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This paper is devoted to the study of oscillatory behavior of solutions to nonlinear neutral hyperbolic
equations with functional arguments by using the integral averaging method and generalized Riccati techni-
ques. First, we establish oscillation results for nonlinear neutral hyperbolic equations by reducing the
multi-dimensional oscillation problems to one-dimensional oscillation problems for functional differential
inequalities. Secondly, we present oscillation results for nonlinear neutral hyperbolic equations by utilizing
Riccati techniques.

Busuaemuvca koausHa no8edinKa po3s’a3Ki6 HeAIHILUHUX 2inepOOAIYHUX PIBHAHb HEUMPAAbHO20 MUNY
3 PYHKYIOHANLHUMU AP2YMEHMAMU 3 OONOMO0H0 MEMOOY IHMELPAAbHOR0 YCEPEOHeHHA Ma Y3aeaab-
Henol mexniku Pikkami. [lo-nepue, ompumaro pe3yabmamu npo KOAUBAHHA 045 HeAIHILHUX 2inepOo-
AIYHUX PIBHAHD HEUMPAALHO20 MUNY WAAXOM 36€0€HHA 6a2amOBUMIDHUX 30044 NPO KOAUBAHHA OO
OOHOBUMIDHUX 340a4 NPO KOAUBAHHA 047 PYHKYIOHAAbHO-OUeperyiarbHux HepieHocmell. [1o-Opyze,
OMPUMAHO PE3YALMAMU PO KOAUBAHHA 0151 HEAIHILIHUX 2inepOOATHHUX DIBHAHD HEUMPAAbHO20 MUNY
3 BUKOpUCMAHHAM mexHiKU Pikxami.

1. Introduction. Consider the hyperbolic equation with functional arguments

E 0 t 0 t lh’t (T
B o (0 (w0 + Y hou@n) ) | -

i=1

k

— a(t)Au(z,t) = > bi(t)Aulz, 7i(t))+
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—i—Zqz x,t)pi(u(x,0i(t))) =0, (z,t) € Q=G x(0,0),
where A is the Laplacian in R” and G is a bounded domain of R™ with piecewise smooth
boundary 0G, and the following Dirichlet and Robin (cf. [10]) boundary conditions:

(By1) u=0 on OJG x[0,00),

(Ba) %—I—uu—o on 0G x [0,00),
where v denotes the unit exterior normal vector to 9G and p € C(9G x [0, 0); [0, 00))

Throughout this paper we assume that:

(A1) ( ) € C'([0,00); (0,00)),
ha(t) € C2(0,00): 0,50)), i = 1,2,....

a(t),bi(t) € C([0,00 %0): [0,50)), i = L,2,....k,

gi(z,t) € C(;[0,00)),7 = 1,2,...,m;
(A2) pi(t) € C?([0,00)R), limy o0 pi(t) = 00,7 = 1,2,...,1,

7i(t) € C([0,00);R), limy_00 7i(t) = 00,7 = 1,2,...,k,

oi(t) € C([0,00);R), limy_y00 0(t) = 00,7 = 1,2,...,m;

( m, are convex in (0, 00) and ¢;(—s) = —y;(s) for s > 0.
) N C(G x

(A3) i(s) € CHR;R),i = 1,2,...,
Definition 1. By a solution of Eq.(E)we mean a function v € C*(G x [t_q,
x[t_1,00)) which satisfies (E), where

{it i} in {int o}

0, min
t>0 1<i<k

t_1 = min
1<’L<l

L = min{O, min {infai(t)}}
1<i<m | >0

Definition 2. A solution u of Eq. (E) is said to be oscillatory in Q if u has a zero in G x (t,00)

foranyt > 0.
Definition 3. We say that the functions (H1, Hy) belong to a function class H, denoted by

; [0, 00)) satisfy

(Hl,HQ) € H, if(Hl,HQ) S C(D
Hi(t,t) =0, Hi(t,s) >0, i=1,2 [for t>s

0 < s <t < oo}, and the partial derivatives 0H1 /0t and OHy/0s exist on

where D = {(t,s) :

D such that
2 (t,8) = —ha(t,s) Ho(t, s),

H
O (oo1) = (s, ) Hi(s,1) - and

for some functions hy, hy € Cioc(D;R)
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In recent years there has been much research activity concerning the oscillation theory of
nonlinear hyperbolic equations with functional arguments by employing Riccati techniques. Ri-
ccati techniques were used to obtain various oscillation results (cf. Marik [9], Yoshida [15]). For
example, we note that Kamenev-type oscillation criteria for hyperbolic equations have been
obtained in [3, 6, 12, 14]. On the other hand, interval oscillation criteria for second order di-
fferential equation has been investigated by many authors [1, 3, 5, 6, 8, 12, 13]. In particular,
Wang, Meng and Liu [12, 13] applied interval oscillation criteria to linear hyperbolic equations
with functional arguments. Recently, Cui and Xu [1] presented oscillation criteria for hyperbolic
equations which are not of neutral type. It seems that there are no known oscillation results for
hyperbolic equations of neutral type, which are obtained by Riccati techniques.

The objective of this paper is to establish oscillation ceireria for the nonlinear neutral
hyperbolic equation with functional arguments (E) by employing the Riccati method.

In Section 2 we reduce our problems to one-dimensional problems for functional differenti-
al inequalities, and second order functional differential inequalities are investigated in Secti-
on 3 via Riccati inequalities. We present oscillation results for (E) in Section 4 by combining
the results of Sections 2 and 3. Two examples which illustrate our main theorems are given in
Section 5.

2. Reduction to one-dimensional problems. In this section we reduce the multi-dimensional
oscillation problems for (E) to one-dimensional oscillation problems. It is known that the first
eigenvalue \; of the eigenvalue problem

—Aw =X w in G,

w=0 on 0G

is positive, and the corresponding eigenfunction ®(x) can be chosen so that &(z) > 0 in G.
Now we let

¢i(t) = min g;(z,1).
zelG@

With each solution u(z, t) of the problem (E), (B1) or (E), (B2) we associate functions U (¢) and

U (t) respectively, defined by

U(t)=Kg [ u(z,t)®(x)dz,
/

O(t) = |c1:| G/u(x,t)dx,

-1
where K¢ = </ () dx) and |G| = / dx.
G a

Theorem 1. If the functional differential inequality

l m
% (T“) % (W) + m(t)y(pi(t)))) + " a®eily(oi(t) < 0 1)
i=1 i=1
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has no eventually positive solutions, then every solution u(x,t) of the problem (E), (B1) is osci-
llatory in Q.

Proof. Suppose to the contrary that there exists a nonoscillatory solution u of the problem
(E), (B1). Without loss of generality we may assume that u(z,t) > 0in G x [tp, o0) for some
to > 0. (The case where u(x,t) < 0 can be treated similarly.) Since (A2) holds, we see that
u(z,pi(t)) > 0,1 = 1,2,...,0, u(z,7(t)) > 0,7 = 1,2,...,k, and u(z,0;(t)) > 0,7 =
=1,2,...,m,in G X [t1,00) for some ¢t; > to. Multiplying (E) by K¢®(x) and integrating over
G, we obtain

dQ@d<ww+iﬁuwmw0>—
dt dt ! !

i=1
—a(t)Ke /Au(az,t)@(x)dﬂv - Z bi(t) Ko / Au(z, 7 (t))®(x) de +
G =1 G
+ZK4@xwxwwwm@M—mtzu 2)
G
From Green’s formula it follows that
Kq,/Au(x,t)(I)(:c)dx =-MU(t) <0, t>t, (3)
K@/Au(x,n(t))(l)(x)dx =-MU(7i(t)) <0, t>t. 4)

G

Using the Jensen’s inequality we observe that

Zm]%mﬁmemmm>mewwmxtwb 5)
=1

G

and combining (2) —(5), it follows that

iQmi@m+mewm0)Q}mmmwwsatzn
; =1

Therefore U (t) is an eventually positive solution of (1). This is a contradiction and the proof is
complete.

Theorem 2. [f the functional differential inequality (1) has no eventually positive solutions,
then every solution u(x,t) of the problem (E), (Bs) is oscillatory in Q.

Proof. Suppose to the contrary that there exists a nonoscillatory solution u of the problem
(E), (B2). Without loss of generality we may assume that u(z,t) > 0in G x [tp, c0) for some
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134 Y. SHOUKAKU, I P. STAVROULAKIS, N. YOSHIDA
to > 0. Since (Az) holds, we see that u(z, p;(t)) > 0,7 = 1,2,...,1, u(z,n(t)) > 0,7 =

=1,2,...,k,and u(z,04(t)) > 0,7 = 1,2,...,m,in G X [t1,00) for some t; > ty. Dividing (E)
by |G| and integrating over G, we obtain

l
i@mi@@+zwwmw»—

=1
a(t) " bi(t)
-t /Au(:r,t)d:z;—z o /Au(x,n(t))dmjt
G =1 G
1 m
+ Y [at o) =0, 1> . (©)
Gl =
G
It follows from Green’s formula that
/Au(x,t)da: _ /gj}‘(x,t) ds = — /u(m,t)u(x,t) dS <0, t>t, )
G oG oG
[ dutwnwnin = [ S nw)ds = - [ n@un)as <o, 1=n ®)
G oG oG
Using the Jensen’s inequality, we observe that
Z&]Mmmwwwmmszwwmwmtzm ©)
=1 4 i=1
and combining (6) —(9), it follows that
d d ~ l ~ m ~
o (T(t)dt (U(t) +th’(t)U(pi(t))>> + Y aei(U(0i(t) <0, >t
i=1 i=1

Therefore U (t) is an eventually positive solution of (1). This is a contradiction and the proof is
complete.

3. Second order functional differential inequalities. In this section we establish sufficient
conditions for every solution y(t) of the functional differential inequality (1) to have no eventu-
ally positive solution. We assume the following hypotheses:

(A4) Forsome j € {1,2,...,m}, there exists a positive constant ¢ such that
oj(t) >0 and o;(t) < t;

o
As —— dt = o0;
S T
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OSCILLATION CRITERIA FOR NONLINEAR NEUTRAL HYPERBOLIC EQUATIONS... 135

(Ag) Yiy hilt) < 1
(A7)pi(t) < t,i = 1,2,...,l.

Theorem 3. Assume that the hypotheses (A4)— (A7) hold, and moreover assume that

(As) @j(s152) = pji(s1)pja(se) for s1 = 0, 52 > 0, where ¢;1(s) € C([0,00); [0,00)),
pj2(s) € CH((0,00); (0,00)) and p;(s), (¢'io(s) are nondecreasing and ;5 (s) > 0 for s > 0.

If the Riccati inequality

1 1
2 P (t)

2(t) < -Q(t) (10)

for some K > 0 and all large T, has no solution on [T, 00), where

PR C0)
Pe(t) = T2, (11)
l
Q@=MWMQ—ZM@@O, (12)
=1

then (1) has no eventually positive solutions.

Proof. Suppose that y(t) is a positive solution of (1) on [tg, c0) for some ty > 0. From (1),
there exists a j € {1,2,...,m} such that

l
% (T(t)jt (y(t) + Zhi(t)y(m(t))» +q;()pi(y(o;(1) <0, t >t
=1

If we define the function

2(t) = y(t) + Y hi(t)y(pi(t)), (13)
i=1
then we see that
(r®)z' (1)) < —q;(t)p;(y(o;(t)) <0, t>to. (14)

Since (r(t)2'(t))’ < 0, z(t) > 0 eventually, we observe, using the hypothesis (Aj3), that 2/(¢) > 0
(t > t1) for some t; > tg (cf. [13], Lemma 2.2). Hence r(¢)2/(¢) is nonincreasing. Then, we find
that 2/(t) > O or 2/(t) < Ofort > ¢ > to. First we assume that z/(¢) < 0 for ¢ > t;. From
the well known argument (cf. [13]) we prove that 2'(¢) > 0 for ¢ > ¢;. Taking into account (Ag)
and (Ar), from (13) we see that (cf. Yoshida [15])

l
y(t) > (1 - Zhﬁ)) 2(t), t >t (15)
=1
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136 Y. SHOUKAKU, I P. STAVROULAKIS, N. YOSHIDA

In view of (14) and (15), we observe that
(r®)2' ) + ¢;(pj <1 —Zh a;( )) pj2(z(0;(t))) <0, t >t
i=1

Setting

we show that

Pha(2(0(1))) 2 (0 (#)) 75 (2)
vFa(2(0;(1))) '

Since z(t) > 0, 2/(t) > 0 eventually, it follows that z(o;(t)) > ko for some ky > 0. Hence we
observe that

—r(t)2(t)

() = QL 16)

pja(2(0j(t)))

©ia(2(0j(t))) > @ia(ko) = K. (17)

Substituting (17) into (16), we get

I
/ % / z,(aj(t))
w'(t) < —q; () (1 - ;:1 hi("j@))) — Kor(t)z (t)m7 t >t

On the other hand, (14) implies that
r(oj(t))2'(05(t)) = r(t)2'(2),

and hence

) 1{ 2Ko l
w'(t) + 5 (W) w?(t) < —q;(t)pj (1 - ; hi(Uj(t))> (18)

for ¢t > t;. That is, w(t) is a solution of (10) on [t;,c0). This is a contradiction and the proof is
complete.

Theorem 4. Assume that the hypotheses (A4)—(Ag) hold. If for each T > 0 and some K >
> 0, there exist (Hy, Hy) € H,(t) € C1((0,00);(0,00)) and a,b,c € RsuchthatT < a < ¢ <
< band

) /Hlsa{ ir((}fj))/\Q( )}1/1(3)d8+

= 1r(05(5))
+ H(b.0) /HQ(b, s) {Q(S) "1k A5 (b, s)}i/)(s)ds > 0, (19)

g
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where

(s, t) = ﬁ,((j)) + hi(s, 1),

Ao(t,s) = Zléj; — ha(t, s).

Then (1) has no eventually positive solutions.

Proof. Suppose that y(t) is a positive solution of (1) on [tg, c0) for some ¢y > 0. At first,

we assume that y(¢) > 0 on (a,b). Proceeding as in the proof of Theorem 3, we see that there
exists a function w(s) which satisfies

QUs)ils) < —w!(8)(s) — 0w (s)(s). (20)
"(05(5))

Multiplying (20) by Hz(¢, s) and integrating over [c,¢] for ¢t € [c,b), we have

t

—/mwﬁw@wmuijmw@

C

Ko
r(oj(s))

IN

w?(s)y(s) ds <

< Hy(t, )w(e)b(c) + i / Ha(t, $)A2(t, s)r(‘z(s)) W(s) ds —

g

g
c

¢ _ 2
Ko 1 r(oj(s))
- /HZ(ta s) { WM(S) =5 (ts) f{} ¥(s) ds,

and so

L | 17(05(s)) \a
AT /H2(t, s){Q(s)— YR~ A2(t,s)}¢(s)ds < w(e)y(c).

(2

Letting ¢ — b~ in the last inequality, we obtain

IN

b
1 1 7(0;(s)) |2
Hg(b,c)/Hz(b’ s) {Q(S) “1 ko A5(b, s)}¢(s)ds w(e)y(c). (21)

On the other hand, multiplying (20) by H;(s,t) and integrating over [t,c| for ¢t € (a,c|, we
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138 Y. SHOUKAKU, I P. STAVROULAKIS, N. YOSHIDA

obtain

/ Hy(s,t)q;(s)u(s) ds <

<_ / Hi(s, £ ()b (s)ds — / Hi(s, 1)

r(9;(s))

g

c — 2
- [ s {\/réé))w(S) — MGyt 1) } b(s) ds,

< —Hi(c,t)w(e)y(c) + le/Hl(S’ t)A3 (s, ) P(s)ds —

and therefore

C

1 1 7(o;(s)) wlovile
e /Hl(s,t) {Q(s) i 5 A%(s,t)}w(s)ds < —w(c)y(c).

g
t

Letting ¢ — a in the last inequality, we obtain

L L r(05(5)) ) )
Hl<ca>/ s, {Qe) - § "Lt 0 | veids < —wlepu. @)

Adding (21) and (22), we obtain the following

Lo 1 r(oy(s)
IMCL/HKS,G) {Q(S) 1 o )\%(s,a)}qp(s) ds+

b
L 1 7(ay(s))
(b0 C/HQ(I” 9{@e -1 250 o as <o,

which contradicts the condition (19). Pick up a sequence {T;} C [ty,o0) such that T, — oo
as ¢ — oo. By the assumptions, for each i € N, there exists a;, b;, ¢; € [0,00) such that
T, < a; < ¢; < b;, and (19) holds with a, b, ¢ replaced by a;, b;, ¢;, respectively. Therefore,
every nontrivial solution y(¢) of (1) has at least one zero ¢; € (a;, b;). Noting that¢t; > a; > T,
i € N, we see that y(¢) is an oscillatory solution of (1). This is a contradiction and the proof is
complete.
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_ Theorem 5. Assume that the hypotheses (A4)—(Asg) hold. If for each T > 0 and some
K > 0, there exist functions (Hy, Hs) € H, () € C1((0,00); (0,00)), such that

li?ligp/Hl 5,T) { ) -7 (Kfj))AQ( )}w(s)ds >0 (23)
and
liﬁscgp/Hg(t, 5) {Q(s) - i T(‘;J(‘E?)Ag(t, s)} W(s)ds > 0, (24)

then (1) has no eventually positive solutions.

Proof. For any T > tg, let a = T and choose T' = a in (23). Then there exists ¢ > a such
that

/H1 s,a { 5) — iT(K;))AQ( )}w(s)ds > 0. (25)

Next, choose 7' = cin (24). Then there exists b > ¢ such that

b
/Hg(b, ) {Q(s) - i T(gf))Ag(b, s)} W(s)ds > 0. (26)

Combining (25) and (26), we obtain (19). By the virtue of Theorem 4, the proof is complete.

Remark. We give two examples which satisfy the assumption (Ag). If ¢;(s) = s7 (v is the
quotient of odd integers), then (Ag) is satisfied with ¢;1(s) = ¢j2(s) = s7. Another example
is the case where

@j(s) = sinhs = %,

vji(s) = min{s,s3,s5, . .,st_l},
m —

ei2(s) = 2 Gr ) (2k—1)!

k=1
where m is a positive integer. In fact, we observe that
k—1 m k—1 52k

> (5182)2 s 82 )2
sinh s159 = Z (21k—1 Z ! > min{sl,s?,si”,.. m 1}2

k=1 k=1
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where we note that

: 3 0 1
min {31,51,31,...,51 } =

4. Oscillation criteria for Eq. (E). In this section, by combining the results of Sections 2 and
3, we establish sufficient conditions for oscillation of Eq. (E).

Using the Riccati inequality, we derive sufficient conditions for every solution of hyperbolic
equation (E) to be oscillatory. We are going to use the following lemma which is due to Usa-
mi [11].

Lemma 1. [f there exists a function ¢ (t) € C*([Ty, o0); (0, 00)) such that

T (B (6)8\ T

/( o) > < oo,

T
7 1
/%@W@W*“:“”
T

[owawa = o
T

for some T1 > Ty, then the Riccati inequality
11
B p(t)

where 3 > 1, p(t) € C([Tp, 0); (0,00)) and q(t) € C([Ty,0);R), has no solution on [T, o) for
all large T.

2'(t) + ()" < (),

Combining Theorems 1-3 and Lemma 1, we obtain the following theorem.

Theorem 6. Assume that the hypotheses (A1) - (Ag) hold. If

T (P (1)’
/( o(0) )dt@o’

T
7 1
/awwwﬁzw
T
/WW@ﬁzm
T1
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where Py (t) and Q)(t) are defined by (11) and (12) for some K > 0, then every solution u(z, )
of (E), (By) (or (E), (B2)) is oscillatory in (.

Combining Theorems 1-2 and 4, we have the following theorem.

_ Theorem 7. Assume that the hypotheses (A1)~ (As) hold. If for each T > 0 and some
K > 0, there exist functions (Hy, Hy) € H,(t) € C1((0,00);(0,00)) and a,b,c € R such that
T < a < ¢ < band (19) hold, then every solution u(x,t) of (E), (B1) (or (E), (B2)) is oscillatory
in ).

Analogously, combining Theorems 1-2 and 5 we derive the following.

_ Theorem 8. Assume that the hypotheses (A1)~ (Asg) hold. If for each T > 0 and some
K > 0, there exist functions (Hy, Hy) € H, ¥(t) € C((0,0);(0,00)) such that (23) and (24)
hold, then every solution u(z,t) of (E), (B1) (or (E), (B2)) is oscillatory in €.

5. Examples. We present the following examples which illustrate the applicability of our
results.

Example 1. Consider the problem

9
ot

@

0 1 1 _
ta (u(z,t) + Eu(x,t - 7r)>> —5€ EAu(z,t)—

—etAu <:C, t+ g) — X Au(z,t — 2m) +

+ePu(z,t —7) =0, (x,t) € (0,7) x [1,00), (27)

w(0,t) = u(m,t) = 0. (28)

Here n = 1 Ek=2m=17(t) = e’ h(t) = 1/2, q1(x,t) = e*, 01(t) = t — 7 and

©12(&) = K. Itis easy to see that
1 1
P~ = — —t+m — 2t‘
(t) 9 € ) Q(t) 9 (&
By choosing
V() = e, Hi(s,t) = Ha(t,s) = (et _65)2,
we see that

R/l - 7r —
/(26 " 26 ) > _ 3T gt < 0o
[e e}
3t—m _
/(1 —t+7T % e 2t> 26 dt = oo,
1
/(6_2t2€ )dt:oo.
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Choose now a = 1, b = 27 and ¢ = 7 and observe that

1 [ S$\2 1 2s 1 —s+m 4628 —2s
— — —e’ — - — ds +
(e ew)2 /(e e ) {2 e 1 e (e 65)2 € S

1
2

1 ) o1 g 1 _gin Ade'T 9
+7(627r—€”)2 /(@W_es) {265—46 s ﬂ(627r_678)2 e *%ds > 0,

™

that is, the condition (19) is satisfied. Also
t

1 1 4e%
. T\2 2 —5+ -2 —
h?i)ilolp/(es—S) {268—468ﬂM}€ Sds =

1 1 3

= limsup{ —e2 — el 4~ ([t =T +2) 2l pe ™ TH7 L 5
t—o00 4 2 2

and

t
1 1 4e?
lim sup/(et — 5%)? { e — = es+”es)2} e 2 ds =

o0 2 4 (et —e
1 3 1 1 1
= lhtrisogp { (2 <t - T = 2) _ 367r—3T> €2t + et+T + ge—t-i-w _ 4€2T} > 0’
that is, the conditions (23) and (24) hold. Thus, all the conditions of Theorems 6 —8 are satisfied.

Therefore every solution u(z,t) of the problem (27), (28) is oscillatory in (0, c0) X [1,00). For
example, u(x,t) = sinx sint is such a solution.

Example 2. Consider the problem

0 1 0 1
5 ((t—|—7r)2 5 (u(z,t) + iu(x,t — 27r))) — Au(z,t) —

3 3 m
- mAu(x,t —27) — mAu (m,t—i— 5) +
+u(z,t—7) =0, (z,t) € (0,7) % [1,00), (29)
—ug(0,t) = ug(m,t) = 0. (30)

Heren = 1,k = 2,m = 1,7(t) = (t+m)72, hi(t) = 1/2, q1(z,t) = 1, 01(t) = t — 7 and

¢15(§) = 1 = K. Itis easy to see that
Pelt) = 5 Q) =
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If we choose () = t2, then

see that
T 27
LU R T L e R
1 T
Moreover,
¢
e Rt
T
—llmsup{t3—Tt2+1T2t+t_1 73 T_1}>O
t—00 2 2
and

t
1 11 4
I VRS U e S QP
mow [(1-5) {2 452<t—s>2}d5
T

1 1 1
= 1i BT+ ST+t -
N { 6! 20 Tttt

1
T3 -7y > 0.
Tt

Thus, all the conditions of Theorems 6 —8 are satisfied. Therefore, every solution u(z, t) of the
problem (29), (30) is oscillatory in (0, 7) x [1,00). One such solution is u(z,t) = coszsint.
Observe, however, that

7; (2(3_?;77)2 + (sfw)3) ds < oo,

and therefore the condition (8) of Theorem 2 given by Deng [2] is not satisfied. Thus, Theorem 2
by Deng [2] can not be applied to this example.
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