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Additional reductions in the modified k-constrained KP hierarchy are proposed. As a result we obtain
generalizations of Kaup – Broer system, Korteweg – de Vries equation and a modification of Korteweg – de
Vries equation that belongs to modified k-constrained KP hierarchy. We also propose solution generating
technique based on binary Darboux transformations for the obtained equations.

Запропоновано додатковi редукцiї в k-редукованiй модифiкованiй КП-iєрархiї. Як наслiдок, от-
римано узагальнення системи Каупа – Броера, рiвняння Кортевега – де Фрiза та модифiковано-
го рiвняння Кортевега – де Фрiза, якi належать до модифiкованої k-редукованої iєрархiї. Також
запропоновано метод побудови розв’язкiв для отриманих рiвнянь, який базується на бiнарних
перетвореннях Дарбу.

1. Introduction. The algebraic constructions of the well-known Kyoto group [1], which are called
the Sato theory, play an important role in the contemporary theory of nonlinear integrable
systems of mathematical and theoretical physics. The leading place in these investigations is
occupied by the theory of equations of Kadomtsev – Petviashvili type (KP hierarchy) and their
generalizations and applications [1 – 3].

One of known generalizations of the KP hierarchy arises as a result of k-symmetry constra-
ints (so-called k-cKP hierarchy) that were investigated in [4 – 8]. k-cKP hierarchy are closely
connected with so-called KP equation with self-consistent sources (KPSCS) [9 – 12]. Multi-
component k-constraints of the KP hierarchy were introduced in [13] and investigated in [14 –
18]. This extension of k-cKP hierarchy contains vector (multicomponent) generalizations of
physically relevant systems like the nonlinear Schrödinger equation, the Yajima – Oikawa sys-
tem, a generalization of the Boussinesq equation, and the Melnikov system.

The modified k-constrained KP (k-cmKP) hierarchy was proposed in [19, 20]. It contains,
for example, the vector Chen – Lee – Liu, the modified Korteweg – de Vries (mKdV) equation
and their multicomponent extensions. The k-cmKP hierarchy and dressing methods for it via
integral transformations were investigated in [21 – 23].

In [24, 25] (2+1)-dimensional extensions of the k-cKP hierarchy ((2+1)-dimensional k-cKP
hierarchy) were introduced and dressing methods via differential transformations were investi-
gated. Some systems of this hierarchy were investigated via binary Darboux transformations
in [22, 23]. This hierarchy was also rediscovered recently in [26, 27]. Matrix generalizations of
(2 + 1)-dimensional k-cKP hierarchy were considered in [28, 29].
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In this paper our aim is to consider additional reductions of the k-cmKP hierarchy that
lead to new generalizations of well-known integrable systems. We also investigated dressing
methods for the obtained systems via integral transformations that arise from Binary Darboux
Transformations (BDT).

This work is organized as follows. In Section 2 we present a short survey of results on
constraints for the KP hierarchies including the k-cmKP hierarchy. In Section 3 we investigate
Lax representations obtained as a result of additional reductions in the k-cmKP hierarchy and
corresponding nonlinear systems. Section 4 presents results on dressing methods for Lax pairs
obtained in Section 3. In the final section, we discuss the obtained results and mention problems
for further investigations.

2. Symmetry constraints of the KP hierarchy. Let us recall some basic objects and notations
concerning KP hierarchy, modified KP hierarchy, their multicomponent k-constraints and their
(2 + 1)-extensions. A Lax representation of the KP hierarchy is given by

Ltn = [Bn, L], n ≥ 1, (1)

where L = D+U1D
−1+U2D

−2+ . . . is a scalar pseudodifferential operator, t1 := x, D :=
∂

∂x
,

and Bn := (Ln)+ := (Ln)≥0 = Dn +
∑n−2

i=0 uiD
i is the differential operator part of Ln. The

consistency condition (zero-curvature equations), arising from the commutativity of flows (1),
is

Bn,tk −Bk,tn + [Bn, Bk] = 0. (2)

Let Bτ
n denote the formal transpose of Bn, i. e., Bτ

n := (−1)nDn +
∑n−2

i=0 (−1)iDiu>i , where
> denotes the matrix transpose. We will use curly brackets to denote the action of an operator
on a function whereas, for example, Bnq means the composition of the operator Bn and the
operator of multiplication by the function q. The following formula holds forBnq andBn{q} :=
:= (Bnq)=0 = Bnq− (Bnq)>0. In the case k = 2, n = 3 formula (2) presents a Lax pair for the
Kadomtsev – Petviashvili equation. Its Lax pair was obtained in [33] (see also [34]).

The multicomponent k-constraints of the KP hierarchy is given by [13]

Ltn = [Bn, L], (3)

with the k-symmetry reduction

Lk := Lk = Bk +
m∑
i=1

m∑
j=1

qimijD
−1rj = Bk + qM0D

−1r>, (4)

where q = (q1, . . . , qm) and r = (r1, . . . , rm) are vector functions, M0 = (mij)
m
i,j=1 is a

constant (m ×m)-matrix. In the scalar case (m = 1) we obtain a k-constrained KP hierarchy
[4 – 8]. The hierarchy given by (3), (4) admits the Lax representation (here k ∈ N is fixed):

[Lk,Mn] = 0, Lk = Bk + qM0D
−1r>, Mn = ∂tn −Bn. (5)
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Lax equation (5) is equivalent to the following system:

[Lk,Mn]≥0 = 0, Mn{q} = 0, M τ
n{r} = 0. (6)

Below we will also use the formal adjoint B∗n := B̄τ
n = (−1)nDn +

∑n−2
i=0 (−1)iDiu∗i of Bn,

where ∗ denotes the Hermitian conjugation (complex conjugation and transpose).
For k = 1, the hierarchy given by (6) is a multicomponent generalization of the AKNS

hierarchy. For k = 2 and k = 3, one obtains vector generalizations of the Yajima – Oikawa and
Melnikov [9 – 11] hierarchies, respectively. An essential extension of the k-cKP hierarchy is its
(2 + 1)-dimensional generalization introduced in [24, 25] and rediscovered in [26, 27].

In [19, 20], a k-constrained modified KP (k-cmKP) hierarchy was introduced and investi-
gated. Dressing methods for k-cmKP hierarchy under additional D-Hermitian reductions were
also investigated in [21, 22]. At first we recall the definition of the modified KP hierarchy.

A Lax representation of this hierarchy is given by

Ltn = [Bn, L], n ≥ 1, (7)

where L = D+U0 +U1D
−1 +U2D

−2 + . . . andBn := (Ln)>0 := Dn+
∑n−1

i=1 uiD
i is the purely

differential operator part of Ln. The consistency condition arising from the commutativity of
flows (7) is

Bn,tk −Bk,tn + [Bn, Bk] = 0.

The multicomponent k-constraints of the modified KP hierarchy are given by the operator
equation

Ltn = [Bn, L], (8)

with the k-symmetry reduction

Lk := Lk = Bk −
m∑
i=1

m∑
j=1

qimijD
−1rjD = Bk − qM0D

−1r>D, (9)

where q = (q1, . . . , qm) and r = (r1, . . . , rm) are vector functions, M0 = (mij)
m
i,j=1 is a

constant (m × m)-matrix. The hierarchy (8), (9) admits the Lax representation (here k ∈ N
is fixed)

[Lk,Mn] = 0, Lk = Bk − qM0D
−1r>D,

(10)

Mn = αn∂tn −Bn, Bn = Dn +

n−1∑
i=1

uiD
i.

We can rewrite the Lax pair (10) in the following way:

[Lk,Mn] = 0, Lk = Bk − qM0r
> + qM0D

−1r>x ,
(11)

Mn = αn∂tn −Bn, Bn = Dn +
n−1∑
i=1

uiD
i.
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From Lax representation for k-cKP hierarchy (5), (6) and representation (11) we come to
conclusion that the equation [Lk,Mn] = 0 in (10) is equivalent to the following system:

[Lk,Mn]>0 = 0, Mn{q} = 0, (M τ
n){rx} = 0

([Lk,Mn]=0 = 0 since [Lk,Mn]{1} = 0). We can rewrite the last equation in the following
form: (D−1M τ

nD){r} = 0 to keep the order of differentiation equal to n. As a result we obtain

[Lk,Mn]>0 = 0, Mn{q} = 0, (D−1M τ
nD){r} = 0. (12)

The hierarchy (10) contains vector generalizations of the Chen – Lee – Liu (k = 1), the modified
multicomponent Yajima – Oikawa (k = 2) and Melnikov (k = 3) hierarchies. Consider some
equations that can be obtained from (10) under certain choice of k and n (see [23]).

(1) k = 1, n = 2. Then (10) becomes

L1 = D − qM0D
−1r>D, M2 = α2∂t2 −D2 + 2qM0r

>D. (13)

In this case equation (12) becomes the following system:

α2qt2 − qxx + 2qM0r
>qx = 0, α2r

>
t2 + r>xx + 2r>x qM0r

> = 0. (14)

Under the additional Hermitian conjugation reduction α2 = i,M0 = −M∗0, r> = q∗ (L∗1 =
= −D−1L1D, M

∗
2 = D−1M2D) in (14), we obtain the Chen – Lee – Liu equation

iqt2 − qxx + 2qM0q
∗qx = 0. (15)

(2) k = 1, n = 3. In this case (10) takes the form

L1 = D − qM0D
−1r>D,

(16)

M3 = α3∂t3 −D3 + 3qM0r
>D2 + 3[qxM0r

> − (qM0r
>)2]D,

and equations (12) read

α3qt3 = qxxx − 3(qM0r
>)qxx − 3(qxM0r

> − (qM0r
>)2)qx,

(17)

α3r
>
t3 = r>xxx + 3r>xx(qM0r

>) + 3r>x (qM0r
>
x + (qM0r

>)2).

After reduction of Hermitian conjugation: α3 = 1, r> = q∗,M0 = −M∗0 (L∗1 = −D−1L1D,
M∗3 = −D−1M3D), (17) becomes:

qt3 = qxxx − 3(qM0q
∗)qxx − 3(qxM0q

∗ − (qM0q
∗)2)qx. (18)

(3) k = 2, n = 2. After additional reduction in (10): α2 = i, u1 := iu, u = u(x, t2) ∈ R,
M0 = M∗0, the Lax pair in (12) reads

[L2,M2] = 0, L2 = D2 + iuD − qM0D
−1q∗D, M2 = i∂t2 −D2 − iuD, (19)
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and equation (12) becomes the modified Yajima – Oikawa equation

iqt2 = qxx + iuqx, ut2 = 2(qM0q
∗)x.

In the next section we will introduce additional reductions in Chen – Lee – Liu hierarchy. As a
result we will obtain generalizations of the Kaup – Broer system, KdV equation, modified KdV
equation and their scalar coupled versions.

3. Additional reductions in the modified k-constrained KP hierarchy. For further conveni-
ence let us make a change in formulae (10),

q → q̃, r → r̃, M0 → M̃0. (20)

After the change (20) the hierarchy (10) reads

[Lk,Mn] = 0, Lk = Bk − q̃M̃0D
−1r̃>D,

(21)

Mn = αn∂tn −Bn, Bn = Dn +
n−1∑
i=1

uiD
i.

Let us make the additional reduction in (21),

q̃ := (q1, . . . , qm,−v − βD−1{u}, 1) = (q,−v − βD−1{u}, 1),
(22)

M̃0 =

 M0 0 0
0 1 0
0 0 1

 , r̃ := (r1, . . . , rm, 1, βD
−1{u}) = (r, 1, βD−1{u}),

whereM0 is an (m×m)-constant matrix, q and r are m-component vectors, u and v are scalar
functions, β ∈ R, D−1{u} denotes indefinite integral of the function u with respect to x. After
reduction (22) k-cmKP hierarchy (21) takes the form

[Lk,Mn] = 0, Lk = Bk − qM0D
−1r>D + v + βD−1u,

(23)

Mn = αn∂tn −Bn, Bn = Dn +

n−1∑
i=1

uiD
i.

In the following subsections we will investigate hierarchy (23) in case k = 1.

3.1. Reductions of the Chen – Lee – Liu system. Let us put k = 1, n = 2. Then Lax pair (23)
becomes

[L1,M2] = 0, L1 = D − qM0D
−1r>D + βD−1u+ v,

(24)

M2 = α2∂t2 −D2 + 2(qM0r
> − v)D.
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A system that corresponds to equation (24) has the form

α2qt2 = qxx − 2(qM0r
> − v)qx, α2r

>
t2 = −r>xx − 2r>x (qM0r

> − v),

α2ut2 + uxx + 2
(
u(qM0r

> − v)
)
x

= 0, (25)

−α2vt2 + 2βux + vxx − 2
(
qM0r

> − v
)
vx = 0.

Consider additional reductions of Lax pair (24) and system (25).
(1) Assume thatM0 = −M∗0, r> = q∗, v = −2iIm (βD−1{u}) (L∗1 = −DL1D

−1, M∗2 =
= DM2D

−1). Then equation (25) takes the form

α2qt2 = qxx − 2(2iIm (βD−1{u}) + qM0q
∗)qx,

α2ut2 + uxx + 2
(
u(2iIm (βD−1{u}) + qM0q

∗)
)
x

= 0.

(2) Let us putM0 = 0 in the operators L1 and M2, L1 = D + βD−1u + v, M2 = α2∂t2 −
−D2 − 2vD. Then equation (25) becomes the Kaup – Broer system

α2ut2 + uxx − 2(uv)x = 0, −α2vt2 + 2βux + vxx + 2vvx = 0. (26)

In case u = 0 in (26) we obtain the Burgers equation −α2vt2 + vxx − vvx = 0.

(3) Consider the case u = 0 for the operators L1 and M2 (25), L1 = D−qM0D
−1r>D+v,

M2 = α2∂t2 −D2 + 2(v + qM0r
>)D. Then (25) reads

α2qt2 = qxx − 2(qM0r
> − v)qx, α2r

>
t2 = −r>xx − 2r>x (qM0r

> − v),

−α2vt2 + vxx −
(
qM0r

> − v
)
vx = 0.

3.2. Reductions of the modification of KdV system (18). Now let us consider the hierarchy
(23) in case k = 1, n = 3. Then its Lax pair L1, M3 in (23) reads

[L1,M3] = 0, L1 = D − qM0D
−1r>D + βD−1u+ v,

(27)

M3 = α3∂t3−D3−3(v − qM0r
>)D2−3

(
(qM0r

> − v)2 − qxM0r
> + βu+ vx

)
D.

Commutator equation in (27) is equivalent to the system

−α3vt3 + vxxx + 3vvxx + 3v2vx + 3v2x + 6β(uv)x+

+ 3
{

(qM0r
>)2 − qxM0r

>
}
vx − 3qM0r

>vxx−

− 6qM0r
>vvx − 3β(qM0r

>u)x − 3βqM0r
>ux = 0,
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α3qt3 = qxxx+3(v − qM0r
>)qxx+3

{
(qM0r

> − v)2 − qxM0r
> + vx + βu

}
qx,

(28)

α3r
>
t3 = r>xxx−3

(
r>x

(
v − qM0r

>
))

x
+3r>x

{
(qM0r

> − v)2 − qxM0r
> + vx + βu

}
,

α3ut3 = uxxx−3
(
u(v − qM0r

>)
)
xx

+3
(
u
(

(qM0r
> − v)2 − qxM0r

> + vx + βu
))

x
.

Consider additional reductions in Lax pair (27) and corresponding system (28).
(1) Assume that v = −2iIm (βD−1{u}), q∗ = r>, u ∈ R,M0 = −M∗0 (L∗1 = −DL1D

−1,
M∗3 = −DM3D

−1). Then system (28) takes the form

α3qt3 = qxxx − 3(2iIm (βu) + qM0q
∗)qxx+

+ 3
(

(qM0q
∗ + 2iIm (βu))2 − qxM0q

∗ + βu− 2iIm (βu)
)
qx,

(29)
α3ut3 = uxxx + 3 {u (2iIm (βu) + qM0q

∗)}xx +

+ 3
(
u
{

(qM0q
∗ + 2iIm (βu))2 − qxM0q

∗ + βu− 2iIm (βu)
})

x
.

(a) Let us assume that in addition to the reductions described in item 1, the functions q and
u with the matrix M0 are real-valued (i.e., the matrix M0 is skew-symmetric, M>0 = −M0)
and v = 0. Then the scalar qM0q

> = 0 since qM0q
> = −(qM0q

>)>, and equation (29)
reads

α3qt3 = qxxx − 3qxM0q
>qx + 3βuqx,

(30)

α3ut3 = uxxx − 3(uqxM0q
>)x + 6βuux.

(2) Let us putM0 = 0 in the operators L1, M3 (27),

L1 = D + βD−1u+ v, M3 = α3∂t3 −D3 − 3vD2 − 3(v2 + vx + βu)D.

Then equation (28) takes the form

−α3vt3 + vxxx + 3vvxx + 3v2vx + 3v2x + 6β(uv)x = 0,
(31)

α3ut3 = uxxx − 3(uv)xx + 3(u(v2 + vx + βu))x.

(a) Under the additional restrictions v = −2iIm (D−1{βu}) (L∗1 = −DL1D
−1, M∗3 =

= −DM3 D
−1) in item 2 we obtain a complex generalization of the modified KdV equation,

α3ut3 = uxxx + 6i(uIm (D−1{βu}))xx + 3(u(−4Im(D−1{βu})2 − 2iIm (αu) + βu))x. (32)

In the real case (β ∈ R, u is a real-valued function, v = 0) the operators L1 and M3 take the
form L1 = D + βD−1u, M3 = β∂t −D3 − 3βuD, and we obtain the KdV equation in (32),

α3ut3 = uxxx + 6βuux. (33)
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(3) Let us put u = 0 in Lax pair (27), L1 = D − qM0D
−1r>D + v, M3 = α3∂t3 − D3 −

−3(v − qM0r
>)D2 − 3

(
(qM0r

> − v)2 − qM0r
> + vx

)
D. Equation (28) becomes

−α3vt3 + vxxx + 3vvxx + 3v2vx + 3v2x + 3
{

(qM0r
>)2 − qxM0r

>
}
vx−

− 3qM0r
>vxx − 6qM0r

>vvx = 0,

α3qt3 = qxxx+3(v − qM0r
>)qxx+3

{
(qM0r

> − v)2 − qxM0r
> + vx

}
qx, (34)

α3r
>
t3 = r>xxx−3

(
r>x

(
v − qM0r

>
))

x
+3r>x

{
(qM0r

> − v)2−qxM0r
> + vx

}
.

4. Dressing methods for k-cmKP hierarchy. In this section our aim is to elaborate dres-
sing methods for the k-cmKP hierarchy (10). At first we recall a main result from paper [35].
Let (1 ×K)-matrix functions ϕ and ψ be solutions of linear problems with (2+1)-dimensional
generalization of the operator Lk (4) with a more general differential part Bk,

Lk{ϕ} = ϕΛ, Lτk{ψ} = ψΛ̃, Λ, Λ̃ ∈ MatK×K(C),
(35)

Lk = βk∂τk +Bk + qM0D
−1r>, Bk =

k∑
j=0

ujD
j .

Introduce a binary Darboux transformation (BDT) in the following way:

W = I − ϕ
(
C +D−1{ψ>ϕ}

)−1
D−1ψ> := I − ϕ∆−1D−1ψ>, (36)

where C is a (K ×K)-constant nondegenerate matrix. The inverse operator W−1 has the form

W−1 = I + ϕD−1
(
C +D−1{ψ>ϕ}

)−1
ψ> = I + ϕD−1∆−1ψ>. (37)

The following theorem is proved in [35].

Theorem 1 [35]. The operator L̂k := WLkW
−1 obtained from Lk in (35) via BDT (36) has

the form

L̂k := WLkW
−1 = βk∂τk + B̂k + q̂M0D

−1r̂> + ΦMD−1Ψ>,
(38)

B̂k =
k∑
j=0

ûjD
j ,

where

M = CΛ− Λ̃>C, Φ = ϕ∆−1, Ψ = ψ∆−1,>,
(39)

∆ = C +D−1{ψ>ϕ}, q̂ = W{q}, r̂ = W−1,τ{r}.
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The coefficients ûk and ûk−1 of the operator L̂k remain the same, i.e., ûk = uk, ûk−1 = uk−1. All
other coefficients ûj , j = 0, k − 2, depend on the functions ϕ, ψ and ui, i = 0, j. Exact forms of
all coefficients ûj can be found in [35].

Using the previous theorem we obtain the following result for the (2 + 1)-generalization of
operator Lk from the k-cmKP hierarchy (10):

Theorem 2. Let (1×K)-vector functions ϕ and ψ satisfy linear problems:

Lk{ϕ} = ϕΛ, Lτk{ψ} = ψΛ̃, Λ, Λ̃ ∈ MatK×K(C),
(40)

Lk = βk∂τk +Bk − qM0D
−1r>D, Bk =

k∑
i=1

uiD
i.

Then the operator L̂k transformed via the operator

Wm := w−10 W = w−10

(
I − ϕ∆−1D−1ψ>

)
= I − ϕ∆̃−1D−1(D−1{ψ})>D, (41)

where

w0 = I − ϕ∆−1D−1{ψ>}, ∆̃ = −C +D−1{D−1{ψ>}ϕx}, ∆ = C +D−1{ψ>ϕ},

has the form

L̃k := WmLkW
−1
m = βk∂τk + B̃k − q̃M0D

−1r̃>D + Φ̃MD−1Ψ̃>D,
(42)

B̃k =
k∑
j=1

ũjD
j , ũk = uk, ũk−1 = uk−1 + kukw

−1
0 w0,x, . . . ,

where

M = CΛ− Λ̃>C, Φ̃ = −Wm{ϕ}C−1 = ϕ∆̃−1,

Ψ̃ = D−1{W τ,−1
m {ψ}}C−1,> = D−1{ψ}∆−1,>, q̃ = Wm{q}, (43)

r̃ = D−1W−1,τm D{r}, ∆̃ = C +D−1{D−1{ψ>}ϕx}.

Proof. Let us check that

w−10 = I − ϕ∆̃D−1{ψ>}, ∆̃ = −C +D−1{D−1{ψ>}ϕx}.

In order to do that we have to verify the equality w0w
−1
0 = I,

w0w
−1
0 = I − ϕ∆−1D−1{ψ>} − ϕ∆̃−1D−1{ψ>}+

+ ϕ∆̃−1
(
C +D−1{ψ>ϕ} − C +D−1{D−1{ψ>}ϕx}

)
ϕ∆−1D−1{ψ>} = I.
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Analogously it can be verified that w−10 w0 = I. By Theorem 1 we obtain

WmLkW
−1
m = w−10 W

(
βk∂τk +Bk − qM0r

> + qM0D
−1r>x

)
W−1w0 =

= βk∂τk + (WmLkW
−1
m )≥0 − w−10 W{q}M0D

−1 (W−1,τ{rx})>w0+

+ w−10 ΦMD−1Ψ>w0. (44)

We shall point out that Ψ>w0 = ∆−1ψ>(I − ϕ∆−1D−1{ψ>}) =
(
∆−1D−1{ψ>}

)
x

= Ψ̃>x . We
shall also observe that

(W−1,τ{rx})>w0 =
(
r>x −D−1{r>x ϕ}∆−1ψ>

)(
I − ϕ∆−1D−1{ψ>}

)
=

=
(
r> −D−1{r>x ϕ}∆−1D−1{ψ>}

)
x

= (D−1W−1,τm D{r})>x = r̃>x .

Thus (44) can be rewritten as

L̃k = WmLkW
−1
m = w−10 W

(
βk∂τk +Bk − qM0r

> + qMD−1r>x

)
W−1w0 =

= βk∂τk + (WmLkW
−1
m )≥0 + q̃M0D

−1r̃>x − Φ̃MD−1Ψ̃>x =

= βk∂τk + (WmLkW
−1
m )≥0 + q̃M0r̃

> − Φ̃MΨ̃> − q̃M0D
−1r̃>D + Φ̃MD−1Ψ̃>D. (45)

Using that L̃k{1} = ũ0 = 0 we obtain the form of B̃k, i.e., B̃k := (WmLkW
−1
m )≥0 + q̃M0r̃

> −
−Φ̃MΨ̃> =

∑k
j=1 ũjD

j .
Theorem 2 is proved.
Theorem 2 provides us with a dressing method for k-cmKP hierarchy (10), i.e., the following

corollary directly follows from the previous theorem:

Corollary 1. Assume that the operatorsLk andMn in (10) satisfy the Lax equation [Lk,Mn] =
= 0. Let functions ϕ and ψ satisfy the equations

Lk{ϕ} = ϕΛ, Lτk{ψ} = ψΛ̃, Λ, Λ̃ ∈ Mat(K×K)(C), Mn{ϕ} = 0, M τ
n{ψ} = 0. (46)

Then the transformed operators L̃k = WmLkW
−1
m (see (42) with βk = 0) and

M̃n = WmMnW
−1
m = αn∂tn −Dn −

n−1∑
i=1

ũiD
i (47)

via the transformation Wm (41) also satisfy the Lax equation [L̃k, M̃n] = 0.

Proof. It can be checked directly that

[L̃k, M̃n] = [WmLkW
−1
m ,WmMnW

−1
m ] = Wm[Lk,Mn]W−1m = 0.

The exact form of the operators L̃k and M̃n follows from Theorem 2.

ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 3



ADDITIONAL REDUCTIONS IN THE K-CONSTRAINED . . . 429

The following corollary follows from Corollary 1 and Theorem 2:

Corollary 2. Suppose that the functions ϕ and ψ satisfy equations (46) with operators Lk and
Mn defined by (23). Then the transformed operators have the form

L̃k = Bk − q̃M0D
−1r̃>D + Φ̃MD−1Ψ̃>D + ṽ + βD−1ũ,

(48)

M̃n = αn∂tn − B̃n, B̃n = Dn +

n−1∑
i=1

ũiD
i,

where

M = CΛ− Λ̃>C, Φ̃ = −Wm{ϕ}C−1 = ϕ∆̃−1,

Ψ̃ = D−1{W τ,−1
m {ψ}}C−1,> = D−1{ψ}∆−1,>, q̃ = Wm{q},

(49)

r̃ = W−1,τm {r} , ∆̃ = C +D−1{D−1{ψ>}ϕx}, ∆ = C +D−1{ψ>ϕ},

ũ = W−1,τm {D−1{u}}, ṽ = Wm{v}+ βD−1W−1,τm {u} − βWm{D−1{u}}.

As it was shown in previous sections, the most interesting systems arise from the k-cmKP
hierarchy (10) and its reduction (23) after a Hermitian conjugation reduction. Our aim is to
show that under additional restrictions, the BDT Wm (41) preserves this reduction.

Proposition 1. (1) Let ψ = ϕ̄x and C = −C∗ in the dressing operator Wm (41). Then the
operator Wm is D-unitary (W−1m = D−1W ∗mD).

(2) Let the operator Lk (10) be D-Hermitian, L∗k = DLkD
−1 (D-skew-Hermitian, L∗k =

= −DLkD−1) and Mn (10) be D-Hermitian (D-skew-Hermitian). Then the operator L̂k =
= WmLkW

−1
m (see (42)) transformed via the D-unitary operator Wm is D-Hermitian (D-skew-

Hermitian) and M̂n := WmMnW
−1
m (47) is D-Hermitian (D-skew-Hermitian).

(3) Assume that the conditions of items 1 and 2 hold. Let Λ̃ = Λ̄ in the case of D-Hermitian
Lk (Λ̃ = −Λ̄ in D-skew-Hermitian case). We shall also assume that the function ϕ satisfies the
corresponding equations in formulae (46). Then M = M∗ (M = −M∗) and Ψ̃ = ¯̃Φ (see
formulae (39)).

In Subsection 4.1 we will show how one can use the methods described in Theorem 2 and
its corollaries in order to obtain solutions of KdV equation (33) and its generalization (30).

4.1. Solution generating technique for system (30) and KdV equation (33). We shall consider
equation (30) in the case where the dimension of the vector q and the matrixM0 is even, i.e.,
m = 2m̃, m̃ ∈ N (in this situation, the skew-symmetric matrix M0 can be nondegenerate).
Assume that the skew-symmetric matrixM0 in (30) and the vector-function q has the form

M0 =

(
0m̃ Im̃
−Im̃ 0m̃

)
, q = (q1,q2) = (q11, q12, . . . , q1m̃, q21, q22, . . . , q2m̃) , (50)

where 0m̃ is a (m̃× m̃)-dimensional matrix consisting of zeros, Im̃ is an identity matrix with the
dimension m̃ × m̃. Equation (30) with the notation ũ := u can be rewritten in the following
form:

ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 3



430 O. CHVARTATSKYI, YU. SYDORENKO

α3q1,t3 = q1,xxx − 3(q1,xq
>
2 − q2,xq

>
1 )q1,x + 3βũq1,x,

α3q2,t3 = q2,xxx − 3(q1,xq
>
2 − q2,xq

>
1 )q2,x + 3βũq2,x, (51)

α3ũt3 = ũxxx − 3(ũ(q1,xq
>
2 − q2,xq

>
1 ))x + 6βũũx.

In this subsection our aim is to consider the case m̃ = 1 (although the corresponding solution
generating technique can be generalized to the case of an arbitrary natural m̃). In this situation
q1 = q1 and q2 = q2 are scalars. We shall suppose that K = 2K̃ is an even natural number.
Assume that the function ϕ is a (1×K)-vector solution of the system

L10{ϕ} = ϕx + βD−1{uϕ} = ϕΛ, Λ ∈ MatK×K(C), β ∈ R,
(52)

M30{ϕ} = α3ϕt3 − ϕxxx − 3βuϕx = 0,

with a number u ∈ R.
Using Theorem 2 and Proposition 1 we obtain that the dressed operators L̃10 and M̃30 via

the operator Wm (41) with the skew-Hermitian matrix C and ψ = ϕ̄x has the form

L̃10 = WmL10W
−1
m = D + Φ̃MD−1Φ̃∗D + βD−1ũ+ ṽ,

(53)

M̃30 = WmM30W
−1
m = α3∂t3 −D3 − (ṽ + Φ̃MΦ̃∗)D2−

− 3
(

(Φ̃MΦ̃∗ + ṽ)2 + Φ̃xMΦ̃∗ + ṽx + βũ
)
D,

where M = CΛ − Λ∗C∗, Φ̃ = ϕ∆̃−1, ũ = uD{ϕ̄ ¯̃∆−1D−1{ϕ>u}}, ṽ = β(Φ̃D−1{ϕ∗u} −
−D−1{uϕ}Φ̃∗), ∆̃ = −C + D−1{ϕ∗ϕx}. It has to be pointed out that the function Φ̃ =
= −Wm{ϕ}C−1 = ϕ∆̃−1 satisfies the equation M̃30{Φ̃} = 0 because

M̃30{Φ̃} = WmM30W
−1
m {Wm{ϕ}C−1} = 0.

Now we assume that the functionϕ and the matricesC and Λ are real. In this case, ṽ = ṽ> =
= β(Φ̃D−1{ϕ>u} −D−1{uϕ}Φ̃>)> = −ṽ = 0.

Let us put

Λ = diag (λ11, λ12, λ21, λ22, . . . , λK̃1, λK̃2), λij ∈ R,

C =


C11 C12 . . . C1K̃
C21 C22 . . . C2K̃

...
... . . .

...
CK̃1 CK̃2 . . . CK̃K̃

 , (54)
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where the elements Cij are (2× 2)-matrices of the form

Cij =

 0 − 1

λj2 + λi1
1

λj1 + λi2
0

 . (55)

Under such a choice of C (55) and Λ (54) we obtain that the (2K̃×2K̃)-dimensional matrix
M = CΛ−Λ>C> has the block form,M = (Mij)

K̃
i,j=1,whereMij = M0 (see formula (50) in

case m̃ = 1). Let us denote by 1K̃ = (I2, . . . , I2) a matrix that consists of K̃ (2×2)-dimensional
identity matrices I2. ThenM = −1>

K̃
M01K̃ .

Let us put u = const and choose a solution of system (52) in the form

ϕ =
(
ϕ11, ϕ12ϕ21, ϕ22, . . . , ϕK̃1, ϕK̃2

)
, ϕij = exp

{(
1

2
λij + γij

)
x+ aijt

}
,

where

γij =

√
1

4
λ2ij − βu, aij =

{(
1

2
λij + γij

)3

+ 3βu

(
1

2
λij + γij

)}
/α3.

The (2K̃ × 2K̃)-matrix ∆̃ then takes the block form

∆̃ = −C +D−1{ϕ>ϕx} =
(

∆̃ij

)K̃
i,j=1

=

=


αi1

αi1+αj1
e(αi1+αj1)x+(ai1+aj1)t αi2

αi2+αj1
e(αi2+αj1)x+(ai2+aj1)t + 1

λj2+λi1

αi1
αi1+αj2

e(αi1+αj2)x+(ai1+aj2)t − 1
λj1+λi2

αi2
αi2+αj2

e(αi2+αj2)x+(ai2+aj2)t


K̃

i,j=1

,

(56)

where αij =
1

2
λij+γij . The functions q = (q1, q2) =ϕ∆̃−11>

K̃
and ũ= u−D

{
ϕ∆̃−1D−1{ϕ>u}

}
will be solutions of system (51).

We shall point out that in case β = 0, K̃ = 1, α3 = 1, we obtain the following solution of
the real version of the mKdV-type equation (equation (51) with ũ = 0):

q = (q1, q2), q1 = − 2(λ11 + λ12)ϕ12

(λ11 − λ12)ϕ11ϕ12 − 2
, q2 =

2(λ11 + λ12)ϕ11

(λ11 − λ12)ϕ11ϕ12 − 2
,

ϕ1j = eλ1jx+λ
3
1jt3 , λ1j > 0, j = 1, 2.

It is also possible to choose other types of matrices C and Λ in (54) and (55). In particular the
following remark holds.

Remark 1. In case K̃ = 1, the vector of the functions

ϕ = (ϕ1, ϕ2), ϕ1 = cos
(
xλ12 + (3λ211λ12 − λ312)t+

π

4

)
exλ11+(λ311−3λ11λ212)t,
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ϕ2 = sin
(
xλ12 + (3λ211λ12 − λ312)t+

π

4

)
exλ11+(λ311−3λ11λ212)t

will be a solution of system (52) with u = 0 and Λ =

(
λ11 λ12
−λ12 λ11

)
. The corresponding

solution generating technique given by (54) – (56) in case K̃ = 1, CK̃ = C1 =

 0
1

2λ11

− 1

2λ11
0


gives us a solution of mKdV-type equation (51) with ũ = 0 that coincides with a solution obtai-
ned in [36].

Now we will consider solution generating technique for KdV (33). For this purpose we
assume that the function ϕ, the matrices Λ = diag (Λ1, . . . ,ΛK̃) and C = diag (C1 . . . , CK̃) are
real and have the form

Λj =

(
0 λj
λj 0

)
, Cj =

(
0 −cj
cj 0

)
. (57)

In this case we obtain that the matrixM = CΛ−Λ>C> consists of zeros in (53). Consider the
following solution of system (52):

ϕ =
(
ϕ11, ϕ12, ϕ21, ϕ22, . . . , ϕK̃1, ϕK̃2

)
,

ϕj1 = eγjx+ajt cosh

(
λj
2
x+ bjt

)
, ϕj2 = eγjx+ajt sinh

(
λj
2
x+ bjt

)
,

where

γj =

√
1

4
λ2j − βu, aj =

(
γ3j +

3

4
γjλ

2
j + 3βuγj

)
/α3, bj =

(
3γ2j

λj
2

+
λ3j
8

+
3

2
βuλj

)
/α3

and λj , α3, β, u ∈ R. Thus, ṽ = 0 and we obtain a Lax pair for the KdV equation in (53),
L̃10 = D + βD−1ũ, M̃30 = α3∂t3 −D3 − 3βũD.

The formula

ũ = u−D
{
ϕ∆̃−1D−1{ϕ>u}

}
:= u+ û (58)

gives us a finite density solution of equation (33). In particular, if K̃ = 1 and c1 =
1

8

λ1
γ1

we

obtain the following solution:

ũ = u+
2γ21

β cosh2 (γ1x+ a1t)
. (59)

Now we shall substitute ũ (58) in KdV equation (33),

α3ût3 = ûxxx + 6βûûx + 6βuûx. (60)

ISSN 1562-3076. Нелiнiйнi коливання, 2014, т . 17, N◦ 3



ADDITIONAL REDUCTIONS IN THE K-CONSTRAINED . . . 433

The corresponding pair of operators has the form L1 = D+ βD−1(û+ u), M3 = α3∂t3 −D3−
−3βûD − 3βuD. We have two ways to obtain soliton solutions (that are rapidly decreasing at
both infinities in contrast to finite density solutions (58) that tend to an arbitrary real number
u) for KdV from formula (58):

(1) By taking the limit u → 0 in (58) – (60).
(2) By making a change of the independent variables: x̃ := x + 6α−13 βut3, t̃3 := t3 and

v̂(x̃, t̃3) := û(x, t3) in equation (60) and solutions (58), (59). This change corresponds to the
change of differential operators in the Lax pair for equation (60) consisting of the operators L1

and M3, α3∂t̃3 = α3∂t3 − 3βuD.

5. Conclusions. In this paper we obtain new generalizations (23) of the modified k-cKP
(k-cmKP) hierarchy (10). The obtained hierarchy also generalizes the BKP hierarchy [36 – 38]
which is a special case of the k-cmKP hierarchy. Dressing methods elaborated via BDT-type
operators (Section 4) give rise to exact solutions of the integrable systems that hierarchy (23)
contains. In particular, soliton solutions for generalization of mKdV-type equation (51) and fi-
nite density solutions as well as regular soliton solutions were constructed for the KdV equation
using the proposed dressing methods. These methods also allow to obtain rational and singular
multisoliton solutions of the corresponding nonlinear systems under a special choice of spectral
matrix Λ in the linear system (52). In order to minimize the size of this article we do not include
those results here. We shall point out that the special case of equation (51) (ũ = 0) and its
solutions were considered in [36]. Generalizations (23) of the k-cmKP hierarchy (10) together
with different extensions of k-cKP hierarchy is a good basis for construction of other hierarchi-
es of nonlinear integrable equations with corresponding dressing methods. In particular in our
forthcoming papers we plan to introduce a (2+1)-BDk-cmKP hierarchy and investigate soluti-
on generating technique for the corresponding integrable systems. Consider as an example the
Lax pair from the (1+1)-BDk-cKP hierarchy that was investigated in [31],

P1,1 = D + c1M2{q}M0D
−1r> + c1qM0D

−1(M τ
2 {r})> + c0qM0D

−1r> =

= D + c1

(
α2qt2M0D

−1r> − α2qM0D
−1r>t2 − qxxM0D

−1r> −

− qM0D
−1r>xx − uqM0D

−1r> − qM0D
−1r>u

)
+ c0qM0D

−1r>,

(61)

M2 = α2∂t2 −D2 − u

with vector-functions q and r satisfying c1M2
2 {q}+ c0M2{q} = 0, c1(M

τ
2 )2{r}+ c0M

τ
2 {r} = 0.

It was shown in [31] that the Lax equation [P1,1,M2] = 0 in (61) is equivalent to the system

[P1,1,M2]≥0 = 0, c1M
2
2 {q}+ c0M2{q} = 0, c1(M

τ
2 )2{r}+ c0M

τ
2 {r} = 0 (62)

that is equivalent to a generalization of the AKNS system. In case c0 = 1, c1 = 0 we obtain the
AKNS system in (62),

α2qt2 − qxx − uq = 0, −α2rt2 − rxx − ur = 0, u = 2qM0r
>.

Assume that the scalar function f satisfies the equations P1,1{f} = fλ, M2{f} = 0. We shall
introduce the notations M̃2 := f−1M2f, M̂2 := DM̃2D

−1, P̃1,1 := f−1P1,1f, q̃ := f−1q,
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r̃> := D−1{r>f} and consider the following gauge transformations:

M̃2 = f−1M2f = α2∂t2 −D2 − 2ũD, ũ = f−1fx,

P̃1,1, = f−1P1,1f = D + f−1fx + c1f
−1M2{q}M0D

−1r>f+

+ c1f
−1qM0D

−1(M τ
2 {r})>f + c0f

−1qM0D
−1r>f =

= D − c1M̃2{q̃}M0D
−1r̃>D − c1q̃M0D

−1(M̂ τ
2 {r̃})>D − c0q̃M0D

−1r̃>D.

The equation [M̃2, P̃1,1] = 0 is equivalent to the following system:

[P̃1,1, M̃2]>0 = 0, c1M̃
2
2 {q̃}+ c0M̃2{q̃} = 0, c1(M̂

τ
2 )2{r̃}+ c0M̂

τ
2 {r̃} = 0

or in an equivalent form (after notation q0 := q̃, r0 := r̃),

[P̃1,1, M̃2]>0 = 0, q1 = M̃2{q0}, r1 = M̂ τ
2 {r0},

(63)

c1M̃2{q1}+ c0M̃2{q0} = 0, c1M̂
τ
2 {r1}+ c0M̂

τ
2 {r0} = 0.

System (63) is a generalization of the Chen – Lee – Liu system (case c1 = 0, c0 = 1). In case
of the additional reduction α2 ∈ iR, c0 = 0, c1 ∈ R,M∗0 = −M0, r = q̄, (63) reads as follows:

α2q0,t2 − q0,xx + 2c1(q1M0q
∗
0 + q0M0q

∗
1)q0,x − q1 = 0,

α2q1,t2 − q1,xx + 2c1(q1M0q
∗
0 + q0M0q

∗
1)q1,x = 0.

We shall also point out that the extension of the k-cmKP hierarchy (23) can also be generali-
zed to the matrix case. It leads to matrix generalizations of integrable systems that hierarchy
(23) contains (including Chen – Lee – Liu (15) and modified-type KdV equation (18)). In parti-
cular, the matrix generalization of the modified KdV-type equation (18) differs from the well-
known matrix mKdV equation that was investigated by the inverse scattering method in [39].
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