
UDC 517.9

CONVERGENCE OF THE POSITIVE SOLUTIONS
OF A NONLINEAR NEUTRAL DIFFERENCE EQUATION

ЗБIЖНIСТЬ ДОДАТНИХ РОЗВ’ЯЗКIВ
НЕЛIНIЙНОГО РIЗНИЦЕВОГО РIВНЯННЯ
НЕЙТРАЛЬНОГО ТИПУ

G. E. Chatzarakis, G. L. Karakostas, I. P. Stavroulakis

Univ. Ioannina
45110 Ioannina, Greece
e-mail: geaxatz@otenet.gr, geaxatz@mail.ntua.gr

gkarako@uoi.gr, gkarako@hotmail.com
ipstav@uoi.gr

Sufficient conditions are established which guarantee the convergence of the positive solutions of the
neutral type difference equation of the form ∆[x(n)− q(n)x(σ(n))] + p(n)f(x(τ1(n)), . . . , x(τk(n))) = 0,
where σ(n), n = 1, 2, . . . , are retarded arguments and τj(n), j = 1, . . . , k, are general deviated arguments.

Знайдено достатнi умови збiжностi додатних розв’язкiв рiзницевого рiвняння нейтрального
типу вигляду ∆[x(n) − q(n)x(σ(n))] + p(n)f(x(τ1(n)), . . . , x(τk(n))) = 0, де σ(n), n = 1, 2, . . . , —
запiзнiлi аргументи i τj(n), j = 1, . . . , k, — загальнi вiдхиленi аргументи.

1. Introduction. Neutral difference and differential equations arise in many areas of applied
mathematics, such as circuit theory [1, 3], bifurcation analysis [2], population dynamics [8],
stability theory [16, 17], dynamical behavior of delayed network systems [22], and so on. This
is the reason that during the last few decades these equations are in the main interest of the
literature.

In the present paper, we are interested in the first order neutral type difference equation

∆ [x(n)− q(n)x(σ(n))] + p(n)f(x(τ1(n)), . . . , x(τk(n))) = 0. (1.1)

Here σ(n), n = 1, 2, . . . , is a retarded argument and (τj(n)), n = 1, 2, . . . , are retarded or
advanced arguments, for all j = 1, 2, . . . , k. We assume that among others the coefficients p(n)
are positive real numbers and the function f satisfies some rather mild conditions.

The search for the asymptotic behavior and, especially, for oscillation criteria and stability
of difference equations has received a great attention in the last few years. The purpose of this
paper is to derive sufficient conditions for the convergence of the positive solutions of equation
(1.1), when the coefficient q(n) is either positive or negative for all n. Our criteria are new
and, due to the presence of the nonlinearity f , they do not use the approaches like those used
elsewhere, see e.g. [4 – 7, 9 – 15, 18 – 21] and the references therein. In most of these works the
algebraic characteristic equation gives useful information about oscillation and stability. Our
results given here are new, even for the known cases, when all the arguments are of the form
n− τ.

In Section 2, we present some preliminaries required in the proofs. Sufficient conditions
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which ensure that the solutions converge to +∞ are given in Section 3 and in the final Section 4
we investigate the convergence of the solutions to zero.

2. Some preliminaries. We shall denote by N the set of all positive integers. Moreover we
assume the following conditions:

(C1) The sequence (σ(n)) satisfies

σ(n) ≤ n− 1. (2.1)

Also, given any large integer N, assume that there exists an integer ζ such that

[N,+∞) ∩ N ⊆ R(σ|[ζ,+∞)∩N). (2.2)

We denote by ζ(N) the smallest integer with this property and assume that lim ζ(N) = +∞.
The following lemma provides some tools which are useful for the main results:

Lemma 2.1. Let

M(n) := min{r : σ(r) ≥ n}.

If the condition (2.1) is satisfied, then for each n̂ there is a certain β such that, for all n ≥ M(n̂),
there is a positive integer m(n) satisfying the double inequality

n̂ ≤ σ(m(n))(n) ≤ β (2.3)

and

limm(n) = +∞. (2.4)

Proof. Assume that (2.3) is not true. Then there is some n̂ such that, for each k there is some
n(k) ≥ M(n̂) having the property that, for all positive integers m,

σ(m)(n(k)) > k.

Therefore we have

k < σ(m)(n(k)) ≤ σ(m−1)(n(k))−1 ≤ σ(m−2)(n(k))−2 ≤ . . . ≤ σ(n(k))−(m−1) ≤ n(k)−m.

Thus we get the inequality

k ≤ lim
m

[n(k)−m] = −∞,

which is impossible. This proves (2.3).
To prove (2.4) assume that it is not true. Then there is some γ > 0 satisfying

m(n) ≤ γ, n = 1, 2, . . . .
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Since the sequence (m(n)) consists of nonnegative integers, there exists a (strictly increasing)
sequence of positive integers nλ such that all the terms of the sequence (m(nλ)) are equal to a
constant positive integer, say, A. Thus we have

m(nλ) =: A, λ = 1, 2, . . . .

From statement (2.3) we have

n̂ ≤ σA(nλ) ≤ β =: B.

Therefore it follows that

σ(σA−1(nλ)) ≤ β =: B1.

Again, we have

σ(σA−2(nλ)) ≤ β =: B2

and so, finally, we obtain

nλ ≤ β =: BA.

Hence the sequence (nλ) is bounded, a contradiction. This proves statement (2.4) and the proof
of the lemma is complete.

Given n̂ and any n ≥ n̂ the smallest positive integer β corresponding to nwill be denoted by
β(n). Also, the biggest m(n) corresponding to n̂ and n via the previous lemma will be denoted
by m(n̂, n).

Here we present an example which illustrates the results of the previous lemma.

Example 2.1. For each positive integer consider the greatest odd integer σ(n) which is (stri-
ctly) smaller than n. This means that, if n is an odd integer, say, 2λ+ 1, then we have

σ(n) = 2λ− 1 and σ(n+ 1) = σ(2λ+ 2) = 2λ+ 1

and if n is an even integer, say, 2λ, then

σ(n) = 2λ− 1 and σ(n+ 1) = σ(2λ+ 1) = 2λ− 1.

These facts show that for each n the quantity

M(n̂) := β(n) = 2bn/2c+ 1

satisfies the requirements of Lemma 2.1, where bac denotes the integer part of a. Also it is not
hard to show that

σ(k) := 2
⌊n

2

⌋
+ 1− 2k

and the sequence (m(n̂, n)) (guaranteed from Lemma 2.1) has terms given by

m(n̂, n) :=

⌊
n− n̂

2

⌋
.
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3. The case q(n) ≥ 0. Before giving our main results it is convenient to assume that there
is a starting point n0 ∈ N such that

min{σ(n), τ1(n), τ2(n), . . . , τk(n)} ≥ 1, n ≥ n0,

and a starting set

J(n0) := [n0, β(n0)] ∩ N.

The following conditions are assumed throughout this section:
(C2) The sequence (p(n)) consists of nonnegative real numbers and satisfies the property:

There exists a certain α > 0 and for each n ∈ N there is N(n) ∈ N such that N(n) > n and

N(n)∑
j=n

p(j) ≥ α. (3.1)

(C3) The sequence (q(n)) consists of nonnegative real numbers and it is bounded.
(C4) For each ε > 0,

inf{f(u1, u2, . . . , uk) : uj ≥ ε, j = 1, 2, . . . , k} > 0.

Remark 3.1. It is easy to see that the next two conditions are equivalent to condition (C4):
(C4a) For each ε > 0 there is some δ > 0 such that the relations uj ≥ ε, j = 1, 2, . . . , k,

imply that

f(u1, u2, . . . , uk) ≥ δ.

(C4b) Given sequences yj(n), j = 1, 2, . . . , k, the relation

lim f(y1(n), y2(n), . . . , yk(n)) = 0

implies that there is some index j ∈ {1, 2, . . . , k} and a subsequence (µ(n)) such that

lim yj(µ(n)) = 0.

It is easy to see that from condition (C4) it follows that the function f : Rk → R satisfies
the sign property f(u1, u2, . . . , uk) > 0 for all reals uj > 0.

Theorem 3.1. Assume that conditions (C1) – (C4) hold and moreover let

limσ(n) = lim τ1(n) = lim τ2(n) = . . . = lim τk(n) = +∞.

If m(n0, n) is the quantity defined in Lemma 2.1 and the condition

lim

m(n0,n)−1∏
j=0

q(σ(j)(n)) = +∞ (3.2)
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is satisfied, then any eventually non-negative solution (x(n)) of the difference equation (1.1) with

S(n0) := min{x(n) : n ∈ J(n0)} > 0 (3.3)

tends to +∞.

Proof. Let β(n) be the quantity guaranteed by (and having the properties as described in)
Lemma 2.1. For each n ≥ n0 we let

z(n) := x(n)− q(n)x(σ(n))

and then observe that

∆[z(n)] = −p(n)f(x(τ1(n)), x(τ2(n)), . . . , x(τk(n))) ≤ 0.

This means that the sequence (z(n)) is decreasing and so the limit

l := lim z(n)

exists in [−∞,+∞).
We shall examine the following cases:
Case 1: l ≥ 0. Then we have

x(n)− q(n)x(σ(n)) = z(n) ≥ 0

and therefore

x(n) ≥ q(n)x(σ(n)). (3.4)

Let m(n0, n) be the quantity given in Lemma 2.1. Applying repeatedly inequality (3.4), finally,
we obtain

x(n) ≥ q(n)x(σ(n)) ≥ q(n)q(σ(n))x(σ(2)(n)) ≥ . . . ≥
m(n0,n)−1∏

j=0

q(σ(j)(n))S(n0), (3.5)

which tends to +∞ because of (3.2). Thus limx(n) = +∞ and the result is true in this case.
Case 2: l < 0. We claim that l cannot be finite. Indeed, assume that this is true. From (1.1)

we get

z(n+ 1)− z(n) + p(n)f(x(τ1(n)), x(τ2(n)), . . . , x(τk(n))) = 0. (3.6)

If N(n) is the quantity defined in condition (C2), summing up both sides of relation (3.6) from
n to N(n), we get

z(N(n) + 1)− z(n) +

N(n)∑
j=n

p(j)f(x(τ1(j)), x(τ2(j)), . . . , x(τk(j))) = 0.
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Thus it follows that

−[z(N(n) + 1)− z(n)] =

N(n)∑
j=n

p(j)f(x(τ1(j)), x(τ2(j)), . . . , x(τk(j))) ≥

≥ αmin{f(x(τ1(j)), x(τ2(j)), . . . , x(τk(j))) : j = n, . . . N(n)} =

= αf(x(τ1(t(n))), x(τ2(t(n))), . . . , x(τk(t(n))))

for some t(n) ∈ [n,N(n)] ∩ N.
By using the three facts:
α > 0,
the solution is nonnegative, and
the limit l is a finite real number,

we conclude that
lim f(x(τ1(t(n))), x(τ2(t(n))), . . . , x(τk(t(n)))) = 0

and, due to condition (C4b), there is some index j ∈ {1, 2, . . . , k} and a subsequence (µ(n))
such that

limx(τj(µ(n))) = 0.

Take any large n which guarantees the existence of the number ζ(τj(µ(n))) satisfying condition
(2.2). Hence, it follows that there is a certain integer r ≥ ζ(τj(µ(n))) such that

σ(r) = τj(µ(n)).

We let r(n) be the smallest of all such r which correspond to n. Then, clearly, we have

lim r(n) = +∞

and moreover

z(r(n))− x(r(n)) = −q(r(n))x(σ(r(n))) = −q(r(n))x(τj(µ(n))),

which tends to zero. Thus we get

0 = lim(z(r(n))− x(r(n))) = l − limx(r(n)),

which is impossible, since we have l < 0 and the solution x is nonnegative. This proves our
claim. Thus it follows that l = −∞, namely,

lim z(n) = −∞.

This fact, together with the inequality

z(n) = x(n)− q(n)x(σ(n)) ≥ −q(n)x(σ(n)),
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imply that

limx(σ(n)) = +∞, (3.7)

because the sequence (q(n)) is bounded.
We shall show that the whole sequence (x(n)) converges to +∞. Indeed, otherwise, there

is a subsequence (x(s(n))) of (x(n)) having a finite limit. Then this sequence is bounded from
above; let b be an upper bound of it, i.e.,

0 ≤ x(s(n)) ≤ b. (3.8)

From (2.2), it follows that for any large n, there is some ν(n) ≥ ζ(σ(n)) such that

s(n) = σ(ν(n)).

Hence from (3.8) we get
x(σ(ν(n))) ≤ b,

which contradicts (3.7).
Theorem 3.1 is proved.
In the following example it is shown that, if conditions (2.2) and (3.3) are not satisfied, then

the result may not hold.

Example 3.1. Consider the sequence (σ(n)) as in Example 2.1. Also, consider the set E of
all positive integers which are of the form 2k for some positive integer k. If χE denotes the
characteristic function of E, we formulate the neutral difference equation

∆[x(n)− 2x(σ(n))] + χE(n)x(σ(n)− 1) = 0. (3.9)

It is clear that the constant sequence q(n) := 2, n = 1, 2, . . . , satisfies (3.2). Indeed, first

of all we observe that for each n̂ there exists the number β(n̂) = 2

⌊
n̂

2

⌋
+ 1 satisfying the

requirements of Lemma 2.1. We observe that

m(n0,n)−1∏
j=0

q(σ(j)(n)) = 2

⌊
n−n0

2

⌋
,

which obviously tends to +∞. This proves that (3.2) is satisfied.
Moreover, we can see that the sequence p(n) := χE(n) satisfies condition (3.1). Indeed, for

each positive integer n take as N(n) the smallest number of the form 2k which is greater than
n. Then condition (C2) is satisfied with α = 1.

On the other hand the range of the function σ consists only of odd integers. Thus (2.2) is
not true. Conditions (C3), (C4) obviously are satisfied.

Now write equation (3.9) in the form

x(n+ 1) = 2x(σ(n+ 1)) + x(n)− 2x(σ(n))− χE(n)x(σ(n)− 1) (3.10)
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and observe that any four consecutive values x1, x2, x3, x4 of the sequence x(n) are sufficient to
define all the next terms of the sequence. Also, due to the linearity of equation (3.10), if these
values are equal to 0, then all the next terms of the sequence following them must be equal to
0. For instance, consider the solution (x(n)) having initial values

x(0) := 0, x(1) = −1

2
, x(2) := 1.

Then observe that J(0) = {0, 1} and condition (3.3) is not satisfied with n0 = 0. The solution
(x(n)) with these initial values satisfies

x(3) = 0, x(4) = 1, x(5) = x(6) = x(7) = x(8) = 0

and therefore all the terms x(j) for j ≥ 9 are equal to 0. Thus the solution has limit zero and
not +∞. This proves our original claim.

4. The case q(n) < 0. First we shall assume the following condition:
(C5) The sequence (q(n)) consists of negative real numbers.
We are going to investigate the convergence to zero of all positive solutions of equation

(1.1). We give the following result:

Theorem 4.1. Assume that relation (2.2) as well as the conditions (C2), (C4) and (C5) hold.
Then any eventually nonnegative solution satisfies

lim inf x(n) = 0. (4.1)

Moreover, if the condition

−1 < lim inf q(n) ≤ 0 (4.2)

holds, then limx(n) = 0.

Proof. Consider equation (1.1), where q(n) < 0 for all n.Assuming that (x(n)) is a nonnegati-
ve solution, the function

z(n) := x(n)− q(n)x(σ(n)) (4.3)

is nonnegative and, due to (1.1) and (C4), it satisfies ∆(z(n)) ≤ 0. This implies that (z(n)) is a
nonnegative decreasing sequence and, thus, it converges to some l ≥ 0.

If l = 0, then due to the fact that z(n) ≥ x(n) ≥ 0, we have limx(n) = 0 and therefore
(4.1) is true.

We shall discuss the case l > 0. Assume that (4.1) does not hold. Then for some ε > 0 and
n0 we have x(τj(n)) ≥ ε for all j = 1, 2, . . . , k and n ≥ n0. Hence, from (C4) there is a δ > 0
such that

f(x(τ1(n)), x(τ2(n)), . . . , x(τk(n))) ≥ δ (4.4)

for all n ≥ n0. Hence we have

0 = ∆z(n) + p(n)f(x(τ1(n)), x(τ2(n)), . . . , x(τk(n))) ≥ ∆z(n) + p(n)δ,
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or
∆z(n) ≤ −p(n)δ.

Summing up from n to N(n) (given in condition (C2)) we obtain

z(N(n) + 1)− z(n) ≤ −δα.

Taking the limits as n → +∞ we get 0 = l − l ≤ −δα, a contradiction. Therefore (4.1) is true.
Now assume that (4.2) holds. Again, if l = 0, then it follows that limx(n) = 0.
Assume that l > 0. Then, from the previous arguments, the existence of a sequence (µ(n))

is guaranteed such that
limx(µ(n)) = 0.

From relation (4.3) on the one hand we get

l = lim z(n) = lim[x(n)− q(n)x(σ(n))] ≥ lim supx(n) ≥ 0

and, on the other hand,

z(µ(n)) = x(µ(n))− q(µ(n))x(σ(µ(n))).

Passing to the limits, from (4.2) we obtain

l = lim sup[−q(µ(n))x(σ(µ(n)))] ≤ lim sup(−q(n)) lim supx(σ(µ(n))) < l,

a contradiction. Hence l = 0, a fact which implies that (x(n)) converges to zero.
Theorem 4.1 is proved.

Remark 4.1. In the proof of the previous result the condition (4.2) plays a significant role.
Indeed, we claim that if (4.2) is replaced with −1 ≤ lim inf q(n) ≤ 0, then the result limx(n) =
= 0 might not be true.

To show this fact consider the neutral difference equation

∆[x(n)− q(n− 1)x(n− 1)] + min{x(n), x(n− 1)} = 0, (4.5)

where the coefficient q(n) is defined by

q(n) :=
1

2
[(−1)n − 1], n = 1, 2, . . . .

Observe that (4.5) can be written in the difference form

x(n+ 1) = (1 + q(n))x(n)− q(n− 1)x(n− 1)−min{x(n), x(n− 1)},

while the coefficient q(n) satisfies lim inf q(n) = −1. It is easy to see that the function

f(u1, u2) := min{u1, u2}
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satisfies the conditions of the theorem. Seeking for the solution (x(n)) with the initial values
x(0) = 0 and x(1) = 1 we obtain that x(n) = 0, if n is even and x(n) = 1, if n is odd, which,
obviously, proves our claim.

Next we assume that

τj(n) = τ(n), j = 1, 2, . . . , k,

and moreover
(C6) Given any large integer N, there is an integer ρ such that

[N,+∞) ∩ N ⊆ R(τ |[ρ,+∞)∩N).

We denote by ρ(N) the smallest integer with this property and assume that lim ρ(N) = +∞.
(C7) It holds lim inf p(n) > 0.

Theorem 4.2. Assume that condition (2.2) as well as (C4), (C5), (C6) and (C7) hold. Then
any nonnegative solution of the equation

∆[x(n)− q(n)x(σ(n))] + p(n)f(x(τ(n))) = 0 (4.6)

converges to zero.

Proof. As previously, assuming that (x(n)) is a nonnegative solution, the function

z(n) := x(n)− q(n)x(σ(n))

decreases and it converges to some l ≥ 0.

Let ε > 0. It follows that there is some n1 such that |∆z(n)| < ε for all n ≥ n1. Therefore
we have

p(n)f(x(τ(n))) < ε (4.7)

for all n ≥ n1.

Assume that there exists an increasing sequence of positive integers µ(n) such that

limx(µ(n)) =: l1 > 0. (4.8)

It is clear that l > 0, because, otherwise, l = 0 and so it holds

lim q(µ(n))x(σ(µ(n))) = l1.

Thus the sequence (q(n)) consists of positive terms, which is not true due to (C5). Hence l > 0.

We claim that there exists a sequence of positive integers ξ(n) converging to +∞ such that
for some δ > 0 and an index n2 ≥ n1 it holds

n ≥ n2 =⇒ x(τ(ξ(n))) ≥ δ. (4.9)
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Observe, also, that

n ≥ n2 =⇒ x(µ(n)) + [−q(µ(n))x(σ(µ(n)))] = x(µ(n))− q(µ(n))x(σ(µ(n))) ≥ l.

This implies that for any fixed n ≥ n2 at least one of the following cases holds:

(a) x(µ(n)) ≥ l

2
, (b) − q(µ(n))x(σ(µ(n))) ≥ l

2
.

Let us assume that case (a) holds for infinitely many indices, i.e., a sequence η(n) exists
satisfying

n ≥ n2 =⇒ x(µ(η(n))) ≥ l

2
.

Then, because of (C6), there is a n3 ≥ n2 and an increasing sequence (ξ(n)) with ξ(n) ≥
≥ ρ(µ(η(n))) and such that τ(ξ(n)) = µ(η(n)). Clearly we have lim ξ(n) = +∞. Hence it
holds

x(τ(ξ(n))) ≥ l

2

for all n ≥ n3 and (4.9) is proved with δ =
l

2
.

Next, assume that case (b) holds for all terms of some sequence η(n). Consider an upper
bound B of the sequence (−q(n)). Then we obtain

l

2
≤ −q(η(n))x(σ(η(n))) ≤ Bx(σ(η(n)))

for all n ≥ n2. This and condition (2.2) imply the existence of a increasing unbounded sequence
(ξ(n)) with ξ(n) ≥ ρ(σ(η(n))) and some n3 ≥ n2, such that τ(ξ(n)) = σ(η(n)). Hence we have

x(τ(ξ(n))) ≥ l

2B
,

for all n ≥ n3, which shows that our claim in (4.9) is true with δ =
l

2B
.

Now, from condition (C4), it follows that there exists a θ > 0 satisfying

f(x(τ(ξ(n)))) ≥ θ

for all n ≥ n3. Taking into account (C4) and (4.7) we get

ε > p(ξ(n))f(x(τ(ξ(n)))) > p(ξ(n))θ

for all n ≥ n3. The last inequality, in view of (C7) and the arbitrariness of ε, leads to a contradi-
ction. Thus there is no sequence (µ(n)) satisfying (4.8), which means that the solution (x(n))
converges to zero. The proof is complete.
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7. Györi I., Horvát L. Asymptotic constancy in linear difference equations: limit formulae and sharp conditions
// Adv. Difference Equat. — 2010.

8. Gopalsamy K. Stability and oscillations in population dynamics. —Boston: Kluwer Acad. Publ., 1992.

9. Ladas G., Sficas Y. G. Oscillations of neutral delay differential equations // Can. Math. Bull. — 1986. — 29.
— P. 438 – 445.

10. Malgorzata Migda, Guang Zhang. On unstable neutral difference equations with maxima // Math. Slovaca.
— 2006. — 56, № 4. — P. 451 – 463.

11. Philos Ch. G., Purnaras I. K. The behavior of the solutions of periodic linear neutral delay difference equati-
ons // J. Comput. and Appl. Math. — 2005. — 175. — P. 209 – 230.

12. Sficas Y. G., Stavroulakis I. P. Necessary and sufficient conditions for oscillations of neutral differential equati-
ons // J. Math. Anal. and Appl. — 1987. — 123. — P. 494 – 507.

13. Wenrui Shan, Weigao Ge. Oscillation of neutral difference equations with positive and negative coefficients
// Comput. Math. with Appl. — 2004. — 47. — P. 1647 – 1657.

14. Tang X. H., Xiaoyan Lin. Necessary and sufficient conditions for oscillation of first-order nonlinear neutral
difference equations // Comput. and Math. with Appl. — 2008. — 55. — P. 1279 – 1292.

15. Thandapani E., Arul R., Raja P. S. Oscillation of 1rst order neutral delay difference equations // Appl. Math.
E-Notes. — 2003. — 3. — P. 88 – 94.

16. Tian C. J., Cheng S. S. Oscillation criteria for delay neutral difference equations with positive and negative
coefficients // Bull. Soc. Parana Math. — 2003. — 21. — P. 1 – 12.

17. Xiong W., Liang J. Novel stability criteria for neutral systems with multiple time delays // Chaos, Solitons and
Fractals. — 2007. — 32. — P. 1735 – 1741.

18. Yong Zhou. Oscillations of neutral difference equations // Kyungpook Math. J. — 1999. — 39. — P. 283 – 291.

19. Yu J. S., Wang Z. C. Asymptotic behavior and oscillation in neutral delay difference equations // Funkc.
ekvacioj. — 1994. — 37. — P. 241 – 248.

20. Zhang G. Oscillation for nonlinear neutral difference equations // Appl. Math. E-Notes. — 2002. — 2. —
P. 22 – 24.

21. Zhang G., Cheng S. S. Oscillation criteria for a neutral difference equation with delay // Appl. Math. Lett. —
1995. — 8, № 3. — P. 13 – 17.

22. Zhou J., Chen T., Xiang L. Robust synchronization of delayed neutral networks based on adaptive control
and parameters identification // Chaos, Solitons and Fractals. — 2006. — 27. — P. 905 – 913.

Received 09.11.10,
after revision — 03.05.11

ISSN 1562-3076. Нелiнiйнi коливання, 2011, т . 14, N◦ 3


