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The difference equation
Au(k) + > pi(k) u(n(k)) = 0,
=1

is considered, where m € N, the functionsp; : N — R, 7, : N — N, klim (k) = +o00,l = 1,...,m,
——+00

are defined on the set of natural numbers and the difference operator is defined by Au(k) = u(k+1)—u(k),
A? = Ao A.

Necessary conditions are obtained for the above equation to have a positive solution. Besides, osci-
llation criteria of a new type are obtained generalizing some earlier known results.

Pozenanymo pisnuyese pieHAHHA
A?u(k) + > pi(k) u(n(k)) = 0,
=1

dem € N, ¢ynxyiipp : N — Ry, 7, : N — N, klim (k) = 4o0,1 = 1,...,m, 6usHaveno Ha
——+00

MHONCUHI HAMYpanbHux vucean, a pisnuyesuii onepamop Au(k) = u(k + 1) — u(k), A2 = Ao A.

Bcmanosaeno Heo6xioHi ymosu 0asa mozo0, ulob ye pieHAHHA MA10 000amHUll po3s’a3ok. Takox
OMPUMAHO KpUumepii HO8020 MUNY, AKI y3a2AAbHIOMb NONEPEOHI pe3y1bmamu, 04 ICHYB8AHHA KOAU-
BAHHSL.

1. Introduction. Consider the difference equation

AZu(k) + 3 pilk) u(n(k)) = 0, (L1)
=1
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NECESSARY CONDITIONS FOR EXISTENCE OF POSITIVE SOLUTIONS OF SECOND ORDER LINEAR... 181

where m > 1is a natural number,p; : N — Ry, 7 : N — N, j = 1,...,m, are functions
defined on the set of natural numbers N = {1,2,...}, Au(k) = u(k+1) —u(k) and A% = AoA.
Everywhere below it is assumed that

li = =1,... 1.2
Jm 7(k) = 400, I=1,...,m, (1.2)
sup{pl(i) :Z'Zk} >0 for ke N, [=1,....,m. (1.3)

Foreachn € N denote N,, = {n,n+1,...}.

Definition 1.1. Let n € N. We will call a function v : N — R a proper solution of the
equation (1.1) on the set Ny, if it satisfies (1.1) on N,, and sup{|u(i)| : i > k} > 0 for any
k € Np.

Definition 1.2. We say that a proper solution u : N,, — R of the equation (1.1) is oscillatory
if for any k € N, there are ni,ny € Ny such that u(ni)u(ny) < 0. Otherwise the solution is
called nonoscillatory.

In Section 3 of the presented paper a necessary condition for existence of a positive solution
of the equation (1.1) is obtained. Using that result, in Section 4 sufficient conditions for osci-
llation of all solutions of (1.1) are given which generalizes the results presented in [1], where
lim inf

k) -1,
k—+o0 k

in general, is removed.
The problem of oscillation of solutions of the equation of the type (1.1) has been studied
by several authors, see e.g. [2—10] and the references therein. Everywhere below it is assumed

that the conditions
S (zpl ) . L
k=1

.,m, was an essential assumption. In the given paper this restriction,

and

Z (Z ) = +00 (1.5)

k=1 \i=1
are fulfilled.
Using the fixed point principle, one can easily show that the conditions (1.4) and (1.5) are

necessary for oscillation of all solutions of the equation (1.1) [1].

2. Some auxiliary statements.

“+o00

Lemma 2.1. Let {a;};2°, {b;};.°7 be two infinite sequences of real numbers, the series Y b;
i=1

be convergent and a;B;y1 — 0asi — +oo, where B; = Z b;. Then the convergence of either

j =1

OO OO
of the series > a; b; and Y (a; — a;—1)B; implies the convergence of the other and
i=1 i=2

Zazb—alBl—i-Z —azl
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182 R. KOPLATADZE, G. KVINIKADZE

Lemma 2.2. Letu : N,, — R be a nonoscillatory proper solution of (1.1). Then there exists
ko € N, such that
u(k) Au(k) > 0 for k € Ng,. (2.1)

Lemma 2.3. Suppose that (1.4) and (1.5) hold and v : N, — R is a nonoscillatory solution
of (1.1). Then

lim w(k) = 400, limsup (k)] < +00. (2.2)
k—+o00 k— 400 k

Lemma 2.4. Let p,7) : N — (0,4+00), 1 be nonincreasing and

Jm @(k) = +oo, (2.3)
lim inf (k) $(k) = 0, (24)

where (k) = inf{@(s) : s > k, s € N}. Then there exists an increasing sequence of natural
numbers {k;} 1% such that

ki) = o(ks), w(k)BR) = w(k) Gks), k= 1,2, ks 0= 1,2,....

We refer the reader to [1] for the proofs of Lemmas 2.1-2.4.

Lemma 2.5. Let; : N — N, = 1,...,m, and (1.2) be fulfilled. Then there exists a
nondecreasing function o : N — N such that

1) I =
) k—l>rllooa(k) oo,

2) o(k) < min{k, (k) : l = 1,...,m}, (2.5)

3) o(Ng) D UZymi(Ny) for any k € N.

Proof. Consider the sequence
A ={a1,a9,...,a2m12,...} =
={1,7(1),...,7m(1),2,71(2),...,7m(2),...}
and denote by 7 the function 7 : N — A thus defined. By (1.2) it is obvious that

klirf 7(k) = 400 and 7(Ng) D 1i(Ng), l=1,...,m, (2.6)

for any k € N.
Introduce the following sets

se€ A & seN, 7(s)=inf{r(k); k € N},

s€Aj & seN, T(s):inf{r(k);keN\ng_llAi}, j=2,3,...,
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and denote §; = max A;, j = 1,2,..., &) = &, & = max{¢;, &), +1},j = 2,3,.... We
will construct the function o as follows: o(k) = 7(&) for 1 < k < &, a(k) = 7(¢) for
{?_1 < k < 5?, j = 2,3,.... The function ¢ is obviously nondecreasing and satisfies the
conditions 1 and 2. We also have o(Ny) D 7(Ny) for any & € N. Therefore in view of (2.6) it is
obvious that the condition 3 is also satisfied.

The lemma is proved.

3. A necessary condition for the existence of a positive solution. The result obtained in
this section is very important for establishing sufficient conditions of oscillation of all proper
solutions of the equation (1.1). Below the following notation will be used.

Let kg € N. Denote by Uy, the set of all proper solutions of (1.1) satisfying u(k) > 0 for
k € Nk0~

Theorem 3.1. Let ko € N, Uy, # @. Then there exists A € |0, 1] such that

lim sup <liminf,0(k,5,)\)) <1, (3.1)
0t \h—too
where

k—1 “+oo

(k e )\) -k~ A— hQE(/\)Z hle )+hae (A Z <Zpl /\ hls(/\)> 7 (3'2)
i=1 =i \li=

[0, if X=0, [0, if A=1,
’”f“)‘{s, if Ae (0,1, h%“)‘{e, if Ae0,1), 3-3)

and o is any function satisfying (2.5) (such a function exists due to Lemma 2.5).

Proof. First of all note that according to Lemma 2.5 there exists a function o satisfying the
conditions (2.5). Let kg € N and Uy, # . Show that there is a A\g € [0, 1] such that for A = A
the inequality (3.1) is fulfilled, where the function p is given by (3.2) and (3.3). By definition
of the set Uy,, the equation (1.1) has a solution v satisfying the condition v : N, — (0,400).
Lemmas 2.2 and 2.3 obviously imply that

u(k) T 400 and u(kk) for k1 +oo, (34)

and

k—1 400 m
ZZ(Zm ) k=ki+1, ki+2... (3.5)

i=k1 j=t

where k1 € Ny, is sufficiently large.

Denote
u(k)
Au:{)\E[O,l] E+ooki)‘:+oo}’ u € Uy,
: , . u(k)
<1f there isno A € [0, 1] such that i 111_{1 eule +o00, then we assume that A, = @).
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184 R. KOPLATADZE, G. KVINIKADZE
By (3.4) we obviously have 0 € A, and 1 ¢ A,. Therefore
A, C [0,1) and MNg = supA, € [0,1].

Show that the A selected in this way satisfies (3.1) (A = Ao). First show that
k
u(k) 10 for k7 +oo. (3.6)

Indeed, if this is not the case, then by Lemma 2.2, ¢ > 0 may be found such that u(7(i)) >
> cn(i),l = 1,...,m, fori € Ny,, where ko is sufficiently large. Therefore in view of (1.5)
from (1.1) we will have

NOCIES o1 0 STERET) EES of 0 SIE R Epee

Jj=ko Jj=ko

The obtained contradiction shows that (3.6) is true. In view of (3.3), (3.6) and the choice of A,
for all sufficiently small € we have

() u(k)

ety o it e = O (3.7)
0< X— h15<)\0) < Ao+ h2€()\0) < 1. (38)
Denote
~ : u(o(s)
o(k) = mf{(g(s))/\o—hls(%) s>k > ko, s€ N} (3.9)

For all sufficiently small positive ¢, due to (3.8) and (3.9), the condition

o p(k) _
%Eﬁg (O‘(k))hls(/\o)‘i’f@s(/\o) =0 (3.10)

is fulfilled. Indeed, for all sufficiently small ¢ in view of (3.8) and (3.9) we have

BB ulett)
(o(k))eQo)+hae(ho) = (g (k))ro+hae(ho)

Hence the second condition of (3.7) implies (3.10). Since lim o(k) = +o0, due to (3.5) there

k——+o0

exists ko € N} such that

‘T(k —1 400 m
> > D (Zpl ) k€ Ni,. (3.11)

i=k1 j=t
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NECESSARY CONDITIONS FOR EXISTENCE OF POSITIVE SOLUTIONS OF SECOND ORDER LINEAR... 185

We see that (3.7), (3.8) and (3.10) obviously imply that the functions

o(k) = (o-(klﬁio(kf)u)g()\o)’ (k) = (O'(k))_(hle(AO)"the()\O)) (3.12)

satisfy the conditions of Lemma 2.4. Therefore there exists a sequence {k;};.% such that k; €
€ Ng,,2=3,4,...,k; T +ooasi | +oo and

(ki) = p(ki), i=34,..., (3.13)
(ki) Pki) < P(s)P(s), ka<s<hki s€N, i=34,.... (3.14)

Since the function o satisfies (2.5), it is obvious that for any sufficiently large £ € N and suffici-
ently small e > 0

inf { (Tl(sl)bgj\—i)(;si)zfs(Ao) 15> k} > inf { (U(S;L)(i)(_s,zl(/\o) 15> k} o(k),

l=1,...,m.

Therefore, taking into account the nondecreasing character of ¢(k), from (3.11) we obtain

o(k)—1 400 m
u(o(k)) > Z &(i)z (sz(j) (Tl(j)))\o—hle(Ao)> ‘

Hence, with regard to (3.14) we get

o(ki)—1
u(o(k) > lkyp(k:) Y (o(j))ePortha=lo) Z (Zpl ’“6@0)) L i=3,4,....
j=ko =
By (3.12) and (3.13) we have
o(k;)—1
s ) 003 (o000 5 (3 ) <1
i—+o0 i=k1 Jj=t =1
Therefore
S Ao—hae (o) h15(/\0 +hae(Ao) >\0 hie(do) | «
pg 2 30 > (Sonr ) <1
i=ko i \l=1

Due to the fact that for all sufficiently small e > 0 we have —\g—ha-(\g) < 0, the latter inequality
obviously implies that

lim inf k—20—h2e (o) hls Xo)+hae(Mo) 0—hie(Ro) | < 1
i int Z Z Zpl <

] =1
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186 R. KOPLATADZE, G. KVINIKADZE

for all sufficiently small ¢ > 0. Taking the upper limit of both sides in the latter inequality as
e — 0+, we will obtain the inequality (3.1), where the function p is defined by the equalities
(3.2), (3.3).

The theorem is proved.

4. Sufficient conditions for oscillation. In this section, using Theorem 3.1, sufficient conditi-
ons will be established for oscillation of all proper solutions of the equation (1.1) which generali-
ze the results given in the paper [1].

Theorem 4.1. Let for any \ € [0, 1]

lim sup <liminfp(k:,5, )\)> > 1, (4.1)
e—0+ \k—+o0

where the function p is defined by (3.2) with h;., i = 1,2, defined by (3.3) and o any function sati-
sfying (2.5) (such a funcyion exists due to Lemma 2.5). Then any proper solution of the equation
(1.1) is oscillatory.

Proof. Suppose the contrary. Let u : Ny, — (0,400) with kg € N be a positive proper
solution of the equation (1.1),i.e., Uy, # @. Taking into account Theorem 3.1, we will conclude
that there exists Ay € [0, 1] such that the inequality (3.1) holds for A = \g. But this contradicts
the condition (4.1). The obtained contradiction proves the theorem.

Theorem 4.2. Let a; € (0,+00),i = 1,...,m, and

liminf 7). 5 o, (4.2)
k—+oo ki

Then for all proper solutions of (1.1) to be oscillatory it is sufficient that for any A € [0, 1]

e=04 | koo =1 =i

k—1 +o0 m
limsup | liminf fAhae (V) Zia(hlf()‘Hhk(’\)) Z < () (Tl(j)))‘hle()‘)> >1, (4.3)
=1

where

a = min{l,aq,...,an}. (4.4)

Proof. To prove the theorem it suffices to show that the conditions of Theorem 4.1 are
fulfilled. Due to (4.2) there is ¢ € (0,1] such that 7;(k) > ck®*, 1 = 1,...,m, k € N, where « is
given by (4.4). Therefore the function o (k) = [ck®]| satisfies the conditions (2.5). On the other
hand, we have

k—1 +00 m
p(k,e,\) = e A—h2e (V) Z[C,L'Oé]hls(A)'i'hZE()\) Z <Zpl(]) (Tl(j))A—hls(A)> ‘
i=1 j=i \l=1
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NECESSARY CONDITIONS FOR EXISTENCE OF POSITIVE SOLUTIONS OF SECOND ORDER LINEAR... 187

Therefore in view of (3.3) and (4.3) for any A € [0, 1] we have

sup lim (hm inf p(k, ¢, A))

e—0+\ k—+o0
k—1
> sup _ hm inf lim k=~ hQE(A)ZZ (h1c(M)+hae(A)
—0+ k— o0 ]
i=

e—0+

“+oo m
XD (Zm;’) (Tz(j))A_hla(A)> inf lim (e ) > .

Therefore all the conditions of Theorem 4.1 are fulfilled, which proves our theorem.
Theorem 4.3. Let the conditions (4.2) be fulfilled and for any A € [0,1]

“+o00 m
li liminf kL-Mrehie ) +Ha—1)hs () j DA N ISP 4.5
1£(S)1J1rp égigo X Z ZPl(J) (m(5)) ) (4.5)

where the functions hi. and hs. are defined by (3.3). Then any proper solution of (1.1) is osci-
llatory.

Proof. To prove the theorem, it suffices to show that (4.5) implies (4.3). In view of (4.5) there
exists a sequence {g;}; % of positive numbers such thate; — 0asi — +oo,d > 0, k; € N,
i=1,2,...,and

Jol At ahic, (0)+(a—1)hae, (A Z (sz A he; W) > A+,

ke Ny, i=12....

Therefore from the equality

k—1 400 m

I(k,g;) = k—)\—h2si(/\)Zsa(hlai(/\)-”msi()\)) Z (Zpl >\ hlai(A)) _
s=1 j=s \l=1

— pA—hae (V) Z a(hic; (M) +hae; (A Z <Zpl ,\ hlsi(/\)> n

+ k—)\—h%l g Sa (h1e; (M) +hae, )Z (Z pl )\ hlel()\)> ,
s=k;

i=1,2,...,

we get

I(k,g;) > kAN 46) Y PAlthes ) 5 =19
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188 R. KOPLATADZE, G. KVINIKADZE

Thus
k-1
liminf I(k,e; A4 8)inf lim kA P2V Althae (N i =1,2,. ... 4.6
fminf I(k.e) 2 A+ O)inf lim 2 Z “8)

On the other hand, since A — 1 + ha,(A) < 0,i = 1,2,..., we have

k—1 k—1 stl
S)\71+h25i ()\) 2 €A71+h25i()\)d§ —
s=k; s=k; s
/ 1
_ Althoe,(Nge — = (pA+hae, (V) —k:.HhQE"(/\) .
[t = )
ki

Therefore, since —\ — ha,(A) < 0,7 = 1,2,..., from (4.6) we get

A+d
flim I(ke)> —20
inf tim I(k.&) 2 3275 0y

If we pass to upper limit in the latter equality as i — +o00, we will obtain

lim sup (hmlnf[(k 51)) > /\TM > 1,

i—4-00 k—+00

which proves the equality (4.3).
The theorem is proved.

Theorem 4.4. Let the conditions (4.2) hold and for any \ € [0, 1]

Jimn sup <nm inf JHE- DG Hhi () o

e—0+ k—+o0
m AN A—h1e(N)
> nti) (M) )) > A1), @)

i=k \l=1

+oo
3 (
Then any proper solution of (1.1) is oscillatory.
Proof. If A = 0, then due to the first condition of (3.3), (4.7) clearly implies (4.5). Therefore
below we will assume that A € (0,1] and show that (4.7) implies (4.5). Indeed, from (4.7) it

follows that there exist a sequence {g;};- of positive numbers satisfying ¢; — 0 as i — o0,
0 >0andk; € N,i = 1,2,...,suchthat

A—hie; ()
ol (o) (e () e )Z (ZPZ < J)> ) .

>A1=N(1+6), keN,, i=12.... (4.8)
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NECESSARY CONDITIONS FOR EXISTENCE OF POSITIVE SOLUTIONS OF SECOND ORDER LINEAR... 189

On the other hand, by Lemma 2.1, we have

Ii(k, ;) « L pl-Mrahie, () +(a=Dhae,( Z <Zpl P hlc‘z()‘)> —

i=k

—+o00 m ( ) )\—hlsi ()\)
_ kl—/\-i-ahlsi(/\)—f—(a—l)hgsi(/\)ZjA—hlsi()\) (Zpl(j) (Tzq ) ) _
J
=1

j=k
+oo
_ LA ahie (V) +(a—Dhae; (A) pA—hae, (A) ij—hlgi(k) %
j=k
m AN\ A—hie, (V)
AT i
. (Zplu) (l(”) ) i
=1 J
+o0o
1 gl Mrahis, () +(a=Dhae, (M) Z <j)\—h152.(/\) (- 1))\—h15i(/\)) %
j=k+1

+oo m (s A—hlei()\)
<> (prs) (") ) >
s=j \l=1

> AL = A)(L+6) + AL — M) (1 + §)kLArohe (M) a—Dhae, (A) o

% Z ( A—hie,(\) _ (- 1))\ hic, (A)>j j(l a)(hie; (A)+ha2e; (A))
j=k+1

for ke N, 1=12....

Since o < 1, the latter inequality yields

X

O\ (@ D(hie; (A t+hae; (V)
eri)

(ki) > M1 = A)(1+ 6)1 + k1A (

-S> (A = (= e 5 (49)

j=k+1

for ke N, i=12....
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190 R. KOPLATADZE, G. KVINIKADZE

On the other hand, since the function k — is nondecreasing, we have

“+o00

S (P - (e =
j=k+1
+o0 J
= 2 (=ma)i™ / grimaNtag =
Jj=k+1 21
+oo . 1 J
_ (] _hlsl()\)) Z .] - /&A_hlai(A)_ldé' 2
PantWith )H

i
) k +o00 L
z (.7—h15i(A))k—Jr1 > /gx 2=hie; (V) gg —

J=k+17
I +oo
= (] - hlez'()\))m / 5)\_2_h15i(/\)d§ -
k

k ]{;)‘_l_hlsi(/\)

Therefore (4.9) implies
1 e\ M= (hie; (N +hae; (V)
i) > — — ) .
Li(k,ei) > A1 =X)L+ 8)(1L+ (A= hi, (V) Y (k: n 1)

Hence it is clear that

e A= hig,(A) .
f 1 Lik,g) 2 A1 -=XN)14+0) 1+ —"—], =1,2,....
- k—1>I-|I—loo 1k, 20) 2 A( )1+ )< + 1—)\+h15i()\)> ’

Passing to upper limit in this inequality as i — +oc0, we will get

lim sup <liminf11(k, 81)> > A1-XN)(1+49) (1 + >\> =A1+490) > A
i—doo \ k—+oo 1—A

Therefore the inequality (4.5) holds, which proves the validity of the theorem.
Theorem 4.4. immediately implies the following theorem.

Theorem 4.4'. Let the condition (4.2) be fulfilled with o; > 1,7 = 1,...,m. Then for any
proper solution of (1.1) to be oscillatory it is sufficient that

+oo /'m (i A—hie(N)
lim sup (infklim /{:Z (Zpl(j) <l‘(7j)> )) > A1 —=N). (4.10)

e 0t e sk s
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NECESSARY CONDITIONS FOR EXISTENCE OF POSITIVE SOLUTIONS OF SECOND ORDER LINEAR... 191

Theorem 4.4’ makes Theorem 3.2 of [1] more precise.

Corollary 4.1. Let there exist oy, | = 1,...,m, such that o € (0,+00) and

lim inf n(i) = q;. (4.11)

1——+00 1

Then the condition

——+00

—+o00 m
. . DY _
1nfkhm k iE:k <l:E 1 (i) o ) > A1-X)

is sufficient for oscillation of all proper solution of (1.1).

Corollary 4.2. Let the condition (4.11) be fulfilled and there exist c; € (0,+00),j =1,...,m
and a function p : N — [0, +o00) such that p;(k) > c¢;p(k),j = 1,...,m, for large k. Then the
condition

m

+00 -1
liminf & p(i) > max q A(L— ) <Z m?) A€ [0,1] (4.12)
i=k

k
oo =1

is sufficient for oscillation of all proper solutions of (1.1).

Remark 4.1. Corollaries 4.1 and 4.2 are given in [1]. But the optimality of the condition
(4.12) is proved there only in the case m = 1. Here we will give an example illustrating that
the condition (4.12) can not be replaced by the nonstrict inequality for any m. Indeed, let ¢;,
a; € (0,400). Denote

m

-1
¢ =max{ A(1—\) (Z clal)‘> : A€ [0,1] (4.13)

=1

and let )y be the point where the right hand side of (4.12) attains its maximum. Consider the
equation

Alu(k) + > (c % + w(k)) u(o;k]) = 0, (4.14)
j=1
where
—A2(k) + -5 3 ¢j(ak])
K2 &
p(k) = — - (4.15)
;([Oék])AO

and [a] denotes the integer part of a. It is obvious that by (4.15) the function u = & is a
positive solution of the equation (4.14). Since

_ 1
A2(EM) = Ng(Xo — 1)k 2 + kMo </<;2> :
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1
by (4.15) we have p(k) = o <k2> . Therefore it is obvious that

C c—¢&

pilk) = erg + (k) > (c— &) 5 = ap(k), plk) = .

400
Since Y i72 > k~!, we have
i—k

+oo
inf i ) > c—e.
inf lim k;p(z)_c €

——400

Therefore, due to arbitrariness of £ we have

—400

+o0
o NS e .
lklm inf k ng p(i) > ¢ (4.16)

On the other hand, since the equation (4.14) has a positive solution, (4.13) and Corollary 4.2
imply
400
lim inf ) < ec.
fminf £3_p) < ¢

+oo
Therefore by (4.16) we have llim Jirnf k> p(i) = c. But this shows that in Corollary 4.2 the
—too =k

inequality (4.12) can not be replaced by}he non-strict one.

Corollary 4.3. Let the condition (4.2) be fulfilled, there exist a nonincreasing function p €
€ C(R4+; R+) and a nondecreasing function 7 € C(R4; Ry) such that . lir+n 7(t) = +o0 and

pl(i) > Clﬁ(i), Tl(i) > dl ;(l)’ [ = L...,m, (417)

where c¢;,d; € (0,+00). Let, moreover, for any A € [0, 1] the condition

+oo
hm%l_"l_p lnfkhl—’r—loo k1+(a71)(hls()\)+h2a)()\) /ﬁ(l +§) ;)\*hle()\)(é‘)dg >
e— -

k—1

m -1
> A1 —)\) (Z ¢ df) (4.18)

I=1
be fulfilled, where o is given by (4.4). Then any proper solution of (1.1) is oscillatory.
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Proof. To prove the corollary, it suffices to show that (4.18) implies (4.7). Indeed, from (4.17)

we have
400 m ' . (]) A—hie(N) B
Z <ZP£(J) <j) =

j=k \l=1
m A—hi(N)
Zpl ( (J)> /ds >

I=1 i

400
Jj=k

m 400 J
- (Zczd?h“ ) /p1+s 7AW (s) ds =
1=1 1

z:k]

m +oo
_ (ch dl)\hls()‘)> / P(l+s)7 A— hls(/\)( )ds.
=1 %

-1
Therefore (4.18) obviously implies (4.7).

The corollary is proved.

Corollary 4.4. Let ¢, d;, o« € (0,+00),l € 1,...,m,

m(i) > =, ni) > di't. (4.19)

@M‘ o

Then any proper solution of (1.1) is oscillatory.
To prove the corollary, it suffices to note that the conditions of Corollary 4.3 are fulfilled

1
with j(t) = . 7(t) = t°.

Corollary 4.5. Let the conditions (4.2) be fulfilled and there exist nondecreasing functions
7, p € C(Ry;Ry) such that the conditions (4.17) are fulfilled, where ¢, d; € (0,+00), 1 €

€ 1,...,m. Let, moreover, for any X € [0, 1] the condition
+o00
lim [ inf Tim e D) Hhac () / S(8) FA N (g) ds | >
sup lim | inf lim p(s) T (s)ds
i

m -1
> A1 —)\) (Z ¢ d?)

I=1
be fulfilled. Then any proper solution of (1.1) is oscillatory.

Corollary 4.6. Let the conditions (4.19) be fulfilled, where c¢;, d; € (0,+00),l = 1,...,m,
and

(i) > <5, n(i) > dit™e,
7

where f < 2 — «a, a € (0,1). Then any proper solution of (1.1) is oscillatory.

ISSN 1562-3076. Heainitini koausarnnsa, 2009, m. 12, N2 2



194

10.

R. KOPLATADZE, G. KVINIKADZE

Koplatadze R., Kvinikadze G., Stavroulakis I. P. Oscillation of second-order linear difference equations with
deviating arguments // Adv. Math. Sci. and Appl. Gakotosho, Tokyo. — 2002. — 12, Ne 1. — P. 217 -226.

Cheng S. S., Yan T. Ch., Li H. J. Oscillation criteria for second order difference equation // Funkc. ekvacioj. —
1991. — 34. — P.223-239.

Grace A. R., Lalli B. S. Oscillation theorems for second order delay and neutral difference equations // Util.
math. — 1994. — 45. — P 197-211.

Gyori I, Ladas G. Oscillation theory of delay differential equations with applications. — Oxford: Oxford
Univ. Press, 1991.

Hankerson D., Harris G. A. Oscillation of first and second order delay difference equations // Dynam. Syst.
and Appl. — 1995. — 4. — P.251-262.

Hinton D. B., Levvis R. T. Spectral analysis of second order difference equations // J. Math. Anal. and Appl.
— 1981. — 63. — P. 421-438.

Koplatadze R. Oscillation of linear difference equation with deviating arguments // Comput. Math. Appl. —
2001. — 42. — P. 477-486.

Kordonis 1.-G. E., Philos Ch. G. Oscillations and nonoscillations in linear delay or advanced difference equati-
ons // Math. Comput. Modell. — 1998. — 27, Ne 7 — P. 11-21.

Kwong M. K., Hooker J. M., Patula W.T. Riccati type fronsformation for second order linear difference
equations // J. Math. Anal. and Appl. — 1985. — 107. — P. 182-196.

Zhang B. G., Tian Ch. J. Oscillation criteria for difference equation with unbounded delay // Comput. Math.
Appl. — 1998. — 35, Ne 4. — P. 19-26.

Received 02.01.09

ISSN 1562-3076. Heainitini koausarnns, 2009, m. 12, N2 2



