SINGULAR PERIODIC IMPULSE PROBLEMS СИНГУЛЯРНІ ПЕРІОДИЧНІ ІМПУЛЬСНІ ЗАДАЧІ

Z. Halas, M. Tvrdý

Mat. únstav AV ČR Žitná 25, 11567, Praha 1, Česká Republika e-mail: tvrdy@math.cas.cz

We obtain an existence principle for the impulsive periodic boundary-value problem u'' + c u' = q(x) + e(t), $u(t_i+) = u(t_i) + J_i(u,u'), \ u'(t_i+) = u'(t_i) + M_i(u,u'), \ i = 1,\ldots,m, \ u(0) = u(T), \ u'(0) = u'(T), \ where$ $g \in C(0, \infty)$ can have a strong singularity at the origin. Furthermore, we assume that $0 < t_1 < \ldots < t_m < T$, $e \in L_1[0,T], c \in \mathbb{R}$ and $J_i, M_i, i = 1,2,\ldots,m$, are continuous mappings of $G[0,T] \times G[0,T]$ into \mathbb{R} , where G[0,T] denotes the space of functions regulated on [0,T].

The presented principle is based on an averaging procedure similar to that introduced by Manásevich and Mawhin for singular periodic problems with p-Laplacian.

Отримано принцип існування розв'язку періодичної граничної задачі з імпульсною дією, u'' + $+cu'=g(x)+e(t), u(t_i+) = u(t_i)+J_i(u,u'), u'(t_i+)=u'(t_i)+M_i(u,u'), i = 1,...,m, u(0)=u(T),$ $u'(0) = u'(T), \ \partial e \ g \ \in \ C(0,\infty)$ може мати сильну особливість у нулі. Далі, припускається, що $0 < t_1 < \ldots < t_m < T, e \in L_1[0,T], c \in \mathbb{R}$ і $J_i, M_i, i = 1, 2, \ldots, m,$ — неперервні відображення з G[0,T] imes G[0,T] в $\mathbb{R},$ де G[0,T]- простір функцій, регульованих на [0,T].

Отримання принципу базується на процедурі усереднення, яка є аналогом процедури, запропонованої Менасевічем та Мавхіним, для сингулярних періодичних задач із р-лапласіаном.

1. Preliminaries. Starting with Hu and Lakshmikantham [1], periodic boundary-value problems for nonlinear second order impulsive differential equations of the form

$$u'' = f(t, u, u'), (1.1)$$

$$u(t_i+) = u(t_i) + J_i(u, u'),$$

$$u'(t_i+) = u'(t_i) + M_i(u, u'), \quad i = 1, 2, \dots, m,$$
(1.2)

$$u(t_i+) = u(t_i) + M_i(u,u), \quad t = 1, 2, \dots, m,$$

$$u(0) = u(T), \quad u'(0) = u'(T)$$
 (1.3)

have been studied by many authors. Usually it is assumed that the function $f:[0,T]\times\mathbb{R}^2\to\mathbb{R}$ fulfils the Carathéodory conditions,

$$0 < t_1 < t_2 < \dots < t_m < T$$
 are fixed points of the interval $[0, T]$ (1.4)

and $J_i, M_i : \mathbb{R}^2 \to \mathbb{R}, i = 1, 2, \dots, m$, are continuous functions. A rather representative (however not complete) list of related papers is given in references. In particular, in [2-6] the existence results in terms of lower/upper functions obtained by the monotone iterative method can be found. All of these results impose monotonicity of the impulse functions and existence of an associated pair of well-ordered lower/upper functions. The papers [7] and [8] are based on the method of bound sets, however the effective criteria contained therein correspond to the situation when there is a well-ordered pair of constant lower and upper functions. The existence results which apply also to the case when there is a pair of lower and upper functions, which need not be well-ordered, were provided only by Rachůnková and Tvrdý, see [9–12]. Analogous results for impulsive problems with quasilinear differential operator were delivered by Rachůnková and Tvrdý in [13–15]. When no impulses are acting, periodic problems with singularities have been treated by many authors. For rather representative overview and references, see e.g. [16] or [17]. To our knowledge, up to now singular periodic impulsive problems have not been treated. For singular Dirichlet impulsive problems we refer to the papers by Rachůnková [18], Rachůnková and Tomeček [19] and Lee and Liu [20].

In this paper we establish an existence principle suitable for solving singular impulsive periodic problems.

Notations. Throughout the paper we keep the following notation and conventions: for a real-valued function u defined a.e. on [0, T], we put

$$||u||_{\infty} = \sup \operatorname{ess}_{t \in [0,T]} |u(t)| \quad \text{and} \quad ||u||_{1} = \int\limits_{0}^{T} |u(s)| \, ds.$$

For a given interval $J \subset \mathbb{R}$, by C(J) we denote the set of real-valued functions which are continuous on J. Furthermore, $C^1(J)$ is the set of functions having continuous first derivatives on J and $L_1(J)$ is the set of functions which are Lebesgue integrable on J.

Any function $x:[0,T]\to\mathbb{R}$ which possesses finite limits

$$x(t+) = \lim_{\tau \to t+} x(\tau)$$
 and $x(s-) = \lim_{\tau \to s-} x(\tau)$

for all $t \in [0, T)$ and $s \in (0, T]$ is said to be regulated on [0, T]. The linear space of functions regulated on [0, T] is denoted by G[0, T]. It is well known that G[0, T] is a Banach space with respect to the norm $x \in G[0, T] \to ||x||_{\infty}$ (cf. [21], Theorem I.3.6).

Let $m \in \mathbb{N}$ and let $0 = t_0 < t_1 < t_2 < \ldots < t_m < t_{m+1} = T$ be a division of the interval [0,T]. We denote $D = \{t_1,t_2,\ldots,t_m\}$ and define $C_D^1[0,T]$ as the set of functions $u \colon [0,T] \to \mathbb{R}$ such that

$$u(t) = \begin{cases} u_{[0]}(t) & \text{if } t \in [0, t_1], \\ u_{[1]}(t) & \text{if } t \in (t_1, t_2], \\ \dots & \dots \dots \\ u_{[m]}(t) & \text{if } t \in (t_m, T], \end{cases}$$

where $u_{[i]} \in C^1[t_i, t_{i+1}]$ for i = 0, 1, ..., m. In particular, if $u \in C^1_D[0, T]$, then u' possesses finite one-sided limits

$$u'(t-) := \lim_{\tau \to t-} u(\tau)$$
 and $u'(s+) := \lim_{\tau \to s+} u(\tau)$

for each $t \in (0,T]$ and $s \in [0,T)$. Moreover, u'(t-) = u'(t) for all $t \in (0,T]$ and u'(0+) = u'(0). For $u \in C_D^1[0,T]$ we put

$$||u||_D = ||u||_{\infty} + ||u'||_{\infty}.$$

Z. HALAS, M. TVRDÝ

Then $C_D^1[0,T]$ becomes a Banach space when endowed with the norm $\|.\|_D$. Furthermore, by $AC_D^1[0,T]$ we denote the set of functions $u \in C_D^1[0,T]$ having first derivatives absolutely continuous on each subinterval $(t_i,t_{i+1}), i=1,2,\ldots,m+1$.

We say that $f:[0,T]\times\mathbb{R}^2\mapsto\mathbb{R}$ satisfies the *Carathéodory conditions* on $[0,T]\times\mathbb{R}^2$ if (i) for each $x\in\mathbb{R}$ and $y\in\mathbb{R}$ the function f(.,x,y) is measurable on [0,T]; (ii) for almost every $t\in[0,T]$ the function f(t,.,.) is continuous on \mathbb{R}^2 ; (iii) for each compact set $K\subset\mathbb{R}^2$ there is a function $m_K(t)\in L[0,T]$ such that $|f(t,x,y)|\leq m_K(t)$ holds for a.e. $t\in[0,T]$ and all $(x,y)\in K$. The set of functions satisfying the Carathéodory conditions on $[0,T]\times\mathbb{R}^2$ is denoted by $\mathrm{Car}([0,T]\times\mathbb{R}^2)$.

Given a subset Ω of a Banach space X, its closure is denoted by $\overline{\Omega}$. Finally, we will write \overline{e} instead of $\frac{1}{T}\int_{0}^{T}e(s)\,ds$ and $\Delta^{+}u(t)$ instead of u(t+)-u(t).

If $f \in \operatorname{Car}([0,T] \times \mathbb{R}^2)$, problem (1.1) – (1.3) is said to be *regular* and a function $u \in AC_D^1[0,T]$ is its solutions if

$$u''(t) = f(t, u(t), u'(t))$$
 holds for a.e. $t \in [0, T]$

and conditions (1.2) and (1.3) are satisfied. If $f \notin Car([0,T] \times \mathbb{R}^2)$, problem (1.1) – (1.3) is said to be *singular*.

In this paper we will deal with rather simplified, however the most typical, case of the singular problem with

$$f(t, x, y) = cy + g(x) + e(t)$$
 for $x \in (0, \infty), y \in \mathbb{R}$ and a.e. $t \in [0, T]$,

where

$$c \in \mathbb{R}, \quad g \in C(0, \infty), \quad e \in L_1[0, T].$$
 (1.5)

Definition 1.1. A function $u \in AC_D^1[0,T]$ is called a solution of the problem

$$u'' + c u' = g(u) + e(t), \quad (1.2), \quad (1.3)$$

if u > 0 a.e. on [0, T],

$$u''(t) + c u'(t) = g(u(t)) + e(t)$$
 for a.e. $t \in [0, T]$,

and conditions (1.2) and (1.3) are satisfied.

2. Green's functions and operator representations for impulsive two-point boundary-value problems. For our purposes an appropriate choice of the operator representation of (1.1)–(1.3) is important. To this aim, let us consider the following impulsive problem with nonlinear two-point boundary conditions,

$$u'' + a_2(t) u' + a_1(t) u = f(t, u, u') \text{ a.e. on } [0, T],$$
 (2.1)

$$\Delta^+ u(t_i) = J_i(u, u'), \quad \Delta^+ u'(t_i) = M_i(u, u'), \quad i = 1, 2, \dots, m,$$
 (2.2)

$$P\begin{pmatrix} u(0) \\ u'(0) \end{pmatrix} + Q\begin{pmatrix} u(T) \\ u'(T) \end{pmatrix} = R(u, u'), \tag{2.3}$$

and its linearized version

$$u'' + a_2(t) u' + a_1(t) u = h(t)$$
 a.e. on $[0, T]$, (2.4)

$$\Delta^+ u(t_i) = d_i, \quad \Delta^+ u'(t_i) = d'_i, \quad i = 1, 2, \dots, m,$$
 (2.5)

$$P\begin{pmatrix} u(0) \\ u'(0) \end{pmatrix} + Q\begin{pmatrix} u(T) \\ u'(T) \end{pmatrix} = c, \tag{2.6}$$

where

$$\begin{cases} a_1, h \in L[0,T], a_2 \in C[0,T], f \in Car([0,T] \times \mathbb{R}^2), \\ J_i \text{ and } M_i \colon G[0,T] \times G[0,T] \to \mathbb{R}, i = 1, 2, \dots, m, \text{ are continuous mappings,} \\ c \in \mathbb{R}^2, d_i, d'_i \in \mathbb{R}, i = 1, 2, \dots, m, \\ P, Q \text{ are real } 2 \times 2\text{-matrices, rank}(P,Q) = 2, \\ R \colon G[0,T] \times G[0,T] \to \mathbb{R}^2 \text{ is a continuous mapping} \end{cases}$$

$$(2.7)$$

Solutions of problems (2.1)-(2.3) and (2.4)-(2.6) are defined in a natural way quite analogously to the above mentioned definition of regular periodic problems. Problem (2.4)-(2.6) is equivalent to the two-point problem for a special case of generalized linear differential systems of the form

$$x(t) - x(0) - \int_{0}^{t} A(s) x(s) ds = b(t) - b(0)$$
 on $[0, T]$, (2.8)

$$Px(0) + Qx(T) = c,$$
 (2.9)

where

$$x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} u(t) \\ u'(t) \end{pmatrix}, \quad A(t) = \begin{pmatrix} 0 & 1 \\ -a_1(t) & -a_2(t) \end{pmatrix}, \tag{2.10}$$

$$b(t) = \int_{0}^{t} {0 \choose h(s)} ds + \sum_{i=1}^{m} {d_i \choose d'_i} \chi_{(t_i, T]}(t), \quad t \in [0, T],$$

and $\chi_{(t_i,T]}(t)=1$ if $t\in(t_i,T], \chi_{(t_i,T]}(t)=0$ otherwise. Solutions of (2.8), (2.9) are 2-vector functions of bounded variation on [0,T] satisfying the two-point condition (2.9) and fulfilling the integral equation (2.8) for all $t\in[0,T]$, cf. e.g. [22]. Assume that the homogeneous problem

$$u'' + a_2(t) u' + a_1(t) u = 0, \quad P\begin{pmatrix} u(0) \\ u'(0) \end{pmatrix} + Q\begin{pmatrix} u(T) \\ u'(T) \end{pmatrix} = 0$$
 (2.11)

has only the trivial solution. Then, obviously, the problem

$$x' - A(t)x = 0$$
, $Px(0) + Qx(T) = 0$ (2.12)

has also only the trivial solution. In view of [23] (Theorems 4.2 and 4.3) (see also [24], Theorem 4.1), problem (2.8), (2.9) has a unique solution x and it is given by

$$x(t) = \int_{0}^{T} \Gamma(t, s) d[b(s)] + x_0(t), \quad t \in [0, T],$$
(2.13)

where x_0 is the uniquely determined solution of

$$x' - A(t) x = 0, P x(0) + Q x(T) = c,$$

and

$$\Gamma(t,s) = (\gamma_{i,j}(t,s))_{i,j=1,2}$$

is Green's matrix for (2.12). Recall that, for each $s \in (0,T)$, the matrix function $t \to \Gamma(t,s)$ is absolutely continuous on $[0,T] \setminus \{s\}$ and

$$\frac{\partial}{\partial t} \Gamma(t,s) - A(t) \Gamma(t,s) = 0$$
 for a.e. $t \in [0,T]$,

$$P\,\Gamma(0,s) + Q\,\Gamma(T,s) \,=\, 0,$$

$$\Gamma(t+,t) - \Gamma(t-,t) = I$$
.

where I stands for the identity 2×2 -matrix. In particular, the component $\gamma_{1,2}$ of Γ is absolutely continuous on [0,T] for each $s \in (0,T)$ and

$$\frac{\partial}{\partial t} \gamma_{1,2}(t,s) = \gamma_{2,2}(t,s)$$
 for a.e. $t \in [0,T]$.

Denote $G(t,s) = \gamma_{1,2}(t,s)$. Then G(t,s) is Green's function of (2.11). Furthermore, we have

$$\frac{\partial}{\partial s} \Gamma(t,s) = -\Gamma(t,s) \, A(s) \quad \text{for all} \ \ t \in (0,T) \text{ and a.e. } s \in [0,T].$$

In particular,

$$\gamma_{1,1}(t,s) = -\frac{\partial}{\partial s} G(t,s) + a_1(s) G(t,s)$$
 for all $t \in [0,T]$ and a.e. $s \in [0,T]$.

Inserting (2.10) into (2.13) we get that, for each $h \in L[0,T]$, $c,d_i,d_i' \in R$, $i=1,2,\ldots,m$, the unique solution u of problem (2.4) – (2.6) is given by

$$u(t) = u_0(t) + \int_0^t G(t, s) h(s) ds +$$

$$+ \sum_{i=1}^m \left(-\frac{\partial}{\partial s} G(t, t_i) + a_1(t) G(t, t_i) \right) d_i + \sum_{i=1}^m G(t, t_i) d'_i \quad \text{for } t \in [0, T],$$

where u_0 is the uniquely determined solution of the problem

$$u'' + a_2(t) u' + a_1(t) u = 0, (2.6). (1)$$

Now, choose an arbitrary $w \in C_D^1[0,T]$ and put

$$h(t) = f(t, w(t), w'(t))$$
 for a.e. $t \in [0, T]$, $d_i = J_i(w, w'), d'_i = M_i(w, w'), i = 1, 2, \dots, m$, $c = R(w, w')$.

Then $h \in L[0,T]$, c, d_i , $d'_i \in \mathbb{R}$, $i=1,2,\ldots,m$, and there is a unique $u \in AC_D^1[0,T]$ fulfilling (2.4)–(2.6) and it is given by (2.12). Therefore, assuming, in addition, that the problem

$$u'' + a_2(t) u' + a_1(t) u = 0, (2.14)$$

$$P\begin{pmatrix} u(0) \\ u'(0) \end{pmatrix} + Q\begin{pmatrix} u(T) \\ u'(T) \end{pmatrix} = R(u, u')$$
(2.15)

has a unique solution u_0 , we conclude that $u \in C_D^1[0,T]$ is a solution to (2.1)-(2.3) if and only if

$$u(t) = u_0(t) + \int_0^t G(t, s) f(s, u(s), u'(s)) ds +$$

$$+ \sum_{i=1}^m \left(-\frac{\partial}{\partial s} G(t, t_i) + a_1(t) G(t, t_i) \right) J_i(u, u') + \sum_{i=1}^m G(t, t_i) M_i(u, u') \quad \text{for } t \in [0, T].$$

Let us define operators F_1 and $F_2: C_D^1[0,T] \to C_D^1[0,T]$ by

$$(F_1 u)(t) = \int_0^T G(t,s) f(s,u(s),u'(s)) ds, \quad t \in [0,T],$$

and

$$(F_2 u)(t) = u_0(t) + \sum_{i=1}^m \left(-\frac{\partial}{\partial s} G(t, t_i) + a_1(t) G(t, t_i) \right) J_i(u, u') + \sum_{i=1}^m G(t, t_i) M_i(u, u'), \quad t \in [0, T],$$

respectively. The former one, F_1 , is a composition of the Green type operator

$$h \in L_1[0,T] \to \int_0^T G(t,s) h(s) ds \in C^1[0,T],$$

which is known to map equiintegrable subsets¹ of $L_1[0,T]$ onto relatively compact subsets of $C^1[0,T] \subset C^1_D[0,T]$, and the superposition operator generated by $f \in Car([0,T] \times \mathbb{R}^2)$, which

¹I.e., sets of functions having a common integrable majorant.

similarly to the classical setting maps bounded subsets of $C_D^1[0,T]$ to equiintegrable subsets of $L_1[0,T]$. Therefore, it is easy to see that F_1 is completely continuous. Furthermore, since J_i , M_i , $i=1,2,\ldots,m$, are continuous mappings, the operator F_2 is continuous as well. Having in mind that F_2 maps bounded sets onto bounded sets and its values are contained in a (2m+1)-dimensional subspace² of $C_D^1[0,T]$, we conclude that the operators F_2 and $F=F_1+F_2$ are completely continuous as well.

So, we have the following assertion.

Proposition 2.1. Assume (1.4) and (2.7). Furthermore, let problem (2.11) have Green's function G(t,s) and let $u_0 \in AC_D^1[0,T]$ be a uniquely defined solution of problem (2.14), (2.15). Then $u \in AC_D^1$ is a solution to (2.1) – (2.3) if and only if u = Fu, where $F: C_D^1[0,T] \to C_D^1[0,T]$ is the completely continuous operator given by

$$(Fu)(t) = u_0(t) + \int_0^T G(t,s) \left(f(t,u(s),u'(s)) - a_1(s) u(s) - a_2(s) u'(s) \right) ds +$$

$$+ \sum_{i=1}^m \left(-\frac{\partial}{\partial s} G(t,t_i) + a_1(t) G(t,t_i) \right) J_i(u,u') + \sum_{i=1}^m G(t,t_i) M_i(u,u'), \ t \in [0,T].$$

In particular, if $a_1(t) = a_2(t) = 0$ on [0, T],

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } Q = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

then problem (2.11) reduces to the simple Dirichlet problem

$$u'' = 0, \quad u(0) = u(T) = 0$$

and its Green's function is well-known,

$$G(t,s) = \begin{cases} \frac{s(t-T)}{T} & \text{if } 0 \le s < t \le T, \\ \frac{t(s-T)}{T} & \text{if } 0 \le t \le s \le T \end{cases}$$
 (2.16)

and

$$\frac{\partial}{\partial s} G(t, s) = \begin{cases} \frac{T - t}{T} & \text{if } 0 \le s < t \le T, \\ -\frac{t}{T} & \text{if } 0 \le t \le s \le T. \end{cases}$$

Furthermore, let us notice that the periodic boundary conditions (1.3) can be reformulated as

$$u(0) = u(T) = u(0) + u'(0) - u'(T),$$

i.e., in the form (2.15), where

$$R(u, v) = u(0) + v(0) - v(T)$$
 for $u, v \in G[0, T]$.

It is easy to see that, in such a case, for any $c \in \mathbb{R}$ the only solution to (2.14), (2.15) is $u_0(t) \equiv c$. Therefore, we have the following corollary of Proposition 2.1.

²I.e., spanned over the set
$$\left\{u_0, G(., t_i), \left(-\frac{\partial}{\partial s}G(., t_i) + a_1 G(., t_i)\right), i = 1, 2, \dots, m\right\}$$
.

Corollary 2.1. Assume (1.4) and (2.7) and let the function G(t,s) be given by (2.16). Then $u \in AC_D^1$ is a solution to (1.1) – (1.3) if and only if u = Fu, where $F: C_D^1[0,T] \to C_D^1[0,T]$ is the completely continuous operator given by

$$(Fu)(t) = u(0) + u'(0) - u'(T) + \int_{0}^{T} G(t, s) f(t, u(s), u'(s)) ds -$$

$$- \sum_{i=1}^{m} \frac{\partial}{\partial s} G(t, t_i) J_i(u, u') + \sum_{i=1}^{m} G(t, t_i) M_i(u, u'), \ t \in [0, T].$$

Remark 2.1. Similarly, $u \in AC_D^1$ is a solution to the impulsive Dirichlet problem (1.1), (1.2), u(0) = u(T) = c if and only if $u = F_{\text{dir}} u$, where

$$(F_{\text{dir}}u)(t) = c + \int_{0}^{T} G(t,s) f(t,u(s),u'(s)) ds -$$

$$- \sum_{i=1}^{m} \frac{\partial}{\partial s} G(t,t_i) J_i(u,u') + \sum_{i=1}^{m} G(t,t_i) M_i(u,u'), \ t \in [0,T].$$

3. Existence principle.

Theorem 3.1. Let assumptions (1.4) and (1.5) hold. Furthermore, assume that there exist $r \in (0, \infty)$, $R \in (r, \infty)$ and $R' \in (0, \infty)$ such that

(i) r < v < R on [0,T] and $||v'||_{\infty} < R'$ for each $\lambda \in (0,1]$ and for each positive solution v of the problem

$$v''(t) = \lambda \left(-c v'(t) + g(v(t)) + e(t) \right) \quad \text{for a.e. } t \in [0, T],$$
 (3.1)

$$\Delta^{+}v(t_{i}) = \lambda J_{i}(v, v'), \qquad i = 1, 2, \dots, m,$$
(3.2)

$$\Delta^+ v'(t_i) = \lambda M_i(v, v'), \quad i = 1, 2, \dots, m,$$
 (3.3)

$$v(0) = v(T), \quad v'(0) = v'(T);$$
 (3.4)

(ii)
$$(g(x) + \bar{e} = 0) \implies r < x < R$$
;

(iii)
$$(g(r) + \bar{e}) (g(R) + \bar{e}) < 0.$$

Then problem (1.6) has a solution u such that

$$r < u < R$$
 on $[0, T]$ and $||u'||_{\infty} < R'$.

Proof. Step 1. For $\lambda \in [0,1]$ and $v \in C_D^1[0,T]$ denote

$$\Xi_{\lambda}(v) = \int_{0}^{T} g(v(s)) ds + T\bar{e} + \sum_{i=1}^{m} M_{i}(v, v') + \lambda c \sum_{i=1}^{m} J_{i}(v, v').$$
 (3.5)

Notice that

$$\Xi_{\lambda}(v) = 0$$
 holds for all solutions $v \in C_D^1[0,T]$ of (3.1)–(3.4). (3.6)

Indeed, let $v \in C_D^1[0,T]$ be a solution to (3.1) – (3.4). Then

$$\int_{0}^{T} v''(s) ds = \sum_{i=0}^{m} \int_{t_{i}}^{t_{i+1}} v''(s) ds = \sum_{i=0}^{m} \left[v'(t_{i+1}) - v'(t_{i}+) \right] =$$

$$= v'(T) - v'(0) - \sum_{i=1}^{m} \Delta^{+} v'(t_{i}) = -\lambda \sum_{i=1}^{m} M_{i}(v, v')$$

and

$$\int_{0}^{T} c v'(s) ds = c \sum_{i=0}^{m} \int_{t_{i}}^{t_{i+1}} v'(s) ds = c \sum_{i=0}^{m} \left[v(t_{i+1}) - v(t_{i+1}) \right] =$$

$$= c \left[v(T) - v(0) - \sum_{i=1}^{m} \Delta^{+} v(t_{i}) \right] = -\lambda c \sum_{i=1}^{m} J_{i}(v, v').$$

Thus, integrating (3.1) over [0, T] gives (3.6).

Step 2. Consider system (3.7), (3.2), (3.4), where (3.7) is the functional-differential equation:

$$v'' = \lambda \left[-c v' + g(v) + e(t) \right] + (1 - \lambda) \frac{1}{T} \Xi_{\lambda}(v).$$
 (3.7)

Due to (3.6), we can see that for each $\lambda \in [0, 1]$ the problems (3.1) – (3.4) and (3.7), (3.2) – (3.4) are equivalent. Moreover, for $\lambda = 1$, problem (3.7), (3.2), (3.4) reduces to the given problem (1.6) (with u replaced by v).

Now, notice that in view of (2.16) we have

$$\int_{0}^{T} G(t,s) ds = \frac{1}{2} t (t - T) \text{ for } t \in [0,T]$$

and define, for $\lambda \in [0, 1], u \in C_D^1[0, T], u > 0$ on [0, T], and $t \in [0, T]$,

$$F_{\lambda}(u)(t) = u(0) + u'(0) - u'(T) + \lambda \int_{0}^{T} G(t,s) \left[-cu'(s) + g(u(s)) + e(s) \right] ds +$$

$$+ (1 - \lambda) \frac{t(t - T)}{2T} \Xi_{\lambda}(u) - \lambda \sum_{i=1}^{m} \frac{\partial}{\partial s} G(t,t_{i}) J_{i}(u,u') +$$

$$+ \lambda \sum_{i=1}^{m} G(t,t_{i}) M_{i}(u,u').$$
(3.8)

In particular, if $\lambda = 0$, then

$$F_0(u)(t) = u(0) + u'(0) - u'(T) + \frac{t(t-T)}{2T} \Xi_0(u)$$
 for $t \in [0,T]$.

Let us put

$$\Omega = \{ u \in C_D^1[0,T] : r < u < R \text{ and } |u'| < R' \text{ on } [0,T] \}.$$

Arguing similarly to the regular case (see Corollary 2.1), we can conclude that for each $\lambda \in [0,1]$ the operator $F_{\lambda}: \overline{\Omega} \subset C_D^1[0,T] \to C_D^1$ is completely continuous and a function $v \in \overline{\Omega}$ is a solution of (3.7), (3.2)–(3.4) if and only if it is a fixed point of F_{λ} . In particular,

$$u \in \overline{\Omega}$$
 is a solution to (1.6) if and only if $F_1(u) = u$. (3.9)

Step 3. We will show that

$$F_{\lambda}(u) \neq u \quad \text{for all } u \in \partial \Omega \quad \text{and} \quad \lambda \in [0, 1].$$
 (3.10)

Indeed, for $\lambda \in (0,1]$ relation (3.10) follows immediately from assumption (i), while for $\lambda = 0$ it is a corollary of assumption (ii) and of the following claim.

Claim. $u \in \overline{\Omega}$ is a fixed point of F_0 if and only if there is $x \in \mathbb{R}$ such that $u(t) \equiv x$ on [0,T], $x \in (r,R)$, and

$$g(x) + \bar{e} = 0. (3.11)$$

Proof of Claim. Let $u \in \overline{\Omega}$ be a fixed point of $F_0(v)$, i.e.,

$$u(t) = u(0) + u'(0) - u'(T) + \frac{t(t-T)}{2T} \Xi_0(u) \quad \text{for all } t \in [0, T].$$
 (3.12)

Inserting t = 0 into (3.12), we get u(0) = u(0) + u'(0) - u'(T), which implies that u'(0) = u'(T). Similarly, inserting t = T we get u(T) = u(0). Furthermore,

$$u'(t) = \frac{2t - T}{2T} \Xi_0(u)$$
 for $t \in [0, T]$.

Since u'(0) = u'(T), it follows that $\Xi_0(u) = 0$. This means that u is constant on [0,T]. Denote x = u(0). Then $0 = \Xi_0(u) = T(g(x) + \overline{e})$, i.e., (3.11) is true. On the other hand, it is easy to see that if $x \in \mathbb{R}$ is such that (3.11) holds and $u(t) \equiv x$ on [0,T], then $u \in \overline{\Omega}$ is a fixed point of F_0 . This completes the proof of the claim.

Step 4. By Step 3 and by the invariance under the homotopy property of the topological degree, we have

$$\deg(I - F_1, \Omega) = \deg(I - F_0, \Omega). \tag{3.13}$$

Step 5. Let us denote

$$\mathbb{X}=\{u\in C^1_D[0,T]:\, u(t)\equiv u(0) \text{ on } [0,T]\} \quad \text{and} \quad \Omega_0=\Omega\cap\mathbb{X}.$$

Notice that $\Omega_0 = \{u \in \mathbb{X} : r < u(0) < R\}$ and $\overline{\Omega}_0 = \{u \in \mathbb{X} : r \le u(0) < R\}$. By Claim in Step 3, all fixed points of F_0 belong to Ω_0 . Hence, by the excision property of the topological degree we have

$$\deg(I - F_0, \Omega) = \deg(I - F_0, \Omega_0). \tag{3.14}$$

Step 6. Define

$$\widetilde{F}_{\mu}(u)(t) = u(0) + \left[1 - \mu + \frac{\mu}{2} t (t - T)\right] \left(g(u(0) + \bar{e})\right)$$
for $t \in [0, T], u \in \overline{\Omega}_0$ and $\mu \in [0, 1].$ (3.15)

We have

$$\widetilde{F}_0(u) = u(0) + g(u(0)) + \overline{e}$$
 and $\widetilde{F}_1(u) = F_0(u)$ for each $u \in \mathbb{X}$.

Similarly to F_{λ} , the operators \widetilde{F}_{μ} , $\mu \in [0,1]$, are also completely continuous and, by the Claim in Step 3, we have

$$\widetilde{F}_1(u) \neq u$$
 for all $u \in \partial \Omega_0$.

Let i and i_{-1} be respectively the natural isometrical isomorphism $\mathbb{R} \to \mathbb{X}$ and its inverse, i.e.,

$$i(x)(t) \equiv u \text{ for } x \in \mathbb{R}$$
 and $i_{-1}(u) = u(0) \text{ for } u \in \mathbb{X},$

and assume that $\mu \in [0,1), \ x \in (0,\infty), \ u=i(x)$ and $\widetilde{F}_{\mu}(u)=u$. Then

$$\left[1-\mu+\frac{\mu}{2}\,t\,(T-t)\right]\left(g(x)+\overline{e}\right)=0\quad\text{for all}\quad t\in[0,T].$$

If t=0, this relation reduces to $g(x)+\overline{e}=0$, which is, due to assumption (ii) possible only if $x\in(r,R)$. To summarize, we have

$$\widetilde{F}_{\mu}(u) \neq u \quad \text{for all } u \in \partial \Omega_0 \quad \text{and all } \mu \in [0,1].$$

Hence, using the homotopy invariance property of the topological degree and taking into account that $\dim \mathbb{X} = 1$, we conclude that

$$\deg(I - \widetilde{F}_1, \Omega_0) = \deg(I - \widetilde{F}_1, \Omega_0) = d_B(I - \widetilde{F}_0, \Omega_0), \tag{3.16}$$

where $d_B(I - \widetilde{F}_0, \Omega_0)$ stands for the Brouwer degree of $I - \widetilde{F}_0$ with respect to the set Ω_0 (and the point 0).

Step 7. Define $\Phi: x \in (0, \infty) \to g(x) + \bar{e} \in \mathbb{R}$. Then

$$(I-\widetilde{F}_0)(i(x))=i(\Phi(x))\quad\text{for each }\,x\in(0,\infty).$$

In other words, $\Phi = i_{-1} \circ (I - \widetilde{F}_0) \circ i$ on $(0, \infty)$. Consequently,

$$d_B(I - \widetilde{F}_0, \Omega_0) = d_B(\Phi, (r, R)). \tag{3.17}$$

Now, put

$$\Psi(x) = \Phi(r) \, \frac{R-x}{R-r} + \Phi(R) \, \frac{x-r}{R-r} \, . \label{eq:psi}$$

We can see that Ψ has a unique zero $x_0 \in (r, R)$ and

$$\Psi'(x_0) = \frac{\Phi(R) - \Phi(r)}{R - r}.$$

Hence, by the definition of the Brouwer degree in \mathbb{R} , we have

$$d_B(\Psi, (r, R)) = \operatorname{sign} \Psi'(x_0) = \operatorname{sign} (\Phi(R) - \Phi(r)).$$

By the homotopy property and thanks to our assumption (iii), we conclude that

$$d_B(\Phi, (r, R)) = d_B(\Psi, (r, R)) = \text{sign}(\Phi(R) - \Phi(r)) \neq 0.$$
(3.18)

Step 8. To summarize, by (3.13)-(3.18) we have

$$deg(I - F_1, \Omega) \neq 0$$
,

which, in view of the existence property of the topological degree, shows that F_1 has a fixed point $u \in \Omega$. By Step 1 this means that problem (1.6) has a solution.

The theorem is proved.

- 1. *Hu Shouchuan, Laksmikantham V.* Periodic boundary value problems for second order impulsive differential systems // Nonlinear Anal. 1989. **13**. P. 75–85.
- 2. Bainov D., Simeonov P. Impulsive differential equations: periodic solutions and applications. Harlow: Longman Sci. Tech., 1993.
- 3. Cabada A., Nieto J. J., Franco D., Trofimchuk S. I. A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points // Dynam. Contin. Discrete Impuls. Syst. 2000. 7. P. 145–158.
- 4. *Erbe L. H.*, *Liu Xinzhi*. Existence results for boundary value problems of second order impulsive differential equations // J. Math. Anal. and Appl. -1990. -149. -P. 56-69.
- 5. *Liz E.*, *Nieto J. J.* Periodic solutions of discontinuous impulsive differential systems // Ibid. 1991. **161**. P. 388–394.
- 6. *Liz E.*, *Nieto J. J.* The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations // Comment. math. Univ. carol. 1993. **34**. P. 405–411.
- Dong Yujun. Periodic solutions for second order impulsive differential systems // Nonlinear Anal. 1996.
 27. P. 811–820.
- 8. *Zhang Zhitao*. Existence of solutions for second order impulsive differential equations // Appl. Math. Ser. B (Engl. Ed.) 1997. **12**. P. 307 320.
- 9. *Rachůnková I., Tvrdý M.* Impulsive periodic boundary value problem and topological degree // Funct. Different. Equat. − 2002. − 9, № 3-4. − P. 471-498.
- 10. *Rachůnková I., Tvrdý M.* Non-ordered lower and upper functions in second order impulsive periodic problems // Dynam Contin. Discrete Impuls. Syst. Ser. A. Math. Anal. 2005. **12**. P. 397–415.
- 11. *Rachůnková I., Tvrdý M.* Existence results for impulsive second order periodic problems // Nonlinear Anal: Theory, Methods and Appl. 2004. **59**. P. 133–146.
- Rachůnková I., Tvrdý M. Method of lower and upper functions in impulsive periodic boundary value problems // EQUADIFF 2003. Proc. Int. Conf. Different. Equat. (Hasselt, Belgium, July 22-26, 2003) / Eds F. Dumortier, H. Broer, J. Mawhin, A. Vanderbauwhede, S. Verduyn. Hackensack, NJ: World Sci., 2005. P. 252 257.
- 13. *Rachůnková I., Tvrdý M.* Second order periodic problem with φ-Laplacian and impulses. Pt I. Math. Inst. Acad. Sci. Czech Republic. Preprint 155/2004 [available as \http://www.math.cas.cz/~tvrdy/lapl1.pdf or \http://www.math.cas.cz/~tvrdy/lapl1.ps].
- 14. Rachůnková I., Tvrdý M. Second order periodic problem with φ-Laplacian and impulses. Pt II. Math. Inst. Acad. Sci. Czech Republic, Preprint. 156/2004 [available as \http://www.math.cas.cz/~tvrdy/lapl2.pdf or \http://www.math.cas.cz/~tvrdy/lapl2.ps].
- 15. *Rachůnková I.*, *Tvrdý M.* Second order periodic problem with φ-Laplacian and impulses // Nonlinear Anal. 2005. **63**. P. 257 266.

Z. HALAS, M. TVRDÝ

16. *Rachůnková I., Staněk S., Tvrdý M.* Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations // Handbook Different. Equat. Ordinary Different. Equat. / Eds A. Caňada, P. Drábek, A. Fonda. — Elsevier, 2006. — Vol. 3. — P. 607 – 723.

- 17. *Rachůnková I.*, *Staněk S.*, *Tvrdý M.* Solvability of nonlinear singular problems for ordinary differential equations // Hindawi Cotemp. Math. and Appl. (to appear).
- 18. *Rachůnková I.* Singular Dirichlet second order boundary value problems with impulses // J. Different. Equat. -2003. -193. -P.435-459.
- 19. *Rachůnková I., Tomeček J.* Singular Dirichlet problem for ordinary differential equations with impulses // Nonlinear Anal.: Theory, Methods and Appl. 2006. **65**. P. 210–229.
- 20. *Lee Yong-Hoon, Liu Xinzhi*. Study of singular boundary value problem for second order impulsive differential equations // J. Math. Anal. and Appl. 2007. **331**. P. 159–176.
- 21. *Ch. S. Hönig.* Volterra Stieltjes-integral equations // Math. Stud. Amsterdam; New York: North Holland and Amer. Elsevier, 1975. 16.
- 22. Schwabik Š., Tvrdý M., Vejvoda O. Differential and integral equations: boundary value problems and adjoint. Praha, Dordrecht: Academia and D. Reidel, 1979.
- 23. *Tvrdý M.*. Fredholm-Stieltjes integral equations with linear constraints: duality theory and Green's function // Čas. pěstov. mat. 1979. **104.** P. 357–369.
- 24. *Schwabik Š.*, *Tvrdý M*. Boundary value problems for generalized linear differential equations // Czech. Math. J. − 1979. − **29**, № 104. − P. 451 477.

Received 19.10.07