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Convergence theorems and asymptotic estimates (as € — 0 ) are proved for eigenvalues and eigenfunc-
tions ofg a boundary value problem for the Laplace operator in a plane thick periodic junction with con-

centrated masses. This junction consists of the junction’s body and a large number N = O(c~!) of the
fine rods. The density of the junction is order O(¢~%), « > 0, on the rods (the concentrated masses if
a > 0), and O(1) outside of them. There are three qualitatively different cases in the asymptotic behavior

of the eigenvalues and eigenfunctions: 0 < a < 2, « = 2, « > 2. The main attention is payed to the case
0<a<?2.

Hoseoeni meopemu npo 36ixcHicmb ma acumnmomudri ouinku (koau € — 0) 045 8AACHUX 3HAYEHb
ma 8AacHux yHKuil Kpaiiogoi 3adaui 0aa onepamopa Jlanaaca 8 NAOCKOMY 2yCIOMY NEPIOOUHHOMY
3’ €0HAHHI 3 KOHUEHMPOBAHOI Macoro. Lle 3’ eOnannsa ckaadaemucsa 3 0eaxol 0baacmi i 6eAUKol KiabKo-
cmi N = O(e~1) monxux cmepacnis. [ycmuna 3’ eOnanns e 6eauuunoro nopaoky O(e =) na cmepicnax
(konuenmpauis macu npu « > 0) ma O(1) noza cmeprcramu. Moxcausi mpu aKicHO pi3Hi 8UNAOKU 6
ACUMNIMOMUYHIT NOBEOIHU 8AACHUX 3HAYeHb ma 8aacHux ynkuyi: 0 < a < 2, a = 2, a > 2. [onoeHa
y8aza npuodiniembCs Nepulomy 8UNAOKY.

1. Introduction and statement of the problem. Vibration systems with a concentration of mass
on a small set of diameter O(¢) have been studied for a long time. It is experimentally establi-
shed that such concentration leads to the big reduction of the main frequency and to the big
localization of vibrations. The new impulse in these research was given by E. Sanchez-Palencia
in the paper [1] in which the effect of local vibrations was mathematically described. Then many
articles appeared (see [2 — 9] and other) that deal with the asymptotic behavior of vibrations of
a body containing a small region (many small regions) where the density is very much higher
than elsewhere.

In this paper we investigate free vibrations of a plane thick periodic junction 2. with
concentrated masses on the fine rods. The asymptotic method developed in [10 — 13] for peri-
odic thick junctions is used. Some results have already been announced in [14].

The junction 2. consists of the junction’s body

Q={zcR?:0<z;<a, 0<zy<y(zx1)},
and a large number N of the fine rods G, = U;-V:_Ol GZ,

Gl={zxecR?*: |z1 —e(j+1/2)| < eh/2, x5 € (—1,0]}, j=0,1,...,N —1,
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ie, Q. = Qo UG.. Here v € C*°([0,a]), 0 < 7o = ming, g[oqv(z1); his a fix number from
the interval (0,1); N is a large positive integer, therefore ¢ = a/N is a small discrete parameter
which characterizes the distance between the rods and their thickness.

We consider the spectral boundary value problem

—Azule,x) = Ae) pi(e, x)ule, ), x € €,
Oy u(e,z) = 0, x € 00 N{x: x9 >0}, (1)
u(e,z) = 0, x el =00 N{x:ze <0},

where 0, = 0/0v is the outward normal derivative; and pi(e,z) = 1 if z € Qp, and pi(e,z) =
= e “if x € G¢; o is a nonnegative parameter.
For each € > 0 there is a sequence of eigenvalues of problem (1)

0<Me) <) <...< )<+~ > 400 as n— oo, (2)

and a sequence of the corresponding eigenfunctions {uy(e,-) : n € N}, that are orthonormali-
zed by the following way

(unaum)Qo + 2370‘(“77,7 um)G’g - 5n,m7 {n7 m} c N, (3)

where (-, -)y is the scalar product in Ly(Y), and 4, ,,, is the Kronecker delta.

Our aim is to describe the asymptotic behavior of eigenvalues {\,(¢) : n € N} and ei-
genfunctions {u,(e,) : n € N}ase — 0 (N — +o00). If & > 0, then the passage to the limit is
accompanied by the concentrated masses on the joined thin domains G?,... ,GN—1.

As we see in section 2, there are three qualitatively different cases in the asymptotic behavi-
or of the eigenvalues and eigenfunctions: 0 < o < 2, @ = 2, a > 2. Here, we consider the case
0 < a < 2. Some remarks for the other cases are given in Remark 2 and in the conclusion.

2. Auxiliary inequalities. The case 0 < o < 2. Consider the space H'({,T.) formed by
functions of the Sobolev space H'().) whose traces vanish on I'.. In this subspace we introduce
along with the norm ||ul|; = ( [ (|Vu|? + p1u?) dz)'/? a new norm || - ||. that is generated by the

Qe

scalar product
(u,v)e = /Vu -Vudz.
Qe

Denote the space H' (), ) with this scalar product by H..

Lemma 1. For ¢ small enough, the norms || - ||1 and || - || are equivalent, i.e., there exist
positive constants c1, g, such that for all € € (0, ) the following inequalities hold :

lulle <llully < erlulle,  we He (4)

Proof. In (4), it is not obvious that the second inequality holds. Suppose the contrary. Then
there exist sequences {&,, : m € N}, {v,,, : m € N} € H_,such that lim,, .o&,, =0,

m?

[omlly =1, ©)

vaH&n = / |vvm’2d$ < mil. (6)
Qe
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Since the sequence {v,,} is bounded in H! (), we may assume without loss of generality,
that it is a Cauchy sequence in Lo (£2y). From inequality (6) it follows that the sequence {v,, } is
a Cauchy sequence also in H(Q) :

lom = a3 HNQ0)I? < [[vm — vi La(Q0)[2 +m ! + 7"

Hence, {v,,} converges in this space to some element vy € H' ().
By virtue of the Friedrich inequality we have

e @ / v2 dr < e ot? /(8lvm)2daz, (7)

Em QEm

where 0; = 9/0x;, i = 1,2. Granting this estimate, we obtain from (5) and (6) that
1:||vm||1—>/ vidr as m — 00 / |Vog|>dz = 0.
Q() Q0

This means that vy = const = |Qo|~ /2 in € , where | Y| is the measure of a domain Y in R2.
On the one hand, from the trace theorem for functions in Sobolev spaces and the Corollary
1.7 [5], it follows that

/v?ndw—>h\90\a as m — 00,

Qem

where Q. = G. N {x2 = 0}. On the other hand, we have

/vfndfng /(8gvm)2dx<m_1—>0 as m — 00.

Qem Ger

The lemma is proved.

Remark 1. 1t should be noted that here and further all constants {¢; } in asymptotic inequali-
ties are independent of the parameter ¢.

Definition 1. A number \(¢) is called an eigenvalue of problem (1) if there exists a function
u(e,-) € H. \ {0} such that for all functions v € H. the following integral identity holds:

<u(€7 ')7 U>€ = )‘(5) (p1(57 -)u(g, ')7 U)Qe : (8)
In this case the function u(e, -) is called an eigenfunction that corresponds to the eigenvalue \(e).

Define an operator Aél) : H. — H. by
(AMy, v), = /pluv dx , u,v € He. 9)
Qe

It is easy to verify that this operator is self-adjoint, positive, compact, and

”AS)UEHE < ciflule, u € He. (10)
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Now we can rewrite the integral identity (8) as the spectral problem for the operator AQ) :

AW y(e, ) = A71(e) ule, ).
Thus, the eigenvalues of problem (1) form the sequence (2), with the classical convention of

repeated eigenvalues. Let us prove some inequalities for these eigenvalues. Let Lo (v, ... ,vp)
be the n-dimensional subspace of H; that is spanned on n linearly independent functions
v, x € Qo;
T =1,...,n, (11)
0, r e G,
where v], ... , v} are orthonormal in Ly (€2) eigenfunctions of the problem
A vl(z) = o (2), x € Qo,
dy v (z) = 0, x € 0 N{x:xzo >0}, (12)
vi(z) = 0, x €0 N{x:x2 =0}
By virtue of the minimax principle for eigenvalues, we have
[ Vv dx f |Vo|? dx
An(e) = min max g =l . (13)

ECEn 040 [, prv?dr ~ 0751)650 fQ v2dz

Here E,, is a set of all subspaces of H. with the dimension n.
Taking into account conditions (3) and the second inequality (4), we obtain from the integral
identity (8) the lower estimates for the eigenvalues
An(€) = llun(e, )2 2 collun(e, )T > CO/m(&w)Ui(&,:r) dr =co>0, (14)
Qe

where ¢y depend neither on € nor on n.
Using inequality (13) and conditions (3), we deduce from (8) the following estimates for the
eigenfunctions

/ Vun (e, )2 de < ¢(n) .

Qe

(15)

The case o > 2. Let us consider the following n-dimensional subspace L.(¢1, ...
H_ that is spanned on the linearly independent functions

 ¢n) of

0, xr € Qo;

k= ,
¢ x € GL,

m(2x1 —e(l+ 25— h))
2eh

k=1,...

. T
sin

sin rkxs,

Then we get

[ Vo2 dax [ |Vv|? dx

Qe G-

An(€) = min max < max

(16)

E€En 0#4veE [ prv?dx
Qe

514

0£vele e [w2dx
Ge
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Taking into account inequality (16), we make the following change of spectral parameter

Ae) = 22X (e) (17)
in problem (1). As a result, we have the problem
—Agu(e,z) = Me) pa(e, 2)ule, z), z € Q.
Oy u(e,z) = 0, x € 00: N{z : za > 0}, (18)
u(e,x) = 0, z eIy,

where po(e,z) = e* 2 if z € Qp, and pa(e,z) = e 2ifx € G..
By analogy with Lemma 1 we prove the following lemmas.
Lemma 2. For ¢ small enough, the norms |jul2 = ([ (|Vu|? + pou?)dz)/? and || - || are

Qe
equivalent.

Lemma 3. For ¢ small enough, the following inequality holds (u,u)q, < ||ulls, u € H..
Changing ps(e, -) instead of p; (e, ), we can repeat definition 1 for problem (18), define an

operator AP . H. — H_ by formula (9) and obtain for one estimate (10). By repeating the
previous argument and using Lemma 2, we deduce the following estimates

0<co<Aale) Seln),  funll? < e(n) (19)

for eigenvalues {0 < Aj(e) < ... < An(e) < ...} of problem (18) and corresponding ei-
genfunctions, but in this case these eigenfunctions are orthonormalized by the following way

72 (uy, Um Qo + €72 (Up, UG, = dnm, {n, m}eN. (20)

Remark 2. According to Lemma 3 and estimates (19) for the eigenfunctions, the first term
in (20) tends 0 as ¢ — 0. Taking into account (7), (15), we can state the same for the second
term in (3), if 0 < a < 2. Thus, there are three qualitatively different cases in the asymptotic
behavior of the eigenvalues and the eigenfunctions: 0 < a < 2, @« = 2, a > 2. As we see below,
in the first case the energy of the free vibrations is concentrated in the junction’s body. It should
be noted that in the other cases the energy is concentrated both in the junction’s body and in
the fine rods.

3. Junction-layer problems. Let us introduce the ,,rapid” coordinates = ¢« in problem
(1). Passing to ¢ = 0, we see that the plane cylinder GY is transformed into the semi-infinite
1—h 1+4+h
2 2 ‘
first octant {n : n; > 0,7 = 1,2}. Taking into account the periodicity of the cylinders {GZ : j =
=0,...,N—1}, we can regard that the union IT of the semi-strips [T~ and IT* = (0, 1) x (0, +o0)
is the base domain in which the junction-layer problems have to be considered. Obviously,
solutions of these junction-layer problems must be 1-periodic in 7, i. €.,

1

strip II~ = I, x (—o0,0], where I}, = ( >; and the set Qg is transformed into the

O Z(0)ly=0 = O3, Z(Mly=1,  n €Y, 2 >0, k=0,1. (21)
Let us investigate some properties of solutions to the following junction-layer problem
—Apm Z) = F(n), n €1,
Z(m) = 0, n € o™\ I, (22)
O Z(m,0) = 0, (m1,0) € OII* \ I,
oOmZMln=0 = O ZM)lyp=1,  NeEM", m>0 k=01
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At first we study the solvability of this problem. In this connection we use the scheme gi-
ven in [12]. Let @8" (IT) be a space of infinitely differentiable functions in II that satisfy the
periodical condition (21), the Dirichlet condition on 0II~ \ I, and are finite in 72, i. e., Vv €
€ Co(Tl) 3R >0 Vnel |l > R : v(n) = 0. Let H be the completion of the space
Ceo(I) by norm [[ulls = ([Vull2, oy + lpoull2, )2 where pons) = (1+n2) " if g > 0,
and ,00(772) = 1if g < 0.

We will call a function Z a generalized solution of problem (22) if for all functions v € H
the following integral identity holds

/VnZ -Vyvdn = /Fv dn. (23)
I I

Lemma 4. Let p, ' F € Lo(T1). Then there exists a unique solution Z € H of problem (22).
Proof. We rewrite identity (23) in the form

(Z,v) — / Zvdn—/den, (24)

IIp,2 II

where Il, g ={n €Il : @ <12 < 3}, and

(u,v) = /Vnu -Vyvdn + / uvdn. (25)
I I 2

We show that the new scalar product (25) generates an equivalent norm in . It is obvious
that (u,u) < cllul|3,, w € H. The inverse inequality with another constant follows from
Friedrich’s inequality; from Hardy’s inequality

“+oo

+o0o
/u+m>wﬂmmmg4/w%mwm Vo € CL([0,+0)),  #(0) = 0;
0 0

and the following inequality

/pﬁ(nz)zﬂ(n) dn < /u2 dn + / pg u? dn+/ﬂ%((1—x(n2))U)2dn <

I I1- H(){Q IT
<c /(&hu)2 dn + / peu? dn + /((9,]2u)2 dn | < ea(u,u). (26)
- Ip,2 11+

Here y € C*°(R), 0 < x <1, and

1, |772’ <1
x(m2) = (27)
{ 0, |772’ >2.
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Due to the conditions of Lemma 4 and to inequality (26), the right-hand side of identity
(23) defines a linear continuous functional in H. As the embedding H C Lo (Il 2) is compact,
there exists a self-adjoint positive compact operator A : H +— H such that

(Au,v) = / wodn, {u,v} €H.
IIp,2
Thus, we can rewrite identity (24) as the operator equation Z — AZ = f, and apply to it the

Fredholm’s theorems. It is obvious that every solution of the homogeneous problem (22) in the
space 'H is trivial. Therefore, the lemma is proved.

Remark 3. Let exp(dp|n2|)F € Lo(I1), 69 > 0. Taking into account the properties of soluti-
ons to elliptic problems in semi-cylinders, it is easily seen that the solution Z to problem (22)
has the following asymptotics

C 4 O(exp(—6 , — +00;
Z() = { (exp(—d172)) 2 28)
O(exp(d172)), T — —00,
where 4 is some positive number.

Remark 4. 1f the function F' from Lemma 4 is even or odd in 7; with respect to 1/2, then
the solution Z has the same symmetry. In fact, let for example F' be even in n; with respect to
1/2,i. e., F(n,n2) = F(1 — n1,n2). Then, due to the symmetry of the domain IT and with the
substitution 7; = 1 — 7} in problem (22), we obtain that the difference Z(n1,72) = Z(1 — n1,12)
is a solution of the homogeneous problem (22). By virtue of the uniqueness of such solution in

the space H, it follows that this difference vanishes.
Corollary 1. The homogeneous problem (22) has a solution =y ¢ H with the asymptotics
_ Co +m2 + O(exp(—danz)), M2 — +00,
Eo(n) = (29)
O(eXp(52772))7 2 — —0Q,

and this solution is even in 1y with respect to 1/2.

Proof. The solution = is sought in the form of a sum

Eo0(n) = x+(m2)m2 + Zo(n),

where Zy € H, and Z; is the solution to the problem (22) with the right-hand sides F'(n) =
= 2X'; (m2) + XL (n2)m2 =: Fo(n2); X+ is a smooth cut-off function that equals 1 if 7, > 2, and
vanishes if 75 < 1.

By virtue of Remarks 3 and 4, this solution 7 is even in 7; with respect to 1/2, and has the
asymptotics

Co + O(exp(—d2np2)), N2 — +00;
Z = 30
o) { O(exp(d2m2)), N2 — —00. (0

In order to find the constant Cy in (29) and (30), it is necessary to substitute the function
Zo and Zj into Green’s formula in II_g g, and to pass to the limit as R — oo. As a result, we
obtain

Co= [ Zo(n)Fo(n2)dn .
/
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Remark 5. The solutions Z, and =y have singularities in the points ; = (1 + h)/2 (see
[15]). Nevertheless, taking into account the order of these singularities, we can apply to Z; and
=g Green’s formula.

Remark 6. By analogy, we can show that the constant C'in (28) equals

C = [ Zo(n)F(n)dn.
/

4. Asymptotic estimates in the case 0 < « < 2. Asympftotic approximations. Let 1, and v;"
be an eigenvalue and eigenfunction of problem (12). Define the function v,, by formula (11),
and construct the approximation

Uy (e, ) = Un () + exo(x2)dov;t (21,0)Z0 (2 /e) , z € Qe (31)
where xo(x2) = x(222/r0) , 70 = min(yo, 1), the function y is defined by (27);
_ Eo(n) —m2, mel;
(n) = _ -
Eo(n), nell,

and E is the solution to the homogeneous problem (22) with asymptotic (29).

It is easily seen that U, (e, ) € H., and due to characteristics of =, the function U, (e, -)
satisfy the boundary conditions of problem (1). Substituting {U, (e, -), it»} into problem (1) in
place of {u(g,-), A(e)}, we find that for any ¢ € H.

/ (VU - Vb — pinpr Unth) dar = (1) (32)

Qe
where

T — / pr(e, 2)x0(22) B0 (1, 0)Bo (1/2)b () da+
Qe

+e /Q X (2)0207 (21,0) (Zo (/)i () — €70 (B0) (/) (a) ) da+

te / Yo(2) 0505 (21,0) (So(w/)Ohb(w) — £710y, (Bo)(w/2)b(w) ) da. (33)
Qe
In order to estimate the terms in (33), we use the following lemma.

Lemma 5. Assume that Z is a function, 1-periodic in 1y, belonging to the space Lo(11) and
exponentially decreasing at infinity, i.e., there exist positive constants Cy, Ry, By such that | Z (n)| <
Coexp(—Lo|n2|) if |n2| > Ro. Then for any 6 > 0 there exist positive constants C,eq such that
forall e € (0,¢e9) the following inequality is valid:

[ 2/t | < i, v e
Qe
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Proof. Set B. s = Q. N (0,a) x (—e17%,£172%) 5§ > 0. Then

)/Z(a;/e da:’<’/ (/<) d + | / Z(x/e)(x) da.
Qe

QE\BE,é

The properties of the function Z lead us to the conclusion that the second summand in this
inequality decreases exponentially as ¢ — 0. With the help of Lemma 1.5 [5], we estimate the
first summand:

/
| [ 2@/ ] < ([ 2l d) ol < 20wl
B

Bs,é

The lemma is proved.
Using (29) and Lemma 5, we deduce that

D (¢)| < c(8) e °||¢||. forany &> 0. (34)

Remark 7. The constant c¢(§) in inequality (34) depends on the quantities
max,, c(o,q] |92 “Flyt(x1,0)|, i = 0,1. Applying the even extension, with respect to the line
21 =0 and x1 = a, to problem (12), we establish that the function v;" and its derivatives have no
singularities at the points (0,0) and (0, ). Then, by virtue of classical results on the smoothness
of solutions to boundary value problems, the quantities mentioned above are bounded.

Thus, the right-hand side of integral equality (32) is a linear bounded functional on the
space H., and its norm is bounded by ¢(8) €%, § > 0. On the basis of the definition of the

operator Al (see (9)) and the Riesz theorem, we get from (32) the inequality
1Un (e, ) = pn AU (e, )le < c(8) 0, 6>0, (35)

which, by virtue of the first part of Lemma 12 [16], partially justifies the constructed asymptotics
for the solutions of problem (1) :

min | = A (@] < U2 AP - 1 Ul = O(10). (36)

Convergence theorem and asymptotic estimates. To prove the convergence theorem, first
we observe that there exists an extension operator

P.: H. — HY(Q,T_;) such that /VPEu|2dx < clulle, u€ He. (37)

Here Q is the interior of the union Qo U D; D = (0,a) x (—1,0); T_1 = {z : 0 < 21 < a,
w3 = —1}; and functions that belong to the subspace H'(2,T'_;) of H(2) vanish on T'_;.

We construct this operator in the following way. At first a function v € H. is prolonged by
zero on the set 2. U D, where D = [0, a] x [—1, —/]. Further extension of u to € is performed
similarly as for perforated domains [5].

Theorem 1. Let {\,(¢) : n € N} and {0 < 1 < po < ... < pp...} be the ordered
sequences sequences of eigenvalues of problems (1) and (12) respectively; let {u,(s,-) : n € N}
be the corresponding sequence of eigenfunctions satisfying condition (3). Then for any n € N

An(€) = pp as e — 0
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there is a subsequence of {€} (still denoted by {c}) such that

P.uy(e,") — $n weaklyin H'(Q,T_1) as e—0,
where ¢n(z) = @t (z) if v € Qo, and @, (x) = 0 if x € D; {p;'} are eigenfunctions of problem
(12) that are orthonormal in the space L2(€).

Proof. Bearing in mind the boundedness of \,(¢) in ¢ for fixed n (see (13), (14)), and
the inequalities (15) and (37), with the help of the diagonal process, one can choose a
subsequence of {c} ( still denoted by {e¢}) such that A\,(¢) — p, and P.u,(e,:) —
— @n, weaklyin H(Q,T_;) as ¢ — 0. From inequality (14), it follows that 0 < u} < uj <
<L <ph<.

According to the Remark 2, we have that

5n,m = (unaum)ﬂo +6_a(unaum)Ge - (@7—57(107—;)90 as ¢ — 0,

whence ¢;f # 0.
Write the integral identity (8) for the eigenfunction u,, (e, -) with a test function v € H'(p)
that is equal to 0 on the interval [0, a] and on the set G., and pass to the limit ase — 0. We get

/ Vi () - Vo(w) do = pt /Q ot (@)o(a) d.
Q 0

This means that y, is an eigenvalue of problem (12), and ;" is the corresponding eigenfunction.
Now we write (8) with the following test function

{ 0, z € Qo;
v(z) =
up (g, 2) (), r e G,

/zp|vun|2 dx = /unVun -V dr + Ap(e)e™® /¢ u? da. (38)

G- G G
Fixing some /3 > 0 and taking into account (7), (13), (15), we deduce from (38)
0<cp / |VPeu,|? dr = cg / IV, |* de < Cg(e + €27 |Jun||2,
Dg GeN{z: zo<—F}

if € is small enough. Since P.u, — 0 in H'(Dg,I'_1) ase — 0 and 3 is arbitrary positive
number, @, = 0in D.
In order to complete the proof, it remains to show that

fin = o, mEN. (39)

Let pup = pg41 = ... = pr4+q—1 be an eigenvalue of multiplicity ¢. Let us show that there
exist exactly ¢ eigenvalues of problem (1) with regard to multiplicity which tend to u; as e — 0.
This will mean that relations (39) are true.
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Assume that there exist r eigenvalues {\,,,(¢) : i = 1,... ,r} of problem (1) which tend to
pr and r > g. By the preceding arguments, we have for the corresponding eigenfunctions that
un,(€,") — ¢f weaklyin H'(Qg) as ¢ — 0, where {¢, : i = 1,...,r} are orthonormal
in Ly () eigenfunctions of problem (12). Thus, the eigenvalue p; has multiplicity r, but it is a
contradiction.

Now, let r be less then ¢ and let v,:rl., i = 0,1,...,9 — 1 be eigenfunctions of problem
(12) that correspond to the eigenvalue ;. With the help of these eigenfunctions, we construct
the approximations Ugy;, 7 = 0,1,...,¢ — 1, by formula (31), and arrive at inequality (35).
Applying the second part of Lemma 12 [16] to this inequality, we conclude that there exists a
linear combination of the eigenfunctions wy, , ... ,u,, of problem (1)

)—de €)un,(¢,-), 0<C1<Zd e)<ec, r<q,

such that ||v;f,, — RV, Ly(Q)| < ce' %, i =1,... ,q. Passing to the limit in these inequalities
over a suitable subsequence of {¢}, we get

T
karZ Zd”gon ), x €8, 0<01§Z(dfj)2§02, 1=0,1,...,q— 1.
But this contradicts to the linear independence of the functions v,j, e ,v,jJr -1

Since the above reasoning holds for any subsequence of {¢} chosen at the beginning of the
proof, we have A\, (¢) — u, as € — 0. The theorem is proved.

The above theorem allows us to obtain asymptotic estimates for the eigenvalues and ei-
genfunctions immediately from (36) and Lemma 12 [16].

Theorem 2. Forany 6 > 0,n € N, and € small enough, we have
Ane) = pal < er(n,8) '™

Theorem 3. Assume that |1, = [int1 = ... = [intq IS an eigenvalue of problem (12) with

multiplicity q, and that v, ... ,v:{ 4q—1 are the corresponding eigenfunctions. Then there exist

constants g , c2(n, d), and {d; } such that for € € (0, ¢) the following inequalities hold :

o

where {U,1; :i=0,1,... ,q — 1} are defined by (31).

It follows from Theorem 3, Lemma 1, and Lemma 5 the following corollary.

n+2 deun-f-k Ha < CZ(na(S) 51_57 1=0,1,...,¢—1,

Corollary 2. Let i, be a simple eigenvalue of problem (12). Then

HHUnH;lUn(s, Y= ATM2(e) (e, )H ex(n. ) 10

H1(Q0)

/\Vun(s, N2 dx < e3(n,8) el ™%, §>0.
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Conclusion. 1t follows from above obtained results that the energy of the free vibrations is
concentrated in the junction’s body, and there exists no reduction of the frequencies in the case
0 < a < 2. Similar situations were observed in [1 — 10], when the density on small sets is not so

big.

In the other case we observe the big reduction. If o = 2, then the eigenvalues {\,(¢)} tend
to m2h =2 (h is the width of the strip IT~) as ¢ — 0, and their ,,splitting” occurs only in the second
term of the asymptotics, i.e., A\,(g) = m2h ™2 + €27, + O(e3), where 7, is an eigenvalue of some
operator-function. If a > 2, then all eigenvalues { A, (¢)} tend to zero, and have the asymptotics
An(e) = e 2m2h =2 + 283, + O(e* ).
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