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We consider a nonlinear boundary value problem for an impulsive system of ordinary differential
equations with concentrated delay in the general case when the number of the boundary conditions does
not coincide with the order of the system sufficiently. It is supposed that the corresponding boundary
value problem without delay is linear and has an r-parametric family of solutions. Then the equation for
the generating amplitudes is derived, and sufficient conditions for the existence and an iteration algorithm
for the construction of a solution of the initial problem are obtained in the critical case of first order if the
delay is sufficiently small.

Розглядається нелiнiйна крайова задача для iмпульсних систем звичайних диференцiальних
рiвнянь з зосередженими загаюваннями у загальному випадку, коли кiлькiсть крайових умов не
спiвпадає з порядком системи. Припускається, що вiдповiдна крайова задача без загаювання
є лiнiйною i має r-параметричну сiм’ю розв’язкiв. У цьому випадку отримано рiвнянн для по-
роджуючих амплiтуд, а також достатнi умови iснування та iтерацiйний алгоритм побудови
розв’язку задачi, що розглядається в критичному випадку першого порядку, якщо загаювання
є достатньо малим.

1. Introduction. Impulsive differential equations [1] with delay describe models of real
processes and phenomena where both a dependence on the past and momentary disturbances
are present. For instance, the size of a given population may be normally described by
a delay differential equation and, at certain moments, the number of individuals can be
abruptly changed. The interaction of the impulsive perturbations and the delay make difficult
a qualitative investigation of such equations. In particular, the solutions are not smooth at the
moments of impulse effect shifted by the delay [2].

In the present paper we consider a nonlinear boundary value problem (BVP) for an
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impulsive system of ordinary differential equations with concentrated delay in the general
case when the number of the boundary conditions, m, does not coincide with the order of the
system n. Suppose that the corresponding BVP without delay is linear and has an r-parametric
family of solutions. Then the equation for the generating amplitudes is derived, and sufficient
conditions for the existence and an iteration algorithm for the construction of a solution of the
initial problem are obtained in the critical case of first order if the delay is sufficiently small.
Some remarks on the critical case of second order and on the noncritical case are made as well.
The results of the present paper were reported at the 24-th Summer School “Application of
Mathematics in Engineering” (Sozopol, Bulgaria, 1998). A very concise version appeared in its
proceedings [3].

The periodic problem is an important particular case of a BVP of Fredholm type (the
number of boundary conditions, m, equals the order of the system, n). The periodic problem
for an impulsive system with a small constant delay in the noncritical case (under considerably
more general assumptions) as well as in the critical cases of first and second order was
considered, respectively, in [4, 5] (see also the monograph [6], §8), [7] and [8]. The periodic
problem for impulsive systems (without delay) as well as more general BVP’s for differential
systems with delay (without impulses) and with impulses (without delay) in critical cases of first
and second order were considered in several papers by the first author [9 – 12] (see also the
monographs [13, 14]). In all these papers, the unperturbed system is assumed to be linear. In
[15], as far as we know, for the first time the critical case for a nonlinear unperturbed system is
treated.

2. Statement of the problem. Preliminary assertions. Consider the boundary value problem
(BVP) for the impulsive differential system with retarded argument

ẋ(t) = A(t)x(t) + f(t) +H(t, x(t), y(t)), t ∈ [a, b], t 6= ti,

∆x(ti) = Bix(ti) + ai + Ii(x(ti), y(ti)), i = 1, p,

x(t) = ϕ(t) for t ∈ [a− ε0, a],

`x = α+ εJ(x, ε),

(1)

where x ∈ Ω ⊂ Rn, f : R 7→ Rn, A : R 7→ Rn×n, y = (y1, y2, . . . , yk) ∈ Ωk ⊂ Rnk,

H(t, x, y) =
k∑
j=1

Hj(t, x, y)(x − yj), Hj : R × Ω × Ωk 7→ Rn×n, Ω is a domain in Rn, yj(t) =

= x(t−εωj(t)), j = 1, k, ωj : [a, b] 7→ [0, 1]; ∆x(ti) = x(ti+0)−x(ti−0) are impulses at moments

ti, and a ≡ t0 < t1 < t2 < . . . < tp < b; ai ∈ Rn, Bi ∈ Rn×n, Ii(x, y) =
k∑
j=1

Iij(x, y)(x − yj),

Iij : Ω × Ωk 7→ Rn×n(i = 1, p, j = 1, k), ε ∈ [0, ε0) is a small parameter; α = col[α1, . . . , αm] ∈
∈ Rm; ` = col[`1, . . . , `m] and J(x, ε) are, respectively, a linear and nonlinear with respect to x
m-dimensional functionals; the initial function ϕ ∈ C[a− ε0, a], ε0 will be specified below.

Remark 1. A functional differential equation is represented in the form

ż(t) = (Fz)(t), (2)

where F is a general functional differential operator. Typical representatives of the class of
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equations (2) are the equations with concentrated deviation of the argument

ż(t) = F (t, z(h1(t)), . . . , z(hk(t))), t ∈ [a, b],

z(t) = ψ(t) if t 6∈ [a, b],
(3)

where hj : [a, b] 7→ R, j = 1, k, are given functions, and with distributed deviation of the
argument

ż(t) = F

t, b∫
a

z(s) dsR(t, s)

 ,

z(t) = ψ(t) if t 6∈ [a, b].

If in (3) hj(t) ≤ t, j = 1, k, then it is a system with concentrated delay.
Remark 2. We could replace H, Ii, εJ by nonlinearities of a more general form, vanishing

for ε = 0.
Remark 3. In the Russian-language literature BVP’s with m 6= n(m = n) are usually

called BVP’s of Noether (respectively Fredholm) type. Here we use the second term but not
the first one. Note that in the non-Russian literature Fredholm BVP’s are such that m does not
necessarily coincide with n; for m = n we have Fredholm BVP’s of zero index.

As usual in the theory of the impulsive differential equations, at the points of discontinuity
ti of the solution x(t) we assume that x(ti) ≡ x(ti − 0). It is clear that, in general, the
derivatives ẋ(ti) do not exist. However, there do exist the limits ẋ(ti ± 0). According to the
above convention, we assume ẋ(ti) ≡ ẋ(ti − 0). However, we assume x(a) ≡ x(a + 0). In
general, x(a) 6= x(a−0) = ϕ(a). The nonlinearity H(t, x, y) is discontinuous at the points t that
are solutions of the equations

t− εωj(t) = ti, i = 0, p, j = 1, k. (4)

We require the continuity of the solution x(t) at such points if they are distinct from the
moments of impulse effect ti or a.

For the sake of brevity, if not stated otherwise, we shall use the notation xi = x(ti), yi = y(ti)
(i.e. yji = x(ti − εωj(ti))).

Introduce the following conditions:
H1. The components of A(t), f(t) belong to the space C([a, b] \ {ti}) of functions which are

continuous or piecewise continuous, with discontinuities of the first kind at the points ti.
H2. The functions Hj(t, x, y) are continuously differentiable with respect to x, y, and their

components belong to C([a, b] \ {ti}) with respect to t.
H3. The functions Iij(x, y) ∈ C1(Ω× Ωk, Rn×n), i = 1, p, j = 1, k.
H4. The functions ωj are Lipschitz continuous:

|ωj(t′)− ωj(t′′)| ≤ K|t′ − t′′|, j = 1, k, t′, t′′ ∈ [a, b].

H5. The matrices E +Bi, i = 1, p, are nonsingular (E is the unit matrix).
H6. The functional ` is bounded on the space C([a, b] \ {ti}).
H7. The functional J(x, ε) is Fréchet continuously differentiable with respect to x, belongs

to C([a, b] \ {ti}), and is continuous with respect to ε.
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We assume that

ε0 = min
{
ti+1 − ti, i = 0, p− 1, b− tp, 1/K

}
.

Then for ε ∈ (0, ε0) each equation (4) has a unique solution tji = tji (ε). It obviously satisfies
ti < tji < ti + ε.

Together with (1) we consider the so called generating system,

ẋ(t) = A(t)x(t) + f(t), t ∈ [a, b], t 6= ti,

∆x(ti) = Bixi + ai, i = 1, p,
(5)

`x = α (6)

obtained from (1) for ε = 0.
The general solution of (5) is given by

x(t, c) = X(t)

c+

t∫
a

X−1(τ)f(τ) dτ +
∑

a<ti<t

X−1
i ai

 , (7)

c = x(0, c) ∈ Rn, where X(t) is the fundamental solution (i.e. X(a) = E) of the homogeneous
system

ẋ(t) = A(t)x(t), t ∈ [a, b], t 6= ti,

∆x(ti) = Bixi, i = 1, p,
(8)

and Xi ≡ X(ti + 0) = (E +Bi)X(ti) again for the sake of brevity.
If we introduce Green’s function K(t, τ) for the Cauchy problem related to (5):

K(t, τ) =

{
X(t)X−1(τ), a ≤ τ ≤ t ≤ b;

0, a ≤ t < τ ≤ b,

then (7) takes the form

x(t, c) = X(t)c+

b∫
a

K(t, τ)f(τ) dτ +
p∑
i=1

K(t, ti + 0)ai. (9)

A solution of the form (9) satisfies the boundary condition (6) if and only if the initial condition
c satisfies

α = `X(·)c+ `

b∫
a

K(·, τ)f(τ) dτ +
p∑
i=1

`K(·, ti + 0)ai. (10)

Denote Q = `X(·), which is an (m× n)-matrix, let Q∗ be its transpose, Q+ its unique Moore –
Penrose pseudoinverse (n ×m)-matrix [16, 17]. Denote by P ≡ PQ the orthoprojector Rn 7→
7→ Ker (Q) and by P∗ ≡ PQ∗ the orthoprojector Rm 7→ Ker (Q∗).
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For n1 = Rank Q ≤ min (m,n), let r = n−n1, d = m−n1. Denote by Pr an (n× r)-matrix
whose columns are r linearly independent columns of P and, similarly, let P∗d be a (d × m)-
matrix whose rows are d linearly independent rows of P∗.

Then the necessary and sufficient condition for solvability of the algebraic system (10) is

P∗d

α− ` b∫
a

K(·, τ)f(τ) dτ −
p∑
i=1

`K(·, ti + 0)ai

 = 0. (11)

If (11) is satisfied, system (10) has an r-parametric family of solutions

c = Q+

α− ` b∫
a

K(·, τ)f(τ) dτ −
p∑
i=1

`K(·, ti + 0)ai

+ P c̃, c̃ ∈ Rn. (12)

If we substitute (12) into (9), we find an r-parametric family of solutions of BVP (5), (6) which
can be represented in the form

x0(t, cr) = Xr(t)cr +X(t)Q+α+ (Γf)(t) +
p∑
i=1

γi(t)ai, (13)

whereXr(t) = X(t)Pr is an (n×r)-matrix whose columns make a complete system of r linearly
independent solutions of (8) satisfying `x = 0, cr ∈ Rr is an arbitrary vector;

(Γf)(t) =

b∫
a

K(t, τ)f(τ)dτ −X(t)Q+`

b∫
a

K(·, τ)f(τ) dτ,

γi(t) = K(t, ti + 0)−X(t)Q+`K(·, ti + 0), i = 1, p.

Thus the following assertion is valid.

Lemma 1([see [11], Theorem 1). Let conditions H1 , H5 , H6 hold and RankQ = n1.
Then system (8) has just r = n − n1 linearly independent solutions satisfying `x = 0. The
nonhomogeneous BVP (5), (6) has solutions if and only if the nonhomogeneities f(t), ai, and
α satisfy condition (11). Then BVP (5), (6) has an r-parametric family of solutions of the form
(13).

Remark 4. Suppose that the linear functional ` satisfies the equality

`

b∫
a

K(·, τ)f(τ) dτ =

b∫
a

`K(·, τ)f(τ) dτ

for any f ∈ C([a, b] \ {ti}). Then equality (13) can be written in the form

x0(t, cr) = Xr(t)cr +X(t)Q+α+

b∫
a

G(t, τ)f(τ) dτ +
p∑
i=1

G(t, ti + 0)ai,
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where G(t, τ) is the generalized Green’s matrix

G(t, τ) ≡ K(t, τ)−X(t)Q+`K(·, τ).

3. Main result. Here we consider the so called critical case when r > 0. For the noncritical
case (r = 0) see Section 4.

3.1. Equation for the generating amplitudes. Let us find conditions for the existence of a
solution x(t, ε) of BVP (1) belonging to the space C([a, b] \ {ti}) as a function of t, depending
continuously on ε and such that, for some cr ∈ Rr, we have x(t, 0) = x0(t, cr). A necessary
condition for the existence of such solutions is given by the following theorem.

Theorem 1. Let BVP (1) satisfy conditions H1 – H7 and (11) have a solution x(t, ε) which,
for ε = 0 becomes a generating solution x0(t, c∗r). Then the vector c∗r ∈ Rr satisfies the equation

F (c∗r) ≡ P∗d {J(x0(·, c∗r), 0) −

− `

b∫
a

K(·, τ)H(τ, x0(τ, c∗r)) (A(τ)x0(τ, c∗r) + f(τ)) dτ −

− `K(·, a)H0(x0(a, c∗r))(x0(a, c∗r)− ϕ(a))−

−
p∑
i=1

`K(·, ti + 0) [Ji(x0(ti, c∗r)) (Aix0(ti, c∗r) + fi) +

+ Hi(x0(ti, c∗r)) (Bix0(ti, c∗r) + ai)]} = 0, (14)

whereH(τ, x), Ji(x), i = 1, p, Hi(x), i = 0, p, are given below.

Proof. In (1) we change the variables according to the formula

x(t, ε) = x0(t, c∗r) + z(t, ε). (15)

This leads to the problem of finding a solution z = z(t, ε) for the impulsive system of differential
equations with retarded argument

ż = A(t)z +H(t, x(t, ε), y(t, ε)),

∆z(ti) = Bizi + Ii(xi, yi), i = 1, p,
(16)

with a boundary condition `z = εJ(x, ε), initial condition x(t) = ϕ(t) for t < a, such that it
would belong to the space C([a, b] \ {ti}) as a function of t, depend continuously on ε, and that
z(t, ε)→ 0 as ε→ 0.

We can formally consider (16) as a nonhomogeneous system of the form (5, 6). Then the
solvability condition (11) becomes

P∗d (εJ(x(·), ε) − `
b∫
a

K(·, τ)H(τ, x(τ), y(τ)) dτ −

−
p∑
i=1

`K(·, ti + 0) Ii(xi, yi)) = 0. (17)
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For the sake of later convenience we shall denote by η(ε, x) expressions tending to 0 as ε → 0,
and satisfying a Lipschitz condition with respect to x with a constant tending to 0 as ε→ 0. We
shall sometimes write η(ε) instead of η(ε, x), and x(t) instead of x(t, ε), if this wouldn’t lead to
misunderstanding. Thus, for instance, we sometimes write xi instead of x(ti, ε), etc.

Since the left-hand side of equality (17) tends to 0 as ε → 0, we first divide it by ε and then
study its behaviour as ε→ 0. First we notice that

(xi − yji )/ε =
(
x(ti)− x(ti − εωj(ti))

)
/ε = ωj(ti)ẋ(ti) + η(ε) =

= ωj(ti)(Aixi + fi) + η(ε)

since the interval (ti − εωj(ti), ti) contains no points of discontinuity of the function x(t, ε) or
its derivative. Thus

Ii(xi, yi)/ε =
k∑
j=1

Iij(xi, yi)(xi − yji )/ε =
k∑
j=1

Iij(xi, xi, . . . , xi)ωj(ti)(Aixi + fi) + η(ε).

Let us denote

Ji(x) =
k∑
j=1

Iij(x, x, . . . , x︸ ︷︷ ︸
k+1

)ωj(ti). (18)

Then

Ii(xi, yi)/ε = Ji(xi)(Aixi + fi) + η(ε). (19)

We can represent the integral

b∫
a

in (17) by a sum of integrals over intervals containing no

points of discontinuity of the integrand. It is obvious that for τ ∈ (ti, ti + ε) (more precisely,
for τ = tji (ε)), the interval (τ − εωj(τ), τ) contains the point of discontinuity ti, i = 0, p, while
for τ inside the remaining intervals, the interval (τ − ε, τ) contains no such points. We denote

∆ε
1 =

p⋃
i=0

(ti, ti + ε), ∆ε
2 = [a, b] \∆ε

1 and make use of the representation

b∫
a

=
∫

∆ε
1

+
∫

∆ε
2

.

We first begin with the “good” set ∆ε
2. We have∫

∆ε
2

K(t, τ)H(τ, x(τ), y(τ)) dτ/ε =

=
∫

∆ε
2

K(t, τ)
k∑
j=1

Hj(τ, x(τ), y(τ))
(
x(τ)− x(τ − εωj(τ))

)
dτ/ε =

=
∫

∆ε
2

K(t, τ)
k∑
j=1

Hj(τ, x(τ), y(τ))ωj(τ)ẋ(τ) dτ + η(ε).
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Denote

H(τ, x) =
k∑
j=1

Hj(τ, x, x, . . . , x︸ ︷︷ ︸
k+1

)ωj(τ). (20)

Thus

k∑
j=1

Hj(τ, x(τ), y(τ))ωj(τ) = H(τ, x(τ)) + η(ε)

and ∫
∆ε

2

K(t, τ)H(τ, x(τ), y(τ)) dτ/ε =
∫

∆ε
2

K(t, τ)H(τ, x(τ))(A(τ)x(τ) + f(τ)) dτ + η(ε) =

=

b∫
a

K(t, τ)H(τ, x(τ))(A(τ)x(τ) + f(τ)) dτ −

−
∫

∆ε
1

K(t, τ)H(τ, x(τ))(A(τ)x(τ) + f(τ))dτ + η(ε) =

=

b∫
a

K(t, τ)H(τ, x(τ))(A(τ)x(τ) + f(τ)) dτ + η(ε).

Next we estimate any of the integrals

ti+ε∫
ti

K(t, τ)H(τ, x(τ), y(τ)) dτ/ε,

since
∫

∆ε
1

=
p∑
i=0

ti+ε∫
ti

. First let i ∈ {1, . . . , p}. We suppose that

ti < t1i < t2i < · · · < tki < ti + ε. (21)

By definition, tji = ti + εωj(tji ). By the Lipschitz continuity of ωj(t) we have

|ωj(tji )− ω
j(ti)| ≤ K|tji − ti| = εK|ωj(tji )| ≤ εK,

thus

tji = ti + εωj(ti) + εη(ε). (22)

It is easily seen that for ε > 0 small enough, the strict inequalities

ω1(ti) < ω2(ti) < · · · < ωk(ti) (23)

imply (21).
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Now we have

ti+ε∫
ti

=

t1i∫
ti

+
k−1∑
j=1

tj+1
i∫
tji

+

ti+ε∫
tki

and consider successively the integrals in the right-hand side. First

t1i∫
ti

K(t, τ)H(τ, x(τ), y(τ)) dτ = (t1i − ti)K(t, t1∗i )H(t1∗i , x(t1∗i ), y(t1∗i )),

where ti < t1∗i < t1i . In view of (22) for i = 1 we have

(t1i − ti)/ε = ω1(ti) + η(ε).

Next,

K(t, t1∗i ) = K(t, ti + 0) + η(ε),

x(t1∗i ) = x(ti + 0) + η(ε), yj(t1∗i ) = xi + η(ε), j = 1, k.

Thus

t1i∫
ti

K(t, τ)H(τ, x(τ), y(τ)) dτ/ε =

= ω1(ti)K(t, ti + 0)
k∑
j=1

Hj(ti + 0, x(ti + 0)︸ ︷︷ ︸
1

, xi, . . . , xi︸ ︷︷ ︸
k

)∆x(ti) + η(ε) =

= ω1(ti)K(t, ti + 0)
k∑
j=1

Hj(ti + 0, (E +Bi)xi + ai︸ ︷︷ ︸
1

, xi︸︷︷︸
k

)(Bixi + ai) + η(ε).

In the next interval we have

t2i∫
t1i

K(t, τ)H(τ, x(τ), y(τ)) dτ = (t2i − t1i )K(t, t2∗i )H(t2∗i , x(t2∗i ), y(t2∗i )),

where t1i < t2∗i < t2i . According to (22) and for j = 1, 2 we have

(t2i − t1i )/ε = ω2(ti)− ω1(ti) + η(ε).

Next,

K(t, t2∗i ) = K(t, ti + 0) + η(ε),

x(t2∗i ) = x(ti + 0) + η(ε), y1(t2∗i ) = x(ti + 0) + η(ε),

yj(t2∗i ) = xi + η(ε), j = 2, k.
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Thus

t2i∫
t1i

K(t, τ)H(τ, x(τ), y(τ)) dτ/ε = (ω2(ti)− ω1(ti))K(t, ti + 0) ×

×
k∑
j=2

Hj(ti + 0, x(ti + 0), x(ti + 0)︸ ︷︷ ︸
2

, xi, . . . , xi︸ ︷︷ ︸
k−1

)∆x(ti) + η(ε) =

= (ω2(ti)− ω1(ti))K(t, ti + 0)
k∑
j=2

Hj(ti + 0, (E +Bi)xi + ai︸ ︷︷ ︸
2

, xi︸︷︷︸
k−1

)(Bixi + ai) + η(ε).

Similarly we find

t3i∫
t2i

K(t, τ)H(τ, x(τ), y(τ)) dτ/ε =

= (ω3(ti)− ω2(ti))K(t, ti + 0)
k∑
j=3

Hj(ti + 0, (E +Bi)xi + ai︸ ︷︷ ︸
3

, xi︸︷︷︸
k−2

)(Bixi + ai) + η(ε).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tki∫
tk−1
i

K(t, τ)H(τ, x(τ), y(τ)) dτ/ε =

= (ωk(ti)− ωk−1(ti))K(t, ti + 0)Hk(ti + 0, (E +Bi)xi + ai︸ ︷︷ ︸
k

, xi︸︷︷︸
1

)(Bixi + ai) + η(ε),

ti+ε∫
tki

K(t, τ)H(τ, x(τ), y(τ)) dτ/ε = η(ε).

Introduce the notation

Hi(xi) = ω1(ti)
k∑
j=1

Hj(ti + 0, (E +Bi)xi + ai︸ ︷︷ ︸
1

, xi︸︷︷︸
k

) +

+ (ω2(ti)− ω1(ti))
k∑
j=2

Hj(ti + 0, (E +Bi)xi + ai︸ ︷︷ ︸
2

, xi︸︷︷︸
k−1

) +

+ (ω3(ti)− ω2(ti))
k∑
j=3

Hj(ti + 0, (E +Bi)xi + ai︸ ︷︷ ︸
3

, xi︸︷︷︸
k−2

) + · · ·

· · · + (ωk(ti)− ωk−1(ti))Hk(ti + 0, (E +Bi)xi + ai︸ ︷︷ ︸
k

, xi︸︷︷︸
1

). (24)
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Now

ti+ε∫
ti

K(t, τ)H(τ, x(τ), y(τ))dτ/ε = K(t, ti + 0)Hi(xi)(Bixi + ai) + η(ε). (25)

Remark 5. Equality (25) involves the expression (24) which essentially depends on the
assumption (21) which is implied by (23) for ε small enough. Suppose that

ωj(ti) = ωj+1(ti)

for some j. Then the difference tj+1
i − tji can have an arbitrary sign or vanish for any ε small

enough. However, in view of (tj+1
i − tji )/ε = η(ε), and hence

tj+1
i∫
tji

K(t, τ)H(τ, x(τ), y(τ)) dτ/ε = η(ε),

equality (25) still holds. Thus it is valid for the ordering

ω1(ti) ≤ ω2(ti) ≤ · · · ≤ ωk(ti). (26)

For any other ordering different from (26), we can replace the expression (24) by a
corresponding one. Unfortunately, we were not able to write equality (25) in terms of an
expression independent of the ordering (26).

Now let i = 0. Under the assumption (26) for i = 0, as above, we obtain (25) with i = 0:

a+ε∫
a

K(t, τ)H(τ, x(τ), y(τ))dτ/ε = K(t, a)H0(x(a))(x(a)− ϕ(a)) + η(ε),

where

H0(x) = ω1(a)
k∑
j=1

Hj(a, x︸︷︷︸
1

, ϕ(a)︸︷︷︸
k

) +

+ (ω2(a)− ω1(a))
k∑
j=2

Hj(a, x︸︷︷︸
2

, ϕ(a)︸︷︷︸
k−1

) +

+ (ω3(a)− ω2(a))
k∑
j=3

Hj(a, x︸︷︷︸
3

, ϕ(a)︸︷︷︸
k−2

) + · · ·

· · · + (ωk(a)− ωk−1(a))Hk(a, x︸︷︷︸
k

, ϕ(a)︸︷︷︸
1

).

Summing up equalities (23), i = 0, p, we find
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∫
∆ε

1

K(t, τ)H(τ, x(τ), y(τ))dτ/ε =

= K(t, a)H0(x(a))(x(a)− ϕ(a)) +
p∑
i=1

K(t, ti + 0)Hi(xi)(Bixi + ai) + η(ε)

and
b∫
a

K(t, τ)H(τ, x(τ), y(τ)) dτ/ε =

=

b∫
a

K(t, τ)H(τ, x(τ))(A(τ)x(τ) + f(τ)) dτ +K(t, a)H0(x(a))(x(a)− ϕ(a)) +

+
p∑
i=1

K(t, ti + 0)Hi(xi)(Bixi + ai) + η(ε). (27)

Thus, dividing equality (17) by ε, in view of equalities (19) and (27), we have

P∗d {J(x(·), 0) − `

b∫
a

K(·, τ)H(τ, x(τ))(A(τ)x(τ) + f(τ))dτ −

− `K(·, a)H0(x(a))(x(a)− ϕ(a)) −

−
p∑
i=1

`K(·, ti + 0) (Ji(xi)(Aixi + fi) + Hi(xi)(Bixi + ai)) + η(ε)} = 0. (28)

Now we easily see that (14) is obtained from (28) by passing to the limit as ε→ 0. The theorem
is proved.

Equation (14) can be called equation for the generating amplitudes (see, for instance, [18]
or a number of works of the first author [9 – 14]) for the BVP for the impulsive system with
concentrated delay (1).

3.2. Reduction of the problem to an operator system in a suitable function space. Now
suppose that c∗r is a solution of equation (14). Then the solution z(t, ε) of system (16) such that
z(t, 0) ≡ 0 can be represented in the form

z(t, ε) = Xr(t)c+ εz(1)(t, ε), (29)

where the unknown constant vector c = c(ε) ∈ Rr must satisfy an equation derived below from
(28), while the unknown vector-valued function z(1)(t, ε) can be represented as

z(1)(t, ε) = X(t)Q+J(x(·), ε) + (ΓH)(t)/ε+
p∑
i=1

γi(t)Ii(xi, yi)/ε, (30)

where

(ΓH)(t) =

b∫
a

K(t, τ)H(τ, x(τ), y(τ)) dτ −X(t)Q+`

b∫
a

K(·, τ)H(τ, x(τ), y(τ)) dτ.
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In view of the above considerations we can write the solvability condition (17) in the form

P∗d

{
J(x0(·, c∗r) + z(·, ε), ε)− `

b∫
a

K(·, τ)h(τ, x0(τ, c∗r) + z(τ, ε)) dτ −

−
p∑
i=0

`K(·, ti + 0)Ji(x0(ti, c∗r) + z(ti, ε)) + η(ε, x)

}
= 0, (31)

where t0 = a = t0 + 0, h(τ, x) ≡ H(τ, x)(A(τ)x + f(τ)), J0(x) ≡ H0(x − ϕ(a)), Ji(x) ≡
≡ Ji(x)(Aix+ fi) + Hi(x)(Bix+ ai), and the quantity η(ε, x) tends to 0 as ε→ 0.

Similarly, equality (30) can be represented in the form

z(1)(t, ε) = X(t)Q+J(x0(·, c∗r) + z(·, ε), ε) +

+
(

Γh(·, x)
∣∣∣∣ x = x0(·, c∗r) + z(·, ε)

)
(t) +

+
p∑
i=0

γi(t)Ji(x0(ti, c∗r) + z(ti, ε)) + η(ε, x(t, ε)), (32)

where γ0(t) ≡ K(t, a).
We expand the left-hand side of (31) about the point z = 0. We have

h(τ, x0(τ, c∗r) + z) = h0(τ) + h1(τ)z + h2(τ, z),

where

h0(τ) = h(τ, x0(τ, c∗r)), h1(τ) =
∂

∂x
h(τ, x)

∣∣∣∣ x = x0(τ, c∗r),

h2(τ, z) is such that

h2(τ, 0) = 0,
∂

∂z
h2(τ, 0) = 0.

Analogously we represent

Ji(x0(ti, c∗r) + z) = J0i + J1iz + J2i(z), i = 0, p,

where J0i, J1i are represented in a similar way, while J2i(z) is such that

J2i(0) = 0,
∂

∂z
J2i(0) = 0,

and

J(x0(·, c∗r) + z, ε) = J0 + J1z + J2(z, ε).

Now by virtue of the assumption F (c∗r) = 0, equality (31) takes the form

P∗d

{
J1z(·, ε) + J2(z(·, ε), ε) − `

b∫
a

K(·, τ) (h1(τ)z(τ, ε) + h2(τ, z(τ, ε)) dτ −

−
p∑
i=0

`K(·, ti + 0) (J1iz(ti, ε) + J2i(z(ti, ε))) + η(ε, x)

}
= 0. (33)
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In view of the representation (29) let us denote

B0 = P∗d

J1Xr(·)− `
b∫
a

K(·, τ)h1(τ)Xr(τ)dτ −
p∑
i=0

`K(·, ti + 0)J1iXr(ti)

 ,

which is a (d× r)-matrix. Then we have

B0c = −P∗d

{
εJ1z

(1)(·, ε) + J2(z(·, ε), ε) −

− `
b∫
a

K(·, τ)
(
εh1(τ)z(1)(τ, ε) + h2(τ, z(τ, ε))

)
dτ −

−
p∑
i=0

`K(·, ti + 0)
(
εJ1iz

(1)(ti, ε) + J2i(z(ti, ε))
)

+ η(ε, x)

}
. (34)

In the representation (32) we use the same expansions and obtain

z(1)(t, ε) = X(t)Q+(J0 + J1(Xr(·)c+ εz(1)(·, ε)) + J2(z(·, ε), ε)) +

+ (Γh0)(t) +
(

Γ
[
h1(·)(Xr(·)c+ εz(1)(·, ε))

])
(t) + (Γh2(·, z(·, ε)))(t) +

+
p∑
i=0

γi(t)
(
J0i + J1i(Xr(ti)c+ εz(1)(ti, ε)) + J2i(z(ti, ε))

)
+ η(ε, x(t, ε)). (35)

Thus we have reduced problem (1) to the equivalent operator system (15), (29), (34), (35).
3.3. Critical case of first order. Denote by P0 ≡ PB0 and P∗0 ≡ PB∗0 , respectively, the

orthoprojectors P0 : Rr 7→ Ker (B0) and P∗0 : Rd 7→ Ker (B∗0). Suppose that RankB0 = r,
i.e. P0 = 0. This is the so called critical case of first order. In this case the inequality d ≥ r
necessarily holds, which implies m ≥ n. Then equation (34) can be solved with respect to c if
and only if

P∗0P∗d

{
εJ1z

(1)(·, ε) + J2(z(·, ε), ε) − `

b∫
a

K(·, τ)
(
εh1(τ)z(1)(τ, ε) + h2(τ, z(τ, ε))

)
dτ −

−
p∑
i=0

`K(·, ti + 0)
(
εJ1iz

(1)(ti, ε) + J2i(z(ti, ε))
)

+ η(ε, x)

}
= 0. (36)

If P∗0P∗d = 0, then condition (36) is always fulfilled and equation (34) can be uniquely solved
with respect to c:

c = − B+
0 P
∗
d

{
εJ1z

(1)(·, ε) + J2(z(·, ε), ε) −

− `

b∫
a

K(·, τ)
(
εh1(τ)z(1)(τ, ε) + h2(τ, z(τ, ε))

)
dτ −

−
p∑
i=0

`K(·, ti + 0)
(
εJ1iz

(1)(ti, ε) + J2i(z(ti, ε))
)

+ η(ε, x)

}
, (37)
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where B+
0 is an (r×d)-matrix which Moore – Penrose pseudoinverse to B0. Thus we obtain [18]

an operator system (15), (29), (37), (35) to which a convergent simple iteration method can be
applied.

Theorem 2. For BVP (1) let conditions H1 – H7 and (11) hold and Rank Q = n1, r = n−n1 >
> 0. Then for any root cr = c∗r ∈ Rr of equation (14) such that P0 = 0, P∗0P∗d = 0 there exists a
constant ε∗ ∈ (0, ε0) such that for ε ∈ [0, ε∗] BVP (1) has a unique solution x(t, ε) ∈ C([a, b]\{ti})
as a function of t, depending continuously on ε, and such that x(t, 0) = x0(t, c∗r). This solution is
determined by means of a convergent, for ε ∈ [0, ε∗], simple iteration method

cν = −B+
0 P
∗
d

{
εJ1z

(1)
ν (·, ε) + J2(zν(·, ε), ε) −

− `

b∫
a

K(·, τ)
(
εh1(τ)z(1)

ν (τ, ε) + h2(τ, zν(τ, ε))
)
dτ −

−
p∑
i=0

`K(·, ti + 0)
(
εJ1iz

(1)
ν (ti, ε) + J2i(zν(ti, ε))

)
+ η(ε, xν)

}
,

z
(1)
ν+1(t, ε) = X(t)Q+

(
J0 + J1(Xr(·)cν + εz(1)

ν (·, ε)
)

+ J2(zν(·, ε), ε)) +

+ (Γh0)(t) +
(

Γ
[
h1(·)(Xr(·)cν + εz(1)

ν (·, ε))
])

(t) + (Γh2(·, zν(·, ε))) (t) +

+
p∑
i=0

γi(t)
(
J0i.+ J1i(Xr(ti)cν + εz(1)

ν (ti, ε)) + J2i(zν(ti, ε))
)

+ η(ε, xν(t, ε)),

zν+1(t, ε) = Xr(t)cν + εz
(1)
ν+1(t, ε), (38)

xν(t, ε) =
{
x0(t, c∗r) + zν(t, ε), t ∈ [a, b];

ϕ(t), t ∈ [a− ε∗, a),

ν = 0, 1, 2, . . . ; z0(t, ε) = z
(1)
0 (t, ε) = 0.

The convergence of the method can be proved by using Lyapunov’s majorants technique as
in [13, 18].

4. Notes and comments. 4.1. Critical case of first order for boundary value problem s of
Fredholm type. Let m = n (the number of the boundary conditions equals the order of
the system). Now the condition P0 = 0 implies P∗0 = 0, thus the condition P∗0P∗d = 0 is
automatically fulfilled. Moreover, P0 = 0 implies detB0 6= 0, and in equality (37) and in the
first equality of the iteration procedure (38), we write B−1

0 instead of B+
0 . It is easy to see [13,

12, 18] that this condition is equivalent to the simplicity of the root cr = c∗r of the equation for
the generating amplitudes:

F (c∗r) = 0, det
(
∂F (cr)
∂cr

) ∣∣∣∣ cr = c∗r
6= 0.

In particular, the periodic BVP with impulse effect for system (1) is of Fredholm type. It was
considered by the first author in [12] (see also the monographs [13, 14]). The existence of a
periodic solution of an impulsive system with a small constant delay (ωj(t) ≡ 1 in system
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(1)) was proved in [7] for the critical case of first order. Moreover, under some simplifying
assumptions the result was extended to the case of a nonlinear generating system [15].

4.2. Critical case of second order. Now suppose that P0 6= 0. Then the operator system (15),
(29), (34), (35) does not belong to the class of systems to which the simple iteration method is
applicable. Introducing an additional variable, system (15), (29), (34), (35) under condition (36)
is regularized (reduced to an operator system of higher dimension to which the simple iteration
method can be applied). Below we just sketch this regularization.

If condition (36) is satisfied, then from (34) we determine

c = c(0) + c(1),

where c(0) is given by the right-hand side of equality (37), c(1) is an arbitrary constant vector in
Ker (B0), c(1) = P0c, c(0) = (Id− P0)c. Then equality (35) can be written in the form

z(1)(t, ε) = G1(t)c(1) + z(2)(t, ε), (39)

where

G1(t) ≡ X(t)Q+J1Xr(·) + (Γ [h1(·)Xr(·)]) (t) +
p∑
i=0

γi(t)J1iXr(ti),

and z(2)(t, ε) is given by the right-hand side of equality (35), with c being replaced by c(0).
If P∗0P∗d = 0, then condition (36) is always fulfilled and BVP (1) has an (r − Rank B0)-

parametric family of solutions. If this is not the case, further computations need more precise
expansions with respect to the “small parameter” ε, which require the existence of a piecewise
continuous second derivative of the solution x, respective piecewise continuous differentiability
of the known functions in system (1) with respect to t, the existence of some continuous second
derivatives of the functions Hj , Iij and continuous differentiability of J(x, ε) with respect to ε.

Thus the solvability condition (36) is represented in the form

P∗0P∗d
{
εJ1z

(1)(·, ε) + εJ ′2z(·, ε) + J ′′2 (z(·, ε), ε) −

− `
b∫
a

K(·, τ)
(
εh1(τ)z(1)(τ, ε) + εh′2(τ)z(τ, ε) + h′′2(τ, z(τ, ε))

)
dτ −

−
p∑
i=0

`K(·, ti + 0)
(
εJ1iz

(1)(ti, ε) + εJ ′2iz(ti, ε) +J ′′2i(z(ti, ε))
)

+η(ε, x)
}

=0. (40)

In view of (29) and (39) we obtain the system

εB1c
(1) = −P∗0P∗d

{
εJ1z

(2)(·, ε) + εJ ′2

(
Xr(·)c(0) + εz(1)(·, ε)

)
+ J ′′2 (z(·, ε), ε) −

−`
b∫
a

K(·, τ)
[
εh1(τ)z(2)(τ, ε) + εh′2(τ)

(
Xr(τ)c(0) + εz(1)(τ, ε)

)
+ h′′2(τ, z(τ, ε))

]
dτ −

−
p∑
i=0

`K(·, ti + 0)
[
εJ1iz

(2)(ti, ε) + εJ ′2i
(
Xr(ti)c(0) + εz(1)(ti, ε)

)
+

+ J ′′2i(z(ti, ε))
]
+η(ε, x)

}
, (41)
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where

B1 = P∗0P∗d

{
J1G1(·) + J ′2Xr(·)− `

b∫
a

K(·, τ)
(
h1(τ)G1(τ) + h′2(τ)Xr(τ)

)
dτ −

−
p∑
i=0

`K(·, ti + 0)
(
J1iG1(ti) + J ′2iXr(ti)

)}
P0

is a (d× r)-matrix.
Denote by P1 ≡ PB1 and P∗1 ≡ PB∗1 , respectively, the orthoprojectors P1 : Rr 7→ Ker (B1)

and P∗1 : Rd 7→ Ker (B∗1) . Then system (41) is solvable with respect to εc(1) ∈ Ker(B0) if and
only if

P∗1P∗0P∗d
{
εJ1z

(2)(·, ε) + εJ ′2

(
Xr(·)c(0) + εz(1)(·, ε)

)
+ J ′′2 (z(·, ε), ε) −

− `
b∫
a

K(·, τ)
[
εh1(τ)z(2)(τ, ε) + εh′2(τ)

(
Xr(τ)c(0) + εz(1)(τ, ε)

)
+ h′′2(τ, z(τ, ε))

]
dτ −

−
p∑
i=0

`K(·, ti + 0)
[
εJ1iz

(2)(ti, ε) + εJ ′2i
(
Xr(ti)c(0) + εz(1)(ti, ε)

)
+

+ s J ′′2i(z(ti, ε))
]

+ η(ε, x)
}

= 0, (42)

and

εc(1) = −B+
1 P
∗
0P∗d

{
εJ1z

(2)(·, ε) + εJ ′2

(
Xr(·)c(0) + εz(1)(·, ε)

)
+ J ′′2 (z(·, ε), ε) −

− `
b∫
a

K(·, τ)
[
εh1(τ)z(2)(τ, ε) + εh′2(τ)

(
Xr(τ)c(0) + εz(1)(τ, ε)

)
+ h′′2(τ, z(τ, ε))

]
dτ −

−
p∑
i=0

`K(·, ti + 0)
[
εJ1iz

(2)(ti, ε) + εJ ′2i
(
Xr(ti)c(0) + εz(1)(ti, ε)

)
+

+ J ′′2i(z(ti, ε))] + η(ε, x)
}

+ c(2),

where B+
1 is the matrix Moore – Penrose pseudoinverse to B1, c

(2) is an arbitrary vector in
Ker(B0) ∩Ker(B1).

Suppose that Ker(B0)∩Ker(B1) = 0. Then (41) has a unique solution. A sufficient condition
for (42) is P∗1P∗0P∗d = 0, i.e.

Ker(B∗0) ∩Ker(B∗1) ∩Ker(Q∗) = 0.

Thus, under the conditions

P0 6= 0,P0P1 = 0,P∗1P∗0P∗d = 0

system (15), (29), (34), (35) is reduced to a system to which a simple iteration method can be
applied. As stated above, this requires additional smoothness assumptions and cumber some
computations. For the case of a periodic problem for an impulsive system with a small constant
delay (ωj(t) ≡ 1), these computations were carried out in details in [8].
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