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ON THE EXISTENCE OF PERIODIC SOLUTIONS
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In the present paper, we propose new sufficient conditions for the existence of periodic solutions for a class
of Rayleigh type p-Laplacian equation with deviating arguments. Results obtained complement or improve
the existing ones.

Запропоновано новi достатнi умови iснування перiодичних розв’язкiв рiвнянь релеївського ти-
пу з p-лапласiаном та вiдхиленими аргументами. Отриманi результати доповнюють та покра-
щують iснуючi результати.

1. Introduction. In recent years, the problem of the existence of periodic solutions for the Du-
ffing type, Liénard type, and Rayleigh type, p-Laplacian equation with a deviating argument
has been received a lot of attention. We refer the reader to [1 – 11] and the references cited
therein. However, to the best to our knowledge, fewer papers have considered the Rayleigh
type p-Laplacian equation with deviating arguments. We only find that Zong and Liang [12]
deal with the Rayleigh type p-Laplacian equation with deviating arguments of the form

(ϕp(x
′(t)))′ + f(t, x′(t− τ1(t))) + g(t, x(t− τ2(t))) = e(t), (1.1)

where p > 1 and ϕp : R → R is given by ϕp(s) = |s|p−2s for s 6= 0 and ϕp(0) = 0, f and g
are continuous and 2π-periodic with respect to the first argument, τ1, τ2 and e are continuous

and 2π-periodic. Under the assumptions that f(t, 0) = 0 and
∫ 2π

0
e(t) dt = 0, they proved the

following result.

Theorem A. Suppose there exist positive constants K, d, M such that:
(H1) |f(t, x)| ≤ K for (t, x) ∈ R× R;
(H2) xg(t, x) > 0 and |g(t, x)| > K for |x| > d and t ∈ R;
(H3) g(t, x) ≥ −M for x ≤ −d and t ∈ R.
Then (1.1) has at least one solution with period 2π.
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However, upon examining their proof of Theorem A in [12], we have found that the condi-
tions (H2) and (H3) can be replaced with a more simple condition (H∗2 ) (see to next section). In
this paper, we will also discuss the existence of 2π-periodic solutions to Eq. (1.1). By using the
Manásevich – Mawhin continuation theorem and some analysis, we establish some new suffici-
ent conditions for the existence of 2π-periodic solution of Eq. (1.1). If applying our results to
(1.1), one will find that our results are different from those in [1 – 12]. In particular, an example
is also given to illustrate the effectiveness of our results.

2. Main results. The following notations will be used throughout the rest of this paper:

|x|∞ = max
t∈[0,2π]

|x(t)|, |x′|∞ = max
t∈[0,2π]

|x′(t)|, e =
1

2π

2π∫
0

e(t) dt.

Set
C2π = {x ∈ C(R,R) : x(t+ 2π) = x(t)}

and
C1
2π = {x ∈ C1(R,R) : x(t+ 2π) = x(t)},

which are two Banach spaces with the norms

‖x‖C2π = |x|∞ and ‖x‖C1
2π

= max{|x|∞, |x′|∞}.

For the T -periodic boundary-value problem

(ϕp(x
′(t)))′ = f̃(t, x, x′), x(0) = x(T ), x′(0) = x′(T ), (2.1)

where f̃(t, x, x′) is a continuous function and T -periodic in the first variable, we have the
following result.

Lemma 2.1 [13]. Let B be an open ball in C1
T of center 0 and radius r. Assume that the

following conditions hold:
(i) For each λ ∈ (0, 1), the problem

(ϕp(x
′(t)))′ = λf̃(t, x, x′)

has no solution on the boundary of B.
(ii) The continuous function F defined on R by

F (a) :=
1

T

T∫
0

f̃(t, a, 0) dt

is such that F (r)F (−r) < 0.
Then the periodic boundary-value problem (2.1) has at least one periodic solution in B.

By using Lemma 2.1, we obtain our main results.
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Theorem 2.1. Let (H1) hold. Assume that the following condition is satisfied:
(H∗2 ) x(g(t, x)− e) < 0 and |g(t, x)− e| > K for |x| > d and t ∈ R.
Then Eq. (1.1) has at least one 2π-periodic solution.

Proof. Consider the homotopic equation of (1.1)

(ϕp(x
′(t)))′ + λf(t, x′(t− τ1(t))) + λg(t, x(t− τ2(t))) = λe(t), λ ∈ (0, 1). (2.1λ)

Let S ⊂ C1
2π be the set of all possible 2π-periodic solutions of (2.1λ). If S = φ, the proof is

ended. Suppose S 6= φ, and let x ∈ S; then integrating both sides of (2.1λ) from 0 to 2π, we get

2π∫
0

{
f(t, x′(t− τ1(t))) + [g(t, x(t− τ2(t)))− e]

}
dt = 0. (2.2)

By the integral mean value theorem, there is a ξ ∈ [0, 2π] such that

f(ξ, x′(ξ − τ1(ξ))) + [g(ξ, x(ξ − τ2(ξ)))− e] = 0. (2.3)

By applying condition (H1) we have

|g(ξ, x(ξ − τ2(ξ)))− e| = | − f(ξ, x′(ξ − τ1(ξ)))| ≤ K, (2.4)

and from condition (H∗2 ) we can obtain |x(ξ − τ2(ξ))| ≤ d. Let ξ − τ2(ξ) = 2nπ + t0, where
t0 ∈ [0, 2π], and n is an integer. Then, we obtain |x(t0)| ≤ d.

Hence, for any t ∈ [t0, t0 + 2π], we have

|x(t)| =

∣∣∣∣∣∣x(t0) +
t∫

t0

x′(s) ds

∣∣∣∣∣∣ ≤ |x(t0)|+
t∫

t0

|x′(s)| ds

and

|x(t)| =

∣∣∣∣∣∣x(t0 + 2π) +

t∫
t0+2π

x′(s) ds

∣∣∣∣∣∣ ≤ |x(t0)|+
∣∣∣∣∣∣−

t0+2π∫
t

x′(s) ds

∣∣∣∣∣∣ ≤ |x(t0)|+
t0+2π∫
t

|x′(s)| ds.

Now combining the above two inequalities, we obtain

|x|∞ = max
t∈[0,2π]

|x(t)| = max
t∈[t0,t0+2π]

|x(t)| ≤

≤ max
t∈[t0,t0+2π]

|x(t0)|+ 1

2

t0+2π∫
t0

|x′(s)| ds

 ≤ d+
1

2

2π∫
0

|x′(s)| ds. (2.5)

Denote
E1 = {t : t ∈ [0, 2π], |x(t− τ2(t))| > d}
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and

E2 = {t : t ∈ [0, 2π], |x(t− τ2(t))| ≤ d}.

Then E1 ∪ E2 = [0, 2π].

Since x(t) is 2π-periodic, multiplying both sides of (2.1λ) by x(t), integrating over [0, T ], and
applying (H∗2 ), we have

2π∫
0

|x′(t)|p dt = −
2π∫
0

(ϕp(x
′(t)))′x(t) dt = λ

2π∫
0

f(t, x′(t− τ1(t)))x(t) dt+

+ λ

2π∫
0

[g(t, x(t− τ2(t)))− e(t)]x(t) dt = λ

2π∫
0

f(t, x′(t− τ1(t)))x(t) dt+

+ λ

∫
E1

[g(t, x(t− τ2(t)))− e(t)]x(t) dt+ λ

∫
E2

[g(t, x(t− τ2(t)))− e(t)]x(t) dt ≤

≤
2π∫
0

|f(t, x′(t− τ1(t)))||x(t)| dt+

+

2π∫
0

max{|g(t, x(t− τ2(t)))− e(t)| : t ∈ R, |x(t− τ2(t))| ≤ d}|x(t)| dt ≤

≤ 2πD|x|∞, (2.6)

where D = max{|g(t, x(t− τ2(t)))− e(t)| : t ∈ R, |x(t− τ2(t))| ≤ d}+K.

For x(t) ∈ C(R,R) with x(t + 2π) = x(t), and 0 < r ≤ s, by using Hölder inequality, we
obtain

 1

2π

2π∫
0

|x(t)|r dt


1

r
≤

 1

2π

 2π∫
0

(|x(t)|rdt)
s

r


r

s
 2π∫

0

1 dt


s− r
s


1

r

=

 1

2π

2π∫
0

|x(t)|s dt


1

s
,

which implies that

|x|r ≤ (2π)
s−r
rs |x|s for 0 < r ≤ s. (2.7)
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Then, in view of (2.5) – (2.7), we have 2π∫
0

|x′(t)|dt

p

≤ (2π)p−1|x′(t)|pp = (2π)p−1
2π∫
0

|x′(t)|p dt ≤

≤ (2π)p−12πD|x|∞ ≤ (2π)pD

d+ 1

2

2π∫
0

|x′(s)| ds

 . (2.8)

Since p > 1, (2.8) yields that we can choose some positive constant M1 such that

2π∫
0

|x′(t)|dt ≤ M1, |x|∞ ≤ d+
1

2

2π∫
0

|x′(s)|ds ≤ M1.

As x(0) = x(2π), there exists t1 ∈ [0, 2π], such that x′(t1) = 0, and since ϕp(0) = 0, we
have

|x′|p−1∞ = max
t∈[0,2π]

{|ϕp(x′(t))|} = max
t∈[0,2π]


∣∣∣∣∣∣
t∫

t1

(ϕp(x
′(s)))′ ds

∣∣∣∣∣∣
 =

= max
t∈[0,2π]


∣∣∣∣∣∣
t∫

t1

[λf(s, x′(s− τ1(s))) + λg(s, x(s− τ2(s)))− λe(s)] ds

∣∣∣∣∣∣
 ≤

≤
2π∫
0

|f(s, x′(s− τ1(s)))| ds+
2π∫
0

|g(s, x(s− τ2(s)))− e(s)| ds ≤

≤ 2πM + 2πmax{|g(t, x(t− τ2(t)))− e(t)| : t ∈ R, |x(t− τ2(t))| ≤ M1} := M∗1 .
(2.9)

Thus, we can get some positive constant M2 > M1 +M∗1 + 1 such that, for all t ∈ R,

|x′(t)| ≤ M2.

Hence, taking r = M1+M2+d+1, we have that S ⊂ B.On the other hand, it is clear that,

in our case, F (a) = − 1

2π

∫ 2π

0
[g(t, a)− e(t)] dt. From (H∗2 ), it follows that F (−r)F (r) < 0. As

a consequence, we can apply the Manásevich – Mawhin continuation theorem to deduce that
Eq. (1.1) has at least one solution in B.

Theorem 2.1 is proved.

3. Example and remark. In this section, we give an example to demonstrate the results
obtained in the previous section.
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Example. Let f(t, x) = (1+cos2 t)e−x
2(t), g(t, x) = (3+ sin2 t) arctanx(t) for all t ∈ R and

x ∈ R. Then, the Rayleigh type p-Laplacian equation with deviating arguments

(ϕp(x
′(t)))′ + f(t, x′(t− sin2 t)) + g(t, x(t− cos t)) = 2 sin2 t (3.1)

has at least one periodic solution with period 2π.

Proof. By (3.1), we have e =
1

2π

∫ 2π

0
2 sin2 t dt = 1 and choose K = 2, and d =

π

4
. It is

obvious that the assumptions (H1) and (H∗2 ) hold. Hence, by Theorem 2.1, Eq. (3.1) has one
periodic solution with period 2π.

Remark. It is easy to see that all the results in [1 – 12], and the references cited therein,
cannot be applied to Eq. (3.1) for securing the existence of 2π-periodic solutions. This implies
that the results of this paper are essentially new.
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