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ON THE MINIMAL SPEED OF TRAVELING WAVES '
FOR A NON-LOCAL DELAYED REACTION-DIFFUSION EQUATION™
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In this note, we give constructive upper and lower bounds for the minimal speed of propagation of traveling
waves for non-local delayed reaction-diffusion equation.

Hagedeno koHcmpyKmueHi 6epXHA i HUNCHS MeXCI NOWUPEHHS Nepecy8aro1ux X8Uuab O4s HeAOKAAbHO20
PeaxyitiHo-0u@y3itiHo20 piBHAHHA 3 3ANIZHEHHAM.

1. Introduction and the main results. In this note, we estimate the minimal speed of propagation
of positive traveling wave solutions for the non-local delayed reaction-diffusion equation

ug(t, ) = uge(t,z) —u(t,x) + /K(:): —s)g(u(t —h,s))ds, u >0, x€eR, (1.1)
R

which is widely used in applications, e.g. see [1-5] and references wherein. It is assumed that
the birth function g is of the monostable type, p := ¢(0) > 1 and h > 0. The non-negative
kernel K is such that K'(s) = K(—s) fors € R, [ K(s)ds = 1and [ K(s)exp(As)ds is finite
for all A € R. Consider

U(z,6) = ez —z—1 +pexp(—zh)/K(s) exp(—+/gzs)ds, (1.2)
R

which determines the eigenvalues of Eq. (1.1) at the trivial steady state. From [4, 6], we know
that there is g = €o(h) > 0 such that ¢(z,e9) = 0 has a unique multiple positive root zp =
= z9(h). Furthermore, if g(s) < ¢’(0)s for s > 0, then the minimal speed ¢, is equal to ¢, =
= 1/,/€0- Note that zg and ¢( are the unique solutions of the system

P(z,e) =0, y(z,e) =0. (1.3)

It is known [5] that for various systems modeled by equation (1.1), the minimal wave speed
c. coincides with the spreading speed. Therefore, it is important to study the effects caused by
the delay and other parameters (depending on specific models) on ¢, cf. [2, 3, 5, 7, 8]. Another
aspect of the problem concerns easily calculable upper and lower bounds for c,. In particular, in
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1 6—32/4(1
Vara
and « < h. However, the approach of [9] depends heavily on the condition &« < h and on
the special form of K which is the fundamental solution of the heat equation. In the present
work, we use a completely different idea to estimate the minimal speed for general kernels and
without imposing any restriction on A.
Let us state our main result. Set

p—1 p—1
ki =2 — K — d
1 \/1 + ng S2K(S)d8 p/S (S) eXp < S\/l + ng SZK(s)dS> 57

R

the recent work [9], Wu et al. give several nice estimations for ¢, when K, (s) =

1
ko = \/mln p/K(s) exp(—+/Inps)ds
R

It is clear that k3 > 0 and bellow we will show that k; is positive.

Theorem 1.1. Assume that K(s) > 0 is such that K(s) = K(—s) fors € R, [, K(s)ds =1
and [, K(s)exp(As)ds is finite for all A € R. Then c, = c.(h) = 1/\/eo(h) is a C*°-smooth
decreasing function of variable h € R,.. Moreover,

/ p—1 2y/Inp . L)

1 2 * I 7h 7la
)max{ pCh A+ 1 1+h}<c <m1n{1+h h} € [0,1]
p—1 Vvinp . (k1 ke
2 2, [ . MR e 1, o).
)max{ pEh )1 h }<c <mm{2 7 € [1,+00)

C C
Furthermore, # < c(h) < 72, h > 1, for some positive C; < Cs.

Observe that Theorem 1.1 implies that c.(h) = O(h™!), h — +o0, in this way we improve
the estimation ¢, (k) = O(h™"/2), h — o0, proved in [8, 9].

Proof. 1t follows from [4, 6] that the functions zy = zy(h) and g = o(h) are well defined for
allh > 0.Set F(h,z,e) = (¢(2,¢),9.(z,¢)). Itis easy to see that FF € C®(Ry xR x (0, 00),R?),
F(h, 20, 60) = 0, and

8F(h7 Z0750) _ _
‘ 8Cz0.20) | ¥22(20, €0)Y (20, €0) =

B / K (s) exp(—z0(h + /E05))(h + v/Zos)2ds | x
R

X ;?0 1+ hp/K(s) exp(—zo(h + 1/€0s))ds | > 0.
0
R

Applying the Implicit Function Theorem we find that zg, ¢g € C°°(0, +00).
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On the other hand, after introducing a new variable w = y/ez we find that system (1.3)
takes the following form:

<1 + % - w2> exp <l\"[) - p/K ) exp(—ws)ds, (1.4)

(;ng + (2 - i‘) w - 1;;) exp (%) —p R/ SK(s)exp(—ws)ds.  (LS)

Let
w w wh
G(w) = (1+ Ve —w2> , H(w) = (1+ Ve —w2> exp <\/%>
and
R(w) = p/K(s) exp(—ws)ds.
R
Set also wy = wo(h) = \/eo(h)zo(h). First, note that G(wy) = exp (?/Zih) R(wp) > 0 and
0

G(w) > 1when 0 < w < 1/,/gq. As can be checked directly, H has a unique positive local
extremum (maximum) at some w. Since K (s) = K(—s), s € R, itis easy to see that R increases
onR,.

Differentiating equation (1.4) with respect to h and using (1.5) we get the following di-
fferential equation:
220(h) Gy (h))

T+ hGlwo(h)) (16)

h(h) =

The remainder of the proof will be divided in several steps.

Step L. If b € [0,1], then H'(1/,/20) = (h\/_5>1> eh/e0 < 0. Hence,w < 1/,/Zo. In addition,
0

if w € (0,w) then H'(w) > 0. As R'(w) > 0for w > 0, we have wg < w < 1/,/gg. Thus, we
get G(wp) > 1. In this way, ej(h) > 2e(h)/(1 + h) for h € [0,1] that yields (1 + h)%ey(0) <
< go(h) < (14h)%eo(1)/4 (equivalently, 2¢,(1)/(1+h) < c.(h) < c,(0)/(1+h), for h € [0, 1]).
Next, taking » = 0 in equations (1.4) and (1.5) we obtain that

1
= 2wy (0) — sK(s)exp (—wo(0)s)ds, 1.7
N RO pR/ () exp (~u0(0)s) (17)
14+ w3 (0 p/K (1 + wp(0)s) exp(—wp(0)s)ds =
R

_ (1 Jp K (S)ds o) S KGds 4 )
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As a consequence of the latter formula, we get

p—1
wo(0) < \/l—l—ng 2K (s)ds

Then (1.7) implies that ¢,.(0) < k; so that c¢.(h) < k1/(1+ h) for h < 1. Note that k; > 0
since R is increasing for w > 0. Finally, since c.(h) is decreasing, we have that c.(h) < k1/2 for
h > 1.

Step IL. If » > 1, then w > 1/,/g9. As a consequence, G(w) < 1 = G(1/,/gg) so that

1

G(w) > G(w) for all w € [0,w] (see Fig. 1). Additionally, G(w) = (2w,/eg — 1)E >
therefore we conclude that G(wg) > 1/h. Hence, we have (k) > eo(h)/h, so that e(h) >
> ¢(1)h (equivalently, ¢, (k) < c.(1)/vh) for h > 1. Now, if h = 1 we have w = 1/1/eo(1).
Thus, taking h = 1 and w = w in (1.4) we get exp(1/eo(1)) = R(w) > R(0) = p that yields
vInp < 1/4/e0(1) = c«(1). On the other hand, for all 0 < w < 1/,/¢q, we have

exp <5§0) < <1 + \;”;0 _ w2> exp (\7“/”210) < R/ K (s) exp(—ws)ds. (18)

In particular, taking h = 1 and w = +/Inp in (1.8) we conclude that c,(1) < ko so that
cs(h) < ky/vVh for h > 1. Additionally, using ¢,(h) > 2¢.(1)/(1 + h) obtained in step I,
we also concluded that ¢, (h) > 2y/Inp/(1 + h), for h € [0, 1].

)

S| =

R

Fig. 1. G, H and R for h > 1.

Step III. For h > 0, it is evident that (k) < 2e((h)/h. Integrating the latter inequality
on [h,1] we obtain (k) > e(1)h? (equivalently, c.(h) < c«(1)/h), for 0 < h < 1 so that
c«(h) < ka/h, for h € (0,1]. Analogously, by integrating ¢;,(h) < 2e9(h)/h on [1,h] we have
eo(h) < eo(1)h? (equivalently, c,.(h) > c.(1)/h), for h > 1. Thus, we obtain c.(h) > /Inp/h,
h > 1.

On the other hand, for all A > 0, we have G(wg) < 1+ 1/(4e0). As a consequence, £((h) <
< (4e9(h) +1)/(2(1 + h)) for all h > 0 so that go(h) < ((4e0(0) + 1)(1 + k)% — 1)/4. Taking
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h = 0in (1.4), we get 1 + 1/(4e9(0)) > G(wp(0)) = R(wo(0)) > pso that ¢,(0) > 2y/p—1.1In
consequence,
p—1

RO e e —
e(h) > 2 e T

h > 0. (19)

Step IV. Setting w = r, r € (0, 1), in the second inequality of (1.8) we obtain

rh

—7”2 ex S)ex —rs)as
(1 )P<m><pR/K()p( )ds,

from which we get that

! < iln P /K(S) exp(—rs)ds |, h > 0. (1.10)

Considering (1.9) and (1.10) we get % < eu(h) < % for h > 1. This completes the proof.

2. Example. Consider the heat kernel K,(s) = (4wa)~'/?exp(—s%/(4a)). Then Theo-
rem 1.1 applies with

14+ apexp (7(11(_?;]1,))
ki =2yp—1

ke = (14 a)y/Inp.

V1+ap ’

Fig. 2. The minimal speed (curve 2) and its upper (curve 1)
and lower (curve 3) bounds (p = 2and a = 1).

In fact, in this case we can plot graphs of ¢, against i using standard numerical methods
to solve some appropriately chosen initial value problem ey(hg) = po for differential equation
(1.6). For example, if we take hg = « then pg coincides with a positive solution of the equation
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1+ 41p = pexp (—4%) . Next, we can explicitly find G(wy) in (1.6) by using Cardano’s formulas
to solve the cubic equation (wi — wo/\/E0 — 1)(2y/E0cwy — h) + 1 — 2,/Egwo = 0. It is easy to
see that this equation has three real roots for all » > 0 and o > 0, and that wy is the leftmost
positive root.

Fig. 2 shows the minimal speed ¢, and its estimations when p = 2 and o = 1. Remark that
we do not need the restriction o« < h required in [9].

Finally, note that letting @ — 0T in (1.1) and (1.2) we recover the characteristic equation for

the delayed reaction-diffusion equation
ug(t, ) = uge(t,z) —u(t,x) + g(u(t — h,z)),

which was studied by various authors (e.g. see [8, 10] and references therein). In this case, our
results complete and partially improve the estimations of [8§].
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