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Additional reductions in the modified k-constrained KP hierarchy are proposed. As a result we obtain
generalizations of Kaup — Broer system, Korteweg—de Vries equation and a modification of Korteweg — de
Vries equation that belongs to modified k-constrained KP hierarchy. We also propose solution generating
technique based on binary Darboux transformations for the obtained equations.

3anpononosaro 000amko8si pedyKkuii 8 k-pedykosaniti moougixosaniti KI1-iepapxii. Ik Hacaiook, om-
pumaro yzazaavrenna cucmemu Kayna— bpoepa, pisnanua Kopmeaseza— e piza ma moougikosaro-
20 pisnanna Kopmeseza—0e ®@piza, axi Hasexcamv 00 moougixosanol k-peodyrxosarnoi iepapxii. Tarxoxc
3anpPONOHOBAHO MemMOO NOOYO08U PO36°A3KIE 041 OMPUMAHUX PIBHAHD, AKULL 6a43YemMbCca HA GIHAPHUX
nepemsopernsax [lapoy.

1. Introduction. The algebraic constructions of the well-known Kyoto group [1], which are called
the Sato theory, play an important role in the contemporary theory of nonlinear integrable
systems of mathematical and theoretical physics. The leading place in these investigations is
occupied by the theory of equations of Kadomtsev — Petviashvili type (KP hierarchy) and their
generalizations and applications [1-3].

One of known generalizations of the KP hierarchy arises as a result of k-symmetry constra-
ints (so-called k-cKP hierarchy) that were investigated in [4—8]. k-cKP hierarchy are closely
connected with so-called KP equation with self-consistent sources (KPSCS) [9-12]. Multi-
component k-constraints of the KP hierarchy were introduced in [13] and investigated in [14 —
18]. This extension of k-cKP hierarchy contains vector (multicomponent) generalizations of
physically relevant systems like the nonlinear Schrodinger equation, the Yajima— Oikawa sys-
tem, a generalization of the Boussinesq equation, and the Melnikov system.

The modified k-constrained KP (k-cmKP) hierarchy was proposed in [19, 20]. It contains,
for example, the vector Chen —Lee — Liu, the modified Korteweg—de Vries (mKdV) equation
and their multicomponent extensions. The k-cmKP hierarchy and dressing methods for it via
integral transformations were investigated in [21 —23].

In [24, 25] (2+1)-dimensional extensions of the k-cKP hierarchy ((2+1)-dimensional k-cKP
hierarchy) were introduced and dressing methods via differential transformations were investi-
gated. Some systems of this hierarchy were investigated via binary Darboux transformations
in [22, 23]. This hierarchy was also rediscovered recently in [26, 27]. Matrix generalizations of
(2 + 1)-dimensional k-cKP hierarchy were considered in [28, 29].

© O. Chvartatskyi, Yu. Sydorenko, 2014
ISSN 1562-3076. Heninitini koausanna, 2014, m. 17, N° 3 419



420 0. CHVARTATSKYI, YU. SYDORENKO

In this paper our aim is to consider additional reductions of the k-cmKP hierarchy that
lead to new generalizations of well-known integrable systems. We also investigated dressing
methods for the obtained systems via integral transformations that arise from Binary Darboux
Transformations (BDT).

This work is organized as follows. In Section 2 we present a short survey of results on
constraints for the KP hierarchies including the k-cmKP hierarchy. In Section 3 we investigate
Lax representations obtained as a result of additional reductions in the k-cmKP hierarchy and
corresponding nonlinear systems. Section 4 presents results on dressing methods for Lax pairs
obtained in Section 3. In the final section, we discuss the obtained results and mention problems
for further investigations.

2. Symmetry constraints of the KP hierarchy. Let us recall some basic objects and notations
concerning KP hierarchy, modified KP hierarchy, their multicomponent k-constraints and their
(2 + 1)-extensions. A Lax representation of the KP hierarchy is given by

L, = [Bn,L], n>1, (1)

0
where L = D+ U D' +Uy D2 +. .. is a scalar pseudodifferential operator, t; := x, D := o

X
and B, := (L")} := (L")>o = D" + Y7"7w; D' is the differential operator part of L". The
consistency condition (zero-curvature equations), arising from the commutativity of flows (1),
is

Bn,tk. - Bk,tn + [Bn, Bk] = O (2)

Let B}, denote the formal transpose of By, i. e., B}, := (—1)"D" + 3.""(~1)'D'u; , where
T denotes the matrix transpose. We will use curly brackets to denote the action of an operator
on a function whereas, for example, B,,q means the composition of the operator B,, and the
operator of multiplication by the function ¢. The following formula holds for B, q and B,{q} :=
:= (Bnq)=0 = Bnq — (Bnq)>0. Inthe case k = 2, n = 3 formula (2) presents a Lax pair for the
Kadomtsev — Petviashvili equation. Its Lax pair was obtained in [33] (see also [34]).

The multicomponent k-constraints of the KP hierarchy is given by [13]

Ltn = [BnaL]a (3)
with the k-symmetry reduction
m m
Ly = Lk = By + Z Z qimijDilrj = By + qMODiera 4)
i=1 j=1
where q = (¢1,...,¢m) and r = (ry,...,7,) are vector functions, My = (mij)zlj:l is a

constant (m x m)-matrix. In the scalar case (m = 1) we obtain a k-constrained KP hierarchy
[4—8]. The hierarchy given by (3), (4) admits the Lax representation (here & € N is fixed):

Ly, M) =0, Lp= Bp+aqMoD'r", M, =8, — B,. (5)
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ADDITIONAL REDUCTIONS IN THE K-CONSTRAINED... 421

Lax equation (5) is equivalent to the following system:
[kaMn]zo = 0, Mn{q} = O, M;;{I‘} = 0. (6)

Below we will also use the formal adjoint B := BT = (=1)"D" + Y. 2(~1)'D'u} of By,
where * denotes the Hermitian conjugation (complex conjugation and transpose).

For k£ = 1, the hierarchy given by (6) is a multicomponent generalization of the AKNS
hierarchy. For k£ = 2 and k£ = 3, one obtains vector generalizations of the Yajima— Oikawa and
Melnikov [9-11] hierarchies, respectively. An essential extension of the k-cKP hierarchy is its
(2 + 1)-dimensional generalization introduced in [24, 25] and rediscovered in [26, 27].

In [19, 20], a k-constrained modified KP (k-cmKP) hierarchy was introduced and investi-
gated. Dressing methods for k-cmKP hierarchy under additional D-Hermitian reductions were
also investigated in [21, 22]. At first we recall the definition of the modified KP hierarchy.

A Lax representation of this hierarchy is given by

Ly, = [Bn, L], n>1, (7)

where L = D+Uy+U D' +UsD24...and B, := (L")>¢ := D"+ 3"~ u; D" is the purely
differential operator part of L. The consistency condition arising from the commutativity of
flows (7) is

Bnt, — Bry, + [Bn, Bi) = 0.
The multicomponent k-constraints of the modified KP hierarchy are given by the operator
equation

Ltn = [BnaL]v (8)
with the k-symmetry reduction
m m
Ly:=1LF =B, => Y qmyD 'r;D = B, —qMD 'r' D, 9)
i=1 j=1
where ¢ = (q1,...,9m) and v = (r1,...,7) are vector functions, Mo = (m;;){"_; is a

constant (m x m)-matrix. The hierarchy (8), (9) admits the Lax representation (here k£ € N
is fixed)

Ly, M, =0, L= By—qMoD 'r'D,

(10)
n—1 .
M, = a,d,, — B,, Bp, = D"+ ZuiDZ.
i=1
We can rewrite the Lax pair (10) in the following way:
[Lg, My] =0, Ly = Bj— C[./\/loI'—r + qMoD_lrI,
(11)

n—1
M, = ondy, — Bn, Bn=D"+> uD'.
=1
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422 0. CHVARTATSKYI, YU. SYDORENKO

From Lax representation for k-cKP hierarchy (5), (6) and representation (11) we come to
conclusion that the equation [Ly, M,,] = 0in (10) is equivalent to the following system:

[Lk7Mn]>0 =0, Mn{q} =0, (M’I"IL-){I‘I} =0

([Lx, Mp]=o = 0 since [Lg, M,]{1} = 0). We can rewrite the last equation in the following
form: (D~'MTD){r} = 0 to keep the order of differentiation equal to n. As a result we obtain

Lk, Mn]s0 = 0, Mn{a} =0, (D7'M]D){r} =0. (12)
The hierarchy (10) contains vector generalizations of the Chen—Lee —Liu (k = 1), the modified
multicomponent Yajima- Oikawa (k = 2) and Melnikov (k = 3) hierarchies. Consider some
equations that can be obtained from (10) under certain choice of £ and n (see [23]).
(1) k = 1,n = 2. Then (10) becomes
L =D—gMyD 'r"D, M, = ayd,, — D* +2qMor' D. (13)
In this case equation (12) becomes the following system:

a2y, — Quz +2qMor ' q; = 0,  aor) +r,, +2r,gMor' = 0. (14)

Under the additional Hermitian conjugation reduction ag = i, Mg = — M, r' = q* (L} =
= —D7'L1D, Mj = D~'M;,D) in (14), we obtain the Chen - Lee - Liu equation

idt, — Qua +2qMoq gy = 0. (15)
(2) k = 1,n = 3. In this case (10) takes the form

L =D —gMyD 'r"D,

(16)
M3z = a3dy, — D* 4 3qMor ' D? 4 3[quMor' — (qMor ' )?]|D,
and equations (12) read
a3qt; = Qezez — 3(qM0PT)CIm - B(qazMOrT - (qMOPT)2)Q:m
(17)
asr) =1, +3r (@Mor') + 3r, (@Mor, + (gMor )?).
After reduction of Hermitian conjugation: a3 = 1,r' = q*, Mo = — M} (L} = —D 'Ly D,
Mj = —D™'M3D), (17) becomes:
qt; = Qeax — 3((1/\/10(1*)(13::;: - 3(qu0q* - (qMOq*)Q)qm' (18)

(3) k = 2, n = 2. After additional reduction in (10): ae = 4, u; := iu, u = u(x,ta) € R,
My = M, the Lax pair in (12) reads

(Lo, My) =0, Ly = D?+iuD —gqMoD~'q*D, M, = id;, — D? —iuD, (19)
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ADDITIONAL REDUCTIONS IN THE K-CONSTRAINED... 423
and equation (12) becomes the modified Yajima—Oikawa equation

iQty = Qoz + iUQe, U = 2(aMoq")s-
In the next section we will introduce additional reductions in Chen —Lee —Liu hierarchy. As a

result we will obtain generalizations of the Kaup — Broer system, KdV equation, modified KdV
equation and their scalar coupled versions.

3. Additional reductions in the modified k-constrained KP hierarchy. For further conveni-
ence let us make a change in formulae (10),

q—q r—7T, My— M. (20)
After the change (20) the hierarchy (10) reads

Ly, M,] =0, Lp= By—qMoD &' D,

(21)
n—1 .
M, = andy, — Bn, Bn=D"+) uD'.
i=1
Let us make the additional reduction in (21),
61 = (Qh <oy qm, —U — ﬁDil{u}u ]-) = (qu —U — /B-Dil{u}7 1)7
(22)

Mo
Mo = 0
0

0 0
10|, ©:=(1....,7rm 1,80 Hu}) = (r,1,3D"Hu}),
0 1

where My is an (m x m)-constant matrix, q and r are m-component vectors, v and v are scalar
functions, 3 € R, D~!{u} denotes indefinite integral of the function u with respect to x. After
reduction (22) k-cmKP hierarchy (21) takes the form

[Ly, M,) =0, Ly =By—agMeD 'vr"D+v+pD 'y,
(23)
n—1
M, = ondy, — Bn, Bn=D"+> uD'.
=1

In the following subsections we will investigate hierarchy (23) in case £ = 1.

3.1. Reductions of the Chen— Lee - Liu system. Let us put k = 1, n = 2. Then Lax pair (23)
becomes

[L1,M] =0, Ly =D—qMoD 'vr"D+ 3D u+u,
(24)
My = a0y, — D? + 2(qMorT —v)D.
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424 0. CHVARTATSKYI, YU. SYDORENKO
A system that corresponds to equation (24) has the form
a2y, = Quz — 2(@Mor | —v)qy, aory, = —1., —2r] (gMor' —v),

Uty + Ugy + 2 <u(q./\/lorT — v)) =0, (25)

—Ut, + 20Uy + Vg — 2 (q/\/lor—r - v) vy = 0.
Consider additional reductions of Lax pair (24) and system (25).

(1) Assume that Mg = — M, v’ = q*, v = —2ilm (3D~ YHu}) (L = —DL1 D', Mj =
= DM,D™'). Then equation (25) takes the form

@, = Quz — 2(2iIm (3D~ H{u}) + qMoq*)qy,

g, + Ugg + 2 (u(2iIm (BD ' {u}) + gMoq®)) = 0.

(2) Let us put Mg = 0 in the operators Ly and Ms, L1 = D + D tu+ v, My = g0y, —
—D? — 2uD. Then equation (25) becomes the Kaup — Broer system

QoUpy + Uy — 2(uv)y = 0,  —anuy, + 20Uy + Vzy + 200, = 0. (26)
In case u = 0 in (26) we obtain the Burgers equation —aavy, + vz — vv, = 0.
(3) Consider the case v = 0 for the operators L; and M (25), L1 = D —qMeD 'r "D+,
My = a0y, — D? +2(v + gMor " )D. Then (25) reads

aoQt, = Quy — 2(q./\/lorT — V), OéQI';Z = —r;ﬂ - QrI(qMorT — ),

— Uy + Vg — (q./\/lor—r — v) vy = 0.

3.2. Reductions of the modification of KdV system (18). Now let us consider the hierarchy
(23) in case k = 1, n = 3. Then its Lax pair L;, M3 in (23) reads

(L1, Ms] =0, Ly =D—qMoD 'r'D+ 8D u+w,
27)
M = a3dy, — D*—=3(v — qMor ") D* -3 ((qMorT —v)? = guMor| + fu+ vx)D.
Commutator equation in (27) is equivalent to the system
— 03Uty + Uggy + 30Uy + 31}21)1 + 31/_,% + 68(uv),+

+3 {(q/\/lorT)2 - quorT} Vp — 3qM0rTvm—

— 6gMor ' vv, — 38(qaMor " u), — 3gMor " u, = 0,
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ADDITIONAL REDUCTIONS IN THE K-CONSTRAINED... 425

a3qt; = qaca:x+3(v - qMOrT)qxaj+3 {(qMOrT - 7))2 - qa:MOrT + Vg + Bu} qz,
(28)

0431-; = rlm,—f% (r;r (v — qMorT)>z+3rI {(q_/\/lorT - v)2 — qgc_/\/lorT + v, + Bu} ,
_ T T 2 T

a3, = Ugge —3 (u(v — qMor )) +3 (u ((q/\/lgr —v)" —quMor' + v, + Bu))

T X

Consider additional reductions in Lax pair (27) and corresponding system (28).
(1) Assume that v = —2iIm (BD"Hu}),q* =r",u € R, Mg = —M} (L} = —DL D7},
Mj; = —DMj3D~1). Then system (28) takes the form

a3qt3 = Quax — 3(27,1111 (ﬁu) + qMOq*)qxx+

43 ((q/vloq* + 2iIm (Bu))? — qeMoq* + fu — 2ilm (ﬂu)) @
(29)
Q3Uty = Ugzx +3 {u (QZIIH (ﬁu) + qMoq*)}x:B +

+3 (u {(q./\/loq* + 2iIm (Bu))? — quMoq* + Bu — 2ilm (5“)})95 )

(a) Let us assume that in addition to the reductions described in item 1, the functions q and

u with the matrix M, are real-valued (i.e., the matrix M, is skew-symmetric, M(T = —My)
and v = 0. Then the scalar gMoq' = 0 since gMoq" = —(qMoq")T, and equation (29)
reads

a3qt; = Quar — 3qu0qTqa: + 3Buqy,

(30)
Q3Ut; = Uggr — S(Uq:pMOqT)w + 66”“1
(2) Let us put My = 0 in the operators Li, M3 (27),
Li =D+ 3D 'w+v, M= azd, — D> —3vD? - 3(v?+ v, + Bu)D.
Then equation (28) takes the form
—30t; + Vg + 30Uz + 3020, + 302 4 66(uv), = 0,
(31)
QUL = U — 3(UV)zz + 3(u(v? + vy + Bu)),.
(a) Under the additional restrictions v = —2ilm (D~ *{Bu}) (L} = —DLD™', M} =

= —DM; D~ 1) in item 2 we obtain a complex generalization of the modified KdV equation,
QUL = Ugge + 6i(uIm (D Bu}))es + 3(u(—4Im(D~HBu})? — 2ilm (au) + Bu))z.  (32)

In the real case (8 € R, u is a real-valued function, v = 0) the operators L; and Mj3 take the
form Ly = D + 8D~ 'u, M3y = 30; — D3 — 3BuD, and we obtain the KdV equation in (32),

Q3Uty = Uggr + 68Uy (33)
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(3) Let us put u = 0 in Lax pair (27), L1 = D — qMoD 'vr'D 4+ v, M3 = g0y, — D3 —
—3(v —gMor")D? = 3 ((gMor" —v)* —gMor" +v,) D. Equation (28) becomes

—Q3Vtg + Vpge + 30V + 37}2'01 + 3U§ +3 {(qMOrT)Q - quOrT} Vg —
— BqMorTvm — GqMorTvvgc =0,
a3qt; = Quae +3(v — gMor ) Qe +3 {(qMorT —0)? — quMor' + Ux} dz, (34)

(ngrtT3 = r;m—?) <rl (v — qMOrT>>m+3r; {(q/\/lorT — 11)2—%./\/101'T + Uz} )

4. Dressing methods for k-cmKP hierarchy. In this section our aim is to elaborate dres-
sing methods for the k-cmKP hierarchy (10). At first we recall a main result from paper [35].
Let (1 x K)-matrix functions ¢ and v be solutions of linear problems with (2+1)-dimensional
generalization of the operator Lj (4) with a more general differential part By,

Lifo} = oA, LI{} = A, A A€ Matgyx(C),

(35)
k .
Ly, = Bidr, + B+ aMoD ', By =Y u;D’.
j=0
Introduce a binary Darboux transformation (BDT) in the following way:
-1
W=I-p(C+D e p}) DT = T-pATDTNYT, (36)

where C'is a (K x K)-constant nondegenerate matrix. The inverse operator W ! has the form
—1
Wl =T+ pD! (c + D—l{wﬂp}) T =T+ pD AT, (37)

The following theorem is proved in [35].

Theorem 1 [35]. The operator Ly, :== W L,W " obtained from Ly, in (35) via BDT (36) has

the form
Ly == WLW ™' = B0, + B, + gMoD'#+" + dMD 10T,
(38)
k .
By => ;D
=0
where
M=CA-ATC, ®=pA~' T=ypAlT,
(39)

A=C+Dyly}, a=W{q}, #=W""{r}.
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The coefficients u). and Gy, of the operator Ly remain the same, i.e., Gy = ug, g1 = up_1. All
other coefficients i;, j = 0,k — 2, depend on the functions ¢, and u;, i = 0, j. Exact forms of
all coefficients u; can be found in [35].

Using the previous theorem we obtain the following result for the (2 + 1)-generalization of
operator Ly from the k-cmKP hierarchy (10):

Theorem 2. Let (1 x K)-vector functions ¢ and 1) satisfy linear problems:

(40)
k .
Ly = Pidr, + By —qMoD 't "D, By =Y uD"
i=1
Then the operator Ly, transformed via the operator
W o= wy ' W = wy! (I - goA*lD*le) — T — A DYDY D,  (41)
where
wo =1 —AT'DTHY 1A = —-C+D Dy }eu}, A=C+D Hu'lyl,
has the form
Ly == Wy LW, = B0, + B, —aMoD'#+'D + dMD ' D,
(42)
By = Z%’Dg, g, = up, Gp—1 = up—1 + kugwg 'wo, . . .,
j=1
where
M=CA-ATC, &=-W,{p}C7" = pA~1
V=D YW o™ = DTHRIATT, g = Wi {a), (43)

t=D'W, Y "D{r}, A=C+D D }p.}.
Proof. Let us check that
wy' =T—-pAD My}, A =-C+D YD v }p,}.
In order to do that we have to verify the equality wow, L=,
wowy ' =1 — AT DTHYT} — pATIDTHY

A (O DT € 4D D) s DT <
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Analogously it can be verified that w,, Lwy = I. By Theorem 1 we obtain
Wi LWl = wy'W (mam + By — qMor | + qMoD’lrI> W lwp =
= BrOr, + (Wi LW,y H )0 — w ' W{q}MeD ™ (W—“{rx})T wo+
+ wy ' OMD U Ty, (44)

We shall point out that UTwy = A~ T (I — oAD" HyT}) = (ATID "y T}) = U] We
shall also observe that

(W) Twg = (xf = D™ p}a™ 0T ) (1- AT DT} ) =
= (xT =D MrJp}ATID TN TY) = (DTIWLTDE)] = 5
Thus (44) can be rewritten as
L = Wy LWt = wy'w (ﬁ,@aﬂv + By — qMor | + qMD—lrI) Wlw, =

= B0, + (WinLiW,,' )20 + @MoD™'E} — @MD '] =

= BkOr, + (Wi LW, )0 + @MoF T — @MU — gMoD '#'D +dMD ' D. (45)
Using that f)k{l} = 4y = 0 we obtain the form of By, i.e., By, := (Wi LW, >0 + @Mot T —
—OMIT =3k @D,

Theorem 2 is proved.

Theorem 2 provides us with a dressing method for k-cmKP hierarchy (10), i.e., the following
corollary directly follows from the previous theorem:

Corollary 1. Assume that the operators Ly, and M, in (10) satisfy the Lax equation [Ly,, M, =
= 0. Let functions ¢ and 1) satisfy the equations

Then the transformed operators L = Wi LW, (see (42) with ), = 0) and
M, = Wi M, W, = andy, — D" = ;D' (47)
i=1
via the transformation W,, (41) also satisfy the Lax equation [Ly,, M,,] = 0.
Proof. 1t can be checked directly that
[Li, M) = (Wi LiW,, ' Wi My Wit = Wi [ L, M)W, b = 0.

The exact form of the operators L. and M,, follows from Theorem 2.
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The following corollary follows from Corollary 1 and Theorem 2:

Corollary 2. Suppose that the functions ¢ and v satisfy equations (46) with operators Lj, and
M, defined by (23). Then the transformed operators have the form

Ly = B, —@MD 't "D+ ®dMD 'O D + o+ pD 4,

(48)
My, = andy, — B, Bn=D"+)Y @D,
i=1
where
M=CA-ATC, ®=-W,{p}Ct =pAL
V=D YW o™ = DAY G = Wadal,
(49)

fP=W,"{r} . A=C+D D "W }p.,}, A=C+D {yTol}

i =W, " {D"Hu}}, &= Wp{v}+BD "W, " {u} — BWn{D {u}}.

As it was shown in previous sections, the most interesting systems arise from the k-cmKP
hierarchy (10) and its reduction (23) after a Hermitian conjugation reduction. Our aim is to
show that under additional restrictions, the BDT W,,, (41) preserves this reduction.

Proposition 1. (1) Let vy = @, and C = —C* in the dressing operator W,, (41). Then the
operator Wy, is D-unitary (W,;t = D='W} D).

(2) Let the operator Ly, (10) be D-Hermitian, L} = DLyD~! (D-skew-Hermitian, Ly =
= —DLyD ') and M, (10) be D-Hermitian (D-skew-Hermitian). Then the operator L, =
= Wy LiW,! (see (42)) transformed via the D-unitary operator Wy, is D-Hermitian (D-skew-
Hermitian) and M, := W M, W, -1 (47) is D-Hermitian (D-skew-Hermitian).

(3) Assume that the conditions of items I and 2 hold. Let A = A in the case of D-Hermitian
Ly (A = —A in D-skew-Hermitian case). We shall also assume that the function o satisfies the
corresponding equations in formulae (46). Then M = M* (M = —M*) and & = ® (see
formulae (39)).

In Subsection 4.1 we will show how one can use the methods described in Theorem 2 and
its corollaries in order to obtain solutions of KdV equation (33) and its generalization (30).

4.1. Solution generating technique for system (30) and KdV equation (33). We shall consider
equation (30) in the case where the dimension of the vector q and the matrix M, is even, i.e.,
m = 2m, m € N (in this situation, the skew-symmetric matrix M, can be nondegenerate).
Assume that the skew-symmetric matrix M, in (30) and the vector-function g has the form

0m 15
Moy = T a=(a,92) = (i qi2s -5 Qs 4215 G225 - - -5 G20m) 5 (50)
_Im Om

where 0, is a (m x m)-dimensional matrix consisting of zeros, I; is an identity matrix with the
dimension m x m. Equation (30) with the notation @ := wu can be rewritten in the following
form:
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31ty = Alaee — 3(A12y — 92,291 )d1.0 + 3B1d1 0,
as3qQ2ts = 92 zxx — 3((:].1,1‘(:].;r - q2,xq1T)q2,:c + 3671(:12,90’ (51)
04371153 = Ugpy — 3(ﬂ(quQQT - Q2,x(11T))x + Gﬁﬂ’&m

In this subsection our aim is to consider the case m = 1 (although the corresponding solution
generating technique can be generalized to the case of an arbitrary natural /). In this situation
a1 = ¢ and q2 = ¢ are scalars. We shall suppose that K = 2K is an even natural number.
Assume that the function ¢ is a (1 x K )-vector solution of the system

Lio{p} = oo + BD Hup} = A, A € Matg.x(C), B ER,
(52)
M3O{SD} = 3Ptz — Praz — 3ﬁu§0x =0,

with a number v € R.

Using Theorem 2 and Proposition 1 we obtain that the dressed operators L and Msg via
the operator W, (41) with the skew-Hermitian matrix C' and ¢ = @, has the form

Lo = Wi LioW,,)! = D+ ®MD™'®*D + gD ' + 4,
(53)
M3y = Wy M3gW, b = a3dy, — D® — (0 + PMP*)D?—

-3 ((cﬁ/\/@* +0)2 + PMO* + T, + Ba) D,

where M = CA — A*C*, & = pA~' i = uD{pA'D Yo u}}, o = B(ED o u} —
— D Hup}d*), A = —C+ D Hop*p,}. Tt has to be pointed out that the function ¢ =
= W {p}C~t = oA~ satisfies the equation Mzo{®} = 0 because

Mso{®} = Wi, M3oW,,, " {W;{p}C'} = 0.

Now we assume that the function ¢ and the matrices C and A are real. In this case, v = ol =
= B(@D o u} - D" Hup}d")T = -5 = 0.
Let us put

A = diag (A11, A2, A21, A2z, o, Az, Ago)s Aij € R,

Cii Cr2 Cix
C C R @

e 9
Cir Cko -+ Cgi
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where the elements C;; are (2 x 2)-matrices of the form

1
0 -
Co=| 4 mTAL 59)
/\j1 + Ai2

Under such a choice of C' (55) and A (54) we obtain that the (2K x 2K )-dimensional matrix
M = CA—ATCT has the block form, M = (Mij),{?jil, where M;; = M (see formula (50) in
case m = 1). Letusdenote by 1z = (I2,...,I>) amatrix that consists of K (2 x 2)-dimensional
identity matrices Io. Then M = —1IT~<M0 1z

Let us put v = const and choose a solution of system (52) in the form

1
Y = (<P11, P12P21, P22 - - - PRr1s sﬂfgg) ,  Yij = €Xp { <2 /\ij + %’j) T+ aijt} )

/1 1 ’ 1
Mii =\ X = Bu, iy = { (2 Aij + 'Yij) + 3fu (2 Aij + %‘j) } /3.

The (2K x 2K)-matrix A then takes the block form

where

A=—-C+D Moy} = (Az‘j)k =

i7j:1
_ait (aitaj)at+(aintaz)t —aiz__ glaiptaj)at(azta)t 4 1 K
a;1tagi iz oy Ag2tAa
= Y
_ain laataze)r+(anta)t 1 02 plaiztagz)et(aitas)t
i1 +ags AjitAiz qiatage t,j=1
(56)

1 N N
where a;; = 5 Aij+7i;. The functions q = (g1, ¢2) = @A‘llg andi=u—D {@A‘lD_l{cpTu}}
will be solutions of system (51).

We shall point out that in case 5§ = 0, K =1, ag = 1, we obtain the following solution of
the real version of the mKdV-type equation (equation (51) with & = 0):

2(A11 + A2)p12 0 2(M 1+ A2)enn

q1 = — ) 2 )
(A1 — A2)pr1p12 — 2 (A1 — A2)pr1p12 — 2

q= (Q1792)7

Q15 = €A1]x+)\1jt37 /\lj >0, j=1,2.

It is also possible to choose other types of matrices C' and A in (54) and (55). In particular the
following remark holds.

Remark 1. In case K = 1, the vector of the functions

¢ = (¢1,¢2), 1 = cos (:Mu + (3AT A2 — Alp)t + Z) et (M =3t
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9 = sin <.T)\12 + (3)\%1)\12 — A?Z)t + Z) ex/\11+(/\?173>‘11)‘§2)t

will be a solution of system (52) with v = 0 and A = < )\)1\1 :\\12 > . The corresponding
—A12 A
1
~ 0 5
solution generating technique given by (54) - (56)incase K = 1,Cr = C = 2A11
— 0
211

gives us a solution of mKdV-type equation (51) with ¢ = 0 that coincides with a solution obtai-
ned in [36].

Now we will consider solution generating technique for KdV (33). For this purpose we
assume that the function ¢, the matrices A = diag (A1,...,Az) and C = diag (C;...,Cf) are

real and have the form
o 0 )\j o 0 —Cj
AJ_(M 0)’ C]—(Cj 0 > &7)

In this case we obtain that the matrix M = CA — ATC'T consists of zeros in (53). Consider the
following solution of system (52):

Y= (901178012,@21,9022,---790;%1,80;?2),

A . Aj
o1 = Vit tait coch <2J$ + bji) . pje = eYittait ginh (2].%' + bjt) )

where

Lo 3.3 2 2N A8
V= Z)\j_ﬁua aj = 7j+17j)\j+3ﬁu7j Jas, bj = 37‘?+§+§5U)\j Jos

and \j, a3, B, u € R. Thus, o = 0 and we obtain a Lax pair for the KdV equation in (53),
Lig=D+ 5D711~L, M3y = Ckgats - D3 — 3puD.
The formula

u = u—D{gpA_lD_l{wTu}} =u+u (58)

- 1A
gives us a finite density solution of equation (33). In particular, if K = 1 and ¢; = 3 2w

M
obtain the following solution:

272

0= u+ ) 59
v= B cosh? (y12 + ait) (59
Now we shall substitute @ (58) in KAV equation (33),
iy, = tlags + 680ty + 6Buiy. (60)
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The corresponding pair of operators has the form L1 = D + D~ (i +u), M3 = azdy, — D3 —
—3puD — 3BuD. We have two ways to obtain soliton solutions (that are rapidly decreasing at
both infinities in contrast to finite density solutions (58) that tend to an arbitrary real number
u) for KdV from formula (58):

(1) By taking the limit u — 0 in (58)—(60).

(2) By making a change of the independent variables: & := = + 6a3 ' Buts, {3 := t3 and
9(Z,t3) = 4(z,t3) in equation (60) and solutions (58), (59). This change corresponds to the
change of differential operators in the Lax pair for equation (60) consisting of the operators L
and Mg, 043853 = a38t3 — 3[3uD

5. Conclusions. In this paper we obtain new generalizations (23) of the modified k-cKP
(k-cmKP) hierarchy (10). The obtained hierarchy also generalizes the BKP hierarchy [36-38]
which is a special case of the k-cmKP hierarchy. Dressing methods elaborated via BDT-type
operators (Section 4) give rise to exact solutions of the integrable systems that hierarchy (23)
contains. In particular, soliton solutions for generalization of mKdV-type equation (51) and fi-
nite density solutions as well as regular soliton solutions were constructed for the KdV equation
using the proposed dressing methods. These methods also allow to obtain rational and singular
multisoliton solutions of the corresponding nonlinear systems under a special choice of spectral
matrix A in the linear system (52). In order to minimize the size of this article we do not include
those results here. We shall point out that the special case of equation (51) (¢ = 0) and its
solutions were considered in [36]. Generalizations (23) of the k-cmKP hierarchy (10) together
with different extensions of k-cKP hierarchy is a good basis for construction of other hierarchi-
es of nonlinear integrable equations with corresponding dressing methods. In particular in our
forthcoming papers we plan to introduce a (2+1)-BDk-cmKP hierarchy and investigate soluti-
on generating technique for the corresponding integrable systems. Consider as an example the
Lax pair from the (1+1)-BDk-cKP hierarchy that was investigated in [31],

Pi1 =D+ My{q}MoD 7 'r " + cygMoDH(MZ{r}) " + cogMoD'rT =

=D+¢ (042%/\/1013_11‘ — aoqMoD 7'y} — quaMoD T —

— qMoD —uqMoD™ 1 T — q./\/loD ) + CquoD_II'T,
(61)
My = a0y, — D? —

with vector-functions q and r satisfying ¢; M2{q} +coM2{q} = 0, c1(MJ)*{r} +coM{r} = 0.
It was shown in [31] that the Lax equation [P 1, M>] = 01in (61) is equivalent to the system

[Pr1, Mao]so = 0, aiMi{q} +coMafa}l =0, e (M3)*{r} +coMI{r} =0 (62)

that is equivalent to a generalization of the AKNS system. In case ¢y = 1, ¢; = 0 we obtain the
AKNS system in (62),

Q2Qry — Qo —uq = 0, —aury, —Tpp —ur = 0, u = 2gMor .

Assume that the scalar function f satisfies the equations P 1{f} = fA, Ma{f} = 0. We shall
introduce the notations My := f~'Myf, My := DMyD~ 1 ,Piyo= f7iPif,q = flq,
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' := D7'{r' f} and consider the following gauge transformations:

My = fIMyf = agdy, — D* — 24D, @ = f~'fs,

Piy, = f'Paf =D+ f ot f M} MoD T f4
+oflaMeDT (MG {r}) " f+cof TaMoD e f =
= D — e, Mo{@MoD ™% D — ;@MDY (M3 {¥}) "D — coqMoD '+ D.
The equation [My, Py 1] = 0 is equivalent to the following system:
(P11, Ma]so = 0, ciM3{a} +coMafa} =0, (M) {F} + oMz {F} = 0
or in an equivalent form (after notation qp := q, r¢ := T),

[ﬁ’l,l,Mﬂm =0, q= Mz{(m}a r = MQT{ro}a (63)
63

ClMQ{ql} + CoMz{qo} = 0, ClMg{rl} + C(]M{{I’o} =0.

System (63) is a generalization of the Chen—Lee —Liu system (case ¢; = 0, ¢y = 1). In case
of the additional reduction oy € iR, ¢y = 0,¢; € R, M = =My, r = q, (63) reads as follows:

@200ty — 90,22 + 2¢1(q1Mogqg + 90Moqi)do — a1 = 0,

Q2q1.t, — dl,zz + 2c1(Q1MOQS + OIOMOQT)QLI = 0.

We shall also point out that the extension of the k-cmKP hierarchy (23) can also be generali-
zed to the matrix case. It leads to matrix generalizations of integrable systems that hierarchy
(23) contains (including Chen—Lee — Liu (15) and modified-type KdV equation (18)). In parti-
cular, the matrix generalization of the modified KdV-type equation (18) differs from the well-
known matrix mKdV equation that was investigated by the inverse scattering method in [39].
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