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ON THE MINIMAL SPEED OF TRAVELING WAVES
FOR A NON-LOCAL DELAYED REACTION-DIFFUSION EQUATION*

ПРО МIНIМАЛЬНУ ШВИДКIСТЬ ПЕРЕСУВАЮЧИХ ХВИЛЬ
ДЛЯ НЕЛОКАЛЬНОГО РЕАКЦIЙНО-ДИФУЗIЙНОГО РIВНЯННЯ
З ЗАПIЗНЕННЯМ
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Universidad de Talca, Casilla 747, Talca, Chile

In this note, we give constructive upper and lower bounds for the minimal speed of propagation of traveling
waves for non-local delayed reaction-diffusion equation.

Наведено конструктивнi верхня i нижня межi поширення пересуваючих хвиль для нелокального
реакцiйно-дифузiйного рiвняння з запiзненням.

1. Introduction and the main results. In this note, we estimate the minimal speed of propagation
of positive traveling wave solutions for the non-local delayed reaction-diffusion equation

ut(t, x) = uxx(t, x)− u(t, x) +
∫
R

K(x− s)g(u(t− h, s))ds, u ≥ 0, x ∈ R, (1.1)

which is widely used in applications, e.g. see [1 – 5] and references wherein. It is assumed that
the birth function g is of the monostable type, p := g′(0) > 1 and h ≥ 0. The non-negative
kernel K is such that K(s) = K(−s) for s ∈ R,

∫
RK(s)ds = 1 and

∫
RK(s) exp(λs)ds is finite

for all λ ∈ R. Consider

ψ(z, ε) = εz2 − z − 1 + p exp(−zh)
∫
R

K(s) exp(−
√
εzs)ds, (1.2)

which determines the eigenvalues of Eq. (1.1) at the trivial steady state. From [4, 6], we know
that there is ε0 = ε0(h) > 0 such that ψ(z, ε0) = 0 has a unique multiple positive root z0 =
= z0(h). Furthermore, if g(s) ≤ g′(0)s for s ≥ 0, then the minimal speed c∗ is equal to c∗ =
= 1/

√
ε0. Note that z0 and ε0 are the unique solutions of the system

ψ(z, ε) = 0, ψz(z, ε) = 0. (1.3)

It is known [5] that for various systems modeled by equation (1.1), the minimal wave speed
c∗ coincides with the spreading speed. Therefore, it is important to study the effects caused by
the delay and other parameters (depending on specific models) on c∗, cf. [2, 3, 5, 7, 8]. Another
aspect of the problem concerns easily calculable upper and lower bounds for c∗. In particular, in
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the recent work [9], Wu et al. give several nice estimations for c∗ when Kα(s) =
1√
4πα

e−s2/4α

and α ≤ h. However, the approach of [9] depends heavily on the condition α ≤ h and on
the special form of K which is the fundamental solution of the heat equation. In the present
work, we use a completely different idea to estimate the minimal speed for general kernels and
without imposing any restriction on h.

Let us state our main result. Set

k1 = 2

√
p− 1

1 + p
2

∫
R s2K(s)ds

− p
∫
R

sK(s) exp

(
−s
√

p− 1
1 + p

2

∫
R s2K(s)ds

)
ds,

k2 =
1√
ln p

ln

p ∫
R

K(s) exp(−
√

ln ps)ds

 .

It is clear that k2 > 0 and bellow we will show that k1 is positive.

Theorem 1.1. Assume that K(s) ≥ 0 is such that K(s) = K(−s) for s ∈ R,
∫

RK(s)ds = 1
and

∫
RK(s) exp(λs)ds is finite for all λ ∈ R. Then c∗ = c∗(h) = 1/

√
ε0(h) is a C∞-smooth

decreasing function of variable h ∈ R+. Moreover,

1) max

{
2

√
p− 1

p(2h+ h2) + 1
,
2
√

ln p
1 + h

}
< c∗ < min

{
k1

1 + h
,
k2

h

}
, h ∈ [0, 1],

2) max

{
2

√
p− 1

p(2h+ h2) + 1
,

√
ln p
h

}
< c∗ < min

{
k1

2
,
k2√
h

}
, h ∈ [1,+∞).

Furthermore,
C1

h
≤ c∗(h) ≤

C2

h
, h ≥ 1, for some positive C1 < C2.

Observe that Theorem 1.1 implies that c∗(h) = O(h−1), h → +∞, in this way we improve
the estimation c∗(h) = O(h−1/2), h → +∞, proved in [8, 9].

Proof. It follows from [4, 6] that the functions z0 = z0(h) and ε0 = ε0(h) are well defined for
all h ≥ 0. Set F (h, z, ε) = (ψ(z, ε), ψz(z, ε)). It is easy to see that F ∈ C∞(R+×R×(0,∞),R2),
F (h, z0, ε0) = 0, and∣∣∣∣∂F (h, z0, ε0)

∂(z0, ε0)

∣∣∣∣ = ψzz(z0, ε0)ψε(z0, ε0) =

=

2ε0 + p

∫
R

K(s) exp(−z0(h+
√
ε0s))(h+

√
ε0s)2ds

×

× z0
2ε0

1 + hp

∫
R

K(s) exp(−z0(h+
√
ε0s))ds

 > 0.

Applying the Implicit Function Theorem we find that z0, ε0 ∈ C∞(0,+∞).

ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 1



ON THE MINIMAL SPEED OF TRAVELING WAVES FOR A NON-LOCAL DELAYED . . . 5

On the other hand, after introducing a new variable w =
√
εz we find that system (1.3)

takes the following form:(
1 +

w√
ε
− w2

)
exp

(
wh√
ε

)
= p

∫
R

K(s) exp(−ws)ds, (1.4)

(
h√
ε
w2 +

(
2− h

ε

)
w − 1 + h√

ε

)
exp

(
wh√
ε

)
= p

∫
R

sK(s) exp(−ws)ds. (1.5)

Let

G(w) =
(

1 +
w
√
ε0
− w2

)
, H(w) =

(
1 +

w
√
ε0
− w2

)
exp

(
wh
√
ε0

)
and

R(w) = p

∫
R

K(s) exp(−ws)ds.

Set also w0 = w0(h) =
√
ε0(h)z0(h). First, note that G(w0) = exp

(
−wh
√
ε0

)
R(w0) > 0 and

G(w) ≥ 1 when 0 ≤ w ≤ 1/
√
ε0. As can be checked directly, H has a unique positive local

extremum (maximum) at some w̄. SinceK(s) = K(−s), s ∈ R, it is easy to see thatR increases
on R+.

Differentiating equation (1.4) with respect to h and using (1.5) we get the following di-
fferential equation:

ε′0(h) =
2ε0(h)G(w0(h))
1 + hG(w0(h))

> 0. (1.6)

The remainder of the proof will be divided in several steps.

Step I. If h ∈ [0, 1], thenH ′(1/
√
ε0) =

(
h− 1
√
ε0

)
eh/ε0 ≤ 0.Hence, w̄ ≤ 1/

√
ε0. In addition,

if w ∈ (0, w̄) then H ′(w) > 0. As R′(w) > 0 for w > 0, we have w0 < w̄ ≤ 1/
√
ε0. Thus, we

get G(w0) ≥ 1. In this way, ε′0(h) ≥ 2ε0(h)/(1 + h) for h ∈ [0, 1] that yields (1 + h)2ε0(0) ≤
≤ ε0(h) ≤ (1+h)2ε0(1)/4 (equivalently, 2c∗(1)/(1+h) ≤ c∗(h) ≤ c∗(0)/(1+h), for h ∈ [0, 1]).
Next, taking h = 0 in equations (1.4) and (1.5) we obtain that

1√
ε0(0)

= 2w0(0)− p
∫
R

sK(s) exp (−w0(0)s)ds, (1.7)

1 + w2
0(0) = p

∫
R

K(s)(1 + w0(0)s) exp(−w0(0)s)ds =

= p

(
1−

∫
R s

2K(s)ds
2

w2
0(0)−

∫
R s

4K(s)ds
8

w4
0(0)− . . .

)
.
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As a consequence of the latter formula, we get

w0(0) <

√
p− 1

1 + p
2

∫
R s2K(s)ds

.

Then (1.7) implies that c∗(0) < k1 so that c∗(h) < k1/(1 + h) for h ≤ 1. Note that k1 > 0
since R is increasing for w > 0. Finally, since c∗(h) is decreasing, we have that c∗(h) < k1/2 for
h ≥ 1.

Step II. If h ≥ 1, then w̄ ≥ 1/
√
ε0. As a consequence, G(w̄) ≤ 1 = G(1/

√
ε0) so that

G(w) ≥ G(w̄) for all w ∈ [0, w̄] (see Fig. 1). Additionally, G(w̄) = (2w̄
√
ε0 − 1)

1
h
≥ 1

h
,

therefore we conclude that G(w0) ≥ 1/h. Hence, we have ε′0(h) ≥ ε0(h)/h, so that ε(h) ≥
≥ ε(1)h (equivalently, c∗(h) ≤ c∗(1)/

√
h) for h ≥ 1. Now, if h = 1 we have w̄ = 1/

√
ε0(1).

Thus, taking h = 1 and w = w̄ in (1.4) we get exp(1/ε0(1)) = R(w̄) > R(0) = p that yields√
ln p < 1/

√
ε0(1) = c∗(1). On the other hand, for all 0 ≤ w < 1/

√
ε0, we have

exp
(
wh
√
ε0

)
<

(
1 +

w
√
ε0
− w2

)
exp

(
wh
√
ε0

)
≤ p

∫
R

K(s) exp(−ws)ds. (1.8)

In particular, taking h = 1 and w =
√

ln p in (1.8) we conclude that c∗(1) < k2 so that
c∗(h) < k2/

√
h for h ≥ 1. Additionally, using c∗(h) ≥ 2c∗(1)/(1 + h) obtained in step I,

we also concluded that c∗(h) > 2
√

ln p/(1 + h), for h ∈ [0, 1].

Fig. 1. G, H and R for h > 1.

Step III. For h > 0, it is evident that ε′0(h) ≤ 2ε0(h)/h. Integrating the latter inequality
on [h, 1] we obtain ε(h) ≥ ε(1)h2 (equivalently, c∗(h) ≤ c∗(1)/h), for 0 < h ≤ 1 so that
c∗(h) < k2/h, for h ∈ (0, 1]. Analogously, by integrating ε′0(h) ≤ 2ε0(h)/h on [1, h] we have
ε0(h) ≤ ε0(1)h2 (equivalently, c∗(h) ≥ c∗(1)/h), for h ≥ 1. Thus, we obtain c∗(h) >

√
ln p/h,

h ≥ 1.
On the other hand, for all h ≥ 0, we have G(w0) ≤ 1 + 1/(4ε0). As a consequence, ε′0(h) ≤

≤ (4ε0(h) + 1)/(2(1 + h)) for all h ≥ 0 so that ε0(h) ≤ ((4ε0(0) + 1)(1 + h)2 − 1)/4. Taking
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h = 0 in (1.4), we get 1 + 1/(4ε0(0)) > G(w0(0)) = R(w0(0)) > p so that c∗(0) > 2
√
p− 1. In

consequence,

c∗(h) > 2

√
p− 1

p(2h+ h2) + 1
, h ≥ 0. (1.9)

Step IV. Setting w = r, r ∈ (0, 1), in the second inequality of (1.8) we obtain

(
1− r2

)
exp

(
rh√
ε0(h)

)
< p

∫
R

K(s) exp(−rs)ds,

from which we get that

1√
ε0(h)

<
1
hr

ln

 p

1− r2

∫
R

K(s) exp(−rs)ds

 , h > 0. (1.10)

Considering (1.9) and (1.10) we get
C1

h
≤ c∗(h) ≤

C2

h
for h ≥ 1. This completes the proof.

2. Example. Consider the heat kernel Kα(s) = (4πα)−1/2 exp (−s2/(4α)). Then Theo-
rem 1.1 applies with

k1 = 2
√
p− 1

1 + αp exp
(

α(p−1)
1+αp

)
√

1 + αp

 , k2 = (1 + α)
√

ln p.

Fig. 2. The minimal speed (curve 2) and its upper (curve 1)
and lower (curve 3) bounds (p = 2 and α = 1).

In fact, in this case we can plot graphs of c∗ against h using standard numerical methods
to solve some appropriately chosen initial value problem ε0(h0) = ρ0 for differential equation
(1.6). For example, if we take h0 = α then ρ0 coincides with a positive solution of the equation
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1 +
1
4ρ

= p exp
(
− α

4ρ

)
. Next, we can explicitly find G(w0) in (1.6) by using Cardano’s formulas

to solve the cubic equation (w2
0 − w0/

√
ε0 − 1)(2

√
ε0αw0 − h) + 1− 2

√
ε0w0 = 0. It is easy to

see that this equation has three real roots for all h ≥ 0 and α > 0, and that w0 is the leftmost
positive root.

Fig. 2 shows the minimal speed c∗ and its estimations when p = 2 and α = 1. Remark that
we do not need the restriction α ≤ h required in [9].

Finally, note that letting α → 0+ in (1.1) and (1.2) we recover the characteristic equation for
the delayed reaction-diffusion equation

ut(t, x) = uxx(t, x)− u(t, x) + g(u(t− h, x)),

which was studied by various authors (e.g. see [8, 10] and references therein). In this case, our
results complete and partially improve the estimations of [8].

Acknowledgments. The authors thank Professor Sergei Trofimchuk for valuable discutions
and helpful comments.

1. Gourley S. A., So J., Wu J. Non-locality of reaction-diffusion equations induced by delay: biological modeling
and nonlinear dynamics // J. Math. Sci. — 2004. — 124. — P. 5119 – 5153.

2. Li W. T., Ruan S., Wang Z. C. On the diffusive Nicolson’s Blowflies equation with nonlocal delays // J. Nonli-
near Sci. — 2007. — 17. — P. 505 – 525.

3. So J., Wu J., Zou X. A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts
on unbounded domains // Proc. Roy. Soc. A. — 2001. — 457. — P. 1841 – 1853.

4. Trofimchuk E., Alvarado P., Trofimchuk S. On the geometry of wave solutions of a delayed reaction-diffusion
equation // E-print: arXiv:math/0611753v2 [math. DS]. — 2008. — 25 p.

5. Wang Z. C., Li W.T., Ruan S. Traveling fronts in monostable equation with nonlocal delayed effects // J.
Dynam. Different. Equat. — Publ. online: 11 March 2008.

6. Ma S. Traveling waves for non-local delayed diffusion equation via auxiliary equation // J. Different. Equat.
— 2007. — 237. — P. 259 – 277.

7. Schaaf K. W. Asymptotic behavior and traveling wave solutions for parabolic functional differential equations
// Trans. Amer. Math. Soc. — 1987. — 302. — P. 587 – 615.

8. Trofimchuk E., Trofimchuk S. Admissible wavefront speeds for a single species reaction-diffusion equation
with delay // Discrete Contin. Dynam. Systems A. — 2008. — 20. — P. 407 – 423.

9. Wu J., Wei D., Mei M. Analysis on the critical speed of traveling waves // Appl. Math. Lett. — 2007. — 20. —
P. 712 – 718.

10. Aguerrea M., Trofimchuk S., Valenzuela G. Uniqueness of fast travelling fronts in a single species reaction-
diffusion equation with delay // Proc. Roy. Soc. A. — 2008. — 464.

Received 05.08.09

ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 1


