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A simple method for chaotifying piecewise linear maps of the plane using a piecewise linear controller
function is given. A domain of chaos in the resulting controlled map was determined exactly and rigorously.

Haseoeno npocmuii menmoo xaomusayii Kycko80-AiHIUHUX 8I000paxceHb NAOUUHU 34 OONOMO20I0 KYC-
KOBO-AIHIIHOT (hyHKUIT KepysatHsa. MHOMCUHY Xaocy 0451 OMPUMAHO20 KePOBaAH020 8I000PANCEeHHA 6U-
3HAYEHO MOYHO i CMPO20.

1. Introduction. A large number of physical and engineering systems have been found to be
governed by a class of continuous or discontinuous maps [1, 4, 5, 7-10, 13, 14] where the
discrete-time state space is divided into two or more compartments with different functional
forms of the map separated by borderlines [14—17]. The theory of discontinuous maps is in
its infancy, with some progress reported for 1-D and n-D discontinuous maps in [1, 8, 9, 11,
12, 17], but these results are restrictive and cannot be obtained in the general n-dimensional
context [12]. On the other hand, there are many works that focus on the chaotic behavior of
discrete mappings. For example, they have been studied as control and anti-control (chaoti-
fication) schemes using Lyapunov exponents [2, 3, 18, 20] to prove the existence of chaos in
n-dimensional discrete dynamical systems with the goal of making in some way an originally
non-chaotic dynamical system chaotic or enhancing the chaos already existing in such a system.

The goal of this work is to present a simple method for chaotifying an arbitrary 2-D piecewi-
se linear map (continuous or not) using a simple piecewise linear controller function, which
allows one to determine exactly and rigorously which portion of the bifurcation parameter
space is characterized by the occurrence of chaos in the resulting controlled map using the
standard definition of the Lyapunov exponents as the test for chaos.

Consider an arbitrary piecewise-linearmap f : D — D, where D = D;UD, C R?, defined
by
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B _ AXk+b lf Xk: S D17
X1 = f(Xi) = { BXp+c if Xi € Do, .

where A = ( a1 a2 ) and B = ( b biy ) are 2 x 2 real matrices, and b = ( by > and
a1 a2 bo1  boo by

c= < ‘1 ) are 2 x 1 real vectors, and X, = ( Tk > € R? is the state variable.

C2 Yk
The Lyapunov exponents of a 2-D dynamical system are defined as follows.

Let us consider the system
Xp = f(Xi), XpeR? k=0,1,2..., (2)

where the function f : R? — R? is the vector field associated with system (2). Let .J (X}) be
its Jacobian evaluated at X;, € R, k = 0,1, 2, ..., and define the matrix

T (X0) = J (Xn_1)J (Xn2)...J(X1)J (Xo). 3)

Moreover, let .J;(Xo,n) be the modulus of the i*" eigenvalue of the n'" matrix T}, (X,) , where
i=1,2andn =0,1,2,....
Now, the Lyapunov exponents for a two-dimensional discrete-time system are defined by

. 1 .
li(Xo) = lim_In (J,-(Xo,n)n) . i=1,2. (4)

Roughly speaking, chaotic behavior implies sensitive dependence on initial conditions, with at
least one positive Lyapunov exponent. Based on this definition, we give in the next section a
rigorous proof of chaos in the resulting controlled map (7) obtained below via a simple piecewi-
se linear controller function applied to the map (1). While many algorithms for calculating the
Lyapunov exponents would give spurious results for piecewise-linear discontinuous maps, the
algorithm used here and given in [21] works for such cases. It essentially takes a numerical
derivative and gives the correct result provided that is taken to ensure that the perturbed and
unperturbed orbits lie on the same side of the discontinuity. This may require an occasional
small perturbation into a region that is not strictly accessible to the orbit.

2. The chaotification method using a piecewise linear controller function. The main idea of
the chaotification method presented in this work is to introduce a piecewise linear controller
function in such a way, such that the two (in both partitions) system matrices of the resulting
controlled piecewise linear system have the same trace and determinant (invariants) and hence
the same eigenvalues. Indeed, the controlled map is given by

AXp+0b it X, € D

s = { g ir D o), )
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where the controller function U (X}) is defined by

(b11 + ba2 — a11 — age) T

if Xy e D,

_ _ 9

U (Xy) = ( a12a21 + br1aze — b11boa + bi2boy + a2bao agg) .
a2

0

0

) if X € Ds.
(6)
The controlled system (5) is now given by

[ QXp+b if X € Dy,
g(X’“)_{BXk+c if X, € Dy, )

where the matrix () is given by
b11 + bo2 — agn a12

Q= : ®)

2
briaza — b11baa 4 b12b21 + agabae — a3, a
22

ai2

The Jacobian matrix of the controlled map (7) is given by

[ Q if Xje€ Dy,
J(X’“)_{B if X, € Ds. ©)

It is shown in [22] that if we consider a system x;.1 = f (zx), vx € Q@ C R", such that

17@)] = \hmax (F@)T () < N < oo, (10)
with a smallest eigenvalue of f(x)” f(x) that satisfies
Amin (f'(2)f'(2)) = 0 > 0, (11)

where N2 > 0, then, for any 29 € Q, all the Lyapunov exponents at x( are located inside

Fn;,lnN} , that is,

— <li(xo) <InN, i=1,2,...,n, (12)

where [; (xg) are the Lyapunov exponents for the map f and ||| is the Euclidian norm in R™.
We remark that J (X}) given in (9) is not well-defined due to the discontinuity, but, since B and
@ have the same eigenvalues, one has that ||Q|| = ||B]| = \/Amax (BT B). Because

b3, + b3, b11b12 + b21ba
BTB =
b11b12 + ba1b22 b2y + b2y
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is at least a positive semi-definite matrix, all its eigenvalues are real and positive, i.e.,
Amax (BTB) = Amin (BT B) > 0.
Hence the eigenvalues of BY B are given by
1 1 1 1 1
Amax (B' B) = B bl + 5 bis + B b3y + 3 b3y + 3 Vi,
(13)

v

1 1 1 1
)\min (BTB) = 51)%1 + éb%2 + 5[)31 + §b%2 — B

where

d= ((511 +b22)% + (b12 — b21)2) ((b12 +b21)® + (b1y — 522)2) >0 (14)

for all by1, b12, ba1, and bee. Condition (10) gives || f'(z)| = ||B]] = ||Q] = VAmax (BTB) =
= N < +o0, because B and ) have the same eigenvalues. Condition (11) gives the inequality

0% — (b3, + b3y + 031 + b3y) 0+ (bribas — bizba1)? > 0 (15)
with the condition

< b1, + by + b3, + bgz.

0 5 (16)
Since the discriminant of (15) is equal to d > 0, (11) holds if
0 > Amax (BTB), or 0 < Amin (B'B). (17)

The condition 6 > Apax (BTB) is impossible because of condition (16), so that § must satisfy
the condition

_ b3, + b3y + b3, + 03, — Vd

0 < Amin (BTB) = . 18
< (B"B) 5 (18)
Now, if
2 < b%l + b%2 + b%l + b%2 < <b11b22 — blgbzl)z + 1,
(19)
|b11b22 — b12ba1| > 1,
then Apin (BT B) > 1,i.e.,0 = 1, and one has
0 < (:U()) <InN, i=1,2, (20)

i.e., the controlled map (7) converges to a hyperchaotic attractor for all parameters by1, by2, ba1,
and boo satisfying (19).
Finally, the following theorem is proved.
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Theorem 1. The piecewise linear controller function (6) makes the map (1) chaotic in the
following case:

2 < b%l + b%2 + b%l -+ b%2 < (bnbgg — 512b21)2 +1,
(21)

|b11b22 — bi2bar| > 1.

Finally, we note that Theorem 1 does not guaranty the boundness of the resulting controlled
map (7). This problem is still open for general piecewise-linear maps and flows.

3. Example. In this section, we make chaotic the following piecewise linear map using the
above method:

TE — oy + 1, .
if >0,
( NIk ) Yk =2

f (e, ye) = (22)

T +ayr + 1 ) .
if < 0,

where «, 3, and v are bifurcation parameters. The map (22) is a special case of the map (1)
since one can rewrite it as

AX, +b, if g, >0,

f(Xy) = .
BXi+c¢, if yp <O,

1 —«o 1 « 1
e (1) me () e vmem (1),

and the two sub regions are D1 = {(zy, yx) € R?/ yp > 0} and Dy = {(wk, yx) € R*/ yp < 0} .
Thus, the resulting controlled map is given by

1 —« T 1 .
+ if >0
(ﬂ 0 ><yk) (0> o= L — alyg| +

9 (g, yx) = = . (23)
() (E)-(5) omen L

which is the so-called discrete butterfly presented in [19], where sgn (-) is the standard signum
function that gives +1 depending on the sign of its argument. For the controlled map (23),
condition (21) becomes

where

la| > max (Jflf%fl;) 18> 1. (24)
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B8 1 -1
V-1 Br—1 1B B’

For illustration, assume that 5 < —1. Then we remark that

and thus conditions (24) become

-1
la| > —, [ < -1

ﬂ )

Using the obtained analytical results, Fig. 1 shows that for -2 < g < -1, and —0.1 —
-1
— < a< 5 + 0.4, the controlled map (23) converges to bounded hyperchaotic attractors

B

1
or unbounded orbits for o > —B. In this figure, unbounded solutions, periodic solutions, and

chaotic solutions are shown in the aS-plane for the controlled map (23), where we use 5000
different initial conditions and 10° iterations for each point. A chaotic attractor for the case
with @ = 0.6 and § = —2 is shown in Fig 2.

On the other hand, it is necessary to verify the hyperchaoticity of the attractors by calcula-
ting both Lyapunov exponents using the formula: I; (zo) + l2 (z9) = In|det(J)| = In|af|
averaged along the orbit where det(.J) is the determinant of the Jacobian matrix. The result is
shown in Fig. 3 for 0.4 < a < 0.9, with 8 = —2.

i Bounded chaotic orbits

beta .................... ................ s

0.1 ~ alpha+1/beta 0.298 0.4

Fig. 1. Regions of dynamical behaviors in the a3-plane for the
controlled map (23) with —2 < 8 < —1 and
—01-1/8<a<-1/8+04.
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5
Y
-5
-5 X 5
Fig. 2. The new piecewise linear chaotic attractor obtained from
the controlled map (23) with its basin of attraction for
a = 0.6, f = —2, and the initial condition zo = yo = 0.01.
4.0 _
Periodic '
orbits ” o~
[
P
LEs [ I
Bounded Unbounded orbits
hyperchaotic orbits
-0.002
0.4 0.5 0.675

Fig. 3. Variation of the Lyapunov exponents of the controlled
map (23) versus the parameter 0.4 < o < 0.9, with
3 = —2, where the two vertical lines indicate the border
between the mentiened dynamical behaviors.
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4. Conclusion. A new simple chaotification method for piecewise linear maps of the plane
via a piecewise linear controller function was presented. A rigorous proof of chaos in the resulti-
ng controlled map using the standard definition of the largest Lyapunov exponent was also
given.
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