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UNIDIRECTIONAL SYNCHRONIZATION OF TWO MULTISCROLL
CHAOTIC SYSTEMS USING NONLINEAR CONTROL TECHNIQUE

ОДНОСПРЯМОВАНА СИНХРОНIЗАЦIЯ ДВОХ БАГАТОВИМIРНИХ
СКРОЛIНГОВИХ ХАОТИЧНИХ СИСТЕМ
З ВИКОРИСТАННЯМ ТЕХНIКИ НЕЛIНIЙНОГО КЕРУВАННЯ

A. Razminia

School Eng. Persian Gulf Univ., Bushehr, Iran
e-mail: razminia@pgu.ac.ir

The dynamics of nonlinear systems and especially chaotic ones have attracted increasing attention in
recent years. In this paper, we consider a new chaotic system that recently introduced in the literature. This
system exhibits several various behaviors such as two, three, and four scrolls. Using a nonlinear control
methodology, we synchronize a unidirectional coupling structure for the two chaotic systems. Numerical
simulations are used to support the theoretical analysis. Additionally we see the robustness of the system
in the presence of a noise in simulation.

В останнi роки зростає увага до динамiки нелiнiйних систем, особливо до хаотичної динамiки.
У статтi розглянуто нову хаотичну систему, що нещодавно з’явилась у лiтературi. Ця систе-
ма проявляє декiлька поведiнок, таких як дво-, три- та чотиривимiрнi скролiнги. Використо-
вуючи технiку нелiнiйного керування, отримано односпрямовану синхронiзацiю сполученої
структури для двох хаотичних систем. Чисельне моделювання пiдтверджує теоретичнi дослiд-
ження. Також було спостережено стiйкiсть системи вiдносно наявностi шуму при моделюваннi.

1. Introduction. Chaos theory and its related technology have gradually become well known as
a promising research field with significant impacts on an increasing number of novel, potenti-
ally attractive, time- and energy-critical engineering applications. Among different effort in the
field, chaos control has wide applications in diverse fields. Chaos control was developed by
Grebogi, Ott and Yorke in the recent years [1]. With different applications, effective methods
such as adaptive method [2], back-stepping design [3], time-delay feedback control [4], active
control [5], and nonlinear control [6] were devised to synchronize and control various chaotic
systems.

Many mathematical definitions of chaos exist but roughly, it may be described as a type of
dynamic behavior with the following characteristics [7]: extreme sensitivity to changes in initial
conditions, random-like behavior, and deterministic motion. Traditionally we have several types
of chaotic systems in practice. A regular chaotic system has one positive Lyapunov exponent.
Systems with more than one positive Lyapunov exponent are called hyperchaotic and reveal
more complicated dynamics that chaotic systems do.

Generally we have three problems in chaos literature: suppression [8 – 10], chaotization [11 –
13], and synchronization. In the following we describe the synchronization briefly.

The important class of the control objectives corresponds to the problem of synchronization.
Synchronization finds important applications in vibration technology [7], communications [12],
biology and ecology [13], and many others. Numerous publications on control of synchroni-
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zation of the chaotic processes and their application in the data transmission systems appeared
during nineties [7].

In this paper we consider a new chaotic system which has been recently introduced in the
scientific community of chaos. This system is presented and analyzed in [14]. We will make a
unidirectional coupling structure for two such systems that are run in different initial conditions.
We call this structure as master-slave structure. Bases on the supersensitivity to initial conditions
property for chaotic systems, a small discrepancy between initial conditions makes the chaotic
system behavior unpredictable in the long run. Thus designing a synchronization scheme via a
control law may be useful in various applied fields. One of these fields is secure chaos-based
communication systems that use the synchronization structure as its important parts. Using a
nonlinear technique the slave trajectories are forced to track the master trajectories asymptoti-
cally. Such type of synchronization is called as complete synchronization.

The plan of this paper is as follows. Section 2 briefly presents an introduction to the novel
chaotic system. Section 3 studies the synchronization scheme using nonlinear control techni-
ques and simulation results are presented in Section 4. Conclusions in Section 5 close the paper.

2. System description. Consider a three-dimensional autonomous system, which was pro-
posed in [14]. This system has very rich nonlinear dynamics, including chaos, period doubling
bifurcations, and others. Moreover, this system can generate two-scroll chaotic attractors. We
mean by two-scroll attractors, any set that is dense in the bounded region of attraction [15].
However, by varying a single parameter, a new three-scroll chaotic attractor is detected in the
novel three-dimensional smooth system. This three-scroll chaotic attractor evolves into a four-
scroll chaotic attractor in some way.

The chaotic system is described as:

 ẋ
ẏ
ż

 =

 y − ax + byz
cy − xz + z
dxy − hz

 , (1)

where [x(t), y(t), z(t)]T ∈ X ⊂ R3 is the state vector, X is a well-defined subspace of R3, and
{a, b, c, d, h} ∈ R+ are some positive constants.

For finding the equilibria of the proposed system it is enough to equate the left-hand side
of (1) to zero. The equilibria are:
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Fig. 1. Chaotic attractor of system with (a, b, c, d, h) = (3, 2.7, 4.7, 2, 9), (2-scroll) with initial
conditions (x0, y0, z0) = (5,−2, 1).
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The Jacobian matrix for (1) evaluated in the equilibrium point Qi : (x∗, y∗, z∗), i = 1, 2, . . . , 5,
where x∗, y∗, and z∗ are the coordination of the equilibrium, can be calculated as follows:

J =

 −a 1 + bz∗ by∗

−z∗ c 1− x∗

dy∗ dx∗ −h

 . (3)

It has been shown that for the following quantities there exist various behaviors [14]:

(i) (a, b, c, d, h) = (3, 2.7, 4.7, 2, 9),

(ii) (a, b, c, d, h) = (3, 2.7, 1.7, 2, 9), (4)

(iii) (a, b, c, d, h) = (3, 2.7, 3.9, 2, 9),

where (i) – (iii) correspond to two, three, and four scrolls respectively. As can be seen the coeffi-
cient c is variable in these categories.

The numerical simulations for these three chaotic attractors are depicted in Figs. 1, 2, and 3.

3. Synchronization scheme. Consider the master-slave synchronization scheme of two auto-
nomous different fractional order chaotic systems:

master
ẋ(t) = f(x),

slave
ẏ(t) = g(y) + u,

ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 4



530 A. RAZMINIA

Fig. 2. Chaotic attractor of system with (a, b, c, d, h) = (3, 2.7, 1.7, 2, 9), (3-scroll) with initial
conditions (x0, y0, z0) = (5,−2, 1).

Fig. 3. Chaotic attractor of system with (a, b, c, d, h) = (3, 2.7, 3.9, 2, 9), (4-scroll) with initial
conditions (x0, y0, z0) = (5,−2, 1).

where x, y ∈ X ⊂ Rn represent the states of the drive and the response systems, respectively.
Moreover, f : Rn → Rn, g : Rn → Rn are the vector fields of the drive and response
systems respectively. The aim is to choose a suitable control function u = (u1, u2, . . . , un)T

such that the states of the drive and response systems are synchronized asymptotically, i.e.,
limt→∞ ‖y(t)−x(t)‖ = 0. Such convergence between master and slave state is called asymptotic
synchronization scheme.

For the system (1), we construct the following master-slave structure as follows in which the
subscripts m and s stand for master and slave systems, respectively:

master system

 ẋm
ẏm
żm

 =

 ym − axm + bymzm
cym − xmzm + zm
dxmym − hzm

 ,

(5)
(xm(0), ym(0), zm(0)) = (xm0, ym0, zm0)
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and slave system  ẋs
ẏs
żs

 =

 ys − axs + byszs
cys − xszs + zs
dxsys − hzs.

 =

 u1
u2
u3

 ,

(6)
(xs(0), ys(0), zs(0)) = (xs0, ys0, zs0),

where and are nonlinear controllers to be designed such that the two chaotic system can be
synchronized. Notice that the structure of both systems (master and slave) is the same. For
achieving this goal, let us define the error variables as follows:

e1(t) = xs(t)− xm(t),

e2(t) = ys(t)− ym(t), (7)

ee(t) = zs(t)− zm(t).

Substituting Eqs. (5) and (6) in (7) we have

ė1 = e2 − ae1 + byse3 + bzme2 + u1,

ė2 = ce2 + e3 − xse3 − zme1 + u2, (8)

ė3 = −he3 + dxse2 + dyme1 + u3.

Now we are ready to express the main theorem of the manuscript.

Theorem 1. Systems (5) and (6) will approach global and exponential asymptotical synchroni-
zation for any initial condition if the control law is selected as follows:

u1 = −e2(1 + (b− 1)zm),

u2 = −e3(1− (d− 1)xs)− (1 + c)e2, (9)

u3 = −e1(bys + dym).

Proof. Consider the following Lyapunov function:

V =
1

2

(
e21 + e22 + e23

)
. (10)

With the control law given in Eq. (9), the time derivative of the Lyapunov function along the
trajectories of system (8) is:

V̇ (t) = e1ė1 + e2ė2 + e3ė3 = e1(e2 − ae1 + byse3 + bzme2 + u1)+

+ e2(ce2 + e3 − xse3 − zme1 + u2)+

+ e3(−he3 + dxse2 + dyme1 + u3) = −ae21 − e22 − he23. (11)
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As mentioned in Eq. (4), all system parameters are positive. Therefore

V̇ (t) = −ae21 − e22 − he23 < 0 (12)

which guarantees the exponential and global stability of Eq. (8). This means that limt→∞ ei(t) =
= 0, for i = 1, 2, 3. Thus we can conclude the complete asymptotical synchronization of (5)
and (6).

Using a similar approach one can prove the following theorem.

Theorem 2. Systems (5) and (6) will approach global and exponential asymptotical synchroni-
zation for any initial condition if the control law is selected as follows:

u1 = −e2(1 + (b− 1)zs),

u2 = −e3(1 + (d + 1)xm)− (1 + c)e2, (13)

u3 = −e1(bym + dys).

In the next section we examine the proposed method numerically.

4. Simulation results. In this section, to demonstrate the effectiveness of the proposed metho-
ds, we will present the numerical results for synchronizing chaotic systems (5) and (6) under the
control laws provided in Theorems 1 and 2. We selected the initial conditions (xm0, ym0, zm0) =
= (2,−2, 1) for the master system and (xs0, ys0, zs0) = (6,−1.7, 3) for the slave system when
we use the control law (10); (xm0, ym0, zm0) = (−6, 2, 1) and (xs0), ys0, zs0) = (−6,−1.7, 3) for
slave system when the control law is as (13). Note that we have chosen the initial conditions
very different intentionally. Driving the simulations we turn on the control at the instant t = 2.
Numerical results for application of Theorem 1, and Theorem 2 are depicted in Fig. 4, and 5
respectively. As can be seen after an initial transient, synchronization is achieved completely
and the errors converge to zero asymptotically.

For investigating the robustness of the designed system we insert a band-limited white noi-
se to the master signals. The band-limited white noise is a distributed random numbers that
are generated by using Matlab codes. Albeit the primary difference between this function and
the internal-predefined Random Number block is that the band-limited white noise function
produces output at a specific sample rate, which is related to the correlation time of the noise.

Theoretically, continuous white noise has a correlation time of 0, a flat power spectral densi-
ty (PSD), and a covariance of infinity. In practice, physical systems are never disturbed by white
noise, although white noise is a useful theoretical approximation when the noise disturbance
has a correlation time that is very small relative to the natural bandwidth of the system. In what
follows we repeat the simulation for the given synchronization scheme by using control law (13).
We consider power noise (the height of the PSD of the white noise) as 0.01, 0.03, and 0.02 for
xm, ym, and zm respectively. In this case we can observe the robustness of the systems (Fig. 6).

An important point that must be noted is that the above theorems have been derived based
on general values for parameters. Therefore the proposed method is valuable for synchronizing
the chaotic systems where they exhibit 2-scrolls, 3-scrolls or 4-scrolls. The above simulations
can be done for the case when both master and slave systems have 2-scroll chaotic attractors.
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Fig. 4. Time responses for synchronization scheme based on control law (9) with initial
conditions (xm0, ym0, zm0) = (2,−2, 1) and (xs0, ys0, zs0) = (6,−1.7, 3).

Fig. 5. Time responses for synchronization scheme based on control law (13) with initial
conditions (xm0, ym0, zm0) = (−6, 2, 1) and (xs0, ys0, zs0) = (6,−1.7, 3).
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Fig. 6. Time responses for synchronization scheme based on control law (13) with initial conditions
(xm0, ym0, zm0) = (−6, 2, 1) and (xs0, ys0, zs0) = (6,−1.7, 3). in the presence of noise.

5. Conclusion. This work discusses a nonlinear control scheme for synchronizing two chaotic
systems. Indeed the chaotic system is a novel chaotic system that recently has been introduced
in the research societies. The main feature of this system is its interesting behavior. Indeed the
system presents various chaotic attractors such as 2, 3, or 4 scrolls. Based on Lyapunov method,
we developed two theorems which proposed two control laws that guarantee the asymptotical
stability of the error dynamics which means the synchronization is achieved completely. Our
proposed method is valuable for each case: both master and slave systems are 2-scrolls, or 3-
scrolls, or 4-scrolls. Numerical simulations have been used for clarify the effectiveness of the
proposed control laws. It has been shown numerically the proposed techniques are robust in
the presence of noisy signals which are gotten form the master system.
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