UDC517.9
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We obtain an existence principle for the impulsive periodic boundary-value problem u” + cu' = g(x) + e(t),
u(ti+) = u(t;) + Ji(u, ), o' (6+) =u' () + M(u, '), ¢ = 1,...,m, u(0)=u(T), u'(0)=u'(T), where
g € C(0,00) can have a strong singularity at the origin. Furthermore, we assume that0 <t; < ... <t,, <T,
e € 11[0,T],c € Rand J;, M;,i = 1,2,...,m, are continuous mappings of G[0,T] x G[0,T] into R,
where G|0,T) denotes the space of functions regulated on [0, T).

The presented principle is based on an averaging procedure similar to that introduced by Mandsevich
and Mawhin for singular periodic problems with p-Laplacian.

Ompumano NPUHUUR ICHYBAHHA PO36’A3KY NePIOOUYHOL 2PAHUYHOL 3a0a4i 3 IMIYAbCHOIO Oleto, u” +
+eu' =g(z)+e(t), ulti+) = ults) + Ji(u,u’), o' (t;4)=u'(t;) + M (u,u’), i = 1,...,m, u(0) =u(T),
u'(0)=u/(T), oe g € C(0,00) MOHe mamu cuavHy ocobausicmsv y Hyai. [laai, npunyckaemscs, ujo
O<t1<...<tm<T,e € L1[0,T),c € RiJ;, M;,; i = 1,2,...,m, — HenepepaHi 8i006paxeHHs 3
G[0,T] x G[0,T) 8 R, 0e G[0,T] — npocmip @ynkuiti, peeyavosarux Ha [0,T).

Ompumanua npuHyuny 6a3yemuca Ha npoyedypi ycepeOHeHHA, AKA € AHAA020M RPOUeOYPU, 3anPO-
nonosarnoi Menacesivem ma Masxinum, Oas CUHZYAAPHUX NePIOOUHHUX 3a0aH I3 P-AANAACIAHOM.

1. Preliminaries. Starting with Hu and Lakshmikantham [1], periodic boundary-value prob-
lems for nonlinear second order impulsive differential equations of the form

u” = f(t,u,u’), (1.1)
u(ti+) = u(ti) + Ji(u,u),

(1.2)
u(ti+) = W (t) + Mi(u, ), i=1,2,...,m,
uw(0) = u(T), «'(0) =/ (T) (1.3)

have been studied by many authors. Usually it is assumed that the function f: [0, 7] x R> — R
fulfils the Carathéodory conditions,

0<t;<ta< ... <ty <T arefixed points of the interval [0, T'] (1.4)

and J;, M; : R> — R, = 1,2,...,m, are continuous functions. A rather representative
(however not complete) list of related papers is given in references. In particular, in [2—-6] the
existence results in terms of lower/upper functions obtained by the monotone iterative method
can be found. All of these results impose monotonicity of the impulse functions and existence
of an associated pair of well-ordered lower/upper functions. The papers [7] and [8] are based
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SINGULAR PERIODIC IMPULSE PROBLEMS 33

on the method of bound sets, however the effective criteria contained therein correspond to
the situation when there is a well-ordered pair of constant lower and upper functions. The ex-
istence results which apply also to the case when there is a pair of lower and upper functions,
which need not be well-ordered, were provided only by Rachinkova and Tvrdy, see [9-12].
Analogous results for impulsive problems with quasilinear differential operator were delivered
by Rachiinkova and Tvrdy in [13-15]. When no impulses are acting, periodic problems with
singularities have been treated by many authors. For rather representative overview and refer-
ences, see e.g. [16] or [17]. To our knowledge, up to now singular periodic impulsive problems
have not been treated. For singular Dirichlet impulsive problems we refer to the papers by
Rachtinkova [18], Rachtinkova and Tomecek [19] and Lee and Liu [20].

In this paper we establish an existence principle suitable for solving singular impulsive pe-
riodic problems.

Notations. Throughout the paper we keep the following notation and conventions: for
a real-valued function u defined a.e. on [0, 7], we put

T
lulloo = supessicory lu(t)| and fulls = / fu(s)] ds.
0

For a given interval J C R, by C(J) we denote the set of real-valued functions which are
continuous on J. Furthermore, C'!(J) is the set of functions having continuous first derivatives
on J and L;(J) is the set of functions which are Lebesgue integrable on J.

Any function z : [0,7] — R which possesses finite limits

z(t+) = Tligl_l_i(T) and z(s—) = Tligl_x(T)
forallt € [0,7) and s € (0,7] is said to be regulated on [0, 7]. The linear space of functions
regulated on [0, 7] is denoted by G[0,T]. It is well known that G[0,T] is a Banach space with
respect to the norm z € G[0, 7] — ||z]| s (cf. [21], Theorem 1.3.6).

Letm € Nandlet 0 =tg < t1 < t3 < ... <t < t;jmyr1 = T be a division of the interval
[0,T]. We denote D = {t1,ts,...,ty,} and define C}[0, 7] as the set of functions u: [0,7] — R
such that

Ujo] (t) if ¢t € [O,tl],

U] (t) if t e (tl,tg],

u(t) =

U[m](t) if te (tm,T],

where uy € Cti,tiq] fori = 0,1,...,m. In particular, if u € Cp[0,T], then u' possesses
finite one-sided limits

o' (t—) := lim u(r) and u/(s+) := lim wu(r)

T—t— T—s5+

for each t € (0,7] and s € [0,7T). Moreover, v'(t—) = u/(t) for allt € (0,7] and v/(0+) =
= 4/(0). For u € C}[0,T] we put

lullp = Nlulloo + [lu'lloe-
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34 Z.HALAS, M. TVRDY

Then C}[0,T] becomes a Banach space when endowed with the norm ||.||p. Furthermore, by
ACL0,T] we denote the set of functions u € C}[0, 7] having first derivatives absolutely con-
tinuous on each subinterval (¢;,¢;41),7 = 1,2,...,m + 1.

We say that f : [0,7] x R? — R satisfies the Carathéodory conditions on [0,T] x R? if
(i) for each x € R and y € R the function f(.,z,y) is measurable on [0,77]; (ii) for almost
every t € [0,T] the function f(t,.,.) is continuous on R?; (iii) for each compact set K C R?
there is a function mg(t) € L[0,T] such that |f(¢,z,y)| < mx(t) holds for a.e. ¢ € [0,7] and
all (z,y) € K. The set of functions satisfying the Carathéodory conditions on [0,7] x R? is
denoted by Car([0, 7] x R?).

Given a subset  of a Banach space X, its closure is denoted by €. Finally, we will write &

instead of — / s) ds and AT u(t) instead of u(t+) — u(t).

If f € Car([0, T]xR?), problem (1.1)—(1.3) is said to be regular and a function u € ACL[0, T
is its solutions 1f
u’(t) = f(t,u(t),u'(t)) holdsfora.e. t € [0,7]

and conditions (1.2) and (1.3) are satisfied. If f ¢ Car([0,T] x R?), problem (1.1)—(1.3) is said
to be singular.

In this paper we will deal with rather simplified, however the most typical, case of the sin-
gular problem with

ft,z,y) = cy+g(x)+e(t) forz € (0,00), y € Rand a.e. t € [0,7],
where
ceR, ¢geC0,0), ec L[0,T]. (1.5)
Definition 1.1. A function ue€ AC}H0,T) is called a solution of the problem
u +cu' = g(u)+e(t), (1.2), (1.3) (1.6)
ifu > 0a.e on[0,T],
u’(t) + cu'(t) = g(u(t)) +e(t) forae te[0,T),

and conditions (1.2) and (1.3) are satisfied.

2. Green’s functions and operator representations for impulsive two-point boundary-value
problems. For our purposes an appropriate choice of the operator representation of (1.1)-
(1.3) is important. To this aim, let us consider the following impulsive problem with nonlinear
two-point boundary conditions,

W +a(t)u + a1 (t)u = f(t,u,u’) ae on [0,7], (2.1)
Atu(ty) = Ji(u,u), ATU () = Mi(u,d), i=1,2,...,m, (2.2)
P (19) o () - e
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SINGULAR PERIODIC IMPULSE PROBLEMS 35

and its linearized version

u” + as(t)u' + a1 (t)u = h(t) a.e. on [0,T], (2.4)

A+u(ti) = di, A+u'(ti) = d;, 1 = 1,2, ceey M, (25)
u(0) u(T) _

P(ue) e (U) =« 2.6)

where

(a1, h € L[0,T], az € C[0,T], f € Car([0,T] x R?),

Jiand M;: G[0,T] x G[0,T]—R, i=1,2,...,m, are continuous mappings,

ceR% d;,d, eR, i=1,2,...,m, (2.7)

P, Q are real 2 x 2-matrices, rank(P, Q) = 2,

R: G[0,T] x G[0,T] — R? is a continuous mapping.

Solutions of problems (2.1)-(2.3) and (2.4)—(2.6) are defined in a natural way quite analo-
gously to the above mentioned definition of regular periodic problems. Problem (2.4) —(2.6) is
equivalent to the two-point problem for a special case of generalized linear differential systems
of the form

x(t) —z(0) — /A(s) z(s)ds = b(t) — b(0) on [0,T], (2.8)
0
Pz(0)+Qxz((T) = c, 2.9)
where
_ (@) _ [u®) B 0 1
x(t) = (xz(t)) B <u/(t)>7 A(t) = (_al(t) _az(t)>, (2.10)

b(t) = /t <h?8)> ds+f: Czl) X, 70t €07,
0 =1

and X(t;,T] (t) = lifte(t;,T], X(t;,T] (t) = 0 otherwise. Solutions of (2.8), (2.9) are 2-vector
functions of bounded variation on [0, T satisfying the two-point condition (2.9) and fulfilling
the integral equation (2.8) forall ¢ € [0, 7], cf. e.g. [22]. Assume that the homogeneous problem

W +ax(t)u +ai(t)u =0, P <Z,((%))> +Q <3,((?)> =0 (2.11)

has only the trivial solution. Then, obviously, the problem

¥ —At)x =0, Pz(0)+Qxz(T)=0 (2.12)
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36 Z.HALAS, M. TVRDY

has also only the trivial solution. In view of [23] (Theorems 4.2 and 4.3) (see also [24], Theorem
4.1), problem (2.8), (2.9) has a unique solution z and it is given by

T

(1) = / T(t, s) db(s)] + wo(t), ¢ € [0,T], 2.13)
0

where z is the uniquely determined solution of
¥ —At)x =0, Pz(0) +Qux(T) = c,
and
D(t,8) = (7i(; 8))ij=1.2

is Green’s matrix for (2.12). Recall that, for each s € (0,7), the matrix function ¢t — I'(¢,s) is
absolutely continuous on [0, 7] \ {s} and

;tl“(t, s)—A(t)T(t,s) =0 forae. t € [0,7],

PT(0,s)+QI(T,s) =0,

L(t+,t) = T(t—,t) =1,

where [ stands for the identity 2 x 2-matrix. In particular, the component +y; 2 of I is absolutely
continuous on [0, 7] for each s € (0,7 and

0
a%,g(t,s) = ’72,2(t, S) forae. t ¢ [O,T].

Denote G(t,s) = 71,2(t, s). Then G (¢, s) is Green’s function of (2.11). Furthermore, we have
881“(15,3) = —I'(t,s) A(s) forall ¢t € (0,7)anda.e.s € [0,T].
S
In particular,

m.1(t,s) = _085 G(t,s) +ai1(s)G(t,s) forall ¢t € [0,7]and a.e. s € [0,T].

Inserting (2.10) into (2.13) we get that, for each h e L[0,T], ¢,d;, d,€ R, i = 1,2,...,m, the
unique solution u of problem (2.4)—(2.6) is given by

u(t) = up(t) + /G(t, s) h(s)ds+
0

m

+z; (—aas G(t,t:) + ai(t) G(t,ti)> d; +§:G(t,ti)dg for ¢ [0, ],

i=1
where ug is the uniquely determined solution of the problem

' +ag(t)u + a1 (t)u = 0,(2.6). (1)
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SINGULAR PERIODIC IMPULSE PROBLEMS 37
Now, choose an arbitrary w € C}[0,T] and put

h(t) = f(t,w(t),w'(t)) fora.e. t € [0,T],

d; = Ji(w,w'), d; = M;(w,w'), i =1,2,...,m,

c = R(w,w’).

Then h € L[0,T], ¢, d;, d; € R, i = 1,2,...,m, and there is a unique u € AC}|0, T fulfilling
(2.4)-(2.6) and it is given by (2.12). Therefore, assuming, in addition, that the problem

u" +as(t) v + a1 (t)u = 0, (2.14)
u(0) w(T)\ _ /
P <u’(0)> +Q (u’(T) = R(u,u’) (2.15)
has a unique solution ug, we conclude that u € C}[0, T is a solution to (2.1) - (2.3) if and only if

t) +/G(t, s) f(s,u(s),u'(s)) ds+
0

m

+§:< +ag)G@JQ)L®&U+§:G@¢QMKMM)fmte[aﬂ‘
i=1
Let us define operators Iy and I, : CH[0,T] — C3[0,T] by
T
(Fyu)(t G(t u(s),u'(s))ds, te[0,T],
- fen
and
(Fou)(t) = uo(t) + Z (—S G(t, t;) + a1(t) G(t, tz)> Ji(u,u')+
=1
+ Em:G(t,ti)Mi(u,u’), t € (0,77,
i=1

respectively. The former one, F1, is a composition of the Green type operator
hehmjye/G@QM@@eC%Jm

which is known to map equiintegrable subsets! of L[0, T] onto relatively compact subsets of
C'0,T) C C}[0,T), and the superposition operator generated by f € Car([0,7] x R?), which

'Te., sets of functions having a common integrable majorant.
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38 Z.HALAS, M. TVRDY

similarly to the classical setting maps bounded subsets of C}[0,7] to equiintegrable subsets
of L1]0,T)]. Therefore, it is easy to see that F} is completely continuous. Furthermore, since
Ji, M;, i = 1,2,...,m, are continuous mappings, the operator F5 is continuous as well. Having
in mind that 5 maps bounded sets onto bounded sets and its values are contained in a (2m+1)-
dimensional subspace? of C%[0, 7], we conclude that the operators F and F' = F; + F are
completely continuous as well.

So, we have the following assertion.

Proposition 2.1. Assume (1.4) and (2.7). Furthermore, let problem (2.11) have Green’s
function G(t, s) and let ug € ACH[0,T) be a uniquely defined solution of problem (2.14), (2.15).
Then uw € AC}, is a solution to (2.1)-(2.3) if and only if u = Fu, where F : Ch[0,T] —
— C}[0,T] is the completely continuous operator given by

T
(Fu)(t) =up(t) + /G(t, s) (f(t,u(s),u’(s))—al(s) u(s)—asg(s) u'(s)) ds+
0

m

+ Z <—§S G(t,ti)—&—al(t)G(t,ti)) Ji(u,u') + ZG(t,ti) M;(u,u), t € [0,T).

i=1 i=1

In particular, if a1 (t) = az(t) = 0 on [0, 77,
1 0 0 0
P= (0 o> and @ = <1 0>’
then problem (2.11) reduces to the simple Dirichlet problem

v =0, u0)=u(T)=0

and its Green’s function is well-known,

s(tT_T) fo<s<t<T,
Glt.s) =, (2.16)
(ST ) fo<t<s<T
and Ty
5 e if0<s<t<T,
T
7G(t>)_
0s t .
7 ifo<t<s<T.

Furthermore, let us notice that the periodic boundary conditions (1.3) can be reformulated as
u(0) = w(T) = u(0) +u'(0) — u'(T),
i.e., in the form (2.15), where
R(u,v) = u(0) +v(0) —v(T) for u,v € G[0,T].

It is easy to see that, in such a case, for any ¢ € R the only solution to (2.14), (2.15) is up(t) = c.
Therefore, we have the following corollary of Proposition 2.1.

’I.e., spanned over the set {um G(.,t:), <—% () + a1 G(.7ti)> i =1,2,..., m} .
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Corollary 2.1. Assume (1.4) and (2.7) and let the function G(t, s) be given by (2.16). Then
u € AC} is a solution to (1.1)—(1.3) if and only if u = Fu, where F : C5[0,T] — C5[0,T) is
the completely continuous operator given by

T
(Fu)(t) = u(0) +/(0) — o/ (T) + / G(t,5) F(t,u(s), o (3)) ds—
0

m m

B Z 888 G(t7ti) Ji(u7u/) + ZG(t,ti) Mi(u,u’), t e [O’T]

i=1 =1

Remark 2.1. Similarly, u € AC}, is a solution to the impulsive Dirichlet problem (1.1), (1.2),
u(0) = u(T) = cif and only if u = Fy;; u, where

T
(Fagwn)(£) = e+ / G(t,5) f(t,u(s),(s)) ds—
0

_;a{zG(t,ti)Ji(u,u’)+ZG(t7ti)Mi(u7u/)’ te 0,T].

=1

3. Existence principle.
Theorem 3.1. Let assumptions (1.4) and (1.5) hold. Furthermore, assume that there exist
€ (0,00), R € (r,00) and R’ € (0, 00) such that
(i) r <v < Ronl0,T] and ||V'||«c < R’ foreach \ € (0, 1] and for each positive solution v
of the problem

V"(t) = X (=cv'(t) + g(v(t)) +e(t)) foraet € [0,T], (3.1)
Ato(t;) = X Ji(v,0'), i=1,2,...,m, (3.2)
AT () = AM;(v, o), i=1,2,...,m, (3.3)
v(0) = o(T), '(0) = (T); (34)

(ii) (g9(x)+e=0) = r<z<R;
(iii) (9(r) +e) (9(R) +€) <O.
Then problem (1.6) has a solution u such that
r<u<R onl0,T]and ||u'||cc <R’

Proof. Step 1. For A € [0,1] and v € C}[0, 7] denote

=1 i=1

T m m
Ex(v) = /g(v(s))ds—FTe—i— ZMi(v,v’)—i—)\cZ Ji(v,v"). (3.5)
0
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Notice that

Ex(v) = 0 holds for all solutions v € Cp[0,T] of (3.1)-(3.4). (3.6)

Indeed, let v € C}[0, 7] be a solution to (3.1) - (3.4). Then

T m tit1 m
/v”(s)ds =) / V'(s)ds =Y [v/(tip1) — V' (ti+)] =
0 i=0 . 1=0
= 0/(T) = '(0) = S_ AT (t;) = A > Mi(v,2)
=1 =1
and
T m it m
/cv'(s) ds = CZ / v'(s)ds = CZ [U(ti+1) - U(tﬁ')] =
/ =0 ¢ i=0

= C

o(T) = v(0) = Y ATw(ty) | = =xe)_ Ji(v,v).
i=1 =1

Thus, integrating (3.1) over [0, 7] gives (3.6).
Step 2. Consider system (3.7), (3.2), (3.4), where (3.7) is the functional-differential equa-
tion:

" = X][=cv' +g(v) +e(®)] +(1-N) %E)\(U). (3.7)

Due to (3.6), we can see that for each A € [0, 1] the problems (3.1) - (3.4) and (3.7), (3.2) - (3.4)
are equivalent. Moreover, for A =1, problem (3.7), (3.2), (3.4) reduces to the given problem
(1.6) (with u replaced by v).

Now, notice that in view of (2.16) we have

T
/G(t,s)ds _ %t(t—T) for ¢ € [0, 7]
0
and define, for A € [0,1],u € C}[0,7],u > 0on [0,7],and t € [0,T],

T
Fx(uw)(t) = u(0) + 4/ (0) — ' (T) + A / G(t,s) [—cu'(s) + g(u(s)) +e(s)] ds+
0

TN (tQ_TT) NSy aas Gt 1) Ji (u, o)+
=1
+A zm: G(t, t;) Mi(u,0). (3.8)
=1
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In particular, if A = 0, then

tit=T)

Fo(u)(t) = u(0) +o'(0) — u'(T) + =

Eo(u) for t € [0,T).
Let us put
Q={ueCp0,T]: r <u< R and /| < R'on [0,T]}.

Arguing similarly to the regular case (see Corollary 2.1), we can conclude that for each A\ €
€ [0,1] the operator Fy : Q C C4[0,T] — Cl is completely continuous and a function v € Q
is a solution of (3.7), (3.2) - (3.4) if and only if it is a fixed point of F). In particular,

u € Q0 is a solution to (1.6) if and only if F(u)=u. (3.9)
Step 3. We will show that
Fy\(u) #u forall u e 9Q and X\ € [0,1]. (3.10)

Indeed, for A € (0, 1] relation (3.10) follows immediately from assumption (i), while for A = 0
it is a corollary of assumption (ii) and of the following claim.

Claim. u € Q is a fixed point of Fy if and only if there is x € R such that u(t) = x on [0, T),
x € (r,R), and
g(x)+e=0. (3.11)

Proof of Claim. Let u € () be a fixed point of Fy(v), i.e.,
t(t—"1T)
2T

u(0)+u'(0) —o/(T), which implies that v’ (0) = «/(T).
u(0). Furthermore,

u(t) = u(0) +u'(0) —u/'(T) + Zo(u) forall ¢t € [0,T]. (3.12)

Inserting ¢ = O into (3.12), we get u(0) =
Similarly, inserting t = 7" we get u(T") =
2t

-T
Eo(u) for t € [0,T).

/

t) =
uw(t) 5T
Since u/(0) = «/(T), it follows that Z¢(u) = 0. This means that u is constant on [0, 7']. Denote
x = u(0). Then 0 = Zp(u) = T (g(x) + €), i.e., (3.11) is true. On the other hand, it is easy to
see that if x € R is such that (3.11) holds and u(t) = z on [0, 7], then u € Q is a fixed point of
Fy. This completes the proof of the claim.

Step 4. By Step 3 and by the invariance under the homotopy property of the topological
degree, we have
deg(I — F1,Q) = deg(I — Fo, ). (3.13)

Step 5. Let us denote
X = {u e CH0,T] : u(t) =u)on [0,T]} and Q= QNX.

Notice that Qy = {u € X: r<u(0)<R} and Qy = {u € X: r<u(0) < R}. By Claim in
Step 3, all fixed points of Fj belong to €29. Hence, by the excision property of the topologi-
cal degree we have

deg(I — Fp, Q) = deg(I — Fp, Qo). (3.14)
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Step 6. Define

Fu(u)(t) = u(0) + [1 e+ gt (t - T)} (g(u(0) + &) (3.15)

for t € [0,T], u € Qy and pu € [0, 1].
We have
Fy(u) = u(0) 4+ g(u(0)) +& and Fi(u) = Fy(u) foreach u € X.

Similarly to F}, the operators ﬁu, w € [0, 1], are also completely continuous and, by the Claim
in Step 3, we have N
Fi(u) # v forall ue 9Qy.

Let ¢ and ¢_; be respectively the natural isometrical isomorphism R — X and its inverse, i.e.,
i(z)(t) =u for zeR  and  i_q(u) = u(0) for ueX,
and assume that u € [0,1), = € (0,00), u = i(x) and ﬁu(u) = u. Then

1—,u—|—gt(T—t)} (g(z)+€) =0 forall t e [0,T].

If ¢ = 0, this relation reduces to g(z) + € = 0, which is, due to assumption (ii) possible only if
x € (r, R). To summarize, we have

Fu(u) #u forall u e dQy andall u € [0,1].

Hence, using the homotopy invariance property of the topological degree and taking into ac-
count that dim X = 1, we conclude that

deg(I — Fy, Q) = deg(I — F1,Q0) = dp(I — Fy, ), (3.16)

where dp(I — ﬁo, o) stands for the Brouwer degree of I — 150 with respect to the set ¢ (and
the point 0).

Step 7. Define ®: x € (0,00) — g(x) + € € R. Then
(I — Fy)(i(z)) = i(®(x)) foreach z € (0,00).

In other words, ® = i_1 o (I — Fp) o on (0, o). Consequently,

dg(I — Fy, Q) = dg(®, (r, R)). (3.17)
Now, put
U(z) = &(r) Z:f + ®(R) ;:;.

We can see that ¥ has a unique zero xg € (r, R) and

O(R) - ()

V' (z0) =
(o) -
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Hence, by the definition of the Brouwer degree in R, we have

dp(¥, (r, R)) = sign¥'(zg) = sign (®(R) — ®(r)).

By the homotopy property and thanks to our assumption (iii), we conclude that

dp(®,(r,R)) = dp(¥,(r,R)) = sign (®(R) — ®(r)) # 0. (3.18)

Step 8. To summarize, by (3.13)—(3.18) we have

deg(I — F1,Q) # 0,

which, in view of the existence property of the topological degree, shows that F7 has a fixed
point u € Q. By Step 1 this means that problem (1.6) has a solution.
The theorem is proved.
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