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In this paper we consider the linear theory for a rigid heat conductor with memory effects for the heat
flux in order to derive explicit formulae of the minimum free energy, which is related to the maximum
recoverable work we can obtain by a given state of the body. Two equivalent forms of this work are given in
the frequency domain. Finally, two different expressions of a thermodynamic potential, called pseudofree
energy, are introduced for this material.

Poseasdaembca ainiiina meopisi 04 Mmeepo0020 NPOBIOHUKA Menad 3 eeKmamit 3anam’ amosy8amnHts
Mena08020 NOMOKY 3 MEMOI0 3HAXOONCEHHA AGHUX POPMYA 0N MIHIMYMY BLALHOL eHepeil, W0 nos’a3a-
HA 3 MAKCUMAABHOI 8I0HOBAEHOI) POOOMOI), AKY MOXCHA Ompumamu 3 0anoz20 cmawny miaa. Hasederno
08l exsisaseHmui popmu yiei pobomu 8 wacmommiii obaacmi. Beederno 08a pisnux supasu 04 mepmo-
OUHAMIYHO20 NOMEHUIANY, HA3BAHI NCEBOOBLALHOIO eHeP2IEHO.

1. Introduction. A non linear model for a rigid heat conductor was developed by Gurtin
and Pipkin in [1] on the basis of Coleman’s results concerning materials with memory effects [2].
In [1] the authors have also derived a linearization of their theory, thus obtaining for isotropic
materials a constitutive equation for the heat flux expressed in terms of the history of the
temperature gradient. Such a relation is a generalization of the Cattaneo—Maxwell equation
[3], since this appears as a special case of the theory. Many authors have considered such a
constitutive equation to study its consequences in thermal problems. We remember, in parti-
cular, the approximate theory of thermodynamics developed for Gurtin and Pipkin’s model
in [4], where some thermodynamic potentials have been derived and used to prove stability
and domain of dependence results.
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Recently, the problem of obtaining expressions for the maximum recoverable work, we can
obtain from a given state of the material, has been considered by several authors, especially for
linear viscoelastic solids (see, for example, [S—10] and [11-13]). A particular importance have
the articles [14] and [15] for the interesting methods used for such studies.

In [16] the problem of finding an explicit expression of the minimum free energy, which
is related to the maximum recoverable work, has been studied for a rigid heat conductor. To
describe the behaviour of any simple material we must consider its states and processes; in
particular, the states are expressed in [17] by means of the temperature and of the integrated
history of the temperature gradient, which was introduced in [1] and considered also in [4].

In this paper we consider some results obtained in [4] to describe the behaviour of a rigid
heat conductor; in particular, we assume a linear relation for the internal energy as a function of
the temperature and the linear functional derived in [1] for the heat flux. Thus, we consider the
linearization of the Clausius — Duhem inequality in the form derived in [4] in order to examine
the effects of the internal energy on the expression of the thermal work; then, we study the
problem of determining explicit formulae for the minimum free energy, expressed in the form
considered in [4] and there called pseudofree energy. Two expressions of this pseudofree energy
are examined, the first of which was already studied in [4], the second one is a new functional,
recently introduced and studied, in particular, for linear viscoelastic solids (see, for example,
[10]).

In Section 2, fundamental relations of the considered linear theory are introduced, together
with the linearization of the local form of the Second Law of Thermodynamics. In Section 3,
states and processes are defined and an equivalence between states is defined. In Section 4,
the notion of the thermal work is introduced and some of its expressions are written for some
particular cases; moreover, another equivalence relation between states is defined in terms of
the work. In Sections 5 and 6 two equivalent forms of the maximum recoverable work are
derived. In Section 7, we give the expressions of two functionals which can be considered as
pseudofree energies for these materials.

2. Preliminaries. Let B be a rigid heat conductor occupying a fixed and bounded domain
2 in the Euclidean three-dimensional space. We suppose that () is a regular domain, that is
simply-connected with a smooth boundary, whose unit outward normal is denoted by n.

We regard B as a homogeneous, isotropic and endowed of memory for the heat flux, within

the linear theory of thermodynamics developed in [1] and studied also in [4], and we assume
the constitutive equations

—+00

e(x,t) = apd(x,t), q(x,t) = — / k(s)g!(x, s)ds (1)
0

for the internal energy e and the heat flux q. In these linearized relations ) denotes the relative
temperature, with respect to the absolute reference temperature ©¢ uniform in €2, the heat flux
relaxation k : R = [0,4+00) — R is such that k € L} R*) N HY(RT), while g =V is the
temperature gradient, whose history up to time ¢ is defined by g!(x, s) = g(x,t — s) Vs € RT;
finally, we denote by x the position vector in Q.
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The function £ is defined by
t
k(t) = k0+/k(7)d7 vt € RT, ()
0

where ky = k(0), its initial value, and . liin k(t) = 0 [4, 18]; moreover, in the expression of e
——+o0

there is a coefficient oy > 0 because of physical observation.

In [4], starting from the Clausius—Duhem inequality, the authors have derived its lineari-
zation, which involves second order approximations for the free energy and the entropy, because
of the first order ones assumed for e and q. Thus, by introducing the function ¢ = Oy(e — O¢n),
they have obtained the following inequality:

P(x,1) < é(x,)9(x,1) — q(x, 1) - g(x, 1). ®)

The function now considered is called pseudofree energy, since, even if its values haven’t the di-
mensions of an energy, its properties closely resemble those of the canonical free energy e—Og1.
We observe that the introduction of the factor © in the definition of the pseudofree energy
yields the elimination of the factor 1/©, involved by the linearization in the scalar product
q - g, and, therefore, in (3) the reference temperature does not appear.

From the inequality (3), which expresses the linearized local form of the Second Law of
Thermodynamics, it follows the equality

P(x,1) + D(x,1) = é(x,1)0(x, 1) — a(x,1) - g(x, 1), (4)

where we have introduced D(x, t), called the internal dissipation function, which must be non-
negative because of the same Second Law.
The expression (1), of the heat flux, by integrating by parts, assumes the form

—+00

a(x,t) = /k'(s)gt(x,s)ds, (5)

0

where we have introduced the integrated history of g, that is a function g‘(x,-) : R — R?
defined by

S

g'(x,s) = /t g(x,7)dr = / g'(x, \)dA.

t 0

It is useful for what follows to introduce the formal Fourier transform of any function f :
R —- R",

+oo
fr(w) = / fs)e s = f_(w) + f+(w) Vw € R,
where
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10 G. AMENDOLA, C.A.BOSELLO, M. FABRIZIO

0

+oo
fow) = / f(s)e s, fi(w) = / f(s)eds, (6)
. 0

together with the half-range Fourier sine and cosine transforms

+o0 400
fs(w) = /f(S)Sin(wS)ds, fe(w) = /f(s) cos(ws)ds.
0 0

We remember that if f is a real-valued function, then the complex conjugate (fr(w))* =
= f(—w); moreover, if f is defined on R™ we can consider f., fs and f., while for a function
defined on R~ the definition of f_ is used. Finally, we have the following relations:

fr(w) = fe(w) —ifs(w),  fr(w) =2fc(w), fr(w) = —ifs(w), ()

when f, defined on R, is extended to R by considering its usual extension, that is by identi-
fying f with a function defined on R which is equal to zero on the strictly negative reals R~
or its extension by means of an even extension, i.e., f(s) = f(—s) Vs € R, or its extension
by using an odd function that is when f(s) = —f(—s) Vs € R~ respectively. Moreover, if f
and f’ belong to L'(R*T) N L?(R*), then

fiw) = —wfe(w).
Under these hypotheses, for the kernel k£ we have the conditions [4, 18]

+oo
ko(w) = —ék;(w) S0 Vw0, k0) = —% / "’Sg’)dw >0, ®)
0

because of the thermodynamic restrictions on the constitutive equation and using the inverse
half-range Fourier transform.
Furthermore, if k¥’ € L?(R") and | K’(0) |< +o0, then

sup |wki(w)| < +oo, lim wki(w) = — lim w?k(w) = K'(0) < 0.
We assume
ke(0) > 0, K'(0) < 0. 9)

The complex z-plane C has an important role in what follows and we define its subsets
C = {z €C; Imz € Rf}, c) = {z € C; Imz € Rff};
analogous meanings are given to C* and C(*), related to Rt and R** = (0, +00). We observe

that C* include R and C*#) exclude it. Thus, f., given by (6), can be defined for z € C and
are analytic functions in C(¥), but, assuming their analyticity on R, they become analytic in C¥
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MAXIMUM RECOVERABLE WORK AND PSEUDOFREE ENERGIES... 11

[15]. Finally, we shall use the notation f()(z) to denote that the zeros and the singularities of f
are only in C*.

3. States and processes. A rigid heat conductor characterized by the constitutive equations
(1) can be consider as a simple material and hence its behaviour is described by means of states
and processes [1, 19-21].

Thus, we choose as thermodynamic state the couple

and denote by ¥ the set of the possible states of the body.

Then, we define as thermodynamic process the piecewise continuous map P : [0,d) —
— R x R3 given by

P(r) = (Vp(7),gp(r)) V7 €[0,d),

where d is termed the duration of the process. The set of thermodynamic processes is denoted
by IL. If P € Tl alsoits restriction P, .y to any interval [r1,72) C [0, d) belongs to IT; moreover,
given two processes P; € II, j = 1,2, with durations d;, j = 1,2, their composition

Py (1) V1 € [0,dy1),

P1 *PQ(T) = {
Pz(T—dl) V1 € [dl,d1+d2),

also belongs to II.

The state transition function p : ¥ x II — X maps any initial state ¢ € ¥ and P € Il into
the final state o/ = p(o?, P) € . Thus, given o’ = ¢(0) and a process Py ., the final state is
o(r) = p(a(0), Pp r)); moreover, the pair (o,P) is called a cycle if o(d) = p(c(0), P) = o(0).

Let P(t) = (9p(7),gp(r)) be a process applied at time ¢t = 0 to the initial state ¢/(0) =
= (94(0),g2), then 7 = ¢ € [0, d) and the state o (t) is given by

gP(f)déa 0<s<t,
(10)

gp(8)de +8%s —t), s>t
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If the process P(7) = (9p(7),gp(7)) V7 € [0,d) is applied at time ¢ > 0 to the initial state
ol(t) = (9i(t), g!), we have the subsequent states characterized by the temperature

T

Ip(r) = Ot + 1) = () + /ﬂp(n)dn (11)
0
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12 G. AMENDOLA, C.A.BOSELLO, M. FABRIZIO

together with the prolongation of the integrated history g! defined by

git+d—s) = (gp+g)""s) =

( d
/ gp(€)de = ghs), 0<s<d
_ d—ds , (12)
/gp<£>d§+ / g:(€)de = gh(d) +gl(s —d), s>d
0 t—(s—d)

\

Definition 1. Two states 0; = (V;, g;), j = 1,2, are said to be equivalent if

e(p(o1, Por)) = elp(o2, Por)), al(gp=g1)""™") = al(gp *g2)""") Vr >0 (13)

for any process P € 1L

Theorem 1. For a rigid heat conductor characterized by (1), two states o; = (0;, g;), j=1,2,
are equivalent if and only if

“+oo

91(t) = Da(t), / K(E+7) [81(©) — BL(O)] de =0 vr >0, (14)

0

Proof. Taking into account (11), (12) it is easy to prove that (14) implies (13) and vice-versa.
Given the state o(t) = (9(t), g"), taking account of (11), (12), from (1) we have

T

e(t+7) = ag | () + / dp(n)dn| |
0

T

“+o0o
qlt+7) = / K (s)Eh(s)ds + / K (s)[Ep(r) + E'(s — 7))ds,
0 T

by applying any process P(7) = (Jp(7),gp(r)) of duration d.

It is easy to show that such a state o(t) = (J(t),g!) is equivalent to the zero state oy =
= (0,07), where the relative temperature is null and 0F denotes the zero integrated history, i.e.,
0f(s) = gl(s) = 0Vs € RY,if

400 +o00o
00 =0 [ KEEs-nds = [ Kerng©d = o.
T 0

Thus, it follows that the two states o, j = 1,2, are equivalent if their difference o1 — 02 =
= (91 — V2,8 — gb) is a state equivalent to oy = (0, 0T).
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MAXIMUM RECOVERABLE WORK AND PSEUDOFREE ENERGIES... 13

4. The thermal work. The linearized form (3) of the Clausius— Duhem inequality allows us
to introduce the thermal power expressed by the following expression:

w(t) = é(t)0(t) — a(t) - g(t),

Thus, the thermal work done on a process P(7) = (9p(7),gp(7)) applied for every 7 € [0, d),
starting from the initial state o(t) = (J(t), g') at time t, is expressed by

d
W (o, P) = W(0(t). 8" 0p.gp) = / e(t +T)0p(r) —q(t +7) - gp(ldr.  (15)
0

Taking into account (1), (11) and (12), (15) becomes

d
W(0(1), 8 0p,gr) = / la0dp()0p(7) — al(ge * B)'FT) - gp(r)]dr =
0

d 400
1
= 5040[192(75 +d) — / / E(s)(gp*g) T (s)ds - g(r)dr. (16)
0 0

In order to distinguish the part of the work done only during the application of the process,
let us consider the particular case related to the initial state o = (0, 0) and apply to this state
a process P of duration d at time ¢t = 0. The ensuing fields are given by (10), which now reduce
to

L B gi(s), 0<s<t,
Do(t) = /ﬂP(S)d& (gp*0N)(s) = { (17)
/ gh(t). s>t

Definition 2. A process P = (191:, gp), of duration d, applied at time t = 0 and related to
Yo(t) and (gp * 01)! expressed by (17), is called a finite work process if

d
(0,0 0p, gp) = / la0do(t)90(t) — al(go * 01)Y) - go(1)]dt < +oc. (18)
0

Lemma 1. The work (18) is such that
W(O,(_)T;Qép,gp) > 0.

Proof. From (18), taking account of (17), we have

. 1
W(0,0";9p,gp) = iaoﬁ%(d)—

d

| froomn [ o] s

0
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14 G. AMENDOLA, C.A.BOSELLO, M. FABRIZIO

whence, by integrating by parts in the first integral and evaluating the second one, we get

d t
W(0.0%dp.80) = Jasid) + [ [ kohgh(s)ds- go(t)dr (19)
0 0

The last integral, applying Plancherel’s theorem, on supposing the functions equal to zero for
any t > d, can be written as

o\-é—

t +o00
[ gbs)ds gt = 5 [ kewign @) (0, (w)"do =
0 —00

—/ W)gd (@) + g2 ())dw > 0,

since the Fourier transforms of the functions, equal to zero on R~ are given by (7);, where
the cosine and sine transforms are even and odd functions, respectively. Thus, by virtue of (8)4,
it follows that the work (19) is positive.

The lemme is proved.

Any process P(7) = (Op(7),gp(7)), defined for any 7 € [0, d) with d < 400 and applied at
time ¢ = 0, can be extended on R* by putting P(7) = (0,0) V7 > d; we can assume Jp(7) = 0
for any 7 > d and obtain from (18)

W (0.0 0p,gp) = S0ns(d)-
4+oo[ T +00
- [ | [ ¥erpeds+ [ Fegpras| nrin -
0 0 T
] +oo T
= ZapW?(d) + k(r — &)gp(§) - gp(r)dédr =
gt [ [
) 1 +00 00
— stk + 5 [ [ (¢ Der©- gr(ricar
0 0

Application of Plancherel’s theorem, using (7)2, yields

“+o00

W(0.00r,80) = janh(@) + o5 [ Kel@lgrse) - (grs(w)do.

—00
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With such a result, following Gentili [14], the finite work processes can be characterized by the
function space

+oo
Hy(RT,R?) = {g ‘R — RY; / ke(w)g+(w) - (gp+(w)) dw < +Oo}v

from which, by means of a completion with the norm induced by the inner product (g;, g2)r =

+oo
= / ke(w)giy (w) - (g2+ (w))*dw, we get an Hilbert space, Hy(RT, R3?).

Now, let the process P of duration d be applied at time ¢ > 0 to the initial state o(t) =
= (9(t),g"). We suppose that P(7) = (0,0) V7 > d and that 9p(7) = 0 VY7 > d. The work
done on P is given by (16);, which becomes

W(o(t), P) = WD), 84 Dp.8p) = s0oldb(d) — 3(0)]-
+oo

T +0o0
- / { / K(5)Ep(s)ds + / k’(s)[g;wwgt(sTnds}-gpmdf
0 T

0

_ %%m)(d) — 9%(0)]+

+oo[ T +oo
+ k(r—&gp(§)dE — [ K(r+ n)gt(n)dn] -gp(T)dr. (20)
[lfer-omes ]
Putting
+oo
I'(r,g") = / K (1 + 5)g'(s)ds V1 > 0, (21)

from (20), we get

W(o(t), P) = saoldh(d) ~ 0(0)]+

—+00
+ / h / k(| 7= € Dgp(Q)de —T(r,8") | - gr(r)dr =
0

0
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16 G. AMENDOLA, C.A.BOSELLO, M. FABRIZIO

+oo
= %ao[zsﬂ(t +d) — (1)) + % / ke(w)gpt (W) - (8p+(w)) dw—
1 400
Cor I (v, 8") - (gpy (W) dw (22)

by virtue of Plancherel’s theorem.
Definition 3. Two states o;(t) = (9;(t),85), j = 1,2, are termed w-equivalent if and only if
the equality
W(a1(t), P) = W(oa(t), P) (23)

holds for every process P : [0,7) — R x R? and for every 7 > 0.

Theorem 2. For any rigid heat conductor described by the constitutive equation (1), two
equivalent states are equivalent in the sense of Definition 1 if and only if they are w-equivalent.

Proof. 1f two states o;(t) = (9;(t),8}), j = 1,2, are equivalent, then, for every process
P(1) = (0p(7),gp(7)) and for every 7 > 0, (13), as well as (14), hold and hence the two works
done on the same P by starting from the initial states (), j = 1,2, coincide because of (16).

Now, on assuming that the two states are w-equivalent, we see that (23) holds and, taking
into account (16); with the second term expressed by means of its expression given by (22);,
reduces to

+00 +o0
/aoﬁp(ﬂ[%(t)—ﬂz(t)]dT = /[It(ﬂgi)—lt(ﬂgé)} -gp(T)dr,
0 0

whence, because of the arbitrarinesses of D p and gp in P, the expressions in the square brackets
must vanish, that is, by virtue of (21), we have (14), which expresses the equivalence of the two
states.

The theorem is proved.

5. Formulation of the maximum recoverable work. The amount of energy which is available
at a given state o of a body is related to the maximum work we can obtain from the fixed state
[11].

Definition 4. The maximum work obtained by starting from a given o of the body B is given
by
Wg(o) = sup{-W(o,P): P e l1l},
where 11 denotes the set of finite work processes.

We observe that Wr(o) is nonnegative, since the null process, which belongs to II, gives
a null work and it is also bounded from above as a consequence of the thermodynamics.
Moreover, this work coincides with the minimum free energy [11, 14, 15] that is

Ym(o) = Wg(o).
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MAXIMUM RECOVERABLE WORK AND PSEUDOFREE ENERGIES... 17

In order to derive an expression for this quantity, we consider the work done on a process
P € 11, of duration d > 0, applied at a fixed time ¢ > 0 when the state is o(t) = (9(¢),8").
We can extend on R the process by defining P = (0,0) V7 € [d, +oc0) and we also assume
Yp(d) = 0. To determine the maximum of —W (o, P) we consider the expression (16); or (22);
of the work written for the process P characterized by

Op(r) = 9"(1) +v¢(r), gp(r) = g™ (r) +ev(r) VreRT,

where the subscript (™) denotes the process which yields the said maximum, while v and ¢ are
two real parameters and ((7), v(7)) are arbitrary functions with ¢(0) = 0, v(0) = 0. Thus, we
have

—W (), 859 + e, g™ +ev) =

+oo T
T / ao[0"™ () + vo(7)] {19(15) + /[19(7”) (&) + w(é)]df}df

0 0

+oo +0oo
_/ % / B(| 7€ Dig™(€) +ev(¢))de ~ T'(r. g")
0 0

8" (7) +ev(r))dr,
whence we get the following system:

—+00

i[—wwn o= = [ a0 d e + [0 e +
0

0

+ 9 (7) / (&)d¢ b dr = 0, (24)
0

+oo [ +oo
%HV(J, P)] |o=0 = — / [ / k(| 7~ € g™ (€)de —T'(r, gﬂ] v(r)dr = 0.

0 0

Integrating by parts with respect to 7 in the last term and taking account of (11) it is easy to see
that the first equation of (24) is identically satisfied. The second one, for the arbitrariness of v
yields the relation

—+00

/ R 7 — € Dg™ (v)de = T'(r.g")  Vr € RY, 25)
0
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18 G. AMENDOLA, C.A.BOSELLO, M. FABRIZIO

which is an integral equation of the Wiener — Hopf type of the first kind, which in our particular
case is solvable by virtue of the thermodynamic properties of the integral kernel and some
theorems of factorization.

With the solution g(™) of (25) we can write the expression of the maximum recoverable
work, which, using (22) and (25), assumes the form

400 +00
1

Wialo) = aot®(®)+ 5 [ [ (7= g™(e) - (r)dar =
0 0

+o0o
1

= 30000 + 5= [ he(@)gl"(w) - 6 (@) do (26)

—00

by means of Plancherel’s theorem.
The solution of (25) has been already derived in [17], by considering the factorization of the
kernel

ke(w) = k() (W)k(-)(w), (27)

which allows us to obtain from the Fourier transform of (25), modified as

+oo

/ B( 7 — € g™ ()de = T(r.g") + x(r),

0

where
+o0
_ (m) -
vy — [T =€ DM vr e R
0 Vr e RTT,
the relation
1
by (@)g! () = I} (w,8") + 1 (w)]. (28)
+ + Qk(_) (w)[ + ]
The Plemelj formulae give [16]
1 t —t\ _ pt _pt
2k(_)(W) I—l—(wvg ) - P(_)(W) P(+)(w)7 (29)

where

piisy - L [ Tele@)/2k) )

21 w—z
— 0

d P! = lim P! ]
w, Piy(w) P (w+18),

and hence from (28) we get

b (@)g0 (@) + Py (@) = Pl (w) + %(}Mr_(w) _0
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MAXIMUM RECOVERABLE WORK AND PSEUDOFREE ENERGIES... 19

because of the analyticity of the first hand-side in C™ and of the second one in C™, which vanish
at infinity. Thus, in particular, we have

(m) (w) = — Plé"‘) ()

g
* k() (w)

which allows us to derive from (26)s the required expression

+oo
Un(o(0) = 000+ - [ | Pl [ de. (30)

6. Another formulation for v,,,. An equivalent expression of the minimum free energy can

be deduced by considering the relation between Pf ) (w) and gt(w).

Let us extend &(s) on R~ with an odd function by putting

O = { KE) Ve,
Ko ve<o,

whose Fourier’s transform, on account of (7)3 and (8), is given by
k;io)(w) = —2ik,(w) = 2iwk.(w);

moreover, g’ is extended on R™~ by means of its usual extension, i.e., g/(s) = 0Vs < 0.
Thus, (21) becomes

—+o00
I'(r,g") = / KO (7 4 5)gt(s)ds Vr >0
and can be extended on R as follows:
R T (rg) V>0,
I'®)(7 g') = / KO (r+&)g'(€)de = (31)
. ‘N (r,g) Vr <0,
where we have put
+oo
(g = [ KO+ OB Vr <o,

Then, we consider the function gf;(s) = g'(—s) Vs < 0 and its extension g4 (s) = 0Vs > 0,
for which we have

g, (w) =8k (W) = (8.(w)". (32)
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Therefore, (31) with (32) and (8); give

+o00o
1) (7, gt) = / KO (7 — s)gh (s)ds,

from which we have
I(w,g') = —2ikl(w) (8% ()" = 2ike(w) (8 ()"
but also from (31) we obtain
I (w,g) = I (w.g") + 14 (v, 8-
Thus, using (27), from (33), (34) and (29) we have
1

1 tR),  ~t t(N) (=t t
— 1 w,g)=——I""(w,g")+P/_\(w)—-P/ \(v),
whence it follows that
t t 1 N —
Pl (w) - P () = P{j(w) - P () + 1w, g,

where we have applied the Plemelj formulae, that is

1 tR),  _t (1) (1)*
—1 w,g) =P, (w)— P/ (w),
2k:(,)(w) F ( ) ( )( ) ( )

dw.

P(l)t(z) _ e 7)OI%R)(W:§t)/[2k()(w)}

271 w—2z
-0

(33)

(34)

(35)

From (35), because of the analyticity of both sides, which vanish at infinity, it follows that

+oo

] ot e 1wk (W) (EL W)
Pl () = PY)() = lim 5o / o d,
whence
+00 _
(Pt (W)>* =1 lim L / W%(_)(w/)gi(WI) dw’
(+) n—wt 270 W —n ’
Applying again the Plemelj formulae, we have
1 [ Wk (@)l (W)
t _ L (=) + /
Q@) = zl—lglﬂF 27 / W=z W

(36)

(37)

(38)
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which allow us to write (36) as follows:
(Plo) =it
and, finally, to change (30) in the form
1 1 b
— 2 t 2
Un) = 000 + 5 [ 1 Q) P do.
We observe that the quantity now introduced can express the heat flux. In fact, Plancherel’s

theorem, applied to (5) by using (7)3 for &’ and (8)1, yields

+oo . too

qg') = —% / whe(w)g! (w)dw = —% / wh) (@) [Qf—)(‘”) — Q) (w)] dw =
. T
— 2 [ h)Qf e,

where we have also considered (27), (38) and the analyticity of k(+)(w)Q'é H (w) in C~ which
yields a null value of the corresponding integral.

7. Particular pseudofree energies. A first example of thermodynamic potentials for the rigid
heat conductor is given by the Graffi— Volterra functional [22 —25], which, we now write in the
following form:

wwwgﬁz%ww—ljk%m%»a@w. (39)

We observe that )¢ is a positive definite quadratic form because of the positiveness of oy and
if we suppose that £'(s) < 0; we also assume £”(s) > 0Vs € R™.

From (39) we have
+oo
do(t) = and(0(t) — [ K(5) 5 [E'(5) -8 ()ds =
0
+oo
= a0l (®9(t) ~ alt) g0 + [ K(g!(s) B (s (40)
0
Here, the last integral becomes
+0o0 1 400 d
[ o) g = 5 [ K [g'e) g (s)ds
0 0
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and, integrating by parts, we can write (40) as follows:

+oo
1

do(®) + 5 [ K98 8 (s)ds = and0(0) ~ at) - g)
0

which implies that (4) is satisfied with a corresponding dissipation Dg(t¢) expressed by

—+00

/ K (s)g(s) - g(s)ds > 0

0

Dg(t) =

N

for all integrated histories, by virtue of the hypothesis £”(s) > 0Vs € R*.
A second example is given by a functional expressed in terms of I [10], given by

+o0o
1 1 1
VA0, T) = 5000~ 5 [ Ty () Ty (i (@1)
0

where Ifl) (7) is the derivative of (21) with respect to 7, that is,

—+o00

Iy(r) = ST = [ K+ 9g(s)ds, )
0

and the kernel k is supposed to be such that k”(s) is a nonnegative function of s € R*, while
K'(s) is a nonpositive function of s € R™, in order that (41) gives a nonnegative quantity.

We note that the factor 1/k/(7), increasing at large 7, is multiplied by factors whose behavi-
ours yield the existence of the integral in (41). Thus, we can introduce the domain

+oo

/ k/zT)I'El)(T) . Ifl)(T)dT

0

H_’;:(RJ’_) = It; < 400,

that is a space very much larger than the domain of ¢)g.
We only note that (41) can be written in terms of the integrated history g, since from (42)
we have

+o00 +oo [ 400

br(t) = Sagd?(t) / / / L e 4 s)W(r + s2)dr | g(s1)-

2 k' (T)
0 O 0
. gt(SQ)dsldSQ =
1 “+00 +00
= 50&0’[92@) + / / ]{712(51, 52)gt(81) . gt(SQ)dsldSQ,
0 O
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where we have denoted by

02
ki2(s1,82) = 59051 k(s1,s2)
the second derivative of the function
+oo 1
k(sl,SQ) = — / k’(T) k‘l(’i‘ -+ 81)]{,<7’ + SQ)dT,
0

which satisfies
k(s1,0) = k(s1), k(0,s2) = k(s2), k(0,0) = k(0).

Now, we return to (41) to evaluate the derivative with respect to time,

“+00
1 .t

Dr(t) = and(t)o(t) — / i 1 ()T (i

0

Here, taking into account (42), we have

5 d
i) (1) = 2100 (1) = =K (D)g(t) + Ty (1),
where
d d?
Lo (r) = 2Ty (1) = - 5T(7)
Hence, (43) becomes
+0o0o +oo 1
0 0
where the first integral gives
+0o0 +oo
[ 1 = 108 = - [ K(s)g'5)ds = ~a),
0 0
while the second one, by integrating by parts, yields
i 1 1 " 1 d
[ it Tgtrir = 5 [ sty () Ty (lar =
0 0
“+oo

23

(43)

1 d 1 " 1 1 t
=3 / 7 [M] I'él)(T) Xy (T)dr — iqu)(O) Ty (0).

0
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Thus, we get
br(t) + Dr(t) = agd(t)0(t) — a(t) - g(t),

where the corresponding dissipation is given by

+o00o
Do) =~ [ 4 |t Tl T 0r =5 i T ©) T 2 05 44)

0

the positiveness of Dr(t) follows from the assumption (9), and the following inequality:

d [ 1 1,
e [M'(T)] = _Wk (r) <0. (45)
Obviously, from (44) we get
1 Fd
Dg(t) > D) / e [lﬁ/(ﬂ} Ifl)(T) . I'El)(T)dT >0
0

and from this inequality, on assuming that there exists 6 € R** such that
K'(t)+ 6K (1) >0  VreRT,

which, using (45), yields

<0,

af 1] _ K o
dr L'(ﬂ} T TROE S RO

it follows that the dissipation also satisfies the inequality

Dr(t) > 6 {W(t) _ %amsﬂ(t) .
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