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STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC
NONLINEAR SCHRODINGER EQUATION WITH PERIODIC POTENTIAL

CTABUIBHICTDb TOYHUX PO3B’A3KIB PIBHAHHA INPEIIHI'EPA
3 HEJITHIMHICTIO TPETHOTI'O TA IPATOIO IOPSIKIB
I HEPIOIUYHUM ITIOTEHHIAJ/IOM

E. Kengne

Univ. Ottawa

585 King Edward Ave., Ottawa, ON KIN 6N5, Canada
Univ. Dschang

P O. Box 4509, Dauala, Cameroon

e-mail: ekengne6@yahoo.fr

R. Vaillancourt

Univ. Dschang
PO. Box 4509, Douala, Republic of Cameroon

The nonlinear Schrodinger equation with attractive quintic nonlinearity in periodic potential in 1D, mode-
lling a dilute gas Bose— Einstein condensate in a lattice potential, is considered and one family of exact
stationary solutions is discussed. Some of these solutions have neither an analog in the linear Schrédinger
equation nor in the integrable nonlinear Schrodinger equation. Their stability is examined analytically and
numerically.

Poseaanymo neainitine pienannsa llIpedinzepa 3 npumsaz2yro1oi0 HeAIHIUHICMIO N’AMo20 NOPAOKY 8 00-
HOBUMIPHOMY NePiOOUYHOMY ROMEHUIANL, AKe MOOEAI0E PO3PAOIeHULL 2a308Ull KOHOeHcam bose — Etin-
WMELIHA 8 Peulimuamomy NOMeHUiall, @ MAKONC 0esKy CiM' 10 MOYHUX CIAYIOHAPHUX p038’°a3kis. [le-
AKI 3 YUX PO3B’A3KI6 He MAIOMb AHAN02I8 ceped PO38’A3Ki6 HI NIMHiliHO20 pisHaHHA Illpedinzepa, Hi
IHMe2P0BHO20 HeAiHIliH020 pieHanHA lllpedinzepa. [locaioneno cmabiabHicmb maKux po3e’a3kie aua-
AMUYHUMU A YUCEALHUMU MEOOAMU.

L. Introduction. Itis well-known that a collapse phenomenon is observed in the Bose — Einstein
condensates (BECs) with attractive interaction if the number of atoms N exceeds a critical
value N, as in the case of atomic condensates with Li [1, 2]. In this case, experiments with
attractive two-body interaction have been performed [3, 4] with results consistent with the li-
mitation in the number of atoms and with the growth and collapse scenario. The nonlinear
Schrodinger (NLS) equation with cubic nonlinearity used to describe the BECs has stable
solutions in the one-dimensional (1D) case when the dispersion and nonlinearity effects can
effectively balance each other. In two and three dimensions, the focusing nonlinearity overcomes
the dispersion and a blow-up phenomenon occurs [5].

A few mechanisms, as the dispersion [6, 7] and nonlinearity management methods [5, 6, 8 —
12] have been suggested for the arrest of collapse. Based on the variational approach, method
of moments, and numerical simulations, the analysis showed that the nonlinearity management
method is effective in suppressing collapse in the 1D and 2D NLS equations with focusing cubic
nonlinearity. The arrest of collapse by using a strong cubic nonlinearity management scheme in
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the 1D cubic-quintic nonlinear Schrodinger equations is of practical interest since it appears in
many branches of physics such as BEC. Here, it models the condensate with two- and three-
body interactions [13, 14]. In BEC, the variation of the atomic scattering length by the Feshbach
resonance technique leads to the oscillations of the mean-field cubic nonlinearity [15], but it also
induces variations of the quintic nonlinearity because the three-body interaction is dependent
on the scattering length [16].

In this paper we consider a quasi-one-dimensional BEC with two- and three-body interacti-
ons in a periodic potential. The governing equation is given by the NLS equation with a periodic
and with cubic and quintic terms

2
z%f = <—;;xg+v(3«")+)\2|¢|2+>\3|¢|4> ¥, (1)
where 1 (x,t) represents the macroscopic wave function of the condensate and V(x) is an
external macroscopic potential. In this equation we assume dimensionless variables: the unit
of energy is fuw/2, the unit of length is y/2/(mw), and the unit of time is 1/w. The parameters
A2 and A3 of the two- and three-body interactions in general can be complex quantities. In the
case of complex parameters, the imaginary parts of A\ and A3 describe the effects of inelastic
two- and three-body collisions on the dynamics of BEC'’s, respectively. In this work, we do
not consider dissipative terms, and such cubic and quintic parameters are real. In general, the
parameter of the two-body interaction Aq is proportional to the two-body scattering length a,
and is given by Ay = 8ma, [17].

In the absence of the three-body interaction parameter (A3 = 0), exact solutions of Eq. (1)
have been constructed with the experimentally generated potential V(x) = Vjsin?(z) and their
stability was investigated in [18, 21]. In fact, a potential more general than sinusoidal potential
was considered: V(x) = —Vysn?(z, k), where sn(x, k) denotes the Jacobian elliptic sine functi-
on with elliptic modulus 0 < k& < 1[19]. For a potential of this form, some exact solutions were
also found and their stability has been analyzed in [20], taking A2 = —1. Currently, no experi-
ments are being performed where a BEC with two- and three-body interaction is trapped in 1D
periodic potential. Although motivated by the developments in BECs, in this paper we consider
Eq. (1) with attractive three-body interaction (A3 < 0). Thus we consider

0 1 0
% = (“5 02 + V@ + 2alvl = o) v @

As in BECs with two-body interaction [21 -23], the proper choices for the potential allow for
the construction of a large class of exact solutions. The external potential considered in this
work is a generalization of the sinusoidal, standing light wave potential [24]:

V(z) = Ao + Bosn?(lz, k). 3)

For By = 0, Eq. (2) becomes a cubic-quintic nonlinear Schrodinger equation and hence is
integrable [25, 26]. In the limit as k — 1—0, V' (z) becomes an array of well-separated hyperbolic
secant potential barriers or wells, while in the limit as ¥ — 40 it becomes purely sinusoidal.
Because sn(lz, k) is a periodic function with period

_ 4 foﬂ/Q dz
Tl

V1 — k2sin’z

ISSN 1562-3076. Heainitini koausarnns, 2010, m. 13, N> 4

AK ()



STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION... 535

the external potential V() is also a periodic function with period 2K (k). This period approaches
infinity as & — 1 — 0. Thus, as ¥ — 1 — 0, the potential (3) is a periodic lattice of separated
peaks or troughs. Hence, by changing the parameter k, various interesting regimes of BECs are
considered. This is the reason for considering potential of the form (3). The parameters Ay, By
and [ are introduced to facilitate the construction of exact solutions and, for simplicity, we take
I > 0. Although this exact expression for the potential is necessary to allow the construction
of exact solutions, it is its qualitative features, that is, its periodicity and amplitude, that are the
most important.

The paper is outlined as follows. In the next section we derive and consider various properti-
es and limit of explicit solutions of Eq. (2) with potential (3). In Section III we develop the
analytic framework for linear stability properties of solutions of Section II. In section IV, the
results of the numerical simulations are discussed. A brief summary of the results concludes the
paper in Section V.

II. Stationary solutions. Equation (2) with V() = const is an integrable cubic-quintic
nonlinear Schrodinger equation of which many explicit solutions are known [25-27]. If V' (z) #
# const the cubic-quintic NLS equation is not integrable, and only small classes of explicit
solutions can be obtained. A judicious choice of the potential V'(x) allows for the cancellation
of the nonlinear terms in Eq. (2) so that exact solutions can be constructed. Of course, one
can always find a suitable potential V' (z) by solving Eq. (2) for V(z), given a certain (x, t).
This results in a time-dependent potential and hence is not of interest. In this section, we give a
dictionary of the families of exact solutions we were able to construct. These families are built
as the families of exact solutions found for the two-body interaction case, discussed in [18, 20].

For the exact solutions, the density of the condensate |¢)(x, ¢)|* is a linear function of either
dn(z, k) or sn(lz, k), or cn(lz, k), where sn(lz, k) and cn(lz, k) are the Jacobian elliptic sine
and cosine functions, respectively. These solutions are given by ¥ (z,t) = r(z) exp (if(x) — wt)
where r(x) and () are two real functions to be determined and w is the chemical potential of
the condensate. Inserting this ansatz into Eq. (2) yields

3 4 2wrt — 2Vt — 200r% + 28 — C% = 0. 4)

The parameter C is defined via the relation ¢'(x) = C/r?(z), which expresses conservation of
angular momentum. Null angular momentum solutions, which constitute an important special
case, satisfy C' = 0 and we choose #(x) = 0. First we discuss the solution with dn(lz, k).
The quantities associated with this solution will be denoted with the subscript 1. The quantities
associated with the sn(lz, k) and cn(lz, k) solutions will be subscripted by 2 and 3, respectively.
In order to find some restrictions on the domain of the parameters of the solutions, we will use
the fact that both sn(lz, k) and cn(lx, k) have zero average as functions of x and lie in [—1, 1],

while dn(lx, k) has nonzero average, and its range is [\/ 1— k2, 1} :

To find the dn(lx, k) solutions, we set

ri(z) = Ay + By dn(lz, k). (5)
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Inserting Eq. (5) into Eq. (4) yields

3k21?> — 8B,
Ay = — 770 N B? =
T8 (K22 —2By)

3k212 — 8B,
8k2 ’

32B2 + 9k4* — 36k%1°By 5, Bo+k*Aq  1* (K —2)
w1 = )\2 k2 + 8 5

32 (k212 — 2By)? ©)

2
o2 (Ag 24 (K212 — 2By)” (1I2k> — 4Bo)> y

- k2 (3k212 — 8By)>

o 8P - 2By)” (1 - k2)\ k22 (3k%12 — 8By)”
X — .
2 k? (3k%1%2 — 8By) 512 (k212 — 2By)>

The freedom in choosing the potential gives five free parameters, A2, Ay, Bg, k, and [. The

requirements that r?(x), B?, and C? be nonnegative imposes conditions on the domain of these
272

parameters. The condition on the sign of r?(z) and B? gives > By and

4 (k2?12 = 2Bo) V1 — k2
k+/2 (3k212 — 8By)

9 > —

3k212

for By > 0, and > By and

4 (k*1> — 2By)
" ky/2(3k212 — 8By)

2

for By < 0. Solving the inequality C? > 0, one obtains the supplementary conditions on the
domain of parameters A9, Ag, By, k, and [ for the validity of solutions (5), (6).
The sn(lz, k) solutions are found by substituting

r3(x) = Ag + Bysn(lz, k) (7)

in Eq. (4). Equating different powers of sn(lz, k) imposes the following constraints on the
parameters:
3k21%2 — 8B,

Ay =" 20 N\ BI=
2T 8 (kA2 —2By) T 2

8By — 3k?I?
8 b

32B2 — 36k%2By + 9k*1* 2 (1+k?)
0 2 +
32 (k212 — 2B,)? 2 8

)

wg = Ao+

o, 12(8Bo—3k%2)° (8 (K42 —2B,)" 2 (2 8PP - 2B))*
2048 (k212 — 2B,)* \ 8By — 3k212 2 2 8By — 3k22

ISSN 1562-3076. Heainitini koausanns, 2010, m. 13, N> 4



STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION... 537

The freedom in choosing the potential gives five free parameters, A2, Ay, Bo, k, and [. The
requirements that 73(z), B3, and C3 be nonnegative imposes conditions on the domain of these

2l2
parameters. For the positivity of both r3(z) and B3, we obtain that either By > - and
4 (2By — k%12 22 22 4 (2By — K*I?
9 > ( 0 ) orgkl <Bo<ﬂand)\2§ ( 0 ) 0. The
V2 (8By — 3k212) 8 2 V2 (8By — 3k212)

complementary conditions on the values of the parameters Ao, Ag, By, k, and [ for the validity
of solutions (7), (8) are obtained by solving the inequality C3 > 0.
For the cn(lz, k) solutions, we substitute

r3(x) = A3 + Byen(lz, k) 9)
into Eq. (4) and obtain
k%12 — 8B k%12 — 8B
A3:3 80)\2, B32,:3 8By

8 (k212 — 2By) g

32B2 — 36k%12By + 9kM* , 17 (1—2k?)
w3 = A2+ + Ao + By, 10
’ 32 (k22 — 2Bg)?  ° 8 o 10

oo _ P BRE - 8By)" [, A G 8By)”
= — X
> 2048 (k212 — 2B,)* > 256 (k22 — 2B,)*

214 (1 _ 1.2  91.272\3
X(k:l(l k?) (8B — 3K21%) )\2>.

4096 (k212 — 2Bo)" 2

The freedom in choosing the potential gives five free parameters, A2, Ay, Bo, k, and [. The

requirements that 73(z), B2, and C# be nonnegative imposes conditions on the domain of these
272

parameters. For the positivity of both 73(x) and B3, we must have

4 (k*1? - 2By)
/2 (3k212 - 8By)
with attractive two-body-interaction. Other restrictions on the region of validity of solution (9),
(10) are obtained by imposing the nonnegativity of C3.

The null angular momentum solutions case. Null angular momentum corresponds to C; = 0.
Since for each of solutions (), j = 1,2, 3, C]2 has three factors, one of which is different from
zero (because B; # 0 for non plane wave solutions), and each factor that can be zero is a
quadratic function of \s (see the third equation of Egs. (6), (8), and (10), there are at most four
possible choices of A\ for which this occurs.

(I) For the solutions r1 (), we have

> B and Ay >

> 0. This means that the cn(lz, k) solutions do not exist for the BECs

2 (K17 — 2By)
k (3k%12 — 8By)

2 (k21> —2By) | 2(1 — k?)

A
2 € 2 k212 — 81,

if 12k%/4 > By,

6 (12k2 — 4By), +
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and
iz (k1> —2By) [ 2(1 —k?)

if 1%k%/4 < By < 3k%1%/8.
3 322 —8By [ /4 < Bo < /

Ay €

(IT) For the solutions 7 (z) with condition 73(x) > 0, we obtain

212 _
Ay = 2(230—k2l2) w

8By — 3k2I2
if k2122_ L > By > %Hz? and k212 — 4 > 0, and
Ny = 2(2By — K*1?) |2 (K*1* — 2By)
k 8By — 3k2I2
ifw > By > gk212and12—4 > 0.

We note that Egs. (9) and (10) do not define any null angular momentum cn(lz, k) solutions
with 73(z) > 0 for all z.

The trigonometric limit. In the limit as & — 40, the Jacobian elliptic functions reduce to
trigonometric functions and V(z) = Ag + Bosin®(lz). In the limit as & — +0, Eq. (8) gives
a negative C2, and this means that Egs. (7) and (8) do not give any trigonometric solution.
Passing in the limit as ¥ — 40 in Eqgs. (9) and (10), we find the trigonometric solutions

A A2 2
T‘gi(ﬂf) = ?2 —By COS(ZQZ), w3 = f + g + Ao + By, By <O,

which is a null angular momentum solution. For the positivity of 3, (z), we must have Ay >
> 2v/—By. Some trigonometric solutions are illustrated in Fig. 1.
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