УСТОЙЧИВОСТЬ РЕГУЛИРУЕМЫХ СИСТЕМ С ДВУМЯ ИСПОЛНИТЕЛЬНЫМИ ОРГАНАМИ НА ВРЕМЕННОЙ ШКАЛЕ

С. В. Бабенко

Черкас. нац. ун-т им. Б. Хмельницкого Украина, 18000, Черкассы, бульв. Шевченко, 79 e-mail: sofuslee@rambler.ru

А. А. Мартынюк

Ин-т механики НАН Украины Украина, 03057, Киев, ул. Нестерова, 3 e-mail: center@inmech.kiev.ua

We consider a time continuous-discrete controlled system with two executive members. The system is described mathematically as a so-called dynamical systems on a time scale. For the system under consideration, we construct a Lyapunov function, and establish sufficient conditions for stability of the motion.

Розглядається неперервно-дискретна за часом регульована система з двома виконавчими органами, математичний опис якої грунтується на так званих динамічних системах рівнянь на часовій шкалі. Для розглядуваної системи побудовано функцію Ляпунова і встановлено достатні умови стійкості руху.

1. Постановка задачи. Все необходимые сведения из математического анализа на временной шкале, используемые в данной статье, читатели могут найти в монографии [5] или [3].

Рассматривается регулируемая система, описываемая динамическими уравнениями на временной шкале \mathbb{T} :

$$\eta^{\Delta} = b\eta + n_1 \xi_1 + n_2 \xi_2,$$

$$\xi_1^{\Delta} = f_1(\sigma_1), \quad \sigma_1 = p_1 \eta - r_{11} \xi_1 - r_{12} \xi_2,$$

$$\xi_2^{\Delta} = f_2(\sigma_2), \quad \sigma_2 = p_2 \eta - r_{21} \xi_1 - r_{22} \xi_2.$$
(1)

Здесь η — координата; b — постоянная объекта регулирования; ξ_1, ξ_2 — координаты; n_1, n_2 — постоянные регулирующих органов; $p_1, p_2, r_{11}, r_{12}, r_{21}, r_{22}$ — постоянные регулятора; $f_1(\sigma_1), f_2(\sigma_2)$ — заданные дифференцируемые ограниченные функции, принадлежащие классу функций f со свойствами:

- 1) f(0) = 0,
- 2) $\sigma f(\sigma) > 0, \sigma \neq 0,$
- 3) существует положительная постоянная C_f такая, что при всех $t\in\mathbb{T}$ и $\sigma\in\mathbb{R}$ справедлива оценка

$$\mu(t) \left| \frac{df}{d\sigma} \right| \le 2C_f \mu(t).$$

© С.В. Бабенко, А.А. Мартынюк, 2013

Обозначим класс таких функций через $\mathcal{A}_{\mathbb{T}}$. В частном случае, когда шкала \mathbb{T} является множеством действительных чисел \mathbb{R} , т. е. $\mu(t) \equiv 0$, условие 3 становится тривиальным и класс $\mathcal{A}_{\mathbb{R}}$ совпадает с классом \mathcal{A} , описанным в [1].

Решение

$$\eta = \sigma_1 = \sigma_2 = 0 \tag{2}$$

определяет положение равновесия регулируемой системы, которое должно поддерживаться двумя регулирующими органами.

Если $\mathbb{T} = \mathbb{R}$, то система (1) является системой обыкновенных дифференциальных уравнений

$$\frac{d\eta}{dt} = b\eta + n_1\xi_1 + n_2\xi_2,$$

$$\frac{d\xi_1}{dt} = f_1(\sigma_1), \quad \sigma_1 = p_1\eta - r_{11}\xi_1 - r_{12}\xi_2,$$

$$\frac{d\xi_2}{dt} = f_2(\sigma_2), \quad \sigma_2 = p_2\eta - r_{21}\xi_1 - r_{22}\xi_2.$$
(3)

Эта система уравнений описывает динамику регулируемой механической системы с двумя исполнительными органами, которая рассмотрена в работе [1]. А. М. Летовым исследована устойчивость решения (3) при любых возмущениях и любых функциях $f_1(\sigma)$, $f_2(\sigma)$ класса \mathcal{A} .

Целью настоящей работы является получение достаточных условий устойчивости состояния равновесия (2) для динамических уравнений (1).

2. Основной результат. Укажем достаточные условия, выполнение которых гарантирует устойчивость положения равновесия (2) регулируемой системы (1) при любых возмущениях и любых функциях f_1 , f_2 класса $\mathcal{A}_{\mathbb{T}}$. Поскольку в непрерывном случае ($\mathbb{T} = \mathbb{R}$) $\mathcal{A}_{\mathbb{T}} = \mathcal{A}$ и такая устойчивость регулируемой системы называется абсолютной устойчивостью [1], естественно называть таким же термином и устойчивость положения равновесия (2) регулируемой системы (1) при любых возмущениях и любых функциях f_1 , f_2 класса $\mathcal{A}_{\mathbb{T}}$. Далее понадобится следующий результат из работы [4]. Систему вида

$$x^{\Delta}(t) = f(t, x(t)), \quad x(t_0) = x_0,$$
 (4)

где $x^{\Delta}(t)$ — дельта-производная вектора состояния x(t) системы, будем называть системой динамических уравнений возмущенного движения.

Предполагаем, что система (4) удовлетворяет следующим условиям:

 H_1 . Вектор-функция F(t)=f(t,x(t)) удовлетворяет условию $F\in C_{rd}(\mathbb{T}),$ если x является дифференцируемой функцией со значениями в N ($N\subset\mathbb{R}^n$ — открытая связная окрестность состояния x=0).

 H_2 . Вектор-функция f(t,x) является покомпонентно регрессивной, т. е. $e^T + \mu(t) f(t,x) \neq 0$ при всех $t \in [t_0, \infty)$, где $e^T = (1, \dots, 1)^T \in \mathbb{R}^n$.

 H_3 . Функция f(t,x) = 0 при всех $t \in [t_0, \infty)$, если и только если x = 0.

 $H_4.$ Функция зернистости $0<\mu(t)\in M$ при всех $t\in\mathbb{T},$ где M — компактное множество.

В работе [4] доказано такое следствие.

Следствие 1. Пусть вектор-функция f в системе (4) удовлетворяет условиям H_1-H_4 на $\mathbb{T}\times N, N\subset\mathbb{R}^n$ и существует, по крайней мере, одна пара индексов $(p,q)\in[1,m]$, для которой $(v_{pq}(t,x)\neq 0)\in U(t,x)$, и функция $v(t,x,\theta)=e^TU(t,x)e=v(t,x)$ при всех $(t,x)\in\mathbb{T}\times N$ удовлетворяет условиям:

- (a) $\psi_1(||x||) \leq v(t,x);$
- (6) $v(t,x) \leq \psi_2(||x||);$
- (в) при всех $0 < \mu(t) < \mu^* \in M$ выполняется неравенство

$$v^{\Delta}(t,x)|_{(4)} \le -\psi_3(||x||) + m(t,\psi_3(||x||))$$

и

$$\lim \frac{|m(t, \psi_3(||x||))|}{\psi_3(||x||)} = 0 \quad npu \quad \psi_3 \to 0$$

равномерно по $t \in \mathbb{T}$, где $\psi_1, \psi_2, \psi_3 - \phi$ ункции сравнения класса K.

Тогда при условиях (a), (в) состояние x = 0 системы (4) асимптотически устойчиво, а при условиях (a) – (в) — равномерно асимптотически устойчиво.

Этот результат является следствием основного результата по устойчивости, полученного в работе [4] с помощью матричнозначной вспомогательной функции [6] $U(t,x) = [v_{ij}(t,x)], i,j=1,2,\ldots,m$.

Возвращаясь к системе (1), допустим, что для нее выполняется условие

$$\lambda = \sup_{t \in \mathbb{T}} \operatorname{Re} \xi_{\mu(t)}(b) < -c^2, \quad c \neq 0,$$
(5)

где $\xi_h:\mathbb{C}_h \to \mathbb{Z}_h$ — цилиндрическое преобразование [5], которое определяется по формуле

$$\xi_h(z) = \begin{cases} \frac{1}{h} \text{Log}(1+zh), h > 0, \\ z, h = 0, \end{cases}$$
 (6)

где Log — главная логарифмическая функция. Известно, что условие (5) гарантирует экспоненциальную устойчивость положения равновесия нерегулируемой системы.

Выполняя в системе (1) преобразование переменных по формуле

$$x = \eta - \frac{n_1}{\rho} \, \xi_1 - \frac{n_2}{\rho} \, \xi_2, \quad \rho = -b, \tag{7}$$

получаем

$$x^{\Delta} = -\rho x + u_1 f_1(\sigma_1) + u_2 f_2(\sigma_2),$$

$$\sigma_1^{\Delta} = \beta_1 x - r_{11} f_1(\sigma_1) - r_{12} f_2(\sigma_2),$$

$$\sigma_2^{\Delta} = \beta_2 x - r_{21} f_1(\sigma_1) - r_{22} f_2(\sigma_2),$$
(8)

где

$$u_1 = -\frac{n_1}{\rho}, \quad u_2 = -\frac{n_2}{\rho}, \quad \beta_1 = -p_1\rho, \quad \beta_2 = -p_2\rho.$$
 (9)

Теперь поставленная задача эквивалентна задаче об абсолютной устойчивости решения

$$x = \sigma_1 = \sigma_2 = 0 \tag{10}$$

системы (8).

Рассмотрим функцию Ляпунова $V(x, \sigma_1, \sigma_2)$:

$$V = \frac{a^2 x^2}{-2\lambda} + \int_0^{\sigma_1} f_1(\sigma_1) d\sigma_1 + \int_0^{\sigma_2} f_2(\sigma_2) d\sigma_2 = \frac{a^2 x^2}{-2\lambda} + I_1 + I_2, \tag{11}$$

где a — любое вещественное число, и покажем, что V удовлетворяет условиям (a) и (в) следствия 1, гарантирующим асимптотическую устойчивость.

Нетрудно видеть, что функция V является положительно определенной в силу условия (5) и свойств функций $f_1(\sigma_1)$ и $f_2(\sigma_2)$. Таким образом, условие (a) следствия 1 выполняется.

Вычислим Δ -производную функции V вдоль решений системы (8). Получим

$$V^{\Delta}\Big|_{(8)} = \frac{a^2}{-2\lambda} (2xx^{\Delta} + \mu(x^{\Delta})^2) + I_1^{\Delta} + I_2^{\Delta}\Big|_{(8)}.$$

Согласно правилу Δ -дифференцирования сложной функции имеем

$$I_k^{\Delta}\Big|_{(8)} = \int\limits_0^1 \frac{d}{d\zeta} \left(\int\limits_0^\zeta f_k(\sigma) d\sigma \right) \Big|_{\zeta = \sigma_k + \mu h \sigma_k^{\Delta}} dh \, \sigma_k^{\Delta} = \int\limits_0^1 f_k(\sigma_k + \mu h \sigma_k^{\Delta}) dh \, \sigma_k^{\Delta}, \;\; k = 1, 2.$$

Согласно известной теореме о среднем

$$f_k(\sigma_k + \mu h \sigma_k^{\Delta}) = f_k(\sigma_k) + \int_0^1 \frac{df_k}{d\zeta} \Big|_{\zeta = \sigma_k + \mu h \theta \sigma_k^{\Delta}} d\theta \mu h \sigma_k^{\Delta}, \quad k = 1, 2.$$
 (12)

Используя (12), получаем выражение для Δ -производных интегралов I_k :

$$I_k^{\Delta}\Big|_{(8)} = \int_0^1 \left(f_k(\sigma_k) + \int_0^1 \frac{df_k}{d\zeta} \Big|_{\zeta = \sigma_k + \mu h \theta \sigma_k^{\Delta}} d\theta \mu h \sigma_k^{\Delta} \right) dh \, \sigma_k^{\Delta} =$$

$$= f_k(\sigma_k) \sigma_k^{\Delta} + \int_0^1 h \int_0^1 \mu(t) \frac{df_k}{d\zeta} \Big|_{\zeta = \sigma_k + \mu h \theta \sigma_k^{\Delta}} d\theta dh \, (\sigma_k^{\Delta})^2, \quad k = 1, 2.$$
(13)

С. В. БАБЕНКО, А. А. МАРТЫНЮК

Обозначив через C_1 , C_2 постоянные из свойства 3 функций класса $\mathcal{A}_{\mathbb{T}}$ и воспользовавшись принадлежностью $f_1(\sigma_1)$ и $f_2(\sigma_2)$ классу $\mathcal{A}_{\mathbb{T}}$, получим оценки выражений (13):

$$I_{k}^{\Delta}\Big|_{(8)} \leq f_{k}(\sigma_{k})\sigma_{k}^{\Delta} + \int_{0}^{1} 2hC_{k}\mu(t)dh(\sigma_{k}^{\Delta})^{2} = f_{k}(\sigma_{k})\sigma_{k}^{\Delta} + C_{k}\mu(t)(\sigma_{k}^{\Delta})^{2} =$$

$$= f_{k}(\sigma_{k})(\beta_{k}x - r_{k1}f_{1}(\sigma_{1}) - r_{k2}f_{2}(\sigma_{2})) +$$

$$+ \mu(t)C_{k}(\beta_{k}x - r_{k1}f_{1}(\sigma_{1}) - r_{k2}f_{2}(\sigma_{2}))^{2}, \quad k = 1, 2.$$
(14)

Из (14) имеем

$$\begin{split} V^\Delta\Big|_{(8)} &\leq \frac{a^2}{-2\lambda} \left(2x(-\rho x + u_1 f_1(\sigma_1) + u_2 f_2(\sigma_2)) + \mu(-\rho x + u_1 f_1(\sigma_1) + u_2 f_2(\sigma_2))^2\right) + \\ &\quad + f_1(\sigma_1)(\beta_1 x - r_{11} f_1(\sigma_1) - r_{12} f_2(\sigma_2)) + \mu(t) C_1(\beta_1 x - r_{11} f_1(\sigma_1) - r_{12} f_2(\sigma_2))^2 + \\ &\quad + f_2(\sigma_2)(\beta_2 x - r_{21} f_1(\sigma_1) - r_{22} f_2(\sigma_2)) + \mu(t) C_2(\beta_2 x - r_{21} f_1(\sigma_1) - r_{22} f_2(\sigma_2))^2 = \\ &\quad = z^T A(\mu(t)) z, \end{split}$$

$$\texttt{TRe} \ z = (x, f_1(\sigma_1), f_2(\sigma_2))^T, \ A = [a_{ij}]_{i,j=1}^3, \ A^T = A, \\ a_{11} &= \frac{a^2}{-2\lambda} \left(-2\rho + \mu \rho^2\right) + \mu C_1 \beta_1^2 + \mu C_2 \beta_2^2, \\ a_{12} &= \frac{a^2}{-2\lambda} \left(2u_1 - 2\mu \rho u_1\right) + \beta_1 - 2\mu C_1 \beta_1 r_{11} - 2\mu C_2 \beta_2 r_{21}, \\ a_{13} &= \frac{a^2}{-2\lambda} \left(2u_2 - 2\mu \rho u_2\right) + \beta_2 - 2\mu C_1 \beta_1 r_{12} - 2\mu C_2 \beta_2 r_{22}, \\ a_{22} &= \frac{a^2}{-2\lambda} \mu u_1^2 - r_{11} + \mu C_1 r_{11}^2 + \mu C_2 r_{21}^2, \\ a_{23} &= \frac{a^2}{-2\lambda} 2\mu u_1 u_2 - r_{12} + 2\mu C_1 r_{11} r_{12} - r_{21} + 2\mu C_2 r_{21} r_{22}, \\ a_{33} &= \frac{a^2}{-2\lambda} \mu u_2^2 - r_{22} + \mu C_1 r_{12}^2 + \mu C_2 r_{22}^2. \end{split}$$

В квадратичной форме $z^T A(\mu(t)) z$ выделим полный квадрат следующим образом:

$$z^{T}A(\mu(t))z = -\left[-a_{11}x^{2} + f_{1}^{2}(\sigma_{1}) + f_{2}^{2}(\sigma_{2}) + 2\sqrt{-a_{11}}xf_{1}(\sigma_{1}) + 2\sqrt{-a_{11}}xf_{2}(\sigma_{2}) + 2f_{1}(\sigma_{1})f_{2}(\sigma_{2})\right] +$$

$$+ (a_{12} + 2\sqrt{-a_{11}})xf_{1}(\sigma_{1}) + (a_{13} + 2\sqrt{-a_{11}})xf_{2}(\sigma_{2}) +$$

$$+ (a_{22} + 1)f_{1}^{2}(\sigma_{1}) + (a_{23} + 2)f_{1}(\sigma_{1})f_{2}(\sigma_{2}) + (a_{33} + 1)f_{2}^{2}(\sigma_{2}) =$$

$$= -\left[\sqrt{-a_{11}}x + f_1(\sigma_1) + f_2(\sigma_2)\right]^2 + (a_{12} + 2\sqrt{-a_{11}})xf_1(\sigma_1) +$$

$$+ (a_{13} + 2\sqrt{-a_{11}})xf_2(\sigma_2) + (a_{22} + 1)f_1^2(\sigma_1) +$$

$$+ (a_{23} + 2)f_1(\sigma_1)f_2(\sigma_2) + (a_{33} + 1)f_2^2(\sigma_2).$$

$$(15)$$

Квадратичная форма $z^T A z$ будет отрицательно определенной при выполнении следующих условий:

$$a_{12} + 2\sqrt{-a_{11}} = 0$$
, $a_{13} + 2\sqrt{-a_{11}} = 0$, $a_{11} < 0$, $a_{22} + 1 < 0$,
 $4(a_{22} + 1)(a_{33} + 1) - (a_{23} + 2)^2 > 0$. (16)

Рассмотрим первое условие: $a_{12}+2\sqrt{-a_{11}}=0$. Решим это уравнение относительно a^2 , выполнив замену переменных $\sqrt{-a_{11}}=\alpha\geq 0$. В результате получим

$$-\frac{a^2}{2\lambda} = \frac{\alpha^2 + \mu C_1 \beta_1^2 + \mu C_2 \beta_2^2}{2\rho - \mu \rho^2}.$$

При этом будем предполагать, что

$$\mu(t) \neq \frac{2}{\rho}$$
 при всех $t \in \mathbb{T}$. (17)

Тогда уравнение $a_{12} + 2\sqrt{-a_{11}} = 0$ примет вид

$$\frac{(2u_1 - 2\mu\rho u_1)(\alpha^2 + \mu C_1\beta_1^2 + \mu C_2\beta_2^2)}{2\rho - \mu\rho^2} + 2\alpha + \beta_1 - 2\mu C_1\beta_1 r_{11} - 2\mu C_2\beta_2 r_{21} = 0.$$
 (18)

Очевидно, что уравнение (18) имеет положительное решение α^* в случае, когда выполняются неравенства

$$u_1 \neq \mu \rho u_1$$
,

$$D_{1} = 1 - \left(\frac{2u_{1} - 2\mu\rho u_{1}}{2\rho - \mu\rho^{2}}\right) \left(\frac{(2u_{1} - 2\mu\rho u_{1})(\mu C_{1}\beta_{1}^{2} + \mu C_{2}\beta_{2}^{2})}{2\rho - \mu\rho^{2}} + \beta_{1} - 2\mu C_{1}\beta_{1}r_{11} - 2\mu C_{2}\beta_{2}r_{21}\right) \geq 0,$$

$$\frac{-2\rho + \mu\rho^{2}}{2u_{1} - 2\mu\rho u_{1}} > 0.$$
(19)

При этом
$$\alpha^* = \frac{(-1+\sqrt{D_1})(2\rho-\mu\rho^2)}{2u_1-2\mu\rho u_1}.$$

ISSN 1562-3076. Нелінійні коливання, 2013, т. 16, № 1

Подставив теперь во второе равенство в (16) и остальные неравенства вместо $-\frac{a^2}{2\lambda}$ выражение $l=\frac{(\alpha^*)^2+\mu C_1\beta_1^2+\mu C_2\beta_2^2}{2\rho-\mu\rho^2},$ получим

$$l(2u_{2} - 2\mu\rho u_{2}) + 2\alpha^{*} + \beta_{2} - 2\mu C_{1}\beta_{1}r_{12} - 2\mu C_{2}\beta_{2}r_{22} = 0,$$

$$-(\alpha^{*})^{2} < 0,$$

$$l\mu u_{1}^{2} - r_{11} + \mu C_{1}r_{11}^{2} + \mu C_{2}r_{21}^{2} + 1 < 0,$$

$$4(l\mu u_{1}^{2} - r_{11} + \mu C_{1}r_{11}^{2} + \mu C_{2}r_{21}^{2} + 1)(\mu u_{2}^{2} - r_{22} + \mu C_{1}r_{12}^{2} + \mu C_{2}r_{22}^{2} + 1) -$$

$$-(2\mu lu_{1}u_{2} - r_{12} + 2\mu C_{1}r_{11}r_{12} - r_{21} + 2\mu C_{2}r_{21}r_{22} + 2)^{2} > 0,$$

$$(20)$$

или

$$l(2u_{2} - 2\mu\rho u_{2}) + 2\alpha^{*} + \beta_{2} - 2\mu C_{1}\beta_{1}r_{12} - 2\mu C_{2}\beta_{2}r_{22} = 0,$$

$$l\mu u_{1}^{2} - r_{11} + \mu C_{1}r_{11}^{2} + \mu C_{2}r_{21}^{2} + 1 < 0,$$

$$4(l\mu u_{1}^{2} - r_{11} + \mu C_{1}r_{11}^{2} + \mu C_{2}r_{21}^{2} + 1)(\mu u_{2}^{2} - r_{22} + \mu C_{1}r_{12}^{2} + \mu C_{2}r_{22}^{2} + 1) -$$

$$-(2\mu lu_{1}u_{2} - r_{12} + 2\mu C_{1}r_{11}r_{12} - r_{21} + 2\mu C_{2}r_{21}r_{22} + 2)^{2} > 0.$$
(21)

Таким образом, условия (17), (19), (21) являются, с учетом (9), достаточными условиями асимптотической устойчивости решения (2) системы (1) при любых возмущениях и любых функциях $f_1(\sigma_1)$, $f_2(\sigma_2)$ класса $\mathcal{A}_{\mathbb{T}}$.

При $\mathbb{T} = \mathbb{R}$, т. е. при $\mu(t) \equiv 0$, условия (16) совпадают с условиями абсолютной устойчивости нулевого решения системы (3).

На рисунке приведена область устойчивости положения равновесия системы (1) в пространстве параметров (ρ,μ) .

3. Заключительные замечания. Согласно принципу функционирования системы автоматического регулирования на временной шкале основная задача состоит в том, чтобы обнаруживать отклонения регулируемых величин в дискретные моменты времени, характеризующих работу объекта или протекание процесса, от требуемого режима, и при этом воздействовать на объект или процесс так, чтобы устранять эти отклонения.

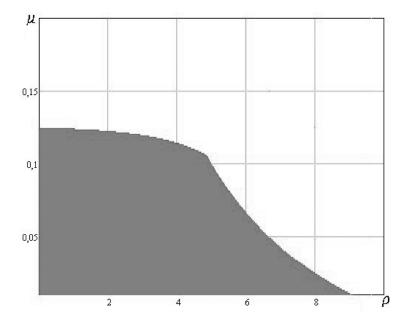


Рис. 1. Область устойчивости положения равновесия (2) при $p_1=1$, $p_2=2$, $C_1=1$, $C_2=1$, $r_{11}=3$, $r_{12}=1$, $r_{21}=1$, $r_{22}=3$, $n_1=0,001$.

Теория автоматического регулирования на временной шкале предполагает решение следующих основных проблем:

- 1) получение условий абсолютной устойчивости системы;
- 2) оценку качества переходного процесса;
- 3) установление условий возникновения автоколебаний;
- 4) получение критериев оптимизации и синтеза управлений.

Разработка такого рода теории автоматического управления на временной шкале в сочетании с методами решения прикладных инженерных задач представляет существенный интерес для исследований в этом направлении.

- 1. Летов А. М. Математическая теория процессов управления. М.: Наука, 1981. 256 с.
- 2. Летов A. M. Устойчивость нелинейных регулируемых систем. М.: Гостехиздат, 1955. 312 с.
- 3. *Мартынюк А. А.* Теория устойчивости решений динамических уравнений на временной шкале. Киев: Феникс, 2012. 277 с.
- 4. *Мартынюк-Черниенко Ю. А.* Об устойчивости динамических систем на временной шкале // Докл. AH. -2007. -413, № 1. C. 11 15.
- 5. Bohner M., Peterson A. Dynamic equations on time scales: an introduction with applications. Boston: Birkhäuser, 2001. 358 p.
- 6. *Martynyuk A. A.* Stability by Liapunov matrix functions method with applications. New York: Marcel Dekker, 1998. 276 p.

Получено 03.12.12