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We consider the initial boundary-value problem for a system of quasilinear partial functional differential
equations of the first order,

Ouzi(t,w) + Y pi(t,x, V(2:t,2)) 0, 2:(t,2) = Gi(t,2, V(zt,2)), 1<i<m,

j=1

where V' is a nonlinear operator of Volterra type, mapping bounded (w.r.t. seminorm) subsets of the space
of Lipschitz-continuously differentiable functions, into bounded subsets of this space.

Using the method of bicharacteristics and the fixed-point theorem we prove the local existence, uni-
queness and continuous dependence on data of classical solutions of the problem.

This approach covers systems of the form

n
atzi(t7 I) + Zpl] (ta z, Z’l[)(t,.’L‘,Z(t’I)))aZEj Zi(tﬂ £E) = Gz(tv xz, Z't/)(t,;c,z“'z)))v 1<:i< m,
j=1

where (t,7) — 214 is the Hale operator; and all the components of 1) may depend on (t,x, 2 )). More
specifically, problems with deviating arguments and integro-differential systems are included.

Poseasdaemvbca epanuuna 3a0ava 3 nOYAMKOBUMU OAHUMU O CUCEMU KB8ASIATHIUHUX QYHKYIOHANb-
HO-0U@ePeHUIANbHUX PIBHAHb 3 YACIMUHHUMU NOXIOHUMU NEPULO20 NOPAOKY

Opzi(t,x) + Zpij(t,x,V(z;t,a:))@mjzi(t,m) = Gi(t,x,V(zt,z)), 1<i<m,

j=1

O0e V. — Heainitinuti onepamop muny Boavmeppa, ujo 8ioobpaxcae obmexrceni 6iOHOCHO CeMIHOPMU NiO-
MHONCUHU BPOCMOPY OughepeHyiiio8HUX PYHKYIU, NOXIOHA AKUX 3a0080.abHAE ymosy Jlinwuys, 6 oOme-
HCeHI NIOMHONCUHU UbO20 NPOCHIOP).

3 00nomo20r0 memo9y 6ipyprauiti ma meopemu nPo HEPYXOMY MOUKY 008€0eHO NOKANbHE ICHYBAH-
HA KAACUMHUX PO38’A3KI6 3a0adi, iX eOUHICb ma Henepepamy 3aielCHICMb 8I0 OAHUX.
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CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 557

Llett nioxio moxcra sacmocysamu 00 cucmem muny

n
atzi(t’ $) + Zpij (t’ z, Z"/’(t7$7z(t,z)))az_7’ Zi(t’ Z) = Gi(tv T, Zl/)(t,;c,zu,z)))a 1<i<m,
j=1

oe (t,r) +— 2z ,) — onepamop Xeiina i 6¢Ci KOMROHEHMUL V) MONCYMb 3anexcamu 610 (t,x, z(; z)). 30Kpe-
Ma, BIH MOXNce OYMU 3ACHOCOBHUM 00 8CIX 3A0a4 3 APYMEHMAMU, WO BIOXUALIOMbCA, MA IHMe2PO-
ougepeHuiarbHux 3a0a.

1. Introduction. We formulate the functional differential problem. Leta > 0, hg € Ry, R} =
= [0,+00),and b = (by,...,b,) € R}, h = (hy,...,hy,) € R} be given. We use the sets

E = [0,a] x [-b,b], D = [—hg,0] X [~h,h].
Letc = (¢1,...,¢,) = b+ hand
Ey = [ho,0] X [—¢,¢], OoE = [0,a] x ([—¢,¢]\ (=b,0)), Q=EyUEU}E.
When it does not lead to misunderstading, we write U; = U N ([~o0,t] x R?) for U C R

and t € [0,a]. The symbol U° denotes the interior of U. For k, [ being arbitrary positive
integers, we denote by My, the class of all k£ x [ matrices with real elements, and we choose

the norms in R¥ and My to be co-norms: ||y|| = [|yllcc = maxi<;<i |vi| and ||A|| = Al =
= maxj<i<k 2221 la;j|, respectively, where A = [aj;li=1, .k j=1,..;- The product of two matri-
ces is denoted by “x” For U C R!*" and a normed space Y, equipped with the norm || - ||y,

we define C'(U,Y) to be the set of all continuous functions w : U — Y; this space is equipped
with the usual supremum norm ||w||c(,y) = suppey |w(P)|ly. We write it simply C'(U) when
no confusion can arise.

Put X = C(D,R™). Let V : C(2,R™) x E — X, in variables (z;¢,x), be a nonlinear
Volterra operator. By the Volterra property we mean that for z, z € C(Q,R™) and ¢ € [0, al,

implies Viz;r,z) = V(z;1,2) for (r,2) € E}.

Let
pij,Gi:EXXHR, 1<i<m,1<j<mn, and ¢: FgUJF — R™
be given. We consider the hyperbolic functional differential system
Ozi(t,x) + Zpij(t,m,V(z;t,x)) 8szi(t, x) = Gi(t,z,V(z;t,x)), 1<1i<m, (1)
j=1
augmented with the initial boundary condition
2(tx) = ¢, x) )

on Ey U QyE. A function Z € C1(Q,,R), where 0 < ¢ < a, is a classical solution of (1), (2) if it
satisfies (1) on E, and condition (2) holds on Ey U Oy E..
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558 W. CZERNOUS

Note that different models of the functional dependence in partial equations are used in
literature. The first group of results is connected with initial problems for equations

Oz(t,x) = G(t,z,z,0,2(t, x)) (3)

where the variable z represents the functional argument. This model is suitable for differential
functional inequalities generated by initial problems considered on the Haar pyramid. Exi-
stence results for (3) can be characterized as follows: theorems have simple assumptions and
their proofs are very natural (see [1, 2]). Unfortunately, a small class of differential functional
problems is covered by this theory. There are a lot of papers concerning initial value problems
for equations

Oz(t,x) = H(t,x, W[z](t, x), 0x2(t, x)) (4)

where W is an operator of Volterra type and H is defined on finite-dimensional Euclidean
space. The main assumptions in existence theorems for (4) concern the operator W. They are
formulated [3, 4] in terms of inequalities for norms in some functional spaces.

A new model of a functional dependence is proposed in [5, 6]. Partial equations have the
form

Orz(t,x) = F(t, 2,2 ), 022(t, 7)) (5)

where 2, ;) is a functional variable. This model is well-known for ordinary functional differenti-
al equations (see, for example, [7-9]). It is also very general since equations with deviating
variables, integral differential equations, and equations of forms (3) and (4) can be obtained
from (5) by specifying the operator F'. In the paper we use the model (5). In existence results,
concerning partial differential equations with state dependent delays [10-12], Carathéodory
type or semiclassical solutions were considered and the functional variable was

Z(wo (t) 7¢/(t’zvz(t,z))) :

We deal in this paper with a slightly wider class of deviating functions, admitting functional
variable of the form

2o (b, 2(2,2)) W (42,2 (4,2)))

and we consider classical solutions of the respective problem. Cases of more (or less) compli-
cated deviating functions are also covered by our operator formulation.

Delay systems with state dependent delays occur as models for the dynamics of diseases
when the mechanism of infection is such that the infectious dosage received by an individual
has to reach a threshold before the resistance of the individual is broken down and as a result
the individual becomes infectious. A prototype of such model was proposed in [13].

The aim of this paper is to prove a theorem on the existence and continuous dependence
of classical solutions to (1), (2). The paper is organized as follows. In Section 2 we prove a
result on the existence and regularity of bicharacteristics, having assumed our conditions on
the operator V. In the next section, the method of bicharacteristics is used to transform the
Cauchy problem into a system of integral equations. A fixed-point equation is constructed.
The Section 4 contains the main result. Application of our approach to the systems with state
dependent delays is described in the last section.
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2. Bicharacteristics. Let U C R'*™ and k be a positive integer. For z : U — R* and
(t,x) € U, denote
0z2(t, ) = [O0p; 2i(t, ®)]i=1,... kj=1,..n € Mixn

and
02(t,x) = [0, 2i(t, T)]i=1,.. k. j=0,...n. € Mpx(nt1)s

where 0,, = 0;.
For a fixed p € R, we consider the space

Cp)(U,RF) = {w € C(U,R) : w is continuously differentiable on U° and ||0w||¢c () < p} -

Similarly, for p = (p1,p2) € R%, we define
CHHp)(U,RF) = {w € CUp)(U,RY) : |dwlcnrwe) < 2}
where |z|co. () = suppyp.pper [|2(P) — 2(P)| - |P — P||~". We denote

CHHURF) = | CVEp)(URR).

2
pERL

We are now able to define the function space, in which we seek the solutions to (1), (2). The
symbol Cé’L[p] is short for CHL[p|(Ey U OyE,R™). Givenp € R2, ¢ € C’EI)’L[p], and d € R2
such thatd; > p;,j = 1,2, we set

CLid] = {z € CVP](Q,R™) : 2= ¢ on EyUdE.} .

We prove that under suitable assumptions on p, G, V, ¢, on the parameters p, d, and for suffici-
ently small ¢ € (0, a], there exists a solution z of problem (1), (2) such that z € C’j,’f d].

Let Y stand for C(D, My, (n41). Write p; = (pi1, . .., pin), 1 < i < m. For the convenience
of calculations, we consider m Fréchet derivatives 0,,p;(t, x,w) € L(X,R™),1 < ¢ < m, rather
than mn Fréchet derivatives 0y,p;;(t,z,w), 1 < i < m,1 < j < n. We are interested in

estimating it in the norm || - || 1(y,a1, (., ,))> Since we use the notation

Bupi(t, , )5 = <8wpi(t,:c,w)5o,...,6wpi(t,:1;,w)5n> € Myunin) (6)

fors € Y,6 = (80,...,0n).6; € X,0< j < n.

Assumption H [p]. Suppose that p: Ex X — M,,,, in the variables (¢, z, w), is continuous
and

1) the derivatives: 0,p;(t,z,w) and the Fréchet derivative 0,,p;(t, x, w) exist for (¢, xz,w) €
€ ExCHY(D,R™),1<i<m,

2)for 1 < i < m, O.p; and d,,p; are continuous in ¢ on E x C1E(D,R™),

3) there is a non-negative constant A such that, for 1 < i < m,

”pi(t’x7w)||a Haxpi(tvxﬂw)”7 Hawpi(tvxﬂw)”L(Y,MnX(n_H)) <A on Ex CLL(D’Rm)
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560 W. CZERNOUS

and
Hawpl(tvmaw) - 8xpl(t7j7w)”7
Hawpi(tvxﬂw> - 8wpi(t7 _7'“_})HL(Y,MnX(n+1>) < A(Hx - j” + Hw - wHX)

for (¢, z,w), (t,Z,w) € E x CHF(D,R™),
4) there is k > O such that,for1 < i <m,1 < j < n,

pij(t,z,w) < —k on [0,a] x {b;} x CI’L(D,R’"),
pij(t,z,w) > & on [0,a] x {~b;} x CVE(D,R™).

Assumption H [V']. The operator V' : C(Q,R™) x E — X is such that for every d € R2
there are d € R?, L € Ry such that:
1) for z € CYd](Q,R™), (t,x) € E,

10V (2 t,2)|ly < d,
2) for z € CVF[d](Q,R™) and (¢, ), (t,Z) in E,
10V (z:t,2)lly < di, [0V (25t,2) = OV (2, 3)|ly < dofle — 2],
3) for every z, z € C1[d1](Q2,R™) and (¢,7) € E,
IV(zt2) - ViELo)lx < Lz - Zlo.

Suppose that ¢ € Cé’L[p] and z € C’i,’,g[d]. For 1 < i < m, and a point (¢t,z) € E., we
consider the Cauchy problem

(1) = pi(r,n(r), V(zmn(1), n(t) =, ™)

and denote by g¢;[z](-, t,x) = (gi1[2](-,t, ), ..., gin[2](:, t, x)) its classical solution. This function
is the bicharacteristic of the i-th equation of (1), corresponding to z. Let d;[z|(¢, x) be the left
end of the maximal interval on which the bicharacteristic g;[2](-, ¢, z) is defined. Write

Ql[z] (Tv t, :L') - (Ta gz[z] (T7t7 x)v V(Z; T, gl[z] (T7 t, x)))

We prove a lemma on bicharacteristics.

Lemma 2.1. Suppose that Assumptions H|p|, H[V] are satisfied and let p, ¢ € Cé’L[p]
and z € C;:g[d], z € C},f[d], be given. Then, for 1 < i < m, the solutions g;[z](-,t,x)
and g;[Z](-, t, x) exist on intervals [0;[z](t, x),c] and [6;[Z](t, x), c|, respectively, and are unique.
If &€ = 6;[2](t,x) > Othen g;[z](&,t,x) € OoE N E. Moreover, the estimates

10gil2l(r. t,2)| < €, [|0gil2](7, t,2) — Ogil2)(7, 1, 2) || < Qmax{|t —¢[, |z — z[]}  (8)
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CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 561

and
o).t ) = i)t )l < 4] [ 112 = 2l ds|. ©)
t
t
el ) — 82l o), < 2467 [ e = S, ds (10)
0
hold with constants depending only on data and on c, d, p :
C=(A+1)eB, Q=[1+C)B+CleB, A= AL, (11)
where
B=A(1+d)), C=C?A[(1+d)?+ dy] (12)

and d = (dy,dy) € R? is the parameter from Assumption H|V|, corresponding to d.

Proof. Let z € Ci,’,g [d]. The existence and uniqueness of solutions of (7) follow from the
theorem on classical solutions of initial problems. From another classical theorem on differenti-
ation of solutions with respect to the initial data it follows that the derivative dg;[z] exists and
fulfils the integral equations

0gi[z] (7, t,x) = [ —pi(t,x, V(z;t,x)) ‘ []—i—

T

+/ {@;pi(Qi[z](s,t,x))+Bwpi(Qi[z](s,t,x))(?V(z;s,gi[z}(s,t,x)) *

t

x 0g;[z](s,t, x)ds (13)

where [ — pi(t,x,V(z;t,x)) } I} denotes concatenation of the matrix —p; (¢, z, V (z;t,x)) with
the identity matrix. It follows from (13), from Assumptions H[p], H[V'] that 0g;[z](-, ¢, z) satisfy
the integral inequality

10gilz)(7. t, )| < A+1+ B

)

[10gits. 2. )]s

and from the Gronwall lemma we get the first estimate in (8). Hence we derive the inequality
10gi[2)(7t, 2) — Dgil2)(r, £, 2)|| < (B + C)max{|t — 7, |« — 2|} + CBJt — T+

B / 10g:l2] (s, £, 2) — Bgili] (5., 7) | ds
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562 W. CZERNOUS
which, by the Gronwall lemma, implies that

10gi[z)(7, t, ) = Ogil2](7, 1, 2) | < Qumax{|t ], [z — Z[|} + Qolt — ] <
< (Qo + Q1) max{|t — i, = — z[|},
with Qo = CBexp(cB) and Q; = (C + B) exp(cB), yielding the second estimate in (8).
We now prove (9). The function g;[z](7, ¢, z) satisfies the following relation:

T

gilz](r,t,x) = x—i—/pi(s,gi[z](s,t,x),V(z;s,gi[z](s,t,x)))ds.

This leads to

lgilz](7.t, 2) — gilz](7, ¢, z)| < B +

/ lgil)(s, £, 2) — gal2] (s, £,2) |ds

+ AL

[z #les, ds|
t
Again from the Gronwall inequality we obtain

lgilz](7t, 2) — gil2](7, 8, )| < AL exp(cB)

9

/ I — Zllo, ds
t

and hence (9).
Now we proceed to the proof of (10), fixing (¢,x2) € E. and beginning by a local version of
the estimate, that is, under the condition that

K
—Zz < — 14
Iz = zllcE,) < 2(BA T AL) (14)
Since (10) is obvious if both values of ¢ are zero, we may assume that 0 < §;[z](¢,z) < 6;[2](t, z).
Denoting ¢ = 6;(Z](t, z), we then have |g;;[Z]({,, z)| = b; for some coordinate j. Let us focus
on the case g;;(2]((, t,x) = b;; the opposite case g;;[Z|(¢,t,x) = —b; is then treated analogously.
By virtue of (9) and (14),

106 (Qil2](C, 1, %)) — pi(Qil2](C, 1, )| < Bllgil2](C, 1, x) — gil2](¢, 8, 2) || + AL||z = Zlle(r,) <
5

t
< BA/HZ_ZHC(ES) ds + ALz — 2[lc(g,) <
0
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This, together with the condition 4 of Assumption H [p] applied to p;;(Q;[2](¢, t,x)), gives

pz](Qz [Z](Ca t, .%')) < Pz](Qz [2](C7 t, l‘))—i—

+ i (QlE(C 1, 2) = pig (QuIEN(G )| < —r 45 = =3

Consequently,

atgij[Z](C,t,.’IJ) < _g <0,

and hence g;;[z|(-, t, z) is decreasing on the interval (¢, () for some & € [§;[2](t, x), ¢). This fact,
and the estimate

bj - gij[z](gta l’) = gij[£](§7t7x> - gij[z](g7t7x) <

kcA K
<5 <

B K
< _ 5 <
< cAllz - Zlleg,) < 2(cBA+ AL) — 2B — 24’

imply
K
bj _gl][z](37t7$) S ﬂ fOI' s € (67 C]

Let us now define §: R — R" by §(z) = (z1,...,2j-1,bj,Zj+1,...,2,) and notice that the
condition 4 of Assumption H [p] may be applied to give

pij(svﬂ(gi[z](sﬁtvx))ﬂV(Z;37gi[z](svt7x)>) < =K, s € (57 C]

Then, for s € (],

pij(Qi[z](S7ta .Z')) - pij(sagi[z](37t7x)7v(z;S7gi[z](37t7$))> <
< pij(87 /B(gi[z}(sv t? {L')), V(Z; S, gi[z](37 tv x)))+
+ A(bj - gij[z](‘g?tvx)) <

K

K
24 27

< —-k+A

Note that the last inequality implies { = §;[2](t, «), otherwise it would be 0 = 0,g;;[2](§,t, z) =
= pij(Qi[2](&,t, x)) for some & € (6;2](¢, ), (). Hence this inequality holds for s € [d;[2](¢, z),
0i[Z](t, x)], yielding
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564 W. CZERNOUS

_g(ai[g] (t, ) — &;[2](t, ) >

4i(2](t,z)

> / pis(QulA) (s, t,2)) ds =
0; 2] (t,x)

= g [2](0i[Z](t, z), t, x) — gi5]2](0:[2](t, x), t, ) >
> gi|2](6:[Z](t, x), t, x) — gi;(2])(6:Z] (¢, ), t, ) >

6i[2](t,z)

/ 1z — Zllogas) ds

t

> —A

>

t
2 —A/HZ—5||C(ES)dS-
0

Since this proves (10) for z, z satisfying (14), the argument of convexity of Cé’L [p] and
CHE[d'(Q, R™) completes the proof.

Lemma 2.2. Suppose that Assumptions H[p|, H[V| are satisfied and let ¢ € C’é’L [p], z €
S Ci,f[d] be given. Then, for1 < i < m,

8ilz] € C(E.) N CB(EM) 2], R),

where
EU9[2] = {(t,z) € E. : 6;]2)(t,z) > 0}° and B = Cx™'.

Proof., Fix z ¢ C’;’f [d] and i, 1 < i < m. Once it is done, we may introduce the notation:
f = 8;[2], U for the set ES*?[2], and W for the set

EW9 2] = {(t,z) € B, : &[z](t,z) = 0}.

We first prove that f € C1[B](U,R). Let us temporarily fix (¢,z) € U and set £ = f(¢t, ). Since
by the Lemma 2.1, g;[z] is of class C* in all variables, and by Assumption H[p], 9-g;[2](7,t, z) #
# 0 at (¢,t, x), the existence and continuity of the gradient df at the point (¢, z) follow from the
implicit function theorem applied to +b; — ¢;;[2](§,t,2) = 0,1 < j < n. By the same token,
fixing j, we may calculate the gradient with the help of the formula

a:ckgij [Z] (fa L, .Z')
Pij(Qi [Z] (57 t, .73)) 7

O, f(t,x) = — 0<k<n,

and estimate it by

C
< =
10fllcw) < —

independently of i, j.
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CLASSICAL SOLUTIONS OF HYPERBOLIC IBVPS WITH STATE DEPENDENT DELAYS 565

Remark that
E.=UuWu{c}x (-bb)ul Ak,
k=1

where A®) = {(t,z) € E, : || = by}, 1 < k < n. The continuity of f on W is obvious, and
on U follows from differentiability. Extending p, V' and z in a natural way, we could replace E,
with [—¢, ¢] x [—b, b] in the formulation of (7) and in the consequent results on bicharacteristics

— including differentiability of the new function f = di[z] on the set analogous to B9 [2] and
containing fjl({O}). By the uniqueness of bicharacteristics, f is identical with f on U. Hence,
for (t,x) € f~1({0}) = U N W, the one-sided limit vanishes:

The continuity of f on U U W follows now from the fact that f vanishes on the other side, i.e.,
on W = W. Then, by extending the data in the opposite direction, we get the continuity on
UUW U{c} x (=b,b). Finally, from the condition 4 of the Assumption H|[p] follows easily that
f satisfies the local Lipschitz condition, with the uniform constant max{1, Cx~'}, at each point
of A(k), 1 < k < n. This shows that f € C(E.) and completes the proof.

3. Functional integral system. Let W stand for L(C(D, My,xn), Mixy). The expression
OwGi(t,z,w)d, for § € C(D,Mpyxn), is to be interpreted in a way analogous to (6); for the
sake of simplicity of calculations, we use || - ||y (rather than [ - || x r)) for measuring the values
of 9,,G;.

Assumption H [p, G]. The Assumption H[p] is fulfilled, G: £ x X — R™, in the variables
(t,z,w), is continuous and, for 1 < i < m,

1) the derivative 0,G(t, x,w) and the Fréchet derivative 0,,G (¢, x,w) exist for (¢,z,w) €
€ E x CH(D,R™),

2) for (t,x,w), (t,7,w) € E x C*F(D,R™),

Gz, w)l, [10:G(E @, w)l, - [10wGilt, 2, w)llw < A,
|Gi(t, z,w) — Gi(t, z,w)| < At — ¢,
102Gs(t, 2, w) — 0:Gi(t, 2, W), [0wGilt, 2, w) — 0uGilt, 7, w)[lw < A(lle — 2| + [lw — w|lx)
with the same constant A as in the Assumption H[p].

Write
Silz](t,x) = (Gil2l(t, ), gilz](6:[2](4, 7). 8, 2) ).
We define the operator F = (F,..., F,,) on C55[d] by the formula

Fiz(t,z) = ¢i(Si[z](t,x)) + / Gi(Qilz](s,t,x))ds on E. 1<i<m, (15)
I(t,

8;[2](t,x)

Fz=¢p on EyUOyEL.
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Remark 3.1. The right-hand side of (15) is obtained in the following way. We consider each
equation of (1) along its bicharacteristic:

atzi(Ta gi[z] (77 L, $)) -+ 89022'(77 gi[z] (7—7 t x)) * pi(Ta gi[z](T> t, x)a V(Z; T, gz[z} (Tv t, :B))) =
= Gi(ﬂ gi [Z] (7_7 t, x)v V(Z; 7,9 [Z] (7_7 t, l‘)))

from which, using (7), we get

%Zi(ﬂ gi[Z](T, t m)) = Gi(T’ gi[z} (T’ 2 fL‘), V(Z; T, gi[Z] (7—7 t $>))

By integrating the latter equation with respect to 7, and adding the initial value, we get the
right-hand side of (15).

Assumption H|c, d, V]. The Assumption H[V] is fulfilled, and the constant ¢ € (0,q] is
small enough so to satisfy, together with d and p,

di > pC+ A+ cCB, (16)
dy > p1(Q + BC) + p2(C* + AC) + B+ ¢BQ + C + 2BC, (17)

with constants B, C, C, @ defined in (11), (12), and with C=cC max{1,Cr~'}, A= max{1, A}.
Write Z = {0 < i < n: h; > 0}. The following compatibility condition for the problem
(1), (2) will be needed in our considerations.
Assumption H_ [G, ¢]. The equivalence
G(t,z,V(z;t,x)) = G(t,z,V(z;t,x)) on QHENE

holds for any z, z € C&,’ﬁ [d]. Moreover, there is v € C(0E, M,,xn) such that, for each k,
1 < k < n, the system of equations

7=1

holds on A®) = {(t,2) € E : |z} = by} with
tij = Oz;pp; on A% whenever j el
Additionally, if 0 € Z, then on {0} x (—b,b) holds

Remark 3.2. Relation (18) may be considered as an assumption on ¢ on |J; .7 A% and
(18) defines the number d,;¢;(t, z) at the points where there is not enough space to define the
partial derivative.
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Remark 3.3. Let us explain our application of the chain rule to the term ;(.S;[z](¢, x)), made
in the next proof. We write

E(39)[;] = {(t,m) € ESO[2] : Sif2](t,x) € (A“)>°}a l<j=n

C

Note that for (¢,x) € g9 [2] we shall not use the partial derivative 9, ¢; in the expansion of

the differential
d

(S i <k< .
dor i (Sil#](t, z)) (kis fixed, 0 < k < n)

Fortunately, for those (¢, z) the differential

il GEta) ) =0, 0<k<n,
dxy,

and the number 0, ;(5;(2](t, 7)) is defined even for j ¢ T (by compatibility condition), thus it
is justified to write

J;kwsi[z] (t,2)) = Bups(Sil2)(t, 2)) 0y Bil2] (1, 2)+

+ Y Oy 0i(Sil2(1, x))digij [2](0:[2] (¢, ), t, ).
j=1

Tk

Lemma 3.1. Suppose that Assumptions Hlp,G|, H|c,d, V], H |G, ¢] are satisfied. Then the
ULy e,
operator F maps Cp [d] into itself.

Proof. Let z € C’;,’f [d]. Write
D;[z](s,t,x) = 0,Gi(Q;[z](s,t,x)) + 0uwGi(Qi[2](s, t, x)) 0.V (2;8,9:i[2](s, t, x)),
where 0,,G;(Q;)0.V (z;7,y) is to be interpreted column-wise. Fix (¢,z) € E.. Once it is done,
we may introduce the notation g; = g;[2](-,t,x) and &; = 6[2](¢, ). From (15) and by the
Remark 3.3, for (t,z) € B9[],
OF;z(t,x) =
= [@%(@,gi(@)) + 020i(6i, 9i(0:)) * pi(Qi[2](0, t, 2)) — Gi(Qi[2](di, T, 2)) | 06;[2](L, w)+

+ 0,0i(0i, 9i(8:)) * Dgi[2](0:, t, ) + [Gi(t,x, Viz;t,x)) ‘ O]—i—
+ / D;(2](s,t,x) * g;[2](s,t,x) ds, (20)
0; 2] (t,x)
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where [ Gi(t,z,V(zt,x)) | 0] = (Gi(t,=,V(z;t,2)), 0, ..., 0) € R Moreover, on
ESV N ES,

OF;z(t,x) = 0,vi(0,gi(0)) * 0g;[2](0,t, z) + [G’i(t,x,V(z;t,x)) ’ O]Jr
+ /@i[z](s,t,x) x 0g;[2](s, t, x) ds. (21)
0

Due to the compatibility condition, and by the continuity of §;[z],

OFiz(t,x) = 0opi(6i, 9i(8:)) * Ogil2)(83, t, %) + [ Gi(t, 2,V (23t,2)) | 0 ]+
t
+ D,(2](s,t,x) * Ag;[2](s,t,x) ds, (22)
8;[2](t,x)
on E7.
It follows that ||0F 2(t, x)|| < p1C 4+ CBc+ A on EZ, which, by the Assumption Hfe, d, V],
implies [|0Fz||c(gg) < di. Furthermore, for 1 <4 < m and for (¢, 2), ({,7) € Eg,

|0F;2(t,x) — OF;2(t,z)|| <

S ‘

_l’_

+/\

6;[2](t,x)

Oupi(Sil2](t, ) * Ogilz] (il 2] (¢, ), £, ) — Ouipi(Sil2](E, 2)) * Ogilz](6il 2] (2, ), £, T)

Gty , V(5:t,2)) — Gl 2, V(= t,x>>\+

(s,t,x) * Dgi[2](s, t,x) — ®;[2](s,t,T) * Dgi[2](s,t,T)

s,t,2) = 0gi[z](s, 1, 7)

Note that the Lemma 2.2 gives
16:[2](t, @) — 8] (£, 2)] < Or™! max{|t — ¢, [|l= — z}.
From the above inequalities, Assumption H[p, G] and Lemma 2.1 it follows that
10Fiz(t, z) — OFiz(t, 7)|| <
< (p1(Q + BC) + pa(C? + AC) + B + ¢BQ + C + BC) max{|t — #], ||z — z||} + BC|t — ],
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for (¢,x), (t,z) € E2, which, in view of the second inequality from the Assumption H[¢, d, V],
gives |0F'z|co.(gg) < do.

The fact that F;z are continuous extensions of ¢;, is a simple consequence of the definiti-
on (15); it remains to prove that this extension is of class C'. From (13), (22), and from the
compatibility condition (18) we obtain for (¢,z) € AK) 1 <k <n,

" %m% )aFiz(t_,a?) = O0,pi(t,x) * 0g;[z](t, t,x) + [Gi(t,x,V(z;t, x)) ‘ 0} =
t,z)—(t,x
(t.z)ek?
= Oppi(t,x) * [ —pi(t,z,V(z;t,2)) | I} + [Gi(t,x,V(z;t,x)) ‘ O] =

= dpi(t,z), 1<i<m.
If 0 € Z, then similar arguments, incurring (19), apply to the case (¢,z) € {0} x (—b,b).
Lemma 3.1 is proved.

4. Existence of solutions.

Theorem 4.1. Suppose that ¢ € C’é’L[p], and Assumptions H|p, G|, H[c,d, V], H.|G, ¢] are
satisfied. Then there exists exactly one solution z € Ci;ﬁ [d] of problem (1), (2). Moreover, there
is Ac € Ry such that

12 = vllew) < Acle —YlloEwane), 0<t<ec, (23)

forv el g’i—;,f [d] being a solution of (1) with the initial boundary condition (2) with  replaced by
¥ € Cy~lpl.

Proof. We prove that there exists exactly one z € 0;5 [d] satisfying the equation z = F'[z].
Lemma 3.1 shows that F': Ci,’,f [d] — C’é’yf [d]. From the definition (15) of F', from the Lipschitz
continuity of ¢;, and from the Lipschitz continuity (see (9), (10)) of g; and §; with respect to z,
follows easily the existence of an L* > 0 such that

t
IFistt,2) = Fit,a)l| < L [ 12 = 2o, ds (24)
0

forz, z € Ci,:g[d], (t,z) € E., 1 <i < m.Let A\ > L*. We define a metric in Cé:g[d] by

da(z2) = sup {J|(z = D)(t.2)|e™ : (t,2) € Ec .
We now prove that there exists ¢ € [0, 1) such that
d\(Fz,FZ) < qdx(z, 2). (25)
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According to (24),

[Fz(t, x) — FZ(t z)|| < L*/Hz = Zllo(ms) ds = L*/HZ — 2o e eNds <

*

t

Lr L

< L¥dy(z, 2 /e)‘ = de(z )M -1) < Td,\(z,é)e)‘t
0

for (¢,x) € E.. Then

L
< —dx(z,2) forall (t,z) € E.,

|Fz(t,z) — F(t, z)||e” 3

which gives (25) with ¢ = L*\~1. By the Banach fixed point theorem, there exists a unique
fixed point of F'. Denoting this fixed point by z, we have for (¢,z) € E.

zi(t, x) = »i(0:[2](t, ), gi[2](6:[2] (¢, @), £, )+
+ / Gi(s, gilz](s,t,x), V(Z;s,9i[Z](s,t,x)))ds, 1 <i<m.
di[2](t,w)

Now put ¢ = §;[z](t,x). For a given x € [—b, b], let us denote y = ¢;[z]((, ¢, x). It follows from
Lemma 2.1 that g;[Z](s,t,2) = ¢[Z](s,(,y) for s, t € [(,c] and x = g;[Z](¢, (,y). Then we get

t
zi(t, gilZ1(t G ) = @il Gy +/Gz $,9i[2)(s,C,y), V(2 5, 9il2](s, ¢, y)))ds, 1 < i < m.
¢
(26)
Relations y = ¢;[z](¢,t,z) and x = ¢;[Z](¢,(,y) are equivalent for z,y € [—b, b]. By differenti-
ating (26) with respect to ¢ and putting again x = ¢;[z|(¢, (, y) we conclude that z satisfies (1).
Since Z satisfies initial boundary condition (2), it is a solution of our problem.
We now prove the relation (23). The function v satisfies the integral functional system

z(t,z) = Fz(t,x)

and initial boundary condition (2) with 1 instead of . It follows easily that there is A € R,
such that the integral inequality

1z —vlcw) < lle—YllomuaE,) +A/ 1z —vllo@Es) ds, 0<t<c

is satisfied. Using the Gronwall inequality, we obtain (23) with A, = exp(Ac).
Theorem 4.1 is proved.
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Remark 4.1. Inequalities (16), (17), given in the Assumption H[c, d, V], have the following
impact on the conditions on the operator V.

We indicate, how to solve those inequalities. Put, for example, d; = A + 2(1 + A)(1 + p1);
the condition 1 of Assumption H[V'] produces then a corresponding constant d; > 0. Having
performed easy calculations, one can see that condition ¢ < A~!(1 + d;)~'log2, on c, assures
the fulfilment of (16).

After the construction of d;, an example of a suitable value of ds, in terms of d; and of
given constants, may be found using (17) (we shall assume that cds is appropriately bounded).
Since at this stage d; and d, are fixed, the condition 2 of Assumption H[V] gives dy. This leads
to one more constraint on ¢, of which we assume the stronger one.

The above explained dependence of choice of dy on d; shows that the condition 2 of the
considered Assumption does not suffice for solvability of inequalities from Assumption H |[c,
d, V'], but that the condition 1 has to be added.

5. Systems with state dependent delays. Suppose that z: Q@ — R and (¢,z) € E are fixed.
We define the function z(; ;) : D — R as follows:

200y (T,6) = 2(t+ 7,24+ E), (1,€) € D.

The function z( ;) is the restriction of z to the set [t — ho,t] x [z — h,z + h] and this restriction
is shifted to the set D. For z: Q — R™, z = (21,. .., 2m), Write 2(;2) = ((21)(t,2)5 - - - » (2m) (1,2))-
Let;;: E x CLL(D,Rm) —R,1 <i<m,0 < j < n,be given. Consider the function

<<Zl)¢1(t,x,w)7 SRR (Zm)z[)m(t,x,w)> € X’

where ¥; = (Yio,...,%in), 1 < i < m,and z: Q — R™. We write it 2y, ., for brevity. We
show that the operator V', defined by

Vizit,x) = Zyp(t,z,2(1 0)) (27)

satisfies Assumption H[V], provided that certain regularity conditions on 1) are met.

Assumption H [¢]. Deviating function ¢ : £ x X — M,,,(,41) is continuous and, for
1 <1 <m,

1) the relations v;(t,z,w) € E; holdon E x X,

2) derivatives: 01; and the Fréchet derivative d,,1; exist on E x CF(D,R™),

3) there is a non-negative constant A; independent of ; and such that, for (¢, z, w), (¢t,Z,w) €
€ E x CYL(D,R™),

‘|a¢’b(t7 T, U}) H7 Hawwl(tv z, ’U)) “L(KM(n+1)x(n+1)) < Al

and
[00i(t, z, w) — Oi(t, 2, W), [|Owthi(t, @, w) — Ouwthi(t, Z, )| (v, My 1w (nin)

are bounded from above by A (||z — Z|| + ||w — w||x).
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In view of the above Assumption, differentiation of (27) gives
Vi(z:t,2) = (020t 2p.0y) * [O0i(t, @, 2(102)) + Ouwthi(t, 2, 2(12)) (02) (10)] oM D,

and, consequently, for z € C’é’f[d] and (t,z), (t,z) € E, [|0Vi(z:t, 2)|lc(n,a, iy < d1Ar(1+
+d;) and

[0Vi(z: t.2) — OVilz: ) leoaty oy < Arldidz + (Lt di)*(d + da Ayl — 2]

Taking maximum (Ww.r.t. i) on the left-hand sides of these estimates, we obtain the conditions
1,2 of Assumption H[V] with d; = dlAl(l + dl) and dy = Al[dldg + (1 + d1)2(d1 + dgAl)].
Fulfilment of the condition 3 of that Assumption follows from the estimates

1Vi(zst,2) = Vi(zit @) lon) < 1(zi)ei(te,ze) — Fideitha,z0.) lom)+
1102 = Zi) (1,050 lo(p) <
< diAillz = Zllew) + 12 — Zillor,) <
< (A1 + Dz = 2ller), 1<i<m.

Thus we have proved the following theorem.

Theorem 5.1. Suppose that ¢ € C é’L [p] and Assumptions H [p, G], H[)] are satisfied. Further-
more, assume that the inequalities (16), (17) hold, as well as the compatibility conditions (18),
(19). Then there exists exactly one solution z € C’é’,g [d] of the system

n
0uzi(t, ) + Y pig (1, 2 (t,0,2.0) )0y 26 (1 ) = Gill, @, 2p(10,2,)s L <6< m,  (28)
j=1

augmented with the generalized Cauchy condition (2). Moreover, there is A, € R, such that the
Lipschitz condition (23), with respect to data, holds for i) € Cé’L[p} and forv € C},f [d] being a
solution of (28) with the initial boundary condition z = ) on Ey U Oy FL.

Assumption H [p, G]. Functions p: E x R™ — M,,x,, G : E x R™ — R™, in variables
(t,z,y), are continuous, uniformly bounded, and

1) G is Lipschitz continuous in ¢,

2) the derivatives 0,.p, 0yp, 9,G, (9y@ exist on ¥ x R™, are continuous in ¢, and uniformly
bounded,

3) these derivatives are Lipschitz continuous in x and y.

Example 5.1. Suppose that Assumption H [p, G] is satisfied and set
p(t,x,w) = p(t,z,w(0,0)), G(t,z,w)= Gt z,w(0,0)).
Then the Assumption H|[p, G] is fulfilled and the system (28) takes the form
atzi(t7 l’) + Zﬁlj (ta x, Z(¢(ta L, Z(t,x)))) aszi(ta 'I) = Gl (ta x, Z(w(ta Z, Z(t,;t)))) , 1 <i<m,

J=1
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that is, it becomes a system of equations with deviating argument, where the deviation is state
dependent.

Example 5.2. Suppose that Assumption H [p, G] is satisfied and set

o) = p [t [wirgards | Gltaw) = G (b, [u(rgaric

D D

Then the Assumption H[p, G] is fulfilled and the system (28) takes the form

3tzz‘(t7$)+Zﬁz’j taxa/zw(t,x,z(t@))@-?f) drd§ | Og;2i(t,w) =

j:l D

= G; t,m,/zw(m,z(t z))(7',5) drdé], 1<i<m,
D

that is, it becomes a system of integro-differential equations, where the domain of integration
is state dependent.
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