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In the paper, efficient conditions are found guaranteeing that every solution to the problem
W (1) = Lu)(t), ula) > hu)

is nonpositive, where £ : C([a,b];R) — L([a,b];R) and h : C([a,b];R) — R are linear bounded oper-
ators. The results obtained are very useful for the investigation of the question on solvability and unique
solvability of the nonlocal boundary-value problems for the first order functional differential equations in
both linear and nonlinear cases.

3HatideHo egheKMUBHI yMOBU 045 MO20, WO KOXCeH PO36°A30K 3a0ayi

u'(t) = L(u)(t), u(a) = h(u),

oel : C([a,b];R) — L([a,b;R) h : C([a,b];R) — R — ainitini o6mexceni onepamopu, 6ys He0ooam-
Hum. OMPUMAHI pe3yabmamu € KOPUCHUMU 045 BUBHEHHA 3a0a4i PO38’A3HOCMI ma ICHYB8AHHA €OUHO20
PO38’A3KY HEAOKAAbHUX 2PAHUYHUX 3a0a4 04f PYHKUIOHAAbHO-OUpEPEeHUIAAbHUX PIBHAHbL NEPULO20
HOPAOKY AK 8 AIHILHOMY, MAK | 8 HEATHILIHOMY 8UNAOKAX.

1. Introduction and notation. On the interval [a, b], we consider the functional differential
inequality

W (t) > Lu)(t), (1.1)

where ¢ : C([a,b];R) — L([a,b];R) is a linear bounded operator. By a solution to inequality

(1.1) we understand an absolutely continuous function u : [a,b] — R satisfying inequality (1.1)
almost everywhere on the interval [a, b].

© A. Lomtatidze, Z. Oplustil, J. Sremr, 2009
ISSN 1562-3076. Heainituni koausanna, 2009, m. 12, N4 461



462 A. LOMTATIDZE, Z. OPLUSTIL, J. SREMR

Theorems on differential inequalities play a very important role in the theory of differen-
tial equations. For example, well-known Gronwall’s inequality is also a corollary of a certain
theorem on differential inequalities. Various types of differential inequalities are studied in the
literature (see, e.g., [1,3-6, 8,9, 11, 13, 15-17]). In the present paper, effective sufficient con-
ditions are found guaranteeing that every solution to inequality (1.1) satisfying the condition

u(a) > h(u) (1.2)

with a linear bounded functional & : C([a, b]; R) — R is nonpositive on the interval [a, b]. State-
ments obtained here can be used in the investigation of the question on solvability and unique
solvability of the nonlocal boundary-value problems for functional differential equations in
both linear and nonlinear cases.

In order to simplify the formulation of the main results we introduce the following defini-
tion.

Definition 1.1. Let h € F,,. An operator £ € Ly, is said to belong to the set Vag(h) (resp.
Vaﬁ(h) ) if every solution to the problem (1.1), (1.2) is nonpositive (resp. nonnegative).

As it was mentioned above, the aim of the paper is to find conditions guaranteeing the
inclusions ¢ € V. (k) and £ € V. (h) to hold. In the case where the functional £ is given by the

formula
df

h(v) = Av(b) for v e C([a,b;R)
with A > 0, the sets XN/(;g(h) and ‘7(1; (h) are described in detail (see [7, 8]). In [14], the case where
h € PFy is considered. However, a general case of h has not been studied yet.
We shall suppose throughout the paper that the functional h € Fj;, is defined by the formula

h(v) £ Av(b) + ho(v) — hi(v) for v € C([a,b);R), (1.3)

where A > 0 and hg, hy € PF,. There is no lost of generality in assuming this, because an
arbitrary linear bounded functional can be represented in this form.

The following notation is used in the sequel:

(1) N is the set of all natural numbers, R is the set of all real numbers, Ry = [0, +ool. If
z € R then we put

ol = EEE g 2 L

(2) C(Ja,b];R) is the Banach space of continuous functions v : [a,b] — R endowed with
the norm ||v||c = max{|v(t)| : t € [a,]]}.

(3) C([a, b]; D), where D C R, is the set of absolutely continuous functions v : [a,b] — D.

(4) L([a, b]; R) is the Banach space of Lebesgue integrable functions p : [a,b] — R endowed
with the norm ||p||, = f; Ip(s)|ds.

(5) L([a,b]; D) = {p € L([a,b];R) : p : [a,b] — D}, where D C R.

(6) C([a,b]; D) = {v € C([a,b];R) : v : [a,b] — D}, where D C R.

(7) Ly is the set of linear bounded operators ¢ : C([a,b];R) — L([a,b];R), Py, is the set of
operators ¢ € L,, mapping the set C([a, b]; R ) into the set L([a, b]; R,).

(8) Fyp is the set of linear bounded functionals 4 : C([a,b];R) — R, PF,; is the set of
functionals h € F,;, mapping the set C([a, b]; R, ) into the set R...
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NONPOSITIVE SOLUTIONS TO A CERTAIN FUNCTIONAL DIFFERENTIAL INEQUALITY 463

Definition 1.2. Let ty € [a,b]. We say that { € L, is a ty Volterra operator if, for arbitrary
a1 € la,to], b1 € [to,b], a1 # by, and v € C([a,b];R) with the property

v(t) =0 for t € a1, bi],
the relation
Lv)(t) =0 for ae. t € lay,bi]
holds.

2. Preliminary remarks. Recall that we suppose ¢ € L,, and h € F,. The following two
assumptions are natural:

(A) If (1) = 1 then the operator ¢ is supposed to be nontrivial in the sense that the
condition ¢(1) # 0 holds.

(B) h # 0, where the functional % is defined by the formula

h(v) = h(v) —v(a) for v € C([a,b];R).

Remark 2.1. 1t follows from Definition 1.1 that if / € Vag(h) (resp. ¢ € ‘Z;g(h)) then the
homogeneous problem

W (1) = (u)(t), ula) = h(u) 2.1)

has only the trivial solution. Therefore, the inclusion ¢ € ‘7@;(]1) (resp. £ € XM/ajZ(h)) guarantees
the unique solvability of the problem

u'(t) = L(u)(t) +qt), wu(a) = h(u)+c (2.2)

for every ¢ € L([a,b];R) and ¢ € R. This fact follows from the Fredholm property of problem
(2.2) (see, e.g., [2, 10]; in the case, where the operator / is strongly bounded, see also [1, 12,
18]). Moreover, under the condition ¢ € V, (h) (resp. ¢ € V1 (h)), the unique solution to the
problem (2.2) is nonpositive (resp. nonnegative) whenever ¢ € L([a,b];R;) and ¢ € Ry.

Remark 2.2. 1t is easy to verify that the condition (—F,;) N f/a;(h) # @ implies
h(1) > 1. (2.3)

Indeed, if ¢ € (—Py) N Vag(h) and h(1) < 1, then the function v = 1 is a positive solution to

the problem (1.1), (1.2), which contradicts the inclusion ¢ € 17&; (h).
On the other hand if, together with (2.3), the inequality ho(1) < 1 holds then the zero
operator belongs to the set V. (h). Indeed, let u € C([a, b]; R) satisfy (1.2) and

u'(t) >0 for ae. t € [a,b]

Then it is clear that
u(a) < u(t) < u(b) for t € [a,b]. (2.4)

By virtue of condition (2.4) and the assumptions hg, hy € PFy, it follows from (1.2) that
u(a) = Au(b) + ho(u) — hi(u) = u(a)ho(1) + (A — ha(1)) u(b).
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Taking now condition (2.4) and the assumption /(1) < 1 into account, we get
(A =R (1)u(b) < (1 —=ho(1)) u(a) < (1 —ho(1)) u(b),

and thus
(h(1) = 1)u(b) < 0.
The last inequality and (2.3) result in u(b) < 0. Hence, condition (2.4) guarantees u(t) < 0 for
t € [a,b],and thus 0 € V_ (h).
We have shown that condition (2.3) is necessary for the validity of the relation (—FPy) N

ﬂf/a;(h) # @ and conditions (2.3) and ho(1) < 1 are sufficient for the inclusion 0 € V, (h) to
hold.

Definition 2.1. An operator { € Ly is said to belong to the set Syp(a) (resp. Squp(b)) if every
solution u to inequality (1.1), which satisfies u(a) > 0 (resp. u(b) < 0), is nonnegative (resp.
nonpositive).

Remark 2.3. The sets S,;(a) and S, (b) are investigated in [6].

3. Auxiliary statements. In this section, auxiliary statements are given. More precisely, pro-
perties of the sets U, and ﬁ;g(h) are studied that are very useful in the investigation of the
validity of the desired inclusion ¢ € X~/a;(h).

3.1. Formulation of results. We first formulate all the results, the proofs are given in the next
section.

Definition 3.1. Let h € Fy,. An operator { € Ly is said to belong to the set U, if the
problem (1.1), (1.2) has no nontrivial nonnegative solution.

Remark 3.1. 1t follows immediately from Definitions 1.1 and 3.1 that Vag(h) C U, (h).

Since the set U, (h) is wider than IN/a; (h), conditions for the inclusion ¢ € U, can be derived
relatively easy. In Theorem 3.1 (Theorem 3.2), the case ¢ € P,, (—¢ € P,) is considered,
whereas Theorems 3.3 and 3.4 concern the case where ¢ = £y — {1 with £y, {1 € Py.

Theorem 3.1. Let ¢ € Py, and
hi(1) < A (3.1)

Let, moreover, there exist a function y € C ([a, b); Ry) satisfying

v (t) < ly)(t) for ae t € [a,b], (3.2)
(@) < h(v). (3.3)

Then t € U, (h).

Remark 3.2. 1f { € P,, h(1) > 1, and h;(1) < A then the operator ¢ belongs to the set
U_,(h) without any additional assumptions. Indeed, since the operator ¢ is supposed to be
nontrivial in the case where h(1) = 1, the function

~y(t) = 1—|—/€(1)(s)ds for t € [a,b]

a
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NONPOSITIVE SOLUTIONS TO A CERTAIN FUNCTIONAL DIFFERENTIAL INEQUALITY 465
satisfies the conditions (3.2) and (3.3).
Theorem 3.2. Let —¢ € Py, and
h(1) > 1, he(1) < 1. (34)

Then ¢ € U, (h) if and only if there exists a function vy € C(la, b];]0, +o00) satisfying the condi-
tions (3.2) and (3.3).

Theorem 3.3. Let ¢ = (g — {1, where £y, {1 € Py, and

h(1) <1, hi(1) < A\ (3.9)
If, moreover,
b
/51(1)(3) ds < (A — hy(1)) min {1 i} (3.6)
and
b
(1 — ho(1)) min {1, /1\}
lo(1)(s) ds -1, 3.7
a/ ol)(s)ds > (A= hi(1))min {1, }} — f l1(1)(s) ds @7

thent € U, (h).
Theorem 3.4. Let ¢ = £y — {1, where £y, 01 € Py, and

h(1) > 1, m(l) < A (3.8)

Let, moreover, the inequality (3.6) hold and

b b
/60(1)(5) ds > w (/61(1)(5) ds) ) (3.9)

a a

where
((y+hi(1)) (1= $h(1))
1_%h1(1)jy — (ho(1) + X —1)
if A>1, < (h(1) _1)1(+h0(f)“( )),
(y+ (D) (1 - 1h1 (1 1)
e ) >( m)
$hy
w(y) = gzl A— 1+ho( ) (3.10)
(y+ 52 + 1h1(1)) (A — ha(1)) ,
A—hi(1) —y _XO()
N (16 R [E N )
: il :
(1= At ) A=m(1) olt)
Ao <_h<0>() D= m(1)
\ if A<1, y> ol !
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Then t € U, (h).
Now we introduce the following definition.

Definition 3.2. Let h € Fy,. An operator { € L, is said to belong to the set ﬁ;rb(h) if there is
no nonpositive solution u to inequality (1.1) satisfying the condition

u(a) > h(u). (3.11)

Remark 3.3, 1t is clear that U, (0) = Ly and V5 (h) C U (h).

Theorem 1. Let { € Py, and h € PFy, be such that h(1) < 1. If there exists a function
v € C([a,b];]0,400]) satisfying the conditions

v (t) > L(y)(t) for ae t € [a,b], (3.12)
v(a) > h(v), (3.13)

then ( € ﬁ%(h)
3.2. Proofs. We first recall a result established in [6].

Lemma 3.1 ([6], Theorem 1.1). Let ¢ € Py, Then { € Sy(a) if and only if there exists
a function v € C([a,b];]0, 400 satisfying condition (3.12).

Proof of Theorem 3.1. et u be a nonnegative solution to the problem (1.1), (1.2). We shall
show that v = 0. Since ¢ € P,; and u is a nonnegative function, it follows from (1.1) that

0 <wu(a) <u(t) <ud) for te la,b. (3.14)

Suppose that u(b) > 0. Then condition (1.2), in view of (3.1), (3.14), and the assumptions
ho, h1 € PF,, results in

u(a) > Au(b) + ho(u) — hi(u) > (A= hy(1))u(b) > 0.
Consequently, the relation (3.14) implies
u(t) >0 for t € [a,b]. (3.15)

Put
v(t) = ru(t) —~(t) for t € a,b,

r:max{wt): te [a,b]}.

where

u(t)
According to (3.3), (3.15), and the assumption v € C([a, b]; R,.), we get

r> 0. (3.16)
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It is obvious that
v(t) >0 for t € a,b (3.17)

and there exists ¢y € [a, b] such that
v(tg) = 0. (3.18)

Taking now (1.1), (3.2), (3.16), (3.17), and the assumption ¢ € P,; into account, we obtain
V'(t) > £(v)(t) > 0 for ae. t € [a,b]. (3.19)
Therefore, relation (3.19), on account of (3.17) and (3.18), yields

0=wv(a) <v(t) <wv) for tE€ [a,b]. (3.20)

However, using (1.2), (3.1), (3.3), (3.16), (3.20), and the assumptions hg, h; € PFy;, we get
0 = wv(a) > Av(b) + ho(v) — hi(v) > (A —hi(1))v(b) > 0,

which is a contradiction.

The contradiction obtained proves that u(b) < 0. However, relation (3.14) then implies
u = 0,and thus ¢ € U, (h).

The theorem is proved.

Proof of Theorem 3.2. First suppose that there exists a function v € C([a,b];]0 4 o)
satisfying relations (3.2) and (3.3). Let u be a nonnegative solution to the problem (1.1), (1.2).
We shall show that © = 0. Suppose that, on the contrary, there exists t* € [a, b] such that

u(t*) > 0. (3.21)
Put
v(t) = ry(t) —u(t) for t € [a,b,
where ®
u(t
r = max{w it e [a,b]}.

According to (3.21), inequality (3.16) holds. It is clear that condition (3.17) is satisfied and
there exists tg € [a,b] such that (3.18) is true. Taking now (1.1), (3.2), (3.16), (3.17), and the
assumption —¢ € P, into account, we obtain

V'(t) < L(v)(t) <0 for ae. t € [a,b)]. (3.22)
Therefore, on account of (3.17) and (3.18), the relation (3.22) yields

0=wv(b) <ov(t) <wv(a) for tE€ [a,b]. (3.23)
However, using (1.2), (3.3), (3.4), (3.16), (3.23), and the assumptions hg, h; € PF,;, we get

0 = Av(b) = rAy(b) — Au(b) > v(a) — ho(v) + hi(v) > v(a) (1 — ho(1)) > 0,
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a contradiction. The contradiction obtained proves that v = 0, and thus ¢ € U_,(h).
Now suppose that £ € U_,(h). We first show that the homogeneous problem (2.1) has only

the trivial solution. Let u be a solution to problem (2.1). Using Remark 2.2, we have 0 € V, (h).
Therefore, according to Remark 2.1, the problem

o/ (t) = €([ul-)(1), (3.24)
a(a) = h(a) (3.25)

has a unique solution « and the relation
a(t) >0 for t € [a,b) (3.26)
holds. From (1.1), (1.2), (3.24), (3.25), and the assumption —¢ € P,,, we get the relations
V() = L([u]1)(t) <0 for ae. te€[ab], v(a)= h(v),

where
v(t) = u(t) + a(t) for t € [a,bl. (3.27)

Consequently, using the inclusion 0 € f/ag(h), we obtain v(t) > 0 for ¢ € [a,b], and thus
—u(t) < at) for t € [a,b]. (3.28)
Taking now relation (3.26) into account, inequality (3.28) implies
[u(t)]- < a(t) for t € [a,b].
Therefore, in view of the assumption —¢ € P,;, equation (3.24) yields
o (t) > l(a)(t) for ae. t € a,b)]. (3.29)

Consequently, « is a nonnegative function satisfying the conditions (3.25) and (3.29). Hence,
the assumption ¢ € U_, (h) implies o = 0, and thus relation (3.28) yields

ut) >0 for te€ [a,b]. (3.30)

Since —u is also solution to the homogeneous problem (2.1), according to the above-proved we
have —u(t) > 0 for ¢ € [a,b]. Consequently, u = 0, i.e., the homogeneous problem (2.1) has
only the trivial solution. By virtue of the Fredholm property of the problem (2.2) (see, e.g., [2,
10]), the problem

V() = L()(®), ~(a) = h(y)+1-h(1) (3.31)

has a unique solution ~. Setting
() = A(t) =1 for te€ [a]
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we get from (3.31) the relations

() < L(7)(t) for ae. te€ [a,b], F(a)=h().

Now, analogously as above one can show that 5(¢) > 0 fort € [a, b]. Therefore, in view of the
assumption i(1) > 1, it follows from (3.31) that + is a positive function satisfying inequalities
(3.2) and (3.3).

The theorem is proved.

Proof of Theorem 3.3. Let u be a nonnegative solution to the problem (1.1), (1.2). We shall
show that u = 0. Suppose that, on the contrary, v # 0. Put

b

b
wo= [ ds, w0 = [ 60 ds (332)

M = max{u(t) : t € [a,b]}, m = min{u(t): t € [a,b]}, (3.33)

and choose tys, t,,, € [a,b] such that

u(tayr) = M, u(ty,) = m. (3.34)
Obviously,
M >0, m >0, (3.35)
and either
tm <ty (336)
or
tm >ty (3.37)

First suppose that (3.36) holds. The integrations of (1.1) from a to t,, and from ¢, to b, in
view of (3.33) —(3.35) and the assumptions ¢y, {1 € Py, yield

tm tm tm

w(a) —m < / 02 (u)(s) ds — / to(u)(s)ds < M / (1 (1)(s) ds, (338)
b b b
M —u(b) < /ﬁl(u)(s) ds — /ﬁo(u)(s) ds < M/ﬁl(l)(s) ds. (3.39)

Moreover, on account of (3.33) and the assumptions hg, h; € PFy, condition (1.2) implies
u(a) — Au(b) > ho(u) — h1(u) > mho(l) — Mhy(1). (3.40)

We get from (3.38) —(3.40) the inequality

tm b
M (A= hy(1) = m (1= ho(1)) < M (/mn(s) ds + A/mn(s) ds) ,
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1.e.,
1 . 1
<()\ h1(1)) min {1, )\} - y0> < m (1 —ho(1)) min {1, )\} . (3.41)

Now suppose that (3.37) holds. The integration of (1.1) from ¢ys to t,,, in view of (3.33) -
(3.35) and the assumptions ¢y, ¢1 € P, results in

M — m</€1 dS—/EO S<M/€1 (342)

It is not difficult to verify that, by virtue of (3.5) and (3.42), inequality (3.41) is true.

We have proved that, in both cases (3.36) and (3.37), inequality (3.41) is satisfied. On the
other hand, integration of (1.1) from « to b, in view of (3.32), (3.33), and the assumptions ¢,
b1 € Py, yields

b b
u(a) — u(b) < / (1 (u)(s) ds — / to(u)(s) ds < Myo — mao,
1.€.,
mzo < My + u(b) — u(a). (3.43)

Moreover, condition (1.2) implies

u(d) —u(a) < u(b) (1 —=XN) — ho(u) + hy(u), (3.44)
u(®) — u(a) < u(a) <i - 1) - %ho(u) + %hl(u). (3.45)

First suppose that A < 1. Inequalities (3.43) and (4.44), together with (3.33) and the as-
sumptions hg, h; € PF,y, result in

mzg < Myo+ M (1 —X) —mho(1) + Mhy(1). (3.46)

Hence, by virtue of (3.6), (3.32), and (3.35), we get from (3.41) and (3.46) the relation m > 0
and the inequality

(A= h1(1) = o) (xo + ho(1)) < (yo+ 1= A+ (1)) (1 = ho(1)),

which, in view of (3.6) and (3.32), contradicts (3.7).
Now suppose that A > 1. The inequalities (3.43) and (3.45), together with (3.33) and the
assumptions hg, h; € PFy, imply

A—-1 1 1
mxg < MyofmTmeho(l)qLXMhl(l). (3.47)
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NONPOSITIVE SOLUTIONS TO A CERTAIN FUNCTIONAL DIFFERENTIAL INEQUALITY 471

Hence, by virtue of (3.6), (3.32), and (3.35), we get from (3.41) and (3.47) the relation m > 0
and the inequality

(1 - %hl(l) = yo> (960 + % + iho(l)> < (3/0 + % hl(l)) H;O(D

which, in view of (3.6) and (3.32), contradicts (3.7).
The contradictions obtained prove the relation v = 0, and thus ¢ € U_,(h).
The theorem is proved.

Proof of Theorem 3.4. et u be a nonnegative solution to the problem (1.1), (1.2). We shall
show that v = 0. Suppose that, on the contrary, v # 0. Define the numbers z¢, yo and M, m
by formulae (3.32) and (3.33), respectively, and choose ¢y, t,,, € [a, b] such that relations (3.34)
hold. Obviously, condition (3.35) is true and either the relation (3.36) or (3.37) is satisfied.

First suppose that (3.36) holds. Analogously to the proof of Theorem 3.3, the validity of
inequality (3.41) can be proved. Consequently, in view of (2.3) and (3.35), we get

M <()\ ~ hy(1)) min {1, i} - y0> < m (A — hy(1)) min {1, i} . (3.48)

Now suppose that (3.37) holds. Analogously to the proof of Theorem 3.3, it can be shown
that (3.42) is satisfied. Consequently, it is not difficult to verify that, by virtue of (3.1) and (3.42),
inequality (3.48) is true.

We have proved that, in both cases (3.36) and (3.37), inequality (3.48) is satisfied. On the
other hand, analogously to the proof of Theorem 3.3, inequalities (3.43) — (3.45) can be derived.

First suppose that
(h(1) = 1) (1 — +h1(1))

A =14 ho(1)

Relations (3.43) and (3.44), together with (3.33) and the assumptions hg, h; € PFy, result in

)\217 y0<

mxg < Myg —m(A —1) — mho(1) + Mhy(1). (3.49)

Hence, by virtue of (3.6), (3.32), and (3.35), we get, from (3.48) and (3.49), the relation m > 0
and the inequality

(1 - %hl(l) - yo) (o + A =1+ ho(1)) < (yo+ hi(1)) <1 - ihl(l)) ;

which, in view of (3.6) and (3.32), contradicts (3.9) with w given by (3.10).
Now suppose that

((1) = 1) (1 = 3(1))
A— 1+ ho(1) '

The inequalities (3.43) and (3.45), together with (3.33) and the assumptions hg, hy € PFy,
result in

A>1

s Yo =

A—-1 1 1
mxg < MyofmTmeho(l)qLXMhl(l). (3.50)
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Hence, by virtue of (3.6), (3.32), and (3.35), we get, from (3.48) and (3.50), the relation m > 0
and the inequality

(1= -w) (20+ 257+ S 1)) < (w+ 3 mi) 20

which, in view of (3.6) and (3.32), contradicts (3.9) with w given by (3.10).
Now suppose that

(h(1) =) (A= h(1))
ho(1) '

The inequalities (3.43) and (3.45), together with (3.33) and the assumptions hg, h; € PFy,
result in

A<, y <

1-Xx 1 1
mxo < Myo +MT - tho(l) + XMhl(l). (3.51)

Hence, by virtue of (3.6), (3.32), and (3.35), we get, from (3.48) and (3.51), the relation m > 0
and the inequality

= =) (a0 + 10} < (0 152+ S mD) (- m),

which, in view of (3.6) and (3.32), contradicts (3.9) with w given by (3.10).
Finally suppose that

(h(1) = 1) (A =M (1))
ho(1) '

A<, y =

The inequalities (3.43) and (3.44), together with (3.33) and the assumptions hg, hy € PFy,
result in

mxzg < Myo+ M (1 —X) —mho(1) + Mhy(1). (3.52)
Hence, by virtue of (3.6), (3.32), and (3.35), we get, from (3.48) and (3.52), the relation m > 0
and the inequality

(A =h1(1) = wo) (w0 + ho(1)) < (yo +1—=A+h1(1)) (A = h1(1)),

which, in view of (3.6) and (3.32), contradicts (3.9) with w given by (3.10).
The contradictions obtained prove the relation v = 0 and thus £ € U, (h).
The theorem is proved.

Proof of Theorem 3.5. By virtue of the inequality (3.12) and the assumption ¢ € Py,
Lemma 3.1 guarantees that £ € Sy(a).
Let u be a nonpositive solution to the problem (1.1), (3.11). It is not difficult to verify that

u(a) < 0. (3.53)

Indeed, if u(a) = 0 then inequality (1.1), in view of the inclusion ¢ € Sy(a), yields u(t) > 0
fort € [a,b]. Hence we get u = 0, which contradicts relation (3.11).
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Put
w(t) = y(a)u(t) —u(a)y(t) for t € [a,b].

We immediately obtain, from (1.1), (3.12), (3.53), and the assumption vy(a) > 0, the relations

w'(t) > L(w)(t) for ae. t € la,b], (3.54)

w(a) = 0. (3.55)
Therefore, the inclusion ¢ € S,;(a) implies
w(t) >0 for t € [a,b]. (3.56)

On the other hand, it follows from (3.11), (3.13), (3.53), (3.56), and the assumptions y(a) > 0
and h € PF,, that

w(a) > h(w) > 0,

which contradicts relation (3.55).

The contradiction obtained proves that there is no nonpositive solution to the problem (1.1),
(3.11), and thus £ € U (h).

The theorem is proved.

4. Main results. In this sections, we give main results of the paper, which are efficient con-
ditions under which the operator ¢ belongs to the set va;(h). The results are formulated in
Sections 4.1 —4.3, their proofs are presented in Section 4.5.

We first give a rather theoretical statement.

Proposition 4.1. Let h € F,. Then ( € Va;(h) if and only if ¢ € U, (h) and there exists
{ € Py suchthat(+ 0 € V (h).

Now we present a general result.

Theorem 4.1. Let ¢ € S,(b) N ﬁ%(ho). Then ¢ € Vag (h) if and only if there exists a function
v € C([a,b]; Ry) satisfying the conditions (3.2) and (3.3).

4.1. The case £ € P,. The following statements can be proved in the case where ¢ € P,,.

Theorem 4.2, Let { € P, N ﬁ;,(ho) be a b-Volterra operator and condition (3.4) hold. Then
¢ €V (h)ifand only if ¢ € Su(b).

Corollary 4.1. Let U € Py, be a b-Volterra operator and condition (3.4) be fulfilled. If; more-
over, there exists a function v € C([a, b];]0, +00[) such that the conditions (3.12) and

v(a) = ho(7) (4.1)

hold, then { € V., (h).
Corollary 4.2. Let ¢ € Py, be a b-Volterra operator and

h(1) > 1, he(1) < 1. (4.2)
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Assume that
ho(p1) > 0 (4.3)
and there exist m, k € N such that m > k and

om(t) < ok(t) for t € a,b], (4.4)

where 01 = 1 and
0i+1(%) df % + @i(t) for te€ab], €N, (4.5)
©i(t) dt /f(gi)(s)ds for t € [a,b], ieN. (4.6)

Then ¢ € V., (h).

Remark 4.1. 1t follows from Corollary 4.2 (for k = 1 and m = 2) thatif ¢ € P, is a
b-Volterra operator, condition (4.2) is fulfilled, and relation (4.3) holds with ¢; given by formula
(4.6), then ¢ € V, (h) provided that

b
/é(l)(s)ds <1 ho(1).

Corollary 4.3. Let U € Py, be a b-Volterra operator and condition (4.2) be fulfilled. Then the
operator { belongs to the set V., (h) provided that { € V! (hy).

_Remark 4.2. Recall that efficient conditions guaranteeing the validity of the inclusion ¢ €
€ V-1 (ho) are stated in [14].

4.2. The case —{ € P, The following statements can be proved in the case where —¢ €
€ Py.

Theorem 4.3. Let —¢ € P,;, and condition (3.4) be fulfilled. Then { € Vaz(h) if and only if
0 e U (h).

Corollary 4.4. Let —{ € P,, and condition (3.4) be fulfilled. Assume that at least one of the
following conditions is satisfied:
(a) there exist m, k € N and a constant 6 € [0, 1] such that m > k and

om(t) < dox(t) for t € la,b], (4.7)

where 01 = 1, 0,41 = ¥(0;) fori € N, and

a h(v) z(v)(a)

d(v)(t) = )~ 1 — h(D) -1 —z()(t) for t € [ab], v e C(a,b];R), (4.8)
b
7)) L hz), 2v)t) X /E(v)(s) ds for te€lab], ve C(ab;R); (4.9)
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(b) there exists { € Py, such that

h(z9) > zo(a), (4.10)
20(a) (1 — h(z1)) + h(z0)z1(a) < h(20), (4.11)

and the inequality
(1)) (t) — L(I(v))(t) < L(v)(t) for ae tE |a,b] (4.12)

holds on the set {v € C([a,b];Ry) : v(a) = h(v)}, where the operator ¥ is defined by formulae

(4.8) and (4.9),
= exp (/ |¢(1) ds) for t € [a,b], (4.13)

b s
_ / 7(1)(s) exp ( / E(l)({)dﬁ) ds for t € [a,b. (4.14)

Then { € V,(h).

Remark 4.3. Let —( € P, and the condition (3.4) be fulfilled. Then it follows from Corol-
lary 4.4(a) (for k = 1 and m = 2) that £ € V_, (h) provided

1+ hi(1)
1-—=.
/" s < 1= )

Moreover, it follows from Corollary 4.4(b) (with ¢ = 0) that ¢ € Vag(h) provided that ¢ is a
b-Volterra operator and the condition (4.10)

zo(a) < h(zo)

holds, where the function zj is given by formula (4.13).

4.3. The case £ = £y — £y with £y, €1 € Pgap. The following statements can be proved
in the case where the operator is regular, i.e., admits the representation ¢ = ¢y — ¢; with
Lo, U1 € Py

Theorem 4.4. Let { = (o — £1, where £y,f1 € Py,
1) < A ho(1) <1, (415)

and

fo(1)(s)ds < (1 — ho(1))min 41, 2 1 (4.16)
fat Y
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Then { € V., (h) if and only if { € U (h).
Theorem 4.5. Let ¢ = {y — {1, where {y, {1 € Py, h € Fu, and condition (2.3) hold. If

lo € Vy(h), —b € V(h), (4.17)

then ( € ?a;(h).
4.4. Further remarks. Introduce the operator ¢ : C([a,b]; R) — C([a, b];R) by setting

ow)(t) L wa+b—1t) for te[ab], we C(ab];R).
Let
U(w)(t) &y (p(w))(a+b—t) for ae. t € fa,b] and all w € C([a,b];R),

o (9(w)) + 5 b (p(w)) for w € C(la,b;R).

> =

It is clear that if « is a solution to the problem (1.1), (1.2) then the function v df —p(u) is
a solution to the problem

~

V() > ) (t), wv(a) > h(v), (4.18)

and vice versa, if v is a solution to the problem (4.18) then the function u & —p(v) is a solution
to the problem (1.1), (1.2).
Consequently, the relation

teVih) eleVy (ﬁ)

holds.

Therefore, efficient conditions guaranteeing the validity of the inclusion ¢ € Vag(h) can be
immediately derived from the results stated in Sections 4.1-4.3. For example, Corollary 4.1 of
Section 4.1 immediately yields the following.

Corollary 4.5. Let —(¢ € P,y be an a-Volterra operator and
h(l) <1, hi(l) <A
If, moreover, there exists a function v € C([a, b];]0, +0c]) such that the conditions (3.2) and

Ay(b) = ha(7)

hold then ¢ € Vi (h).

4.5. Proofs. To prove statements formulated in Sections 4 and 4.5 we need the following
lemmas.

Lemma4.1. Leth € Fy,and ( € U, (h). Then { + l e U,,(h) for every ? € Py,
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Proof. 1t follows immediately from Definition 3.1.

Lemma 1. ([6], Theorem 1.6). Let £ € Py, be a b-Volterra operator and there exist a function
v € C([a,b];Ry) satisfying the conditions (3.12) and

~v(t) >0 for t €la,b.

Then € € Su(b).

Proof of Proposition 4.1. First suppose that ¢ € XN/a; (h). Then, according to Remark 3.1, we
have ¢ € U_;(h). Moreover, it is clear that the inclusion ¢ + ¢ € V, (h) is true with £ = 0.

Now suppose that ¢ € U_, (h) and there exists an operator / € Py, such that £+ 7 € 17&; (h).
Let u be a solution to the problem (1.1), (1.2). We shall show that the function v is nonpositive.
According to the assumption ¢ 4 ¢ € V, (h) and Remark 2.1, the problem

&/(t) = (£+7) (@)(0) — I([ul ) (1), (4.19)
ala) = h(a) (4.20)

has a unique solution « and the relation
a(t) >0 for t € [a,b] (4.21)
holds. From (1.1), (1.2), (4.19), (4.20), and the assumption ¢ € P, we get the relations
V'(t) > (L+0)(v)(t) for ae. t€ [a,b], wv(a)> h(v),

where
v(t) = u(t) —aft) for t € [a,b)]. (4.22)

Consequently, using the inclusion £ + ¢ € 17&; (h), we obtain v(t) < 0 fort € [a,b], and thus
u(t) < a(t) for t € [a,b]. (4.23)
Taking now relation (4.21) into account, inequality (4.23) implies
[u(t)]+ < a(t) for t € [a,b.
Therefore, in view of the assumption / € P,;, equation (4.19) yields

&) > (L+ D) ()(t) — Ua)(t) = La)(t) for ae. te [ab]. (4.24)

Consequently, « is a nonnegative function satisfying the conditions (4.20) and (4.24). Hence,
the assumption ¢ € U_, (h) implies o = 0, and thus relation (4.23) yields

u(t) <0 for t € [a,b]. (4.25)
Therefore, the inclusion ¢ € Va;(h) is true.
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The proposition is proved.

Proof of Theorem 4.1. First suppose that ¢ € 17&; (h). According to Remark 2.1, the problem
V() = L)), ~(a) = h(y) -1 (4.26)

has a unique solution v and, moreover, the relation
v(t) > 0 for t € [a,b] (4.27)

holds. Obviously, the function - satisfies the conditions (3.2) and (3.3).

Now suppose that there exists a function v € C([a,b]; R, ) satisfying the conditions (3.2)
and (3.3). We shall show that £ € V(). Let u be a solution to the problem (1.1), (1.2). Itis
clear that either

u(b) > 0 (4.28)

or
u(b) < 0. (4.29)

Assume that condition (4.28) holds. Put
w(t) = y(b)u(t) — u(b)y(t) for ¢t € [a,b].
We get, from (1.1), (3.2), and (4.28), the relations
w'(t) > L(w)(t) for ae. t € [a,b], (4.30)
w(b) = 0. (4.31)
Therefore, the assumption ¢ € Sy,(b) yields
w(t) <0 for t € [a,b]. (4.32)

On the other hand, it follows from (1.2), (3.3), (4.28), (4.31), (4.32), and the assumption h; €
€ PFy, that

w(a) > Aw(b) + ho(w) — h1(w) > ho(w).

Consequently, the function w is a nonpositive solution to the problem
W (t) > (w)(t), wla) > ho(w),

which contradicts the assumption ¢ € U -+ (ho).
The contradiction obtained proves that « satisfies condition (4.29). Taking now (1.1) and
(4.29) into account, the assumption ¢ € S,;(b) implies relation (4.25), and thus ¢ € XN/ag(h).
The theorem is proved.

Proof of Theorem 4.2. First suppose that ¢ € S,;(b). It is clear that, in view of (2.3) and the
assumption £ € Py, the function v = 1 satisfies the conditions (3.2) and (3.3). Hence, by virtue
of Theorem 4.1, we get £ € V (h).
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Now assume that ¢ € Va;(h). Suppose that, on the contrary, ¢ ¢ S,;(b). Then there exists a
solution u to the inequality (1.1) satisfying the relations u(b) = ¢ and

u(to) > 0, (433)

where ¢ < 0 and ty €]a,b]. According to the assumption ¢ € YN/a*b(h) and Remark 2.1, the
problem

up(t) = £(uo)(t), (4.34)
up(a) = h(ug) — 1 (4.35)

has a unique solution ug and, moreover, the relation
uo(t) > 0 for t € [a,b] (4.36)

holds. It is not difficult to verify that
up(b) > 0. (4.37)

Indeed, suppose that (4.37) does not hold. Then, in view of (4.36), we find u(b) = 0. Hence,
by virtue of (4.36) and the assumption h; € PF,;, the condition (4.35) implies

UQ(CL) = )\’LLU(b> + ho(Uo) — hl(uo) —-1< ho(’u,o),

which, together with (4.34) and (4.36), contradicts the assumption ¢ € ﬁ;,(hg). The contradic-
tion obtained proves the validity of relation (4.37).

Since ¢ & Su(b), if follows from Lemma 4.2, on account of (4.34), (4.36), (4.37), and the
assumption ¢ € P, that there exists ag € ]a, b[ such that

uo(t) =0 for t € [a,ag), (4.38)

UO(t) >0 for t E]ao,b]. (439)

Denote by ¢ the restriction of the operator / to the space C([ag, b); R). By virtue of the condi-
tions (4.34) and (4.39), we get

ug(t) = L(up)(t) for ae. t € [ap,b], wuo(t) >0 for t €lagp,b],

and thus Lemma 4.2 guarantees validity of the inclusion (e Saob(b). It follows from inequality
(1.1) and condition (4.34) that

w'(t) > ((w)(t) for ae. t € [ag,b], w(b) =0, (4.40)

where

’u,()(t) for ¢t € [ao,b}.
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Since £ € S,,(b), relations (4.40) result in w(t) < 0 for ¢ € [ag, b], i.e.,

u(t) <

uo(b) UO(t) for t e [ao,b].

From the latter inequality, (4.33), and (4.39) we get
a < tg < ag. (441)

Now we put
v(t) = u(t) + (u(a) — h(u)) up(t) for ¢t € [a,b]. (4.42)

It is clear that
V'(t) > L(v)(t) for ae. t € [a,b], wv(a)= h(v).

Consequently, by virtue of the assumption ¢ € XN/ag(h), the inequality v(¢) < 0 holds for ¢ €
€ [a, b]. Finally, in view of (4.38) and (4.41), relation (4.42) yields

0 > v(to) = u(to) + (u(a) — h(u))uo(to) = u(to),

which contradicts the inequality (4.33).
The contradiction obtained proves the validity of the inclusion ¢ € S,;(b).
The theorem is proved.

Proof of Corollary 4.1. According to Lemma 4.2, inequality (3.12) yields ¢ € Sy ;(b). On
the other hand, by virtue of the conditions (3.12), (3.4), and (4.1), using Theorem 3.5 we get
telU L;Z(ho). Consequently, the assertion of the corollary follows from Theorem 4.2.

Proof of Corollary 4.2. Put

m

y(t) = > oj(t) for te [ab].

j=h+1

In view of condition (4.3), where the function ¢; is given by the formula (4.6), we get v €
€ C([a, b];]0, +00[ ). On the other hand, by virtue of the relations (4.4) — (4.6) and the assump-
tion ¢ € P, itis clear that the function + satisfies the conditions (3.12) and (4.1). Consequently,
the assumptions of Corollary 4.1 are satisfied.

Proof of Corollary 4.3. According to the assumption ¢ € Py, N 1~/an (ho), Theorem 2.1 in [14]

guarantees that there exists a function v € C([a, b]; |0, +00]) satisfying the conditions (3.12)
and

v(a) > ho(7).
Consequently, the assumptions of Corollary 4.1 are satisfied.
Proof of Theorem 4.3. The validity of the theorem follows immediately from Proposition 4.1

(with £ = —/) and Remark 2.2.
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Proof of Corollary 4.4. (a) It is not difficult to verify that the function ~, defined by the

formula
k

V() = 0j(t) =6 oi(t) for t € [a,b],
Jj=1 J

—

is positive and satisfies the conditions (3.2) and (3.3). Consequently, the assertion of the corol-
lary follows from Theorems 3.2 and 4.3.
(b) According to relations (4.10) and (4.11), there exists € > 0 such that

Y0 (€ — h(21)) z0(a) + y0h(20)21(a) < 1, (4.43)

where vo = (h(z0) — 20(a)) " . Put

b
2 (1) = 0 [(a ~ h(z1)) exp ( [1ewe) ds) T
b
+ exp (/ |0(1)(s)|ds

A(1)(s) exp

7(1)(s) exp / m)(f)ds) dst

t

+ h(Zo)

/
/

~—

16(1)(€)| de ds] for ¢ € [a,b],

where the functions 2y and z; are defined by the formulae (4.13) and (4.14), respectively. It is
not difficult to verify that - is a solution to the problem

V() = L)) — (D)), (4.44)

v(a) = h(y) —e. (4.45)

Using the inequalities (3.4) and (4.10), and the assumptions hg, h1 € PFyy, it follows from the
definition of the function v that v(b) > 0, and thus the relation v(¢) > 0 holds for ¢t € [a, b].
Since —¢, { € Py, equality (4.44) implies v(t) < v(a) for t € [a,b]. Taking now inequality
(4.43) into account, the conditions (4.44) and (4.45) result in

V() < L))y (E) —L(y)(t) for ae. t € fab], 7(a) < h(y).
Consequently, Theorem 4.3 guarantees validity of inclusion
7ev=(h), (4.46)
where

0)(t) L e(1)()u(t) — Ew)(t) for ae. telab] and all v e C([a,b];R).
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Since —¢ € P, in order to prove the inclusion ¢ € 17&; (h) itis sufficient to show that ¢ € U, (h)
(see Theorem 4.3). Hence, let u be a nonnegative solution to the problem (1.1), (1.2). We shall
show that v = 0. Put

w(t) = J(v)(t) for t € [a,bl, (4.47)
where the operator ¢ is defined by the formulae (4.8) and (4.6), and

o(t) = ult) + S for t€ [o,b)
Obviously,
o(t) > u(t) for t € [a,b]
and
V() > Lw)(t) for ae. t€ [ab], vla)= h(v), (4.48)
W(t) = L(v)(t) for ae. te[ab], wla)=hw). (4.49)

It follows from (4.48) and (4.49) that
y'(t) >0 for ae. t€lab], yla)=h(y),

where y(t) = v(t) — w(t) for t € [a,b]. By virtue of Remark 2.2, we have 0 € Vag(h). Conse-
quently, y(t) < O0fort € [a,b],ie.,

0 <u(t) <o(t) <w(t) for te |a,b)]. (4.50)

On the other hand, using (4.12), (4.47) - (4.50), and the assumptions —£,7 € P,;, we get
w'(t) = v)(t) = (1) (w(t) + L(w)(t) — L1)(Hw(t) =
= (1) (H)w(t) + L)) (1) = L) ()I(v)(t) = L) ()w(t) — L(v)(t) =
> (1) (Hw(t) — L(w)(t) = (w)(t) for ae. t € |a,bl.

Taking now (4.46) and (4.49) into account, we find w(t) < 0 for ¢ € [a,b]. Hence, the relation
(4.50) implies u = 0, and thus ¢ € V, (h).
The corollary is proved.

Proof of Theorem 4.4. Assume that ¢ € U_,(h). Since ¢; € P,;, Lemma 4.1 guarantees that
bo =L+ 10y € Uy(h).
We shall show that ¢y € XN/a;(h). Assume that, on the contrary, there exists a solution u to
the inequality
u'(t) = Lo(u)(t) (4.51)

satisfying condition (1.2), which is not nonpositive on the interval [a, b]. Then, in view of the
above-proved inclusion ¢y € U, (h), itis clear that u assumes both positive and negative values,
1.€.,

M >0, m >0, (4.52)
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where
M = max{u(t) : t € [a,b]}, m = —min{u(t) : t € [a,b]}. (4.53)

Now we choose tjz, t, € [a,b] such that

u(tyr) = M, u(ty) = —m. (4.54)
Obviously, either
ta < tm (455)
or
tyr > tm. (4.56)

If (4.55) holds then the integration of (4.51) from ¢/ to t,,, in view of (4.52), (4.53) and the
assumption ¢y € P, results in

M—I—m< /60 d8<m/€0

ta

Hence, by virtue of (4.16) and the second inequality in (4.52), we get M < 0, which contradicts
the first inequality in (4.52).

If (4.56) holds then the integrations of (4.51) from a to ¢, and from ¢,; to b, in view of
(4.52), (4.53) and the assumption ¢y € P, yield

w(a) +m < — / fo(u)(s) ds < m / (1 (4.57)

M —u(b) < — / lo(u)(s)ds < m / (1 (4.58)
2%
On the other hand, the condition (1.2), on account of (4.53) and the assumptions hg, h1 € PFy,
implies
u(a) — Au(b) > ho(u) — hi(u) > —mho(1) — Mhy(1). (4.59)
Now we get, from (4.57) —(4.59), the inequality

b
M (X —hi(1) +m (1 — ho(1 ))<m</€0 ds+)\/€()(s)ds),

1.e.,

>~
>
=
—~
=
=
=
—
—
——
+
3
—
|
>
o
=
E.
=
—
—

\
——
AN
3
\O"

~
o
—~
—_
=
V2)
S~—
s
[V2)

a
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Hence, by virtue of (3.1), (4.16), and the second inequality in (4.52), we find M < 0, which
contradicts the first inequality in (4.52).

The contradictions obtained prove the validity of the inclusion ¢y € YN/a; (h).

Now we put ¢ = ¢;. Since ¢ € Uy (h)and £+ = £y € Va;(h), Proposition 4.1 yields
L eV, (h).

The validity of the converse implication follows immediately from Remark 3.1.

The theorem is proved.

Proof of Theorem 4.5. 1t is easy to verify that / € U, (h). Indeed, the assumption —/; €
€ f/a;(h) yields —¢; € U_,(h) (see Remark 3.1), and thus, in view of Lemma 4.1, we get { =
=—l+4 € Ua_b(h)'

Now we put £/ = /1. Thenitis clear that / € Py and { +/ = {y € f/a_b(h). Consequently,
Proposition 4.1 yields ¢ € Va;(h).

The theorem is proved.

5. Differential inequalities with argument deviations. In this section, we give some corollar-
ies of the main results for operators with argument deviations. More precisely, efficient criteria
are proved below for validity of the inclusion ¢ € V_ (h) in the case where the operator / is
given by one of the following formulae:

£(v)(t) & p(t)v(r(t)) for ae. t € [a,b] and all v € C([a,b];R), (5.1)

£(v)(t) & —g(t)v(u(t)) for ae. t € [a,b] and all v € C([a,b];R), (5.2)

()(t) 2 p()o(r(t) — g(t)o(u(t)) for ae. tefa,b and all ve C(a,b;R). (5.3)

Here we suppose that p,g € L([a,b];Ry) and 7, i1 : [a,b] — [a,b] are measurable functions.
Throughout this section, the following notation is used:

pr = essinf{u(t) : ¢t € [a,b]}, 7" =esssup{7(¢t): ¢t € [a,b]}, (5.4)
and
b t
a(t) = exp /g(s) ds|, p(t)=exp /p(s) ds for ¢ € [a,b]. (5.5)

We first formulate all the results, their proofs are given later, in Section 5.1 below.

Theorem 5.1. Let condition (3.1) be fulfilled and
h(1) < 1. (5.6)

Assume that

0 < /bp(s) ds < (1— ho(l))min{ i} (5.7)
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and .
ess in T/p(s) ds:t e fab b >, (5.8)

where t
0. = inf {;m T (h(;f)z(j; T e > 1}. (5.9)

Then the operator ¢ given by formula (5.1) belongs to the set ‘7(1; (h).
Corollary 5.1. Let the inequalities (3.1) and (5.6) be fulfilled. Assume that condition (5.7) is
satisfied and
7(t)

essinf /p(s) ds : t € la,b] p > &, (5.10)
here ™ (1 - (1) W
. PllL ye¥ (1 — h(1 ) nl—hol

= f{ v Pl D h@) Y7 A—m(n}' G11)

Then the operator { defined by formula (5.1) belongs to the set 17(1; (h).
Theorem 5.2. Let the conditions (3.1) and (5.6) be fulfilled. Assume that 7(t) > t for a.e.
t € a,b],

b
/p(s)ds > In /1\__2(;8)), (5.12)

a

and at least one of the following conditions is satisfied:
(a) ho(z0) > 0 and

max{ho(zl) + (1 —hW)al) [a’b]} o1 _folz) (5.13)

ho(Z()) + (1 — ho(l)) Zo(t) 1-— ho(l)’
where
2o(t) = / p(s)ds for tcab, (5.14)
t 7(s)
z1(t) = /p(S) (/p(ﬁ)df ds for t € [a,b]; (5.15)
(b)
ho(B) < 1, (5.16)
000) i) 4oty < 1 (5.17)
1 — ho(B) ’ ’ ‘
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where
7(s)

Yo(t) = /p(S) /p(é)df exp (/p(n)dn) ds for t € a,b]; (5.18)

(¢) ho(1) # 0
(1)

ess sup /p(s)ds it € [a,b] p < K, (5.19)
t
where
N Ipllz , xe”(1 = ho(1)) }
K* = sup In 0<z<In : (5.20)
{ Ipllz(e” —1) ho(1)

Then the operator ¢ given by the formula (5.1) belongs to the set Va; (h).

Theorem 5.3. Let the conditions (2.3) and (4.2) be fulfilled. Assume that 7(t) > t for a.e.
t € [a,b] and at least one of the following conditions is satisfied:

(a) the inequality (5.13) holds, where the functions zo and z1 are defined by the formulae
(5.14) and (5.15), respectively;

(b) the inequalities (5.16) and (5.17) hold, where the function ~y is given by the formula
(5.18);

(c) ho(1) # 0 and the condition (5.19) holds, where the number k* is defined by the formula
(5.20). N

Then the operator { given by the formula (5.1) belongs to the set V_ (h).

Remark 5.1. If ho(z9) > 0, where zj is defined by formula (5.14), then the strict inequality
(5.13) in Theorem 5.3(a) can be weakened. More precisely, the following assertion is true.

Theorem 5.4. Let the conditions (2.3) and (4.2) be fulfilled. Assume that 7(t) > t for a.e.

t € [a,b],
ho(z0) > 0,
and
ho(z1) + (1 = ho(M) 21 (), _  holx)
max{ho(zo) (1= ho(1) 20(t) tel ,b]} <1-17 ho(1)’ (5.21)

where the functions zy and z, are defined by the formulae (5.14) and (5.15), respectively. Then
the operator ( given by the formula (5.1) belongs to the set V_ (h).

Theorem 5.5. Let the conditions (2.3) and (3.4) be fulfilled. Assume that

t
ess sup /g(s) ds:t € [a,b] p <wt, (5.22)
p(t)

where

* = su lHL('U*)':U h(a® o®(a
w = P{xl a;p(lu*)_f(x)' > 0,h(a”) > ()}a

ISSN 1562-3076. Heainiuni koausanns, 2009, m. 12, N> 4



NONPOSITIVE SOLUTIONS TO A CERTAIN FUNCTIONAL DIFFERENTIAL INEQUALITY 487

ar h(a”) — a”(a)

M) =1 for x>0, (5.23)

2(v) L min {h(1),h(v)} for v e C([a,b];R).
Then the operator { given by formula (5.2) belongs to the set 17(1; (h).
Corollary 5.2. Let the conditions (2.3) and (3.4) be fulfilled. Assume that g # 0 and

t
ess sup /g(s)ds it € fa,b] p < &7,

p(t)

where

o[l vty At ()
<= p{ y Tl — D)t ho() 0 <Y 1+h1<1>}' (5-24)

Then the operator { defined by the formula (5.2) belongs to the set f/ag(h).
Theorem 5.6. Let the conditions (2.3) and (4.2) be fulfilled. Assume that g % 0 and

(t) z0(a) — h(z)

z1(a) — h(z1) + (h(1) — 1) 2 .
maX{Z(l)(a) - h(z;) +(h(1) — 1)Z(1)(t) te [a’b]} <l -=m-1 (5:25)
where
b

o(t) = /g(s) ds for tcab,

b b
a) = [o6) | [ a@ac]|ds for te o),
' i)

Then the operator { given by formula (5.2) belongs to the set Va; (h).

Theorem 5.7. Let the conditions (2.3) and (3.4) be fulfilled. Assume that the inequalities
(4.10) and (4.11) are satisfied, where

b
20(t) = exp (/g(s) ds) for t € [a,b],

t

(5.26)

t

b s s
2 (t) = / 4(5)(s) / 9(€) de | exp ( / g(n)dn) ds for t€ o]
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and
(L+sgn (t—p(t)) for ae t € [a,b]. (5.27)

l\.’)\r—t

o(t) =

Then the operator { given by formula (5.2) belongs to the set 1711; (h).
Theorem 5.8. Let the conditions (3.1) and (3.5) be fulfilled. If

/bg(s) ds < (A — hl(l))min{l, ;} (5.28)

and

(1 = ho(1)) min {1,
(A—h1(1))min {1, }} — fg

_1</abp<s>ds<<1—ho< puin {11},

then the operator ¢ given by formula (5.3) belongs to the set 17&; (h).
Theorem 5.9. Let the conditions (2.3) and (3.4) be fulfilled. Assume that the inequality (5.28)

is satisfied and
b b
w (/g(s)ds) < /p(s)ds < (1 —ho(1 ))mm{L}\}»

a a

where the function w is defined by formula (3.10). Then the operator { given by formula (5.3)
belongs to the set V_, (h).

Corollary 5.3. Let the conditions (3.1) and (3.4) be fulfilled. Assume that either

b
h(1) <1, () 1< /p(s)ds < (1 —ho(l))min{l,:}l\}

or

h(1) > 1, /p(s) ds < (1— hg(l))min{l,}\}.

a

Then the operator ¢ given by formula (5.1) belongs to the set 17(1; (h).

Theorem 5.10. Let the conditions (2.3) and (3.4) be fulfilled. Assume that the functions p, T
satisfy condition (5.7) or the assumptions of Theorems 5.3 or 5.4, whereas the functions g, p fulfil
the assumptions of Theorems 5.5, 5.6 or 5.7. Then the operator { given by formula (5.3) belongs
to the set 17&; (h).

5.1. Proofs. We give the following lemmas before we prove statements formulated above.

Lemma 5.1. Let the functional h be defined by formula (1.3), where A > 0 and hg, hy € PFy
are such that the conditions (3.1) and (5.6) are fulfilled. Let, moreover, the operator ¢ be defined
by the formula (5.1), p # 0, and condition (5.8) be satisfied, where the number 7, is defined by
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formula (5.9). Then there exists a function ~ € C([a,b];]0,40c]) satisfying the inequalities (3.2)
and (3.3).

Proof. According to (5.8) with n* given by (5.9), there exist zp > 0 and € > 0 such that

h(B*™) > 1+e¢ (5.29)
and the relation
" 1 g7 ()
Tol*o(T*
t/ p(s)ds > - In o) 1 (h(3%) — 1= 2) (1= (D))" for a.e. t e fa,b]  (5.30)
holds. Put
h(G%0) — 1 —
5= W (5.31)

By virtue of the conditions (5.6) and (5.29), we get § > 0. Hence, relation (5.30) yields

(®)
@0 [ p(s)ds - 20 3%0 (T%) - zo37(7(1))

T pre(r) 0 T pro(r(t) + 6

e for a.e. t € a,b].

Consequently, we have

t 7(t)
zo [ p(s)ds zo [ p(s)ds
Tope @ <e o@

+¢6 for a.e. t€ [a,b]. (5.32)

Now we put

x [ (s)ds
) =TS for b e ab).

It is clear that y(¢) > 0 for ¢ € [a, b] and, using condition (5.32), we get

T(t) t
(s)d (s)d
(y)(t) = plt) ( " S”) > aop(t)e” 2" = () for ae. t e (b,

i.e., inequality (3.2) holds. On the other hand, in view of equality (5.31) and the assumption
h(1) < 1, inequality (3.3) is satisfied.
The lemma is proved.

Lemma 5.2. Let the operator { be defined by formula (5.2), h € F,; satisfies condition (2.3),
and let inequality (5.22) be fulfilled, where the number w* is defined by formulae (5.23). Then
there exists a function v € C([a,b];]0, +o0]) satisfying the inequalities (3.2) and (3.3).

Proof. According to (5.22) with w* given by (5.23), there exist zp > 0 and £ > 0 such that
h(a™) > o™ (a) + ¢ (5.33)
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and the inequality

/ g(s)ds < —1In _ woa® (i) 1 (5.34)
KA 0 amo(p) — (ha) — a™(a) — ) (h(1) 1)~

holds for a.e. t € [a, b]. Put

h(a™) — a™(a) — ¢
A1) —1

5 = (5.35)

By virtue of the conditions (2.3), (5.23), and (5.33), we get 6 € [0, 1[. Hence, relation (5.34)
yields

t
A0t s )z (u(t)

S () =0 = ano(u(t) — for a.e. ¢ € [a,b].

Consequently, we have

b
zo [ g(s)ds :L‘ojzg(s) ds
e KO —§ < xpe ¢ for a.e. t € [a,b]. (5.36)

Now we put

b
x0 tfg(s) ds

v(t) =e —¢6 for t € [a,b].

It is clear that y(¢) > 0 for t € [a, b] and, using condition (5.36), we get

b
zo [ g(s)ds a:ofbg(s) ds
() = —a) [e T 5| > aoge T = Y1) for ae. te ot

i.e., inequality (3.2) holds. On the other hand, in view of (5.23), (5.35), and the assumption
h(1) > 1, the inequality (3.3) is satisfied.

The lemma is proved.

Now we are in position to prove Theorems 5.1-5.10.

Proof of Theorem 5.1. Let the operator ¢ be defined by formula (5.1). Itis clear that ¢ € P,
and condition (5.7) implies validity of relation (4.16) with {; = ¢. According to Lemma 5.1,
there exists a function v € C([a,b];]0,+oc]) satisfying the conditions (3.2) and (3.3), which
guarantees validity of the inclusion ¢ € U_, (h) (see Theorem 3.1). Consequently, in view of
Theorem 4.4 (with £y = ¢ and ¢; = 0), we get £ € V., (h).

The theorem is proved.
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Proof of Corollary 5.1. 1t is not difficult to verify that

xp" (1)
B2 (r*) + (h(8%) = 1) (1 = h(1)) ™

<

3" (b)

= 350 + (= (L) el + ho() — 1) (- A) T

_ xeprHL (1 _ h(l))
- (evllPllz — 1) (1 — ho(1))

for every z > 0such that (A — hy (1)) e®llPlle > 1 — ho(1). Therefore, the relation 7, < &, holds,
where 7, and &, are defined by the formulae (5.9) and (5.11), respectively. Consequently, the
assertion of the corollary follows immediately from Theorem 5.1.

Proof of Theorem 5.2. Let the operator ¢ be defined by formula (5.1). Itis clear that ¢ € P,
and / is a b-Volterra operator. According to Theorems 4.1 and 4.2, and Corollary 4.2 in [14], we
conclude that each of the conditions (a)—(c) guarantees validity of the inclusion ¢ € XM/an(ho).
Moreover, by virtue of Theorem 2.1 in [14], there exists a function v €
€ C([a,b];]0, +o0[) satisfying inequality (3.12). Therefore, Lemma 4.2 guarantees that £ €
€ Sap(b). Furthermore, the above-proved inclusion ¢ € I~/an(ho) yields ¢ € ﬁ;(ho) (see Re-
mark 3.3).

On the other hand, since we suppose that 7(t) > tfora.e. t € [a, b], condition (5.12) implies
validity of condition (5.10), where &, is defined by formula (5.11). Therefore, analogously to the
proof of Corollary 5.1 it can be shown that relation (5.8) is satisfied with 7, given by formula
(5.9), and thus, according to Lemma 5.1, there exists a function v € C([a, b]; |0, +oc| ) satisfying
the conditions (3.2) and (3.3).

Consequently, by virtue of Theorem 4.1, we get ¢ € 17&; (h).

The theorem is proved.

Proof of Theorem 5.3. Let the operator ¢ be defined by formula (5.1). Itis clear that £ € P,
and / is a b-Volterra operator. According to Theorems 4.1 and 4.2, and Corollary 4.2 in [14], we
conclude that each of the conditions (a)—(c) guarantees validity of the inclusion ¢ € XN/az(ho).
Therefore, the assumptions of Corollary 4.3 are satisfied.

The theorem is proved.
Proof of Theorem 5.4. Let the operator ¢ be defined by formula (5.1). Itis clear that £ € P,
and / is a b-Volterra operator. Using condition (5.21), it is not difficult to verify that

03(t) < o) for ¢ € a,b],

where the functions g2 and g3 are defined by the formulae (4.5) and (4.6). Consequently, the
assumptions of Corollary 4.2 are satisfied with £ = 2 and m = 3.
The theorem is proved.

Proof of Theorem 5.5. The assertion of the theorem follows immediately from Lemma 5.2
and Theorem 4.3.
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Proof of Corollary 5.2. 1t is not difficult to verify that

za (1)

ar(u.) = (B(a®) = (@)} (h(1) = 1) "

>

> xa®(a) _

a®(a) = (A + ho(1) = (1 + ha(1)) a®(a)) (h(1) = 1)~

zell9lle (h(1) — 1)
(exlloll — 1) (X + ho(1))

for every > 0such that A+hg(1) > (1 + hi(1)) e*ll9llz. Therefore, the relation £* < w* holds,
where w* and £* are defined by the formulae (5.23) and (5.24), respectively. Consequently,
validity of the corollary follows immediately from Theorem 5.5.

Proof of Theorem 5.6. Let the operator ¢ be defined by formula (5.2). It is clear that —¢ €
€ P,. According to condition (5.25), there exists § € [0, 1[ such that the inequality

21(a) — h(z1) 20(a) — h(z0) Y { 70(a) — h(z0)
o1 ta s (5‘ 0h<1>—10>(0h<1>—10 “““))

holds for ¢t € [a, b]. However, it means that
03(t) < dpa(t) for t € [a,b],

where the functions g3 and g3 are defined in Corollary 4.4 (a). Consequently, the assumptions
of Corollary 4.4(a) are satisfied with k£ = 2 and m = 3.
The theorem is proved.

Proof of Theorem 5.7. Let the operators £ and / be defined by formulae (5.2) and

L) (t) = g(t)o(t) /g(s)v(,u(s))ds for a.e. t€a,b], all v e C(a,b];R),

u(t)

respectively, where the function o is given by formula (5.27). It is clear that —¢ € P, £ € Py,
and

t
L) @)I(0)(8) = L@0(W)) () = g(t) [ g(s)v(u(s))ds <

w(t)
< l(v)(t) for ae. t € [a,b] and all v € C([a,b];Ry),
where the operator ¢ is defined by formulae (4.8) and (4.9), and thus condition (4.12) holds on

the set C([a, b]; R, ). Therefore, the assumptions of Corollary 4.4(b) are satisfied.
The theorem is proved.
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Proof of Theorem 5.8. Let the operator ¢ be defined by formula (5.3),

lo(v)(t) d p(t)v(r(t)) for a.e. t € [a,b] and all v € C([a,b];R), (5.37)

and
l1(v)(t) & g(t)v(p(t)) for ae. t € [a,b] and all v € C([a,b];R). (5.38)

It is clear that ¢y, ¢; € P,, and ¢ = ¢y — ¢1. Therefore, validity of the theorem follows from
Theorems 3.3 and 4.4.

Proof of Theorem 5.9. Let the operators ¢, £y, and ¢; be defined by formulae (5.3), (5.37),
and (5.38), respectively. It is clear that ¢y, ¢; € P,, and ¢/ = ¢y — ¢;. Therefore, the assertion of
the theorem follows from Theorems 3.4 and 4.4.

Proof of Corollary 5.3. Validity of the corollary follows immediately from Theorems 5.8
and 5.9 with g = 0.

Proof of Theorem 5.10. Let the operators ¢, {y, and ¢; be defined by the formulae (5.3),
(5.37), and (5.38), respectively. It is clear that ¢y, /1 € Py, and £ = ¢y — 1. Therefore, the as-
sertion of the theorem follows immediately from Theorem 4.5, Theorems 5.3-5.7, and Corol-
lary 5.3.
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