UDC 5179

OSCILLATION RESULTS FOR FOURTH ORDER
NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS
WITH POSITIVE AND NEGATIVE COEFFICIENTS

PO OCHUJIALIIO ISl HEJIIHIMHOTO
JUPEPEHHIAJTBHOI'O PIBHAHHSA

YETBEPTOI'O IIOPAAKY HEUTPAJIIbLHOTO THUITY

3 JOOJATHUMMU TA BII’€EMHUMU KOEPIINIEHTAMUA

A. K. Tripathy

Sambalpur Univ.
Sambalpur — 768 019, India
e-mail: arun_tripathy70@rediffmail.com

S. Panigrahi*, R. Basu™™

Univ. Hyderabad

Hyderabad - 500 046, India

e-mail: spsm@uohyd.ernet.in
rakheebasul983@gmail.com

Unbounded oscillation and asymptotic behaviour of a class of nonlinear fourth order neutral differential
equations with positive and negative coefficients of the form
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3 000aMHUMU MA 810’ EMHUMU KOehiuieHmamu 3a yMosuU
o0

t
——dt
/Tt) < 00

0

0as piznux obaacmeti 3uaqenv p(t). Ompumano 0oCMamui ymo8u icHy8aHHA 000AMHUX 0OMENeHUX
po36’askie pienannsa (E).

1. Introduction. In the last few years, there has been an increasing interest in the study of osci-
llatory behaviour of solutions of neutral delay differential equations with positive and negative
coefficients of first and second order, see, for example, [1, 4—8, 10]. However, very little work
[10] is available on the study of oscillatory and asymptotic behaviour of solutions of fourth
order equations which is due to the technical difficulties arising in its analysis.

In this paper, we consider a class of nonlinear fourth order neutral delay differential equati-
ons of the form

(r®) () +p@)y(t - 7)")" + aO)Gy(t — o)) = M) H (y(t — B)) = 0 (1.1)

and

(r(®)(y(t) + p@)y(t — 7))")" + a®)G(y(t — o)) = h(E) H(y(t — B)) = f(t), (1.2)

where r, ¢ and h are continuous and positive on [0,00), p € C([0,0),R), f € C([0,),R), G,
H € C(R,R) with uG(u) > 0,vH(v) > 0, for u, v # 0, H is bounded, G is nondecreasing and
T, a, § > 0 are constants.

The main objective of this work is to study the oscillatory and asymptotic behaviour of
solutions of (1.1) and (1.2), under the assumption

o0

t
——dt < 0. (A1)
O/T(t)

If A(t) = 0, then (1.1) and (1.2) reduce to
(r(®)(y(t) + py(t —7))")" +a(t)G(y(t — @) = 0 (1.3)
and
(r@)(y () +p®)y(t —7)")" +a()Gy(t — ) = f(?) (1.4)
respectively. In [9], Parhi and Tripathy have studied (1.3) and (1.4), under the assumption (A ).

If h(t) # 0, then nothing is known about the behaviour of solutions of (1.1)/(1.2). Therefore, an
attempt is made here to study (1.1) and (1.2) under the same assumption in addition to

77@7th(t) dt ds < oo. (A)
0 s
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Because (1.1)/(1.2) is more general than (1.3)/(1.4), it is worth studying. Not only the present
work is more illustrative than [9], but also some of the results are generalized and improved.
By a solution of (1.1)/(1.2) we understand a function y € C([—p,00),R) such that (y(¢) +
+p(t)y(t — 7)) is twice continuously differentiable, (r(¢)(y(t) + p(t)y(t — 7))”) is twice conti-
nuously differentiable and (1.1)/(1.2) is satisfied for ¢ > 0, where p = max{r, a, §} and

sup{|y(t)| : t > to} > 0 for every ¢ > to.

A solution y(t) of (1.1)/(1.2) is said to be oscillatory if it has arbitrarily large zeros; otherwise, it
is called nonoscillatory.

2. Some preparatory results. To study the nonlinear functional differential equations of the
type (1.1)/(1.2), we need the following results for our use in the sequel.

Lemma 2.1 [9]. Let (A1) hold. If u(t) is an eventually positive twice continuously differenti-
able function such that r(t)u” (t) is twice continuously differentiable and (r(t)u”(t))” < 0, % 0
for large t, where r € C(]0,00), (0,00)), then one of the following cases holds for large t :

(a) u/'(t) > 0,u"(t) > 0and (r(t)u"(t)) >0

(b) u'(t) > 0,u"(t) < 0and (r(t)u"(t)) > 0,

(c)u/'(t) > 0,u"(t) < 0and (r(t)u”(t)) <0

(d) u/'(t) < 0,u"(t) > 0and (r(t)u"(t)) > 0.

Lemma 2.2 [9]. Suppose that the conditions of Lemma 2.1 hold. Then (i) the following
inequalities hold for large t in the case (c) of Lemma 2.1:

w(t) > ktu'(t) and u(t) > —k(r(t)u”(t)tR(t),

where k > 0 is a constant and R(t) = / i (_)t ds and
t (s
(ii) u(t) > r(t)u”(t)R(t) for large t in case (d) of Lemma 2.1.

Lemma 2.3 [9]. If the conditions of Lemma 2.1 hold, then there exist constants k1 > 0 and
ko > 0 such that k1 R(t) < u(t) < kqot for large t.

Lemma 2.4 [9]. Let (A1) hold. Suppose that z(t) be a real valued twice continuously differenti-
able function on [0, 00), such that r(t) 2" (t) is twice continuously differentiable with (r(t)z"(t))" <
< 0,# 0 forlarget. If z(t) > 0 eventually, then one of the following cases holds for large t :

(a) 2'(t) > 0, 2"(t) > 0and (r(t)z"(t))" > 0,

(b) 2'(t) > 0,2"(t) < 0and (r(t)2"(t)) > 0,

(c) Z/(t) > 0,2"(t) < 0and (r(t)2"(t)) <0,

(d) 2'(t) < 0,2"(t) > 0and (r(t)2"(t)) > 0.

If z(t) < 0 for large t, then either one of the cases (b) — (d) holds or one of the following cases
holds for large t :

(e) 2'(t) < 0,2"(t) < 0and (r(t)z"(t)) > 0,

(f) 2'(t) < 0,2"(t) < 0and (r(t)z"(t)) < 0.
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542 A. K. TRIPATHY, S. PANIGRAHI, R. BASU

Lemma 2.5 [3]. Let p, y, z € C([0,00),R) be such that z(t) = y(t) + p(t)y(t — 1), for
t>7>0,y(t) >0fort >t > 7, liminf; o y(t) = 0and lim;_, 2(t) = L exists. Let p(t)
satisfy one of the following conditions:

where p; is a constant, 1 < i < 4. Then L = 0.

3. Oscillation results for (1.1). In this section, sufficient conditions are established for unboun-
ded oscillation and asymptotic behaviour of solutions of (1.1) under the assumption (A;). For
our purpose, we need the following assumptions:

(As) there exists A > 0 such that G(u) + G(v) > AG(u+v) foru, v > 0, u, v € R,

(A1) G(uw) = G(u)G(v), u, v € R,

(43) G(=u) = —G(u), H(~u) = ~H(u),u € R,

(4g) [ Q) d(t) = o0, Q) = min{q(t),q(t —7)}, ¢ > 7,

(A7) /OO b(t)Q(t)G(R(t — «)) dt = oo, where b(t) = min{R"(¢t), R"(t — 1)}, v > 1,tp >
>p >0, tio
(Asg) / RY(t)G(R(t — ))q(t)dt = oo,y > 1,t9g > p > 0.

to

Remark 3.1. Since R(t) < / %S) ds, we have that R(t) — 0 ast — oo in view of (A;).
t

Remark 3.2. (A4) implies that G(—u) = —G(u). Indeed, G(1)G(1) = G(1) and G(1) > 0
imply that G(1) = 1. Further, G(—1)G(-~1) = G(1) = 1 implies that (G(—1))?> = 1. Since
G(—1) < 0 it follows that G(—1) = —1. Hence G(—u) = G(—1)G(—u) = —G(u). On the
other hand, G(w) = G(u)G(v) for u > 0, v > 0, and G(—u) = —G(u) imply that G(zy) =
= G(x)G(y) for every z,y € R.

Remark 3.3. The prototype of G satisfying (As), (A4) and (A4s) is
G(u) = (a+ blul")|ul"Sgnu,

wherea > 0,b > 0,y > 0and p > Osuch thata +b = 1.

Theorem 3.1. Let 0 < p(t) < a < lorl < p(t) < a < oo. Suppose that (A,)—(Ar) hold.
Then every solution of (1.1) either oscillates or tends to zero ast — .

Proof. Due to Remark 3.1, b(t) — 0 ast — oco. Hence (A7) implies that
/Q(t)G(R(t —a))dt = . (3.1)
to

Assume that y(¢) is a nonoscillatory solution of (1.1). Then y(t) > Oor y(t) < 0 fort > ty > p.
Lety(t) > 0 fort¢ > ty. Setting

z2(t) = y(@) + p)y(t —7), (3.2)
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K(t) = / Sr(‘s)t / (6— )h(O)H(y(6 — 8)) db ds, (3.3)
and
w(t) = z(t) — K(t) = y(t) +pt)y(t — 7) — K (1), (3.4)
we obtain
(r(t)w"(t)" = =G (y(t —a)) <0, #0 (3.5)

for ¢t > ty + «. Consequently, w(t), w'(t), (r(t)w”(t)), (r(t)w”(t)) are monotonic on [t1, c0),
t1 > to + «. In what follows, we have two cases, viz. w(t) > 0 or < 0 for ¢ > t¢;. Suppose the
former holds. By the Lemma 2.1, any one of the cases (a), (b), (c) and (d) holds. Suppose that
any one of the cases (a), (b) and (d) holds. Upon using (As), (A4) and (Ag), Eq. (1.1) can be
viewed as

0= (r()w"(®)" +a()Gy(t — a)) + Gla)(r(t — T)w"(t — 7))"+
+Gla)g(t —7)Gy(t — 7 —a)) = (r)w" ()" + Gla)(r(t — T)w"(t — 7))"+
+AQM)G(y(t — o) +ay(t —a— 7)) = (r(H)w" (1)) "+
+ Gla)(rt —m)w"(t — 7))+ AQ)G(2(t — )

fort > t9 > t;, where we have used the fact that z(t) < y(t) + ay(t — 7). From (3.3), it follows
that K(¢) > 0, K'(t) < 0, and hence lim;_,, K (¢) exists due to (As). Further, w(t) > 0 for
t > t1 implies that w(t) < z(t) for ¢t > to and thus the last inequality yields

(r®)w” ()" + G(a)(r(t — )w"(t — 7)) + Q)G (w(t — a)) < 0,
for t > to, that s,
(r(w" ()" + G(a)(r(t = T)w"(t = 7))" + AG(k1)Q(t)G(R(t — a)) < 0

due to (A4) and Lemma 2.3, for ¢ > t3 > to. Integrating the above inequality from ¢3 to oo, we
get

G (k) / QU)G(R(t — a)) dt < oo,

a contradiction to (3.1). Next, we suppose that the case (c) holds. Upon using Lemmas 2.2 and
2.3, we have

k(—r(t)w”(t))tR(t) < w(t) < kot

fort > t4 > t3. Hence

~[((=r@®w"®))' ) = (v = D(=r(Hw" (1)) (=r(Hw" (1) >
> (v = DLTRY(t)q()G(y(t — @), (3.6)
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where L = kﬁ > 0. Therefore,
2

~[((=rOw"®))' ) = G@)((—=r(t = Tw"(t = 7)) ] >

> (v = DLRY ()G (y(t — ) + G(a)RT(t —7)q(t = T)G(y(t =7 — a))] =
> Ay = DLb@)QM)G(2(t — ) = My = DLTb()Q)G(w(t — ) =
= My = DL G(k)b(H)Q(H)G(R(t — av))

implies that

o0

Ao = DL'G() [ BOQUOG(R( - a))dt < ox,
tq
which contradicts (A7). Hence the latter holds. Consequently, z(¢) < K(t) and K (t) is bounded
will imply that y(¢) is bounded. From Lemma 2.4, it follows that any one of the cases (b)—(f)
holds for t > t2 > t;. In the cases (e) and (f) of Lemma 2.4, lim; ,o w(t) = —oo which

contradicts the fact that y(¢) is bounded and lim;_,, w(t) exists. Consider the case (b) or (c),
where —oo < limy_,oo w(t) < 0. Consequently,

0> tlirn w(t) = lim sup [2(t) — K(t)] > limsup[y(t) — K(t)] >

—00 t—00 t—00

> limsupy(t) — tlim K(t) = limsupy(t)
—00

t—o00 t—o0

implies that lim;, . y(t) = 0. We may note that lim; ., K(f) = 0. Lastly, let the case (d)
of Lemma 2.4 hold. Then lim;_,(r(t)w”(t))" exists. Hence integrating (3.5) from ¢ to oo, we

obtain
o

/ ()G (y(t — a)) dt < oo,

to

that is,
/Q(t)G(y(t _a))dt < co. (3.7)
to
If liminf; o y(t) > 0, then (3.7) yields,
/ Qt) dt < oo,
to

which contradicts (Ag) due to Remark 3.1. Hence lim inf; , y(t) = 0. Because lim;_,o, w(t)
exists, using Lemma 2.5, lim;_, w(t) = 0 = lim;_, 2(t). Moreover, z(t) > y(t) implies that
lim; o0 y(t) = 0.
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Ify(t) < Ofort > to, then we set z(t) = —y(t) for ¢t > o and
(r(®) () + pt)x(t — 7)")" + ¢(t)G(x(t — @) — h(t)H(x(t — B)) = 0.
Proceeding as above, we obtain similar conclusion.

Theorem 3.1 is proved.

Remark 3.4. From Theorem 3.1, it revels that y(¢) is bounded in the case w(t) < 0fort > t;,
which further converges to zero as t — oo. However, this fact is not required in the other case.
Hence we have proved the following theorem.

Theorem 3.2. Let 0 < p(t) < a < oo. Suppose that (A1) — (A7) hold, then every unbounded
solution of (1.1) oscillates.

Theorem 3.3. Let 0 < p(t) < a < 1. If (A1), (A2), (A4), (A45) and (Ag) hold, then every
unbounded solution of (1.1) oscillates.

Proof. Since R(t) — 0ast — oo, (Ag) implies that

/ GIR(t — a))q(t) dt = oo (3.8)
and hence
/ ot dt = oo, (3.9)

to

Let y(t) be a nonoscillatory solution of (1.1) such that y(¢) is unbounded and y(¢) > 0 for
t > tp > 0. The case y(t) < Ofort > ¢y > 0 is similar. We set z(¢), K(¢) and w(¢) as in
(3.2), (3.3) and (3.4) respectively to obtain (3.5) for t > ty + «. Consequently, each of w(t),
w'(t), (r(t)w”(t)) and (r(t)w”(t))" is of constant sign on [t1,00), t1 > t9 + «. Assume that
w(t) > 0fort > t;. Then Lemma 2.1 holds. If any one of the cases (a) or (b) holds, then
0 < w'(t) = 2/(t) — K'(t) implies that 2’(t) > 0 or < 0 for ¢ > t;. We note that z(¢) is
unbounded due to unbounded y(¢). Hence 2/(¢t) < 0 doesn’t arise. Ultimately, z'(¢) > 0 and

(1=p@®))z(t) < z(t) —p(t)z(t —7) = y(t) = pt)p(t — T)y(t — 27) < y(t),

that is,
y(t) > (1 —a)z(t) > (1 —a)w(t)

fort > to > t;. Thus (3.5) yields

G((1 = a)w(t — a))q(t) < —(r(t)w"(t))",
that is,

Gk (1 = a))G(R(t - a))q(t) < —(r(H)w"(#))" (3.10)
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due to Lemma 2.3 and (A4). Integrating (3.10) from ¢ to oo, it follows that

e}

/q(t)G(R(t —a))dt < oo,

to

a contradiction to (3.8). For the case (c) of Lemma 2.1, we proceed as in the proof of Theorem 3.1
to obtain (3.6). Using the same type of reasoning as above, (3.6) yields that

~[((=r@®w"®))' ) = (v = DLG((1 = a)k1) R (H)a()G(R(t — a))

for t > t,. Integrating the last inequality from ¢5 to co, we obtain,

[e.e]

/ R (HG(R(t — o)) dt < oo,

t2

a contradiction to (Ag). In the case (d) of Lemma 2.1, lim;_, w(t) exists, that is, lim;_,~ 2(%)
exists, a contradiction to our hypothesis. Due to Remark 3.4, the case w(¢) < 0 doesn’t arise.
Theorem 3.3 is proved.

Theorem 3.4. Let —1 < a < p(t) < 0.If (A1), (A2), (As5) and (As) hold, then every solution
of (1.1) either oscillatory or tends to zero ast — c.

Proof. Let y(t) be a nonoscillatory solution of (1.1) such that y(¢t) > 0 for¢ > ¢, > 0.
Setting z(t), K (t) and w(t) as in (3.2), (3.3) and (3.4) we obtain (3.5) for ¢ > t; + o and hence
w(t) is monotone on [t1,00), t; > to+a. Letw(t) > 0fort > t;. Suppose that one of the cases
(a), (b) and (d) of Lemma 2.1 holds for ¢ > ¢;. From Lemma 2.3, we have y(t) > w(t) > k1 R(t)
fort > to > t1 and hence (3.5) yields

[e.e]

/q(t)G(R(t— a))dt < oo, t3 > to+ «,

t3

a contradiction to (3.8). Next we consider the case (c¢). Proceeding as in the proof of Theorem 3.1,
we obtain (3.6). Further, y(¢t) > w(t) > ki R(t) for t > to by Lemma 2.3. Consequently, for
t>13 > to+a,

—[((=r@)w"()) ) = (v = 1)L G (k1) R (t)q(t) G(R(t — ).

Integrating the above inequality from ¢3 to oo, we get

o0

/ JORT DGR — a)) dt < oo,

t3

a contradiction to (Ag).
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If w(t) < 0fort > tp, then y(¢) is bounded ultimately. Hence z(¢) is bounded and so also
w(t). In what follows, none of the cases (e) and (f) of Lemma 2.4 arises. In the case (b) or
(c), —0o < limyyoo w(t) < 0. Using the fact that lim;_,o, K () = 0, we have limy_, o, w(t) =
= lim;_, 2(t). Hence

0 > lim w(t) = lim 2(t) = limsuply(t) + p(t)y(t — 7)] > limsupy(t) + litrgglf(ay(t —7)) =

t—o0 t—o0 t—o0 t—o00

= limsupy(t) + alimsupy(t — 7) = (1 + a) limsup y(¢)

t—o00 t—o00 t—o00

implies that limsup,_, . y(t) = 0, that is, lim;_,~, y(¢) = 0. Let the case (d) hold. Since

lim (r(t)w” (t))’

t—o00

exists, (3.5) yields that

[e.o]

[ a6 - a)dt < . (311)

to

If lim inf; o, y(t) > 0, then it follows from (3.11) that

(e}

[t <.

to
which contradicts (3.9). Hence lim inf;_,, y(t) = 0. Using Lemma 2.5, we assert that

tlggow(t) =0= tllglo 2(t)-
Proceeding as above, we may show that limsup,_, . y(t) = 0 and hence lim;_,, y(¢) = 0.
If y(t) < 0fort > tg, then one may proceed as above to obtain lim inf;_, y(t) = 0, that is
lim; o y(t) = 0.
Thorem 3.4 is proved.

Theorem 3.5. Let —co < p(t) < 0.1f (A1), (A2), (As) and (As) hold, then every unbounded
solution of (1.1) is oscillatory.

The proof of the theorem follows from the proof of Theorem 3.4. Hence the details are
omitted.

4. Oscillation results for (1.2). This section is concerned with the oscillation and asymptotic
behaviour of solutions of (1.2) with suitable forcing functions. We restrict our forcing functions
which are allowed to change the sign eventually. Let the following hypotheses hold concerning
the forcing function f(¢) of (1.2):

(Ag) There exists F' € C?([0, c0), R) such that F'(t) changes sign with —oo < lim inf, . F(t) <
< 0 < limsup,_,., F(t) < oo, 7F" € C?([0,00),R) and (rF")" = f.
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(A1p) There exists ' € C%([0,0),R) such that F(t) changes sign with liminf; ,,, F(t) =
= —o0, limsup,_,, F(t) = +oo, 7F” € C?([0,),R) and (rF")" = f.

Theorem 4.1. Let 0 < p(t) < a < oo. Assume that (A1), (A2), (43), (As), (As) and (A1)
hold. If

/b G(FT(t—a))dt = 0o = /b F~(t—a))dt, (A11)

where F*(t) = max{0, F(t)} and F~(t) = max{—F(t),0}, then every solution of (1.2) oscil-
lates.

Proof. Suppose on the contrary that y(¢) is a nonoscillatory solution of (1.2) such that y(¢) >
> 0fort > ty > p. Setting as in (3.2), (3.3) and (3.4), let

V(t) = wt) — F(t) = 2(t) — K(t) — F(t). (4.1)
Hence for t > to + o, Eq. (1.2) becomes
(r@V" ()" = —a®)Gy(t —a)) < 0,# 0. (4.2)
Consequently, V(¢) is monotone on [t;,00), t; > to + a. Let V(t) > 0 for t > t;. Then
2(t) — K(t) > F(t) implies that z(t) — K(t) > 0 due to (A10) and hence z(t) — K(t) >
> max{0, F(t)} = F*(t) fort > ¢, that is
z(t) > K(t) + FT(t) > FT(t). (4.3)
In view of Eq. (1.2), it is easy to verify that
0= (r@®V"®)" +a®)Gy(t — a)) + Gla)(r(t — 7)V"(t — 7))+
+Gla)g(t —7)Gy(t —a—1)) = (r®V"()"+
+Ga)(r(t—7)V"(t —71)" + AQ(#t)G(2(t — ))
due to (As3) and (A44). Using (4.3), the last inequality yields
0> (r)V"(1)" +G(a)(r(t — T)V"(t — 7)) + XQ(H)G(F T (t — a)), (4.4)

for t > to > t;. Assume that one of the cases (a), (b) and (d) of Lemma 2.1 holds. Then
integrating (4.4) from ¢3 + « to oo, we obtain

oo

/ Q)G(FT(t — a))dt < oo,

tot+a

a contradiction to (A;;). We may note that b(t) — 0 as¢ — oo due to Remark 3.1. Consider
the case (c) of Lemma 2.1. From Lemma 2.3 it follows that

k(=r(t)V"(#))tR(t) < V(t) < kot, t > t3 > to.
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Hence in view of (3.6), we have
~[((=r@®V"®)))' 7 2 (v = YL'R (t)a(t) G (y(t — o)),

for t > t3. Proceeding as in Theorem 3.1, we obtain

Ay — l)LVG(kl)/b(t)q(t)G(FJr(t Q) dt < 0o, ty >t

tq

which contradicts (A11). Consequently, V' (¢) < 0for ¢ > ¢;. Thus any one of the cases (b)—(f)
of Lemma 2.4 holds. If V(t) < 0, z(t) — K(t) < 0 ultimately due to (Ajp). In what follows, z(t)
is bounded and so also y(t). Therefore, lim;_,, V() exists. Since z(t) = V (¢)+ K (t) + F(t), we
have

0< htrgg}fz(t) = hgg}lf(‘/(t) +K(t)+ F(t) <

< limsup V (t) + liginf(K(t) + F(t)) <

t—o0

< lim V(¢) + limsup K (t) + litm inf F(t) =
—00

t—o0 t—o0

= lim V(¢) 4+ lim K(t) + liminf F(t) - —oo,
t—00 t—o00

t—o00

which is absurd.
If y(t) < Ofort > to, we set z(t) = —y(t) to obtain z(¢t) > 0 for ¢t > t; and

(r(®)(z(t) + p(t)x(t — 7))")" + a(O)G(z(t — ) = () H (x(t — ) = f(1)

due to (A5) where f(@t) = —f(t). If we set F(t) = —F(t), then F(t) changes sign. Further,
Ft(t) = F~(t)and (r(t)F"(t))” = f(t). Proceeding as above we obtain a contradiction.
Theorem 4.1 is proved.

Remark 4.1. In Theorem 4.1, V (t) < 0implies that z(¢) and y(¢) are bounded simultaneously.
This fact is unlikely true due to our assumption (Ajg). If (Ag) is replaced by (A;¢), then bounded
y(t) doesn’t provide any conclusion about the oscillatory behaviour of the solutions of (1.2).
Hence with unbounded y(¢), we have proved the following theorem:

Theorem 4.2. Let 0 < p(t) < a < oo. If (A1) —(4s), (Ag) and (A1) hold, then every
unbounded solution of (1.2) is oscillatory.

Theorem 4.3. Let —1 < p(t) < 0. Suppose that (A1), (A2), (As) and (Ay) hold. If
/ RI(O)g)G(FH(t — o)) dt = oo = / RIWgOGEF (t—a)dt v>1,  (Am)

then (1.2) is oscillatory.
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Proof. For the sake of contradiction, let y(¢) be a nonoscillatory solution of (1.2) such that
y(t) > 0fort > ty > p. The case y(t) < 0 can be similarly dealt with. For ¢t > t; > to,
y(a(t)) > 0and y(5(t)) > 0. Let’s set V() as in (4.1), so that we get (4.2). Consequently, V (¢)
is monotone on [t1,00). Let V() > 0 for ¢ > t;. Then one of the cases (a)—(d) of Lemma 2.1
holds. Indeed, V'(t) > 0, thatis z(t) — K(¢) > F(t) implies that z(¢) — K (¢) > 0 due to (Ajo).
Hence (4.3) holds. Further, z(¢) — K (¢) > 0yields that z(¢) > K(t) > 0. Thus

y(t) > z(t) > K(t)+ Ft(t) > FT(t) (4.5)

fort > to > t1. If any one of the cases (a), (b) and (d) holds, then using (4.5) in (4.2), we obtain

[e.9]

/q(t)G(F+(t— a))dt < oo, t3>ts+a,

t3

a contradiction to (Aj2). Assume that case (c) holds. Proceeding as in Theorem 3.4 and upon
using (4.5) in (3.6), we get

~[((=r@®V"®)))' ) = (v = YL G(k) R (£)a(t) G (FF (t - ), (4.6)

fort > to > t;. Integrating (4.6) from ¢ to co, we obtain a contradiction to (Aj2).

Next, we suppose that V(¢) < 0fort > ¢;. Then one of the cases (b)—(f) of Lemma 2.4
holds. Indeed, z(t) — K(t) < F(t) implies that 2(¢) — K(t) < 0 ultimately, due to (Ajo). Thus
z(t) is bounded. Since V'(¢) is monotone, lim;_,~, V'(¢) exists. Therefore, z(t) < K(t) + F(t)
implies that

liminf 2(t) < litm inf(K(t) + F(t)) < limsup K () + litm inf F(t) =
—00 —00

—00 t—00

= lim K(t)+ liminf F(t) — —o0,
t—o0 t—o0

which is absurd.
Theorem 4.3 is proved.

Theorem 4.4. Let —1 < b < p(t) < 0. If (A1), (A2), (As), (Ag), and (A12) hold, then every
unbounded solution of (1.2) oscillates.

Proof. Let y(t) be an unbounded nonoscillatory solution of (1.2) such that y(¢) > 0 for
t > to > p. The case when y(t) < 0 fort¢ > ty > p is similar. Proceeding as in the proof of
Theorem 4.3, we have the required contradiction when V' (t) > 0for ¢t > ¢;.

Next, we suppose that V(t) < 0 for ¢t > t;. As a result, 2(t) — K(t) < 0 due to (Ay).
Ultimately, we have two cases on z(t), viz. z(t) > 0 or z(t) < 0. If the former holds, and since
y(t) is unbounded, then there exists {7, }5° ; such that 7,, — oo, y(n,) — oo asn — oo and

y(nn) = max{y(t) : t1 <t <y}

We may choose n large enough such that n,, — 7 > t;. Hence it happens that
2(Mn) = (1 +0)y(mn).
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By Lemma 2.4, any one of the cases (b)—(f) holds. Assume that either case (b) or (c) holds
true. Then limy;_, |V ()| < oo and z(t) = V(t) + K(t) + F(t) implies that

00 = (1+0) lim y(n,) < lim [V (n,)] + K(na) + [F(a)]] < oo, (4.7)

which is absurd. Suppose that any of the cases (d), (e) and (f) holds. For each of the cases V'(¢)
is nonincreasing. Let lim; oo V() = p, p € [—00,0). If —oo < p < 0, then the conclusion
follows from (4.7). It happens from (4.7) that co < —oo if 4 = —oo. Hence the latter holds. As
aresult, y(t) < y(t — ) for t > t1, thatis, y(¢) is bounded for ¢ > ¢; which contradicts to our
hypothesis.

Theorem 4.4 is proved.

Theorem 4.5. Let —oco < p(t) < —1. If all the conditions of Theorem 4.4 hold, then every
bounded solution of (1.2) oscillates.
The proof of theorem follows from the proof of Theorem 4.4. Hence the details are omitted.

Theorem 4.6. Let 1 < by < p(t) < by < %bf and (Asz) hold. Suppose that (Ag) holds with

b —1 b —1
— < t) < .
16by — ( ) —  8by
If
/Oos/oot (t)dtds < oo
0 s

then (1.2) admits a positive bounded solution.

Proof. 1t is possible to choose Ty large enough such that

o0 o0

s b —1
/T(S)/tq(t)dtds < 716;26‘(1)

To

and
o0 o0

S by — 1
/T(S)/th(t)dtds < 4b1H(1).

T() S

Let X = BC([Tp, >0),R). Then X is a Banach space with respect to supremum norm defined
by

2]l = sup{|z(2)|}.

t>To
Let
by —1
8b1by

S:{:L"GX: §x(t)§1,t2T0}.
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Hence S is a closed bounded convex subset of X. Define two maps €2; and €25 on S as follows;

(Quy)(T1),
(Qy)(t) = Cylt+T) 234 b -1
p(t+7) dbip(t+ 1)
and
(Q2y)(T1),
Ft+71) K(t+7)
(S2y)(t) = plt+7)  plt+7)
B bl bl e )
p(t + T) /t+7' < 7“(8)

where K (t) is defined in (3.3). Indeed,

Ty <t <T,

> Tla

) -

Ty <t <1,

| = 9 - o) du) ds, ¢,

oos—t 7 7 s 7 b —1
K(t)= — s)h(u)H — B duds < H(1) | — [ uh(u)dud
0= [ 2 [ ont e g) duds < 1) [ 25 [ ubt)duds < 2
t S t S
implies that
22 +b—1 b—1 bi—1 b2+b—-1 b—-1
Q) (t Qon) (¢ 1 — <
(y)(t) + (2y)(t) < 40 8b1by  4b? 20,2 8biby
bi24+b;—1 b —1 402 +5b—5
< 1 12 + 1 . _ 1 21 <1
2b1 8()1 8b1
and
1 202+b—1 bi—1 b—1
Q) (1) + (Qay) () > —— — — —
(©)(®) + (Q2y)(t) = by 4b1by 16b1by  16byby
1 24 —1 b -1
b 4b1 by 8bi1by
I e St By
N by 8b1bo = 8biby’

thatis, 1y + Q2y € S. It is easy to verify that (2; is a contraction mapping.
Next, we show that Q5 is continuous. Let {y;(t)} be the sequence of continuous functions
defined on S such that ||y; —y|| = 0for all j — oo. Because S is closed and bounded, (y; —y) €
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€ S and

[(2295)(t) — (Q2y)(1)] <

1 T s—t—T T
< _ (1 — _ _
< | S [ e @I = 8) = iy 5)| duds+
t+7 s
T 7 sotoT 7(u— $)g(u)|G(yj(u — @) — Gly(u — a))| duds
p(t+7) r(s) ¢ Yi 4 '
t+1 B
Because G and H are continuous functions, then it follows that ||Qy; — Qoy|| = 0 as j — oo.

We know that €2 is uniformly bounded, there exist ¢;, t2 > 0 such that for ¢t; > t3 > T} and
forall y(t) € S,

F(ty + 1) F(ta+ ) K(ti+7) K(ty+7)
[Q22y(t1) — Q2y(t2)] < ’ p(t1+7) ‘ p(ta +17) " ‘ st | ‘ p(ta +17)
1 T S — tl — T -
" p(t1 + T)t ZT r(s) S/(u —5)q(u)G(y(u — a)) duds| +
1 T S—tyg—T by
MrCED) z ) / (1 = 5)a(u) Gly(u — o) duds| <

b — 1 b — 1 bi—1\ _ 7(b1 —1)
<2 +2 +2 < =2
- <8b1b2> < 4by ) <1Gblb2> o 8hy?

implies that (25 is precompact. Hence verifying all the required conditions of Krasnosel’skii’s
fixed point theorem it yields that 2; + €25 has a fixed point in S, that is,

o oylt4T) 2P 4b -1 K(t+7)
y(t) = 7p(t+7‘) + 4b1p(t + 1) + p(t+7) B

__ 1 i 8_(t+T)oou—s u u—a))du | ds Fletr)
p“*%/f e 5/( (G ly(u— )i | s+ LT

Clearly, y(t) is a solution of (1.2) on b~ 1 1.
8b1by

Theorem 4.6 is proved.

Remark 4.2. Theorems similar to Theorem 4.6 can be proved in the other ranges of p(t).
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5. Examples and discussions.

Example 5.1. Consider

(e (y(t) + e~ My(t —m))")" + 8e 2Tyt — 27m)—

— 50e 32 (1+ e2737 cos? t) T (t 7) = 6e*cost. (5.1)
Yy

(=)

t
) (9sint—12 cost), then it is easy to verify that (r(¢)F"(t))"” =

Indeed, if we choose F'(t) = (265

= f(t) = 6e* cost. Since

0, t € [(2n+3)m+ 61, (2n + 4)7 + 64],
Ft(t—2n) = 3
= e sin(t — 27 — 01), t € [2(n+ )7 + 01, (2n + 3)7 + 601],
and
3
_7€t—27r Sin(t— 2m — 91), t e [<2n—|—3)7r—|—91,<2n+4)7r+91],
. 5
F~(t—2m) =

0, t € [2(n+ )7+ 61, (2n + 3)7 + 01],

forn =0,1,2,..., then

00 (2n+3)m
/b(t)Q(t)F+(t —om)dt = — e /2 Z / e2sinzdz =
27 2(n+1)m

_ 20 - sz( <2”+3>” (n+1)7r> = oo,

where F(t) = get sin(t —601), 6, = tan~! <;1> and z = t — 0;. Clearly, (A;)-(A45) and

(Ajp) is satisfied. Hence by Theorem 4.1, every solution of (5.1) is oscillatory. In particular,
y(t) = elsint is such an oscillatory solution of (5.1).

Example 5.2. Consider

y(t — 6m)

(' (y(t) + eyt —2m))")" + €My(t — dm) — e == s s

=0. (5.2)
Clearly, (A;)—- (A7) are satisfied. Hence by Theorem 3.1 every solution of (5.2) oscillates or
tends to zero.

Itis learnt that the solution space of (1.1)/(1.2) is divided for bounded and unbounded soluti-
ons. Due to the method incorporated here, we could not stop the bounded solutions of (1.1) as
converging to zero. However, in case of unbounded solution, it oscillates.
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It is interesting to notice the solution space of forced equation (1.2) pertaining to (Ag) or
(A10). Emphasis will be given to forcing function as compared to the results concerning (1.1).
It reveals that every unbounded solutions of (1.2) oscillates if (Ag) holds except p(t) < 1.
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