УЛК 517.958

МОДОВОЕ РАЗЛОЖЕНИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ В МНОГОСВЯЗНОЙ ОБЛАСТИ

Е. В. Попова

Харьков. ун-т,

Украина, 61077, Харьков, пл. Дзержинского, 4

In a waveguide with an inhomogeneous nonstationary medium and multiply connected cross-sections, we single out a system of not monochromatic mode fields possessing the classical notion of mode waves in a homogeneous stationary medium. We solve the problem of the decomposition of the field in a system of mode states by constructing special bases in a corresponding Hilbert space.

У хвилеводі з неодкорідним нестаціонарним середовищем і багатозв'язним поперечним перерізом видізанно систему немонохроматичних модових полів, що узагальнюють класичне понитя модових хвиль в однорідному стаціонарному середовищі. Розв'язується задача розкладу поля за системою модових станів шляхом побудови спеціальних базисів у відповідному гільбертовому просторі.

1. Исходные предположения и постановка задачи. Цилиндрический волновод с $\mathbf{u}(\mathbf{c}, \mathbf{u})$ поводящей поверхностью Σ имеет многосвязное поперечное сечение $S=\{(x,y)\}$ с гранищей L, образованной кусочно-гладкими контурами L_0,L_1,\ldots,L_N . Среда предполагается нестационарной и неоднородной вдоль оси Z волновода. Свободные заряды и свободные источники отсутствуют. Поле внутри волновода удовлетворяет уравнениям Максвелла

$$\operatorname{rot} \mathcal{H} = \frac{\partial}{\partial t} \mathcal{D} + \mathcal{I}, \quad \operatorname{rot} \mathcal{E} = -\frac{\partial}{\partial t} \mathcal{B},$$
 (1)

$$\operatorname{div} D = \rho$$
, $\operatorname{div} B = 0$, (2)

где \mathcal{E},\mathcal{H} — векторы напряженностей, \mathcal{D},\mathcal{B} — векторы индукций электромагнитного поля. Плотности тока \mathcal{I} и заряда ρ сторонних источников являются заданными функциями переменных x,y,z,t, связанными уравнением непрерывности $\mathrm{div}\,\mathcal{I}+\frac{\partial}{\partial t}\rho=0$. Граничные условия имеют вид

$$[\mathcal{E}, \mathbf{n}]|_{\Sigma} = 0,$$
 $(\mathcal{H}, \mathbf{n})|_{\Sigma} = 0,$ (3)

где n — орт нормали к поверхности Σ . Поперечные ${\bf E}$, ${\bf H}$ и продольные E_z , H_z компоненты векторов поля ${\bf \mathcal{E}}={\bf E}+{\bf z}E_z$, ${\bf \mathcal{H}}={\bf H}+{\bf z}H_z$ удовлетворяют на границе соответственно условиям $[{\bf E},{\bf n}]\big|_L=0$, $E_z\big|_L=0$, $({\bf \mathcal{H}},{\bf n})\big|_L=0$, где ${\bf z}$ — орт оси Z ($[{\bf n},{\bf z}]=l$ — орт касательной к L).

Материальные уравнения в абстрактной форме

$$D = DE$$
, $B = BH$ (4)

содержат линейные преобразования D, B (индукционные операторы [1]), которые имеют вид диагональных матриц

$$D = (D \oplus D \oplus D_{\parallel}), \quad B = (B \oplus B \oplus B_{\parallel}),$$
 (5)

так что $\mathbf{D}\mathcal{E}=(DE_x,DE_y,D_\parallel E_z)',\mathbf{B}\mathcal{H}=(BH_x,BH_y,B_\parallel H_z)'$. Здесь $D,D_\parallel,B,B_\parallel$ — линейные интегро-дифференциальные преобразования над скалярными функциями от переменных z,t, позволяющие учитывать временную и пространственную дисперсии среды [1-3]). В классическом случае среды без дисперсии $\mathbf{\mathcal{D}}=(z,t)\mathcal{E}, \mathcal{B}=\mu(z,t)\mathcal{H},$ где $\varepsilon(z,t)$, $\mu(z,t)$ имеют физический смысл диэлектрической и магнитной проницаемостей нестационарной среды, неоднородной вдоль оси Z волновода. Естественные области определения линейных индукционных операторов \mathbf{D} . В уточняются в каждом конкретном случае.

Энергия поля предполагается ограниченной в поперечном сечении S волновода, что соответствует требованию $\mathbf{E},\mathbf{H}\in L^2_2(S)\oplus 0$ и $E_z,H_z\in L_2(S)$ для фиксированных z,t.

На основании ортогонального разбиения пространства $L^2_2(S)$ для многосвязной области $S\subset R^2$ выделим специальные базисы в пространстве $L^2_2(S)$ в $L_2(S)$, по которым разложим гладкое (непрерывно дифференцируемое) решение \mathcal{E} . $\mathcal{H}(1)$ – (S).

2. Ортогональное разложение и базис пространства $L^2_2(S)$. Построим ортогональное разбиение пространства $L^2_2(S)^1$ для плоской ограниченной многосвязной области $S \subset R^2$, соответствующее разложению ГВейля [4,5] пространства $L^3_2(\Omega)$, $\Omega \subset R^3$.

Рассмотрим двусвязную область S, заключенную между внешним L_0 и внутренним L_1 кусочно-гладкими контурами. Пусть l' — замкнутый контур, который нельзя деформировать в точку, оставаясь внутри области S. Согласно теореме Гаусса — Остроградского для гладких в S вектор-функций $\mathbf{F}(x,y)=(F_x,F_y,0)$ и $[\mathbf{z},\mathbf{F}(x,y)]=(-F_y,F_x,0)$, непрерывных вплоть до границы $L=L_0\cup L_1$, имеем

$$\int_{S} \operatorname{div} \mathbf{F} ds = \int_{L} (\mathbf{F}, \mathbf{n}) dl, \tag{6}$$

$$\int_{S} \operatorname{div}[z, \mathbf{F}] ds = \int_{L} (\mathbf{F}, \mathbf{t}) dl. \tag{7}$$

Если циркуляция вектора ${\bf F}$ по контуру типа l' не зависит от выбора l', то будем называть ее периодом вектор-функции ${\bf F}(x,y)$ и обозначать

$$C[\mathbf{F}] = \oint_{\nu} (\mathbf{F}, \mathbf{l}) dl.$$

Из (7) следует, что для потенциальных векторов ${\bf F}=\nabla f$, где f(x,y) — многозначная функция, изменяющаяся на постоянную при обходе контура l', определен период $C[\nabla f]=\oint \frac{\partial f}{\partial l}dl$. Отметим, что в односвязной области для градиентов (однозначных)

функций $\varphi\colon C[\nabla\varphi]=0$. Очевидно, градиенты многозначных функций, изменяющихся на постоянную при обходе контура l', являются однозначными векторами.

 $^{^{-1}}$ Для сохранения терминологий и обозначений трехмерного пространства $L^2_2(S) \oplus 0.$

Рассмотрим циркуляцию вектора [G, z] по $l'\colon \oint\limits_{l'}([\mathbf{G},\mathbf{z}],l)dl = \oint\limits_{l'}(\mathbf{G},\mathbf{n})dl.$ По опре-

делению, если она не зависит от контура типа l', то $C[[\mathbf{G},\mathbf{z}]] = \oint\limits_{l'} (\mathbf{G},\mathbf{n}) dl$. На осно-

вании (6) для любого соленоидального вектора G ($\operatorname{div} G = 0$) определен период C[[G,z]], который в случае плоской односвязной области обращается в нуль. Заметим, что $\operatorname{div} G = 0 \Rightarrow \exists f(x,y) \colon G = [z,\nabla f]$, где f, вообще говоря, есть многозначная функция. Так, если G — соленоидальный вектор, то [G,z] — потенциальный, и величина C[[G,z]] для $G = [z,\nabla f]$ совпадает с периолом $C[\nabla f]$.

Градиенты ∇h гармонических функций являются одновременно и потенциальными, и соленоидальными векторами. Для них определены обе величины $C[\nabla h]$ и $C[[\nabla h, z]]$.

Выделим в S две стандартные гармонические функции, каждая из которых породит одномерное подпространство в ортогональном разложении $L^2_2(S)$.

Лемма 1. Пусть h_1 — гармоническая в S функция, удовлетворяющая краевой задаче

$$\Delta h_1 = 0$$
, $h_1|_{L_0} = 0$, $h_1|_{L_1} = \nu$, $\nu = \text{const} \neq 0$. (8)

Тогда в S существует сопряженная к h_1 многозначная гармоническая функция h_2 , удовлетворяющая следующей краевой задаче:

$$\Delta h_2 = 0, \qquad \left. \frac{\partial h_2}{\partial n} \right|_L = 0.$$
 (9)

При этом $C[\nabla h_2] \neq 0$ и $||\nabla h_2||^2 = \nu C[\nabla h_2]$.

Сопряженная к $h_1(x,y)$ гармоническая функция $h_2(x,y)$ удовлетворяет векторному

равенству
$$\nabla h_2=[\mathbf{z},\nabla h_1],$$
 откуда $h_2(x,y)=\int\limits_{(x,y)}^{(x_0,y_0)}\frac{\partial h_1}{\partial n}dl+\mathrm{const}$ и является многозначной

функцией, изменяющейся на циклическую постоянную при обходе замкнутого контура типа l^\prime .

Ввиду граничных условий (8) $C[\nabla h_1]=0$ и h_1 — однозначная в S функция, отличная от постоянной. Тогда

$$||\nabla h_1||^2 = -\int_S h_1 \Delta h_1 ds + \oint_{L_0} h_1 \frac{\partial h_1}{\partial n} dl - \oint_{L_1} h_1 \frac{\partial h_1}{\partial n} dl = -\nu \oint_{L_1} \frac{\partial h_1}{\partial n} dl \neq 0.$$

В силу соленоидальности Δh_1 в кольце, ограниченном контурами l' и L_1 , имеем

$$C\left[\left[\mathbf{z},\nabla h_{1}\right]\right]=-\oint\limits_{l'}\frac{\partial h_{1}}{\partial n}dl=-\oint\limits_{h_{1}}\frac{\partial h_{1}}{\partial n}dl\neq0\quad\mathbf{H}\quad C[\nabla h_{2}]=C\left[\left[\mathbf{z},\nabla h_{1}\right]\right]\neq0.$$

Таким образом, $\|\nabla h_1\|^2 = \|[\mathbf{z}, \nabla h_1]\|^2 = \nu C[\nabla h_2]$. Лемма доказана. Выберем постоянную ν так, чтобы функция h_1 удовлетворяла условию $C[[\mathbf{z}, \nabla h_1]] = 1$.

В $L_2^2(S)$ определим последовательно линеалы гладких взаимно ортогональных векторов, используя обозначения трехмерного случая [4]. Выделим во всем пространстве

линеалы гладких градиентов $\overset{\circ}{G}=\{\nabla\varphi,\ \varphi|_L=0\}$ и гладких соденоидальных векторов $\widetilde{J}=\{[\mathbf{z}.\nabla v]\}.$ Их ортогональность легко проверяется:

$$(\nabla \varphi. \left[\mathbf{z}, \nabla \psi\right]) = \int\limits_{S} \mathrm{div}(\varphi[\mathbf{z}, \nabla \psi]) ds - \int\limits_{S} \varphi \, \mathrm{div}[\mathbf{z}, \nabla \psi] ds = \int\limits_{L} \varphi \frac{\partial \psi}{\partial l} dl = 0.$$

В \tilde{J} выделим линеалы $U_1=\{\alpha\nabla h_1,\alpha=\mathrm{const}\}$ и $\tilde{J'}=\{[\mathbf{z},\nabla\psi'],\,C[\nabla\psi']=0\}$. Гармоническая функция h_1 удовлетворяет задаче (8), в силу леммы $1\,\nabla h_1=-[\mathbf{z},\nabla h_2]$ и $C[\nabla h_2]\neq 0$. Проверим ортгогональност U в $\tilde{J'}$

$$(\nabla h_1, [\mathbf{z}, \nabla \psi']) = \int_L h_1 \frac{\partial \psi'}{\partial l} dl = -\nu \oint_{l_1} \frac{\partial \psi'}{\partial l} dl = -\nu \oint_{l'} \frac{\partial \psi'}{\partial l} dl = \nu C[\nabla \psi'] = 0.$$

Далее в $\widetilde{J'}$ можно выделить линеалы $\widetilde{U'}=\{\nabla h, h-\text{однозначные гармонические функции, }C[\nabla h]=C[[\mathbf{z},\nabla h]]=0\}$ и $\mathring{\widetilde{J'}}=\{[\mathbf{z},\nabla \psi''],\psi''|_{L_j}=\lambda_j,\ \lambda_j=\text{const},\ j=0,1\}.$ Отметим, что элементы $\widetilde{U'}$ можно было записать в виде векторов $[\mathbf{z},\nabla h']$. Действительно, любая однозначная гармоническая функция h с $\nabla h\in \widetilde{U'}$ имеет сопряженную гармоническую функцию h', которая удовлетворяет уравнению $\nabla h'=[\mathbf{z},\nabla h]$ и также является однозначной $(C[\nabla h']=C[[\mathbf{z},\nabla h']]=0).$ Элементы $\mathring{\widetilde{J'}}-$ гладкие соленоидальные векторы с нулевой нормальной составляющей на границе. Так, $\frac{\partial \psi'}{\partial t}\Big|_{L}=0$ и автоматически $C[\nabla \psi'']=0.$

Ортогональность линеалов очевидна: $(\nabla h, [\mathbf{z}, \nabla \psi'']) = \int\limits_{L} h \frac{\partial \psi''}{\partial l} dl = 0.$ Наконец, в $\overset{\circ}{J'}$ вы-

делим линеалы $U_2=\{\beta\nabla h_2,\ \beta=\mathrm{const}\}$ и $\overset{\circ}{J}=\{[\mathbf{z},\nabla\varphi],\ \varphi|_L=0\}$. Гармоническая функция h_2 — решение краевой задачи (9), $\nabla h_2=[\mathbf{z},\nabla h_1]$ и $C[\nabla h_1]=0$. Линеалы U_2 и $\overset{\circ}{J}$ ортогональны:

$$(\nabla h_2, [\mathbf{z}, \nabla \varphi]) = (\nabla h_1, \nabla \varphi) = \int_L \varphi \frac{\partial h_1}{\partial n} dl = 0$$

Введем линеалы гладких потенциальных векторов $\widetilde{G}, \widetilde{G}', \widetilde{\widetilde{G}}'$

$$\widetilde{G} = \{ [\mathbf{F}, \mathbf{z}], \ \mathbf{F} \in \widetilde{J} \}, \qquad \widetilde{G}' = \{ [\mathbf{F}', \mathbf{z}], \ \mathbf{F}' \in \widetilde{J}' \}, \qquad \widetilde{\widetilde{G}'} = \{ [\mathbf{F}'_0, \mathbf{z}], \ \mathbf{F}'_0 \in \widetilde{J}' \}.$$

Подпространства, образованные замыканиями введенных выше линеалов, будем обозначать теми же символами без тильды (линеалы U_1, U_2 образуют одномерные подпространства).

Теорема 1. Имеет место следующее ортогональное разложение пространства $L^2_s(S)$:

$$L_0^2 = \mathring{G} + U_1 + U' + U_2 + \mathring{J}.$$
 (10)

Соответственно

$$L_2^2 = \overset{\circ}{G} + J, \quad J = U_1 + J', \quad J' = U' + \overset{\circ}{J'}, \quad \overset{\circ}{J'} = U_2 + \overset{\circ}{J}$$

и

$$L_2^2=G+\overset{\circ}{J},\quad G=G'+U_2,\quad G'=\overset{\circ}{G'}+U',\quad \overset{\circ}{G'}=\overset{\circ}{G}+U_1.$$

Достаточно показать, что любой гладкий вектор $\mathbf{F} \in L^2_2(S)$ представим в виде суммы проекций на введенные линеалы, а затем перейти к замыканию. Докажем, что

$$\mathbf{F} = \nabla \varphi_1 + \alpha \nabla h_1 + \nabla h' + \beta \nabla h_2 + [\mathbf{z}, \nabla \varphi_2], \tag{11}$$

где h_1,h_2 удовлетворяют соответственно задачам (8), (9), $\varphi_1|_L=\varphi_2|_L=0$ и h'- однозначная гармоническая функция с периодами $C[\nabla h']=C[[\mathbf{z},\Phi h']]=0$. Скалярный потенциал φ_1 проекции \mathbf{F} на G и потенциал φ_2 проекции \mathbf{F} , \mathbf{z} на G найдем как решения следующих краевых задач:

$$\Delta \varphi_1 = \text{div } \mathbf{F}, \quad \varphi_1|_L = 0 \quad \mathbf{M} \quad \Delta \varphi_2 = \text{div } [\mathbf{F}, \mathbf{z}], \quad \varphi_2|_L = 0.$$

В представлении (11) сумма проекций $\nabla h' + \beta \nabla h_2 + [\mathbf{z}, \nabla \varphi_2]$ должна принадлежать линеалу $\vec{J'}$. Обозначим $\mathbf{F} - \nabla \psi_1 - \alpha \nabla h_1 = \mathbf{F'}$. С другой стороны, в представлении $[\mathbf{F}, \mathbf{z}] = \nabla \varphi_2 + \beta \nabla h_1 + [\nabla h', \mathbf{z}] - \alpha \nabla h_2 + [\nabla \psi_1, \mathbf{z}]$ проекция $[\mathbf{F}, \mathbf{z}] - \nabla \varphi_2 - \beta \nabla h_1 = \mathbf{F''}$ также должна принадлежать $\vec{J'}$. Векторы $\mathbf{F'}$ и $\mathbf{F''}$ соденоцальны:

$$\operatorname{div} \mathbf{F}' = \operatorname{div} \mathbf{F} - \Delta \varphi_1 = 0, \qquad \operatorname{div} \mathbf{F}'' = \operatorname{div} [\mathbf{F}, \mathbf{z}] - \Delta \varphi_2 = 0.$$

Следовательно, можно определить периоды C [[\mathbf{F}',\mathbf{z}]] и C [[\mathbf{F}'',\mathbf{z}]]. Постоянную α подберем так, чтобы выполнялось условие C [[\mathbf{F}',\mathbf{z}]] = 0:

$$C\left[\left[\mathbf{F'},\mathbf{z}\right]\right] = \oint\limits_{l'} (\mathbf{F'},\mathbf{n}) dl = \oint\limits_{l'} (\mathbf{F},\mathbf{n}) dl - \oint\limits_{l'} \frac{\partial \varphi_1}{\partial n} dl - \alpha \oint\limits_{l'} \frac{\partial h_1}{\partial n} dl = 0.$$

Здесь $\int\limits_{y}^{z} rac{\partial h_1}{\partial n} dl = -C[
abla h_2] = -1$ и в силу соленоидальности ${f F}'$ интегрирование по контуру

l' можно заменить интегрированием по L_1 :

$$\alpha = \oint_{I_0} \frac{\partial \varphi_1}{\partial n} dl - \oint_{I_0} (\mathbf{F}, \mathbf{n}) dl.$$

Найдем постоянную β , удовлетворив требованию:

$$C\big[[\mathbf{F}'',\mathbf{z}]\big] = \oint\limits_{l'} ([\mathbf{F},\mathbf{z}],\mathbf{n}) dl - \beta \oint\limits_{l'} \frac{\partial h_1}{\partial n} dl - \oint\limits_{l'} \frac{\partial \varphi_2}{\partial n} dl = 0, \quad \beta = \oint\limits_{L_1} \frac{\partial \varphi_2}{\partial n} dl + \oint\limits_{L_1} (\mathbf{F},t) dl.$$

Вектор $\mathbf{V}=\mathbf{F}-\nabla\varphi_1-\alpha\nabla h_1-\beta\nabla h_2-[\mathbf{z},\nabla\varphi_2]$ удовлетворяет уравнениям div $\mathbf{V}=0$, div $[\mathbf{V},\mathbf{z}]=0$. Отсюда $\mathbf{V}=\nabla h'$, где h' — гармоническая функция. Покажем, что h' — однозначная функция:

$$C[[\mathbf{z}, \nabla h']] = -C[[\mathbf{F}', \mathbf{z}]] + \beta C[\nabla h_1] + C[\nabla \varphi_2] = 0$$

И

$$C[\nabla h'] = -C[[\mathbf{F}'', \mathbf{z}]] - \alpha C[\nabla h_1] - C[\nabla \varphi_1] = 0.$$

Здесь $C[\nabla \varphi_1] = C[\nabla \varphi_2] = 0$ в силу граничных условий φ_1 и φ_2 . Таким образом, $\nabla h' \in \widetilde{U}'$ и теорема доказана.

Рассмотрим область S общего вида. Пусть L_0 — внешний контурь, L_1,\ldots,L_N — внутренние контуры, ограничивающие область $S,a\,l_1,\ldots,l_N$ — контуры типа l' Разложение пространства $L_2^2(S)$ получаем аналогичным образом. Все сформулированные утверждения справедливы для (N+1)-связной области, но только U_1-N -мерное подпространство векторов вида $\alpha_1 \nabla h_{11} + \cdots + \alpha_N \nabla h_{1N}$, где $h_{1t}-$ гармонические функции, удовлетвориющие краевым задачам

$$\Delta h_{1i} = 0$$
, $h_{1i}|_{L_j} = \delta_{ij}$, $i = 1, ..., N$, $j = 0, ..., N$. (12)

 U_2-N -мерное подпространство векторов вида $\beta_1 \nabla h_{21} + \cdots + \beta_n \nabla h_{2N}$, где $\nabla h_{2i} = [\mathbf{z}, \nabla h_{1i}]$ и h_{2i} — многозначные гармонические функции, удовлетворяющие условиям $\frac{\partial}{\partial n} h_{2i} \Big|_{L} = 0$, $C^i[\nabla h_{2i}] \neq 0$. Здесь период $C^j[\nabla h_{2j}]$ есть циклическая постоянная h_{2i} при обходе по контуру l_i . В определениях линеалов J^i и \tilde{U}^i требование обращения в нуль накладывается на периоды Градиентов по всем контурмам l_i .

Системы функций $\{1,h_{11},\dots,h_{1N}\}$ и вектор-функций $\{\nabla h_{1i}\}_1^N$ линейно независимы в S. Соответственно линейно независимы системы $\{[\mathbf{z},\nabla h_{1i}]\}_1^N$ и $\{1,h_{21},\dots,h_{2N}\}$. Методом оргогонализации Пильберта – Шмидта преобразуем системы $\{1,h_{21},\dots,h_{2N}\}$ и $\{\nabla h_{1i}\}_1^N$ в ортонормированные системы $\{\psi_0,\psi_{01},\dots,\psi_{0N}\}$ и $\{\nabla u_i\}_1^N$ пространств $L_2(S)$ и $L_2^2(S)$ соответственно.

На основании разложения (10) выделим в пространстве $L^2_2(S)$ два ортонормированных базиса. Пусть $\{\varkappa_1^2\}_1^\infty$, $\{\gamma_1^2\}_0^\infty$ — собственные значения, а $\{\varphi_i(x,y)\}_1^\infty$. $\{\psi_0,\psi_{01}(x,y),\dots,\psi_{0N}(x,y)\} \cup \{\psi_i(x,y)\}_2^\infty$ — полные в $L_2(S)$, ортонормированные системы вещественных собственных функций оператора Лапласа — Δ , удовлетворяющие соответственно спектральным задачам Дирихле и Неймана:

$$\Delta \varphi_i + \varkappa_i^2 \varphi_i = 0$$
, $\varphi_i|_L = 0$, (13)

$$\Delta \psi_i + \gamma_i^2 \psi_i = 0, \quad \frac{\partial \psi_i}{\partial n}\Big|_{I} = 0.$$
 (14)

Собственному значению $\gamma_0=0$ отвечают собственные функции $\psi_0\equiv {\rm const}$ и многозначные гармонические функции $\{\psi_{0z}\}_1^N\left(\frac{\partial}{\partial n}\psi_{0z}\right|_z=0\right)$.

Лемма 2. Каждая из систем вектор-функций

$$\left\{\frac{1}{\varkappa_{i}}\nabla\varphi_{i}\right\}_{1}^{\infty} \cup \left\{\nabla u_{i}\right\}_{1}^{N} \cup \left\{\frac{1}{\gamma_{i}}[\nabla\psi_{i}, \mathbf{z}]\right\}_{1}^{\infty},$$
(15)

$$\left\{\frac{1}{\gamma_i}\nabla \psi_i\right\}_1^{\infty} \cup \left\{\left[\mathbf{z}, \nabla u_i\right]\right\}_1^{N} \cup \left\{\frac{1}{\varkappa_i}\left[\mathbf{z}, \nabla \varphi_i\right]_1^{\infty}\right\}$$
(16)

образует ортонормированный базис в пространстве $L^2_2(S)$.

Докажем полноту системы (16) в $L_2^2(S)$, использовав разложение $L_2^2=G'+U_2+\overset{\circ}{J}$ и выделив полные системы вектор-функций в подпространствах G'. $\overset{\circ}{\square}$

Зададим в $L^2_2(S)$ оператор $A\colon A\mathbf{F}=-\nabla\operatorname{div}\mathbf{F}$, определив его на плотном в $L^2_2(S)$ множестве \mathcal{D}_A вектор-функций \mathbf{F} , дважды непрерывно дифференцируемых в области S и удовлетворяющих на границе условию $(\mathbf{F},\mathbf{n})\big|_L=0$. Оператор A является самосопряженным:

$$\forall \mathbf{F}, \mathbf{G} \in \mathcal{D}_A \quad (A\mathbf{F}, \mathbf{G}) - (\mathbf{F}, A\mathbf{G}) = \int\limits_L \mathrm{div}\, \mathbf{F}(\mathbf{G}, \mathbf{n}) dl - \int\limits_L \mathrm{div}\, \mathbf{G}(\mathbf{F}, \mathbf{n}) dl = 0.$$

Собственным значениям $\gamma_i^2 \neq 0$ оператора A отвечают собственные функции $\nabla \psi_i$, Действительно, с учетом (14) имеем $A \nabla \psi_i = -\nabla (\Delta \psi_i) = \gamma_i^2 \nabla \psi_i, i=1,2,\dots$. Собственному значению $\gamma_0 = 0$ отвечают собственные функции $\{[z, \nabla u_j]\}_i^N$ и $\{[z, \nabla \varphi_k]\}_i^\infty$. Следовательно, $\{\nabla \psi_i\}_1^\infty \subset G'$ и периоды $C^j[\nabla \psi_i] = 0, j=1,\dots,N$.

Система $\left\{\frac{1}{\varkappa_k} [\mathbf{z}, \nabla \varphi_k]\right\}_0^{\infty}$ образует ортонормированный базис в подпространстве \mathring{J} [3]. В G' плотно множество гладких потенциальных векторов: $\{\nabla \psi, (\partial/\partial n)\psi|_L = 0, \ C^j[\nabla \psi] = 0, \ j = 1,\dots,N\}$, откуда ортонормированная система $\left\{\frac{1}{\infty}\nabla \psi_i\right\}_0^{\infty}$ полна в подпространстве G' [3].

Каждой вектор-функции \mathbf{F}_i системы (16) соответствует вектор-функция $[\mathbf{F}_i, \mathbf{z}]$ системы (15) и наоборот. Система (15) образует ортонормированный базис в $L_2^2(S)$, отвечающий разложению $L_2^2 = \overset{\circ}{G} + U_1 + J'$. Лемма доказана.

3. Система модовых состояний. В свободном волноводе ($\mathcal{I}=0$, $\rho=0$) построим счетную систему собственных состояний: поперечных магнитных ($H_z=0$), поперечных электрических ($E_z=0$) и чисто плоских ($H_z=E_z=0$) полей. Требование разделения переменных (x,y) и (z,t) предопределяет структуру специальных решений [1, 2]: модовых E-полей.

$$\mathcal{E}_{E}^{i} = a_{i}(z, t)\nabla\varphi_{i}(x, y) + \mathbf{z}g_{i}(z, t)\varphi_{i}(x, y), \quad \mathcal{H}_{E}^{i} = b_{i}(z, t)[\mathbf{z}, \nabla\varphi_{i}(x, y)],$$
 (17)

модовых Н-полей

$$\mathcal{E}_{H}^{i} = e_{i}(z, t)[\nabla \psi_{i}(x, y), \mathbf{z}], \quad \mathcal{H}_{H}^{i} = h_{i}(z, t)\nabla \psi_{i}(x, y) + \mathbf{z}f_{i}(z, t)\psi_{i}(x, y)$$
 (18)

и нуль-модового поля [6]

$$\mathcal{E}_0 \equiv 0$$
, $\mathcal{H}_0 = \mathbf{z} f_0(z, t) \psi_0$, (19)

i = 1, 2, ... — номер модового поля соответствующего типа.

В отличие от односвязной области в случае многосвязного сечения S существуют чисто поперечные поля [7] вида

$$\mathcal{E}_{T}^{i} = v_{i}(z, t)\nabla u_{i}(x, y), \quad \mathcal{H}_{T}^{i} = w_{i}(z, t)[\mathbf{z}, \nabla u_{i}(x, y)], \quad i = 1, 2, ..., N,$$
 (20)

которые назовем модовыми Т-полями.

Подставив вектор-функции (17) – (20) в однородную систему Максвелла с целью отделить переменные (x,y) от (z,t), получим следующие утверждения [1,2].

Скалярные потенциалы $\varphi_i(x,y)$, $\psi_i(x,y)$ должны быть решениями спектральных задач Дирихле (13) и Неймана (14) соответственно. Нуль-модовое поле отвечает собственной функции $\psi_0 \equiv \text{const}$ и собственному значению $\gamma_0 = 0$ спектральной задачи (14).

Функции u_i в (20) должны быть гармоническими в области S, постоянными на границе $L=\bigcup_{j=0}^s L_j$. В односвязной области такие функции тождественно равны константе, и их градиенты не порождают модовых T-полей. В многосвязной области S существуют гармонические функции u(x,y), принимающие на контурах L_j различные постояные значения ν_s . Любая такая функция может быть представлена в виде $u=\sum_{j=0}^s \nu_j h_{1j}$. Здесь $\{h_{1j}(x,y)\}_1^N$ — гармонические функции, удовлетворяющие краевым задачам (12). а $h_{10}=1-\sum_{j=1}^s h_{1j}$. Определим в (20) скалярные потенциалы u_i как решения следующих краевых задача:

$$\Delta u_i = 0$$
, $u_i|_{I_0} = 0$, $u_i|_{I_1} = c_{ii}$, $i, j = 1, ..., N$,

гле постоянные c_{ij} вычисляются в соответствии с процессом преобразования системы $\{\nabla u_i\}_i^N$ в ортонормированную систему $\{\nabla u_i\}_i^N$ методом ортогонализации Гильберта – Шмидта.

Функции переменных z,tв (17), (18) должны удовлетворять соответственно системам уравнений

$$\frac{\partial}{\partial t} D_{\parallel} g_i + \varkappa_i^2 b_i = 0, \qquad \frac{\partial}{\partial t} D a_i + \frac{\partial b_i}{\partial z} = 0,$$

$$\frac{\partial}{\partial t} B b_i + \frac{\partial a_i}{\partial z} = g_i, \qquad \frac{\partial}{\partial z} D_{\parallel} g_i - \varkappa_i^2 D a_i = 0;$$

$$\frac{\partial}{\partial t} D_{\parallel} f_i + \varkappa_i^2 c_i = 0, \qquad \frac{\partial}{\partial t} D_{\parallel} f_i - \varrho_i = 0.$$
(21)

$$\frac{\partial}{\partial t}B_{\parallel}f_{i} + \gamma_{i}^{2}e_{i} = 0,$$
 $\frac{\partial}{\partial t}Bh_{i} + \frac{\partial e_{i}}{\partial z} = 0,$

$$\frac{\partial}{\partial t}De_{i} + \frac{\partial h_{i}}{\partial z} = f_{i},$$

$$\frac{\partial}{\partial z}B_{\parallel}f_{i} - \gamma_{i}^{2}Bh_{i} = 0.$$
(22)

Нуль-модовое поле существует в волноводе, если и только если

$$\frac{\partial}{\partial t}B_{\parallel}f_0 = 0, \qquad \frac{\partial}{\partial z}B_{\parallel}f_0 = 0,$$
 (23)

что эквивалентно условию $B_\parallel f_0(z,t) \equiv {\rm const.}$ Функции v_i,w_i T-поля должны удовлетворять системе

$$\frac{\partial}{\partial t}Dv_i + \frac{\partial w_i}{\partial z} = 0, \quad \frac{\partial}{\partial t}Bw_i + \frac{\partial v_i}{\partial z} = 0.$$
 (24)

Предположим, что для блоков D, B индукционных операторов (5) существуют линейные преобразования $\mathfrak{L}_E, \mathfrak{L}_H$ такие, что

$$\mathfrak{L}_E D = D_E \frac{d}{dz}, \qquad \mathfrak{L}_H B = B_H \frac{d}{dz}.$$
 (25)

Это несколько обобщает класс индукционных операторов из [1,3], представимых в виде $D=D_0+D_1\frac{d}{dz}, B=B_0+B_1\frac{d}{dz}$, где D_0,B_0 — обратимые операторы. Достаточно положить $\mathfrak{L}_E=\frac{d}{dz}D_0^{-1}, D_E=I+\mathfrak{L}_ED_1$ и $\mathfrak{L}_H=\frac{d}{dz}B_0^{-1}, B_H=I+\mathfrak{L}_HB_1$. Здесь в качестве D_0,B_0 обычно выбирают операторы умножения на функции проницаемостей $\varepsilon(z,t),\mu(z,t)$, а преобразования D_1,B_1 учитывают дисперсию среды в виде интегральных операторов с разностными ядрами (I,3].

Исключив из системы (21) функции a_i, b_i с помощью (25), получим для E-поля уравнение относительно функции $g_i(z,t)$:

$$D_E \frac{\partial}{\partial t} B \frac{\partial}{\partial t} D_{\parallel} g_i + \left(\varkappa_i^2 D_E - \mathfrak{L}_E \frac{\partial}{\partial z} D_{\parallel} \right) g_i = 0.$$

Аналогично для H-поля получим уравнение относительно функции f_i :

$$B_H \frac{\partial}{\partial t} D \frac{\partial}{\partial t} B_{\parallel} f_i + \left(\gamma_i^2 B_H - \mathfrak{L}_H \frac{\partial}{\partial z} B_{\parallel} \right) f_i = 0.$$

Система (24) для T-поля в случае стационарной среды сводится с учетом (25) к уравнению относительно $w_i(z,t)$:

$$D_E B \frac{\partial^2}{\partial t^2} w_i - \mathfrak{L}_E \frac{\partial}{\partial z} w_i = 0.$$

Теоремы существования и единственности модовых полей для различных классов индукционных операторов приведены в [1,3].

4. Разложение поля по модовому базису. Рассмотрим пространство $L^3_2(S)$ трехмерных вектор-функций от переменных x, y, компоненты которых квапратично суммируемы в многосвязной плоской области $S\subset R^2$. На основании леммы 2 в $L^3_2(S)=L^2_2(S)\oplus L_2(S)$ можно выделить ортогональные базисы

$$\{\nabla \varphi_k, [\nabla \psi_k, \mathbf{z}], \mathbf{z} \varphi_k\}_1^{\infty} \cup \{\nabla u_k\}_1^N,$$
 (26)

$$\mathbf{z}\psi_0 \cup \{[\mathbf{z}, \nabla \varphi_k], \nabla \psi_k, \mathbf{z}\psi_k\}_1^N \cup \{[\mathbf{z}, \nabla u_k], \mathbf{z}\psi_{0k}\}_1^N.$$
 (27)

Рассмотрим гладкие решения неоднородной задачи (1) – (5). При каждом (z,t) разложим $\mathcal E$ в ряд Фурье по базису (26) в пространстве $L^3_2(S)$, $\mathcal H$ — по базису (27), сохранив для коэффициентов Фурье обозначения соответствующих функций от z,t в модовых полях (17) – (20):

$$\mathcal{E} = \sum_{k=1}^{\infty} {a_k \nabla_{\perp} \varphi_k \choose g_k \varphi_k} + \sum_{k=1}^{\infty} {e_k [\nabla \psi_k, \mathbf{z}]_{\perp} \choose 0} + \sum_{k=1}^{N} {v_k \nabla_{\perp} u_k \choose 0},$$

$$\mathcal{H} = \sum_{k=1}^{\infty} {b_k [\mathbf{z}, \nabla \varphi_k]_{\perp} \choose 0} + \sum_{k=1}^{\infty} {h_k \nabla_{\perp} \psi_k \choose f_k \psi_k} + \sum_{k=1}^{N} {w_k [\mathbf{z}, \nabla u_k]_{\perp} \choose 0} + \mathbf{z} f_0 \psi_0,$$
(28)

$$\begin{split} a_k(z,t) &= \frac{1}{\varkappa_k^2} (\mathbf{E}, \nabla \varphi_k)_{L_2^3}, \qquad b_k(z,t) = \frac{1}{\varkappa_k^2} (\mathbf{H}, [\mathbf{z}, \nabla \varphi_k])_{L_2^3}, \\ e_k(z,t) &= \frac{1}{\gamma_k^2} (\mathbf{E}, [\nabla \psi_k, \mathbf{z}])_{L_2^3}, \qquad h_k(z,t) = \frac{1}{\gamma_k^2} (\mathbf{H}, \nabla \psi_k)_{L_2^3}, \\ w_k(z,t) &= (\mathbf{E}, \nabla u_k)_{L_2^3}, \qquad w_k(z,t) = (\mathbf{H}, [\mathbf{z}, \nabla u_k])_{L_2^3}, \\ q_k(z,t) &= (E_{z}, \varphi_k)_{L_2}, \quad f_k(z,t) = (H_{z}, \psi_k)_{L_2}, \quad f_0(z,t) = (H_{z}, \psi_0)_{L_2}, \end{split}$$

(Символ " \bot " означает вложение вектора из $R^2 \oplus 0 \subset R^3$ в R^2 .)

Заметим, что векторы напряженностей \mathcal{E} , \mathcal{H} электрического и магнитного полей являются однозначными функциями, а значит, в разложении компоненты H_z по базису $\{\psi_0,\psi_0,\dots,\psi_{0N}\} \cup \{\psi_k\}_1^\infty$ коэффициенты Фурье при многозначных функциях $\{\psi_0i\}_1^N$ положим равными нулю: $(H_z,\psi_0)=0$, $i=1,\dots,N$.

Выведем эволюционные уравнения, связывающие коэффициенты Фурье. Предваритныю для функций сторонних источников ρ и $\mathcal{I}=\mathbf{J}+\mathbf{z}J_z$ введем следующие обозначения:

$$\begin{split} j_k &= (J_z, \varphi_k)_{L_2}, \qquad \rho_k = (\rho, \varphi_k)_{L_2}, \qquad j_k^E = \frac{1}{\varkappa_k^2} (\mathbf{J}, \nabla \varphi_k)_{L_2^3}, \\ j_k^H &= \frac{1}{\gamma_k^2} (\mathbf{J}, [\nabla \psi_k, \mathbf{z}])_{L_2^3}, \qquad j_k^T = (\mathbf{J}, \nabla u_k)_{L_2^3}. \end{split}$$

Спроектируем левые и правые части первого из векторных равенств (1) на элементы базиса (26), второго векторного уравнения — на элементы базиса (27), скалярные равенства (2) — на базисные функции $\{\psi_k\}_{i=1}^{\infty}$ $\{\psi_0, \psi_{01}, \dots, \psi_{0N}\} \cup \{\psi_k\}_{i=1}^{\infty}$ соответственно. После несложных преобразований с учетом граничных условий (3) и надлежащей гладкости решений получим следующие системы уравнений относительно коэффициентов Фурье [6]:

$$\frac{\partial}{\partial t}D_{\parallel}g_k + \varkappa_k^2 b_k = -j_k, \qquad \frac{\partial}{\partial t}Da_k + \frac{\partial b_k}{\partial z} = -j_k^E, \tag{29}$$

$$\frac{\partial}{\partial t}Bb_k + \frac{\partial a_k}{\partial z} = g_k, \qquad \frac{\partial}{\partial z}D_{||}g_k - \varkappa_k^2 Da_k = \rho_k, \quad k = 1, 2, \dots,$$

$$\frac{\partial}{\partial t}B_{\parallel}f_{k}+\gamma_{k}^{2}e_{k}=0, \qquad \frac{\partial}{\partial t}Bh_{k}+\frac{\partial e_{k}}{\partial z}=0, \tag{30}$$

$$\frac{\partial}{\partial t}De_k + \frac{\partial h_k}{\partial z} = f_k - j_k^H, \qquad \frac{\partial}{\partial z}B_\parallel f_k - \gamma_k^2 B h_k = 0, \quad k = 1, 2, \dots \,,$$

$$\frac{\partial}{\partial t}B_{\parallel}f_0 = 0, \quad \frac{\partial}{\partial z}B_{\parallel}f_0 = 0,$$
(31)

$$\frac{\partial}{\partial t}Dv_k + \frac{\partial w_k}{\partial z} = -j_k^T, \qquad \frac{\partial}{\partial t}Bw_k + \frac{v_k}{\partial z} = 0, k = 1, 2, \dots, N.$$
(32)

В случае отсутствия сторонних источников ($\mathcal{I}=0$, $\rho=0$) системы (29) – (32) становятся однородными и совпадают соответственно с уравнениями в (21) – (24) для одноменных функций модовых полей (17) – (20). Следовательно, слагаемые разложения являются модовыми. Разложение (28) произвольного гладкого решения \mathcal{E} , \mathcal{H} однородной системы Максеелла по базисам (26), (27) соответственно есть разложение поля по модовому базису (17) – (20):

$$\begin{pmatrix} \boldsymbol{\mathcal{E}} \\ \boldsymbol{\mathcal{H}} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\mathcal{E}}_0 \\ \boldsymbol{\mathcal{H}}_0 \end{pmatrix} + \sum_{k=1}^{\infty} \begin{pmatrix} \boldsymbol{\mathcal{E}}_E^k \\ \boldsymbol{\mathcal{H}}_E^k \end{pmatrix} + \sum_{k=1}^{\infty} \begin{pmatrix} \boldsymbol{\mathcal{E}}_H^k \\ \boldsymbol{\mathcal{H}}_H^k \end{pmatrix} + \sum_{k=1}^{N} \begin{pmatrix} \boldsymbol{\mathcal{E}}_T^k \\ \boldsymbol{\mathcal{H}}_T^k \end{pmatrix}.$$

При фиксированных значениях переменных z,t ряд сходится в норме пространства $L^6_2(S) = L^3_2(S) \oplus L^3_2(S).$

В общем случае, когда $\mathcal{I} \neq 0$, $\rho \neq 0$, решение неоднородной системы (29), (30), (32) представляется в виде суммы решения однородной системы (21), (22), (24) и специального решения неоднородной системы с иулевыми начальными условиями. Таким образом поле в волноводе с неоднородной нестационарной средой (4), (5) раскладывается в ряд по системе модовых состояний, где каждая k-я мода является суммой модового поля соответствующего типа и некоторого вынужденного состояния такой же модовой структуры.

Аналогичные вопросы для волновода с односвязным поперечным сечением рассмотрены ранее в [1-3,6]. Автор выражает благодарность А.Г. Руткасу за внимание к статье.

- 1. *Попова Е. В., Руткас А. Г.* Модовые разложения полей в волноводе с неоднородной средой // Праці УНДІРТ. 1997. № 2. (10). С. 54 59.
- Руткас А. Г. Модовые поля в волноводе со слоистой диспергирующей средой. Харьков, 1987. 34 с.

 (Препринт / АН УССР. Ин-т радиоэлектроники; № 360).
- Попова Е. В. Существование и единственность базисных решений электродинамической системы // Вести. Харьков. ун-та. — 1999. — № 445. — С. 167 – 178.
- Бысоский Э. Б., Смирнов Н. В. Об ортогональном разложении пространства вектор-функций, квадратично суммируемых по заданиюй области, и операторах векторного анализа // Тр. Мат. ин-та АН СССР. – 1960. – 59. – С. 5 – 36.
- Вейль Г. Избранные труды. Математика. Теоретическая физика. М.: Наука, 1984. 511 с.
- Попова Е. В. Разложение поля в волноводе с неоднородной нестационарной средой по системе модовых состояний. — Харьков, 1996. — 29 с. — Деп. в ГНТБ Украины, № 1955-Ук96.
- Третьяков О.А. Эволюционные волноводные уравнения // Радиотехника и электроника. 1989. 34. № 5. — С. 917 – 926.

Получено 06. 01. 99