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In the present paper, we propose new sufficient conditions for the existence of periodic solutions for a class
of Rayleigh type p-Laplacian equation with deviating arguments. Results obtained complement or improve
the existing ones.

3anponoHo8ano HOBL O0OCMAMMI YMOBU ICHYBAHHS NEPIOOUHHUX PO36°A3KI8 PDIBHAHb PeaeisCbik020 mu-
ny 3 p-AanaaciaHom ma ioxuaeHumu apeymenmamu. Ompumani pe3yabmamu 0ONOBHIOIOMb Ma NOKPaA-
W4YIOMb ICHYIOYI De3yAbmamu.

1. Introduction. In recent years, the problem of the existence of periodic solutions for the Du-
ffing type, Liénard type, and Rayleigh type, p-Laplacian equation with a deviating argument
has been received a lot of attention. We refer the reader to [1-11] and the references cited
therein. However, to the best to our knowledge, fewer papers have considered the Rayleigh
type p-Laplacian equation with deviating arguments. We only find that Zong and Liang [12]
deal with the Rayleigh type p-Laplacian equation with deviating arguments of the form

(ep(@' (1)) + f(t, 2/ (t = m1(1)) + 9(t,2(t — 72(2))) = e(t), (1.1)

where p > 1 and ¢, : R — R s given by ¢,(s) = |s[P"2s for s # 0 and ¢,(0) = 0, f and g
are continuous and 27-periodic with respect to the first argument, 71, 75 and e are continuous

21

and 27-periodic. Under the assumptions that f(¢,0) = 0 and / e(t)dt = 0, they proved the
0

following result.

Theorem A. Suppose there exist positive constants K, d, M such that:
(H1) |f(t,2)| < K for (t,7) € R x R

(H2) zg(t,z) > 0and |g(t,z)| > K for|z| > dandt € R,

(Hs3) g(t,z) > —M forx < —dandt € R.

Then (1.1) has at least one solution with period 2.
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However, upon examining their proof of Theorem A in [12], we have found that the condi-
tions (H3) and (H3) can be replaced with a more simple condition (H3) (see to next section). In
this paper, we will also discuss the existence of 27-periodic solutions to Eq. (1.1). By using the
Manasevich — Mawhin continuation theorem and some analysis, we establish some new suffici-
ent conditions for the existence of 27-periodic solution of Eq. (1.1). If applying our results to
(1.1), one will find that our results are different from those in [1-12]. In particular, an example
is also given to illustrate the effectiveness of our results.

2. Main results. The following notations will be used throughout the rest of this paper:

2m
J— / . / _ 1/
|%|oo = hax [z(@)],  |2'[ee = nax (1), e= o [ e
0
Set
Cor = {z € C(R,R) : z(t +27) = z(t)}
and

Cs = {zx € CYR,R) : z(t +27) = z(t)},

which are two Banach spaces with the norms
1llcor = l2loo and [l2llcy = max{|z|oo, ['|oc}-

For the T-periodic boundary-value problem

(@p(wl(t)))/ = f(t7wi/)7 ‘T(O) = x<T)7 a:’(O) = wl(T>v (2-1)

where f(t,z,2') is a continuous function and T-periodic in the first variable, we have the
following result.

Lemma 2.1 [13]. Let B be an open ball in Ck of center 0 and radius r. Assume that the
following conditions hold:
(i) For each \ € (0,1), the problem

(op(@'(1))) = Af(t,z,2)

has no solution on the boundary of B.
(ii) The continuous function F defined on R by

F(a) :=

Nl

T
/ f(t,a,0)dt
0

is such that F(r)F(—r) < 0.
Then the periodic boundary-value problem (2.1) has at least one periodic solution in B.

By using Lemma 2.1, we obtain our main results.
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Theorem 2.1. Let (Hy) hold. Assume that the following condition is satisfied:
(Hy) z(g(t,x) —€) < Oand |g(t,x) — €| > K for |x| > dand t € R.
Then Eq. (1.1) has at least one 2m-periodic solution.
Proof. Consider the homotopic equation of (1.1)
(op(@' (1)) + Af(8 2/ (t = 71(8) + Ag(t, a(t — 72(t)) = Ae(t), A € (0,1). (2.15)

Let S C C1_be the set of all possible 27-periodic solutions of (2.1,). If S = ¢, the proof is
ended. Suppose S # ¢, and let x € S, then integrating both sides of (2.1,) from 0 to 27, we get

27
/ {f(t,2'(t = 71(t))) + [g(t, z(t — 72(t))) — €]} dt = 0. (2.2)
0
By the integral mean value theorem, there is a £ € [0, 27] such that
F&,2 (€= 71(8)) + [9(&, 2(§ — 72(€))) —¢] = 0. (2.3)
By applying condition (H;) we have
19(&, 2(§ — 72(6))) —el = | = f(&2"(€ - ()] < K, (2.4)

and from condition (H;) we can obtain |z(£ — m2(&))|
to € [0,27], and n is an integer. Then, we obtain |z(¢o)|
Hence, for any ¢ € [tg, to + 27|, we have

d. Let £ — 1»(§) = 2nm + tg, where
d.

IAIA

2(t)] = |x(to) + / 2 (s)ds| < J(to)| + / 12/ (5)] ds

and
t to+2m to+2m
lz(t)| = |z(to+ 2m) + / 2'(s)ds| < |x(to)| + |- / 2'(s)ds| < |x(to)] + / |2’ (s)] ds.
to+2m t t
Now combining the above two inequalities, we obtain
oo = t)]| = )] <
] éﬂ%ﬁr]‘x( )| e, ()]
1 to+2m 1 2m
< ¢ = "(s)|ds p < d+ = '(5)| ds. 2.5
<, {x( l+y [ ) } <diy [WElds @)
to 0

Denote
Ey ={t:tel0,2n], |x(t —m7(t))| > d}
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and

By = {t:te[0,2n], |z(t — (1)) < d}.

Then E1 U Ey = [0,271’}.

Since z(t) is 2w-periodic, multiplying both sides of (2.1,) by z(t), integrating over [0, 7|, and
applying (H;), we have

27 27
/ &/ ()P dt = — / (o (1)) 2(t) dt = A / F(t 2t — o (8))(t) di+
0 0

2 2
+ A/[g(t,w(t —72(t))) — e(®)]x(t) dt = A/f(t, a'(t — (1)) (t) dit+
0 0

+A /[g(t, z(t = mo(1))) — e()]x(t) dt + A /[g(ta z(t — (1)) — e()]x(t) dt <

Ey Es

27

< / (62t — ()] e(8)] di

0
2m
+ /max{]g(t,x(t —1a(t)) —e(t)|: t € R,|z(t — 72(t))| < d}|z(t)|dt <
0
< 27 D70, (2.6)

where D = max{|g(t,z(t — 72(t))) —e(t)|: t € R, |z(t — =(t))| < d} + K.

For z(t) € C(R,R) with z(t + 27) = x(t),and 0 < r < s, by using Holder inequality, we
obtain

1 T S—1T\ .. 1
s

2 .~ 2 s\ . 2m 2
1 . T 1 . s s [ e
<%O/x<t> dt) < |5 (/( (1)t ) (/Mt) - (%/ () dt) ,

0 0

which implies that

|z, < (27) % |zfs for 0 <7 <s. (2.7)
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Then, in view of (2.5)—(2.7), we have

21 p 21
/m«mw s@ﬂpﬂf@$:<%V1/ﬁﬂwwwg
0 0

1
< (2m)P~'2nD|z|o < (27)PD [ d + 2/\$'(5)\ds . (2.8)
Since p > 1, (2.8) yields that we can choose some positive constant M; such that
1 s
0

As z(0) = z(2m), there exists t; € [0, 2], such that 2/(¢;) = 0, and since ¢,(0) = 0, we
have

t

|a'[5c! = max Hlep( ')} = max /(eap(w'(S)))’dS =

te[0,2 tef0,2n]
t1

t

= max / A (s,2'(s — 71(8))) + Ag(s,2(s — 72(s))) — Xe(s)] ds

t€[0,27]

IN

2w

S/ﬂ@w@—ﬁ)!®+/MMM—WUD—$WBS

0

< 20 M + 2rmax{|g(t, z(t — (1)) — e(t)] : t € R, |x(t — 72(t))] < My} := M.
(2.9)

Thus, we can get some positive constant My > M; + M + 1 such that, forallt € R,
2/(1)] < M.

Hence, taking r = M; + My +d+ 1, we have that S C B. On the other hand, it is clear that,
1 21
in our case, F(a) = 5 / [g(t,a) — e(t)] dt. From (Hj), it follows that F'(—r)F(r) < 0. As
™ Jo

a consequence, we can apply the Manasevich —Mawhin continuation theorem to deduce that
Eq. (1.1) has at least one solution in B.
Theorem 2.1 is proved.

3. Example and remark. In this section, we give an example to demonstrate the results
obtained in the previous section.
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Example. Let f(t,2) = (1+cos?t)e=*"®) g(t,z) = (3+sin?t) arctan z(t) for all t € R and
x € R. Then, the Rayleigh type p-Laplacian equation with deviating arguments

(p(2' (1)) + f(t,2'(t — sin®t)) + g(t, x(t — cost)) = 2sint (3.1)

has at least one periodic solution with period 2.

2w

1
Proof. By (3.1), we have ¢ = 2/ 2sin’tdt = 1 and choose K = 2, and d = % Itis
T Jo

obvious that the assumptions (H;) and (H5) hold. Hence, by Theorem 2.1, Eq. (3.1) has one
periodic solution with period 27.

Remark. 1t is easy to see that all the results in [1-12], and the references cited therein,
cannot be applied to Eq. (3.1) for securing the existence of 27-periodic solutions. This implies
that the results of this paper are essentially new.
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