(t), t ∈ R, as required.

A continuous function f from R × X to X is said to be ω-periodic if f(t + ω, x) = f(t, x)
for all t ∈ R and x ∈ X. The set of such functions will be denoted by Cω(R × X;X). Let the
notation C0(R+ ×X;X) stand for the set of functions

C0(R×X;X) =
{
f ∈ C(R×X;X); lim

t→+∞
‖f(t, x)‖ = 0

uniformly for x in any bounded subset of X
}
.

Definition 2.4. A function f : R+ ×X → X is said to be asymptotically ω-periodic if it can
be decomposed as

f = f1 + f2,

where f1 ∈ Cω(R×X;X) and f2 ∈ C0(R+ ×X;X).

Definition 2.5. An asymptotically ω-periodic function f : R+ × X → X is said to be semi-
Lipschitz continuous with the Lipschitz constantL if writing f = f1+f2 with f1 ∈ Cω(R×X;X)
and f2 ∈ C0(R+ ×X;X), there exists a constant Lf > 0 such that

‖f1(t, x)− f1(t, y)‖ ≤ L
f
‖x− y‖

for all t ∈ R and x, y ∈ X.

The following fixed point theorem plays a key role in the proofs of our main results, which
can be found in many books.

Lemma 2.3 (Krasnoselskii). LetE be a Banach space andB be a bounded closed and convex
subset of E, and let J1, J2 be maps of B into E such that J1x+ J2y ∈ B for every pair x, y ∈ B.
If J1 is a contraction and J2 is completely continuous, then the equation J1x + J2x = x has a
solution on B.

3. Main results and their proofs. This section is devoted to the study of the existence of
asymptotically ω-periodic mild solutions to the Cauchy problem (1.1).

Let us introduce the following assumptions:
(H3) F = F1 + F2 : R+ × X → X is asymptotically ω-periodic and semi-Lipschitz conti-

nuous with the Lipschitz constant LF , where F1 ∈ Cω(R × X;X) and F2 ∈ C0(R+ × X;X).
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Moreover, there exists a function θ ∈ C0(R+) and a nondecreasing function ϕ : R+ → R+

such that for all t ∈ R+ and x ∈ X satisfying ‖x‖ ≤ r,

‖F2(t, x)‖ ≤ θ(t)ϕ(r), and lim inf
r→+∞

ϕ(r)

r
= σ1. (3.1)

(H4)H : APω(R+;X) → X is Lipschitz continuous with Lipschitz constantLH , there exists
a nondecreasing function φ : R+ → R+ such that for all u ∈ Sr,

‖H(u)‖ ≤ φ(r), and lim inf
r→+∞

φ(r)

r
= σ2. (3.2)

Let θ be the function involved in assumption (H3). It is not difficult to see that

·∫
0

e−δ(·−s)θ(s) ds ∈ C0(R+). (3.3)

Put

σ3 := sup
t∈R+

t∫
0

e−δ(t−s)θ(s) ds.

Before stating the existence theorem, we first prove the following lemma.

Lemma 3.1. Let the hypotheses (H1) be satisfied. Given u0 ∈ X, v ∈ Cω(R;X) and w ∈
∈ C0(R+;X). Write

W (t) := U(t, 0)u0 −
0∫

−∞

U(t, s)v(s) ds+

t∫
0

U(t, s)w(s) ds, t ∈ R+.

Then W belongs to C0(R+;X).

Proof. Given ε > 0. One can choose N > 0 such that ‖w(t)‖ < ε for all t ≥ N, since
w ∈ C0(R+;X). From (H1) we note that∥∥∥∥∥∥U(t, 0)u0 −

0∫
−∞

U(t, 0)v(s) ds

∥∥∥∥∥∥ ≤ M(‖u0‖+ δ−1‖v‖′∞)e−δt → 0 as t → +∞.

Also, we derive, by a similar reasoning,∥∥∥∥∥∥
N∫
0

U(2t, s)w(s) ds

∥∥∥∥∥∥ ≤ Mδ−1e−δ(2t−N)‖w‖0 → 0 as t → +∞.

Moreover, it follows readily that for all t ≥ N,∥∥∥∥∥∥
2t∫
N

U(2t, s)w(s) ds

∥∥∥∥∥∥ ≤ Mδ−1ε.
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We thus gain from the arguments above that∥∥∥∥∥∥
2t∫
0

U(2t, s)w(s) ds

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
N∫
0

U(2t, s)w(s) ds

∥∥∥∥∥∥+

∥∥∥∥∥∥
2t∫
N

U(2t, s)w(s) ds

∥∥∥∥∥∥ → 0 as t → +∞.

Accordingly, W belongs to C0(R+;X).
Lemma 3.1 is proved.

Definition 3.1. By a mild solution of the Cauchy problem (1.1), we mean a function u ∈
∈ C(R+;X) satisfying the integral equation

u(t) = U(t, 0)H(u) +

t∫
0

U(t, s)F (s, u(s)) ds, t ≥ 0.

Now we are in a position to present our first existence result.

Theorem 3.1. Assume that the hypotheses (H1) – (H4) hold. Then the Cauchy problem (1.1)
admits at least an asymptotically ω-periodic mild solution provided that

M max{LH , σ2}+MLF δ
−1 +Mσ1σ3 < 1. (3.4)

Proof. As assumed in (H3), F is asymptotically ω-periodic and is split into F1 + F2 with
F1 ∈ Cω(R × X;X) and F2 ∈ C0(R+ × X;X). From this it follows at once that F1(·, v(·)) ∈
∈ Cω(R;X) for every v ∈ Cω(R;X).

Let the mapping Γ1 be defined by

(Γ1v)(t) =

t∫
−∞

U(t, s)F1(s, v(s)) ds, v ∈ Cω(R;X).

By (H1) we obtain ∥∥∥∥∥∥
t∫

−∞

U(t, s)F1(s, v(s)) ds

∥∥∥∥∥∥ ≤ Mδ−1‖F1(·, v(·))‖′∞,

which implies that Γ1 is well defined and continuous on R. Moreover, one easily calculates,
by (H2),

(Γ1v)(t+ω) =

t+ω∫
−∞

U(t+ω, s)F1(s, v(s)) ds=

t∫
−∞

U(t+ω, s+ω)F1(s+ω, v(s+ω)) ds= (Γ1v)(t).

Accordingly, Γ1 maps Cω(R;X) into itself.
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At the same time, for any v1, v2 ∈ Cω(R;X), we obtain, thanks to the semi-Lipschitz conti-
nuity of F,

‖(Γ1v1)(t)− (Γ1v2)(t)‖ ≤ MLF

t∫
−∞

e−δ(t−s)‖v1(s)− v2(s)‖ ds ≤ MLF δ
−1‖v1 − v2‖′∞.

As a result, we have
‖Γ1v1 − Γ1v2‖′∞ ≤ MLF δ

−1‖v1 − v2‖′∞.

This, together with (3.4), allows us to conclude, using the Banach contraction principle, that Γ1

has a unique fixed point v ∈ Cω(R;X).
Now, on C0(R+;X) we consider an integral equations in the form

w(t) = U(t, 0)H(v|R+ + w) +

t∫
0

U(t, s)F (s, v(s) + w(s)) ds−

−
t∫

−∞

U(t, s)F1(s, v(s)) ds, t ∈ R+. (3.5)

Here, our objective is to show that the integral equation (3.5) admits at least a solution in
C0(R+;X).

Let us define a mapping Γ2 = ΓF1 + ΓF2 as

(ΓF1
w)(t) := U(t, 0)H(v|R+ + w) +

t∫
0

U(t, s)[F1(s, v(s) + w(s))−

− F1(s, v(s))] ds, w ∈ C0(R+;X),

(ΓF2w)(t) :=−
0∫

−∞

U(t, s)F1(s, v(s)) ds+

t∫
0

U(t, s)F2(s, v(s) + w(s)) ds, w ∈ C0(R+;X).

It is clear that the result follows if we can show that the mapping Γ2 : C0(R+;X) → C0(R+;X)
has a fixed point. The proof will be divided into four steps.

Step 1. As above, F1(·, v(·)) ∈ Cω(R;X) for every v ∈ Cω(R;X). Also, from the semi-
Lipschitz continuity of F we observe that for all t ∈ R+, x ∈ X,

‖F1(t, v(t) + x)− F1(t, v(t)‖ ≤ LF ‖x‖,

which implies that F1(·, v(·) + w(·)) − F1(·, v(·) ∈ C0(R+;X) for every w ∈ C0(R+;X).
Moreover, we infer that F2(·, v(·) + w(·)) ∈ C0(R+;X) for every w ∈ C0(R+;X), since F2 ∈
∈ C0(R+ ×X;X). Hence, an application of Lemma 3.1 yields that Γ2 is well defined and maps
C0(R+;X) into itself.
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Next, we claim that there exists a r0 > 0 such that ΓF1w1 + ΓF2w2 ∈ Ωr0 for every pair
w1, w2 ∈ Ωr0 . Indeed, from (3.1), (3.2) and (3.4) it follows readily that there exists a r0 > 0
such that

Mφ(r0 + ‖v‖′∞) +MLF δ
−1r0 +Mδ−1 sup

t∈R
‖F1(t, v(t))‖+Mϕ(r0 + ‖v‖′∞)σ3 ≤ r0.

Noticing this and the representation of σ3, we obtain that for every pair w1, w2 ∈ Ωr0 ,

‖(ΓF1w1)(t) + (ΓF2w2)(t)‖ ≤ M‖H(v|R+ + w1)‖+M

0∫
−∞

e−δ(t−s)‖F1(s, v(s))‖ ds+

+M

t∫
0

e−δ(t−s)‖F1(s, v(s) + w1(s))− F1(s, v(s))‖ ds+

+M

t∫
0

e−δ(t−s)‖F2(s, v(s) + w2(s))‖ ds ≤

≤ Mφ(r0 + ‖v‖′∞) +MLF δ
−1r0 +Mδ−1 sup

t∈R
‖F1(t, v(t))‖+

+Mϕ(r0 + ‖v‖′∞)

t∫
0

e−δ(t−s)θ(s) ds ≤ r0.

Accordingly, the claim follows.

Step 2. Taking w1, w2 ∈ Ωr0 , from the Lipschitz continuity of H and the semi-Lipschitz
continuity of F we obtain

‖(ΓF1w1)(t)− (ΓF1w2)(t)‖ ≤ M‖H(v|R+ + w1)−H(v|R+ + w2)‖+

+M

t∫
0

e−δ(t−s)‖F1(s, v(s) + w1(s))− F1(s, v(s) + w2(s))‖ ds ≤

≤ MLH‖w1(t)− w2(t)‖0 +MLF

t∫
0

e−δ(t−s)‖w1(s)− w2(s)‖ ds ≤

≤ M(LH + LF δ
−1)‖w1 − w2‖0,

from which together with (3.4) we see that ΓF1 is a strict contraction on Ωr0 .

Step 3. We show that ΓF2 is completely continuous on Ωr0 .

Given ε > 0. Let {wk}+∞k=1 ⊂ Ωr0 with wk → w0 in C0(R+;X) as k → +∞.
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Since θ ∈ C0(R+), one may choose a t1 > 0 big enough such that

3Mϕ(r0 + ‖v‖′∞)θ(t) < δε

whenever t ≥ t1. Also, in view of (H3) we have F2(s, v(s) +wk(s)) → F2(s, v(s) +w(s)) for all
s ∈ [0, t1] as k → ∞ and

‖F2(·, v(·) + wk(·))− F2(·, v(·) + w(·))‖ ≤ 2ϕ(r0 + ‖v‖′∞)θ(·) ∈ L1(0, t1).

Hence, by the Lebesgue dominated convergence theorem we deduce that there exists anN > 0
such that for any t ∈ R+,

‖(ΓF2wk)(t)− (ΓF2w)(t)‖ ≤ M

t1∫
0

‖F2(s, v(s) + wk(s))− F2(s, v(s) + w(s))‖ ds+

+ 2Mϕ(r0 + ‖v‖′∞)

max{t,t1}∫
t1

e−δ(t−s)θ(s) ds <
ε

3
+

2ε

3
= ε

whenever k ≥ N. Accordingly, ΓF2 is continuous on Ωr0 .

In the sequel, we consider the compactness of ΓF2 . Since that the function

t 7→
0∫

−∞

U(t, s)F1(s, v(s)) ds

belongs to C0(R+;X) due to Lemma 3.1 and is independent of w, it suffices to show that the
mapping Γ′F2

given by

(Γ′
F2
w)(t) :=

t∫
0

U(t, s)F2(s, v(s) + w(s)) ds, w ∈ C0(R+;X),

is compact.
Let t > 0 be fixed. For any ε ∈ (0, t), note that U(t, t− ε/2) ∈ L(X) and U(t− ε/2, t− ε)

is compact in X due to (H2). Therefore, for every w ∈ Ωr0 , as

(Γ′F2
w)(t) =

t∫
t−ε

U(t, s)F2(s, v(s) + w(s)) ds+ U
(
t, t− ε

2

)
U
(
t− ε

2
, t− ε

)
×

×
t−ε∫
0

U(t− ε, s)F2(s, v(s) + w(s)) ds,
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and∥∥∥∥∥∥
t∫

t−ε

U(t, s)F2(s, v(s) + w(s)) ds

∥∥∥∥∥∥ ≤ Mϕ(r0 + ‖v‖′∞)

t∫
t−ε

e−δ(t−s)θ(s) ds → 0 as ε → 0

due to (H1) and (3.1), we conclude, using the total boundedness, that for each t > 0, the set
{(Γ′F2

w)(t);w ∈ Ωr0} is relatively compact in X.
Next, we verify the equicontinuity of the set {Γ′F2

w;w ∈ Ωr0}. Let κ > 0 be small enough
and s1, s2 ∈ R+, w ∈ Ωr0 . Then by (H1) and (3.1) we have that for the case when s1 < s2,

‖(Γ′F2
w)(s2)− (Γ′F2

w)(s1)‖ ≤
s2∫
s1

‖U(s2, s)F2(s, v(s) + w(s))‖ ds+

+

s1−κ∫
0

‖(U(s2, s)− U(s1, s))F2(s, v(s) + w(s))‖ ds+

+

s1∫
s1−κ

‖(U(s2, s)− U(s1, s))F2(s, v(s) + w(s))‖ ds ≤

≤ Mϕ(r0 + ‖v‖′∞)

s2∫
s1

e−δ(s2−s)θ(s) ds+

+ ϕ(r0 + ‖v‖′∞) sup
s∈[0,s1−κ]

‖(U(s2, s)− U(s1, s))‖
s1−κ∫
0

θ(s) ds+

+Mϕ(r0 + ‖v‖′∞)

s1∫
s1−κ

(
e−δ(s2−s) + e−δ(s1−s)

)
θ(s) ds → 0

as s2 − s1 → 0, κ → 0,

and for the case when 0 = s1 < s2,

‖(Γ′F2
w)(s2)− (Γ′F2

w)(s1)‖ ≤ Mϕ(r0 + ‖v‖′∞)

s2∫
0

e−δ(s2−s)θ(s) ds → 0 as s2 → 0,

which verifies that the result follows.
Finally, as

‖(Γ′F2
w)(t)‖ ≤ Mϕ(r0 + ‖v‖′∞)

t∫
0

e−δ(t−s)θ(s) ds → 0 as t → ∞,
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uniformly for w ∈ Ωr0 in view of (3.3), we conclude that Γ′F2
w vanishes at infinity uniformly

for w ∈ Ωr0 .

Now an application of Lemma 2.2 justifies the compactness of Γ′F2
, which together with the

representation of ΓF2 implies that ΓF2 is compact.

Step 4. As shown in Step 2 and in Step 3, respectively, ΓF1 is a strict contraction and ΓF2 is
completely continuous. Accordingly, we deduce, thanks to Lemma 2.3, that the integral equati-
on (3.5) admits at least a solution w ∈ C0(R+;X).

Noting that w ∈ C0(R+;X) satisfies the integral equation (3.5) and v ∈ Cω(R;X) satisfies
the integral equation

v(t) =

t∫
−∞

U(t, s)F1(s, v(s)) ds, v ∈ Cω(R;X), t ∈ R,

we deduce that v+w ∈ APω(R+;X) is an asymptotically ω-periodic mild solution to the Cauchy
problem (1.1).

Theorem 3.1 is proved.
The following is a direct consequence of Theorem 3.1.

Corollary 3.1. Assume that the hypotheses (H1) – (H3) hold,H(u) ≡ u0 ∈ X andMLF δ
−1+

+Mσ1σ3 < 1. Then there exists an asymptotically ω-periodic mild solution to the Cauchy prob-
lem (1.1).

Below, we will establish the existence result of asymptotically ω-periodic mild solutions to
the Cauchy problem (1.1) for the case of H being completely continuous.

Theorem 3.2. Let the hypotheses (H1) – (H3) hold. Assume in addition that
(H ′4) H : APω(R+;X) → X is completely continuous, there exists a nondecreasing function

φ : R+ → R+ such that for all u ∈ Sr,

‖H(u)‖ ≤ φ(r), and lim inf
r→+∞

φ(r)

r
= σ2.

Then the Cauchy problem (1.1) admits at least an asymptotically ω-periodic mild solution provi-
ded that

Mσ2 +MLF δ
−1 +Mσ1σ3 < 1. (3.6)

Proof. Assume that the operator Γ1 is defined the same as in Theorem 3.1 and v ∈ Cω(R;X),
coming from Theorem 3.1, is a unique fixed point of Γ1.

Consider a mapping Q = Q1 +Q2 defined by

(Q1w)(t) :=

t∫
0

U(t, s) [F1(s, v(s) + w(s))− F1(s, v(s))] ds, w ∈ C0(R+;X),
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(Q2w)(t) := U(t, 0)H(v|R+ + w)−
0∫

−∞

U(t, s)F1(s, v(s)) ds+

+

t∫
0

U(t, s)F2(s, v(s) + w(s)) ds, w ∈ C0(R+;X).

From our assumptions it follows thatQ is well defined and maps C0(R+;X) into itself and there
exists a r0 > 0 such that Q1w1 +Q2w2 ∈ Ωr0 for every pair w1, w2 ∈ Ωr0 (see the Step 1 in the
proof of Theorem 3.1 for more details). Thus, to be able to apply Lemma 2.3 to obtain a fixed
point of Q, we need to prove that Q1 is a strict contraction and Q2 is completely continuous
on Ωr0 .

From (3.6) and the Step 2 in the proof of Theorem 3.1 we see that Q1 is a strict contraction.
Also, since H : APω(R+;X) → X is completely continuous, it follows from the Step 3 in the
proof of Theorem 3.1 that Q2 is completely continuous. Now, applying Lemma 2.3 we obtain
that Q has a fixed point w ∈ C0(R+;X), which gives rise to an asymptotically ω-periodic mild
solution v + w.

Theorem 3.2 is proved.
As an application, let us consider a partial differential equation with homogeneous Dirichlet

boundary condition and nonlocal initial condition

∂u(t, ξ)

∂t
− ∂

2u(t, ξ)

∂ξ2
+ d(t)u(t, ξ) = sin

2πt

ω
sinu(t, ξ)+e−tu(t, ξ) cosu3(t, ξ), t > 0, ξ ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ R+, (3.7)

u(0, ξ) = u0(ξ) +

p∑
i=1

Ciu(si, ξ), ξ ∈ [0, π],

where 0 < s1 < . . . < sp < +∞ and Ci, i = 1, . . . , p, are given constants, u0 ∈ L2[0, π],
d : R → R is continuously differentiable, d(t+ ω) = d(t) for all t ∈ R, and

dmin := min
t∈R

d(t) > −1.

Take X = L2[0, π] with the norm ‖ · ‖L2[0,π] and inner product (·, ·)2. Define

D(A(t)) := D(B), t ∈ R,

A(t)x := Bu− d(t)x, x ∈ D(A(t)),

where the operator B : D(B) ⊂ X → X is given by

Bx =
∂2x

∂ξ2
, x ∈ D(B),

D(B) = {x ∈ X;x, x′ are absolutely continuous, x′′ ∈ X, and x(0) = x(π) = 0}.
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It is well-known that B has a discrete spectrum and its eigenvalues are −n2, n ∈ N+, with the

corresponding normalized eigenvectors yn(ξ) =

√
2

π
sin(nξ). More details about these facts

can be seen from the monograph [6] of Pazy.
It is clear that (A(t))t∈R satisfies the conditions (AT1) and (AT2), which ensure that it

generates an evolution family {U(t, s)}t≥s and

U(t, s)x =
∞∑
n=1

e−(
∫ t
s d(τ) dsτ+n

2(t−s))(x, yn)2yn for all t ≥ s, x ∈ X. (3.8)

A direct calculation gives

‖U(t, s)‖ ≤ e−(1+dmin)(t−s) for all t ≥ s.

Note also that for each t > s, the operator U(t, s) is a nuclear operator, which yields the
compactness of U(t, s) for t > s.

Now, we define

F1(t, x(ξ)) := sin
2πt

ω
sinx(ξ), t ∈ R, x ∈ X,

F2(t, x(ξ)) := e−tx(ξ) cosx3(ξ), t ∈ R+, x ∈ X,

H(u(t, ξ)) := u0(ξ) +

p∑
i=1

Ciu(ti, ξ), u ∈ APω(R+;X).

It is easy to verify that F1 : R×X → X and F2 : R+×X → X are continuous, F1(t+ω, x) =
= F1(t, x) for all t ∈ R and x ∈ X, and

‖F1(t, x)− F1(t, y)‖ ≤ ‖x− y‖ for all t ∈ R+, x, y ∈ X,

‖F2(t, x)‖ ≤ e−t‖x‖ for all t ∈ R+, x ∈ X,

‖H(u)−H(v)‖ ≤
p∑
i=1

|Ci|‖u− v‖0 for all u, v ∈ APω(R+;X).

Moreover, the assumptions (H1) – (H4) hold with

LH = σ2 =

p∑
i=1

|Ci|, LF = 1, ϕ(r) = r, φ(r) = ‖u0‖+ r

p∑
i=1

|Ci|,

θ(t) = e−t, σ1 = 1, σ3 ≤
1

1 + dmin
, M = 1, δ = 1 + dmin.

Therefore, (3.7) can be reformulated as the abstract Cauchy problem (1.1). Hence, when∑p
i=1 |Ci|+

2

1 + dmin
< 1 such that condition (3.4) is satisfied, it follows from Theorem 3.1 that

the partial differential equation (3.7) at least has one asymptotically ω-periodic mild solution.
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