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More than one hundred and fifty years ago J. Liouville posed a problem of describing Riccati equations
dy/dz = y?+a(x)y+b(z), which are integrable by quadratures. Since this time, the Liouville problem was
considered many times, and there are some partial solutions to it, but up to now there exists no effective
theory answering the question whether a given Riccati equation is integrable or not. Only eighteen years
ago there was made a new attempt to study the Liouville problem based on the theory of Lax type integrable
dynamical systems. In this paper there is developed further an approach of investigating the integrability
by quadratures of generalized Riccati — Abel equations that before was applied to a usual Riccati equation.
We reduce a given Riccati — Abel equation to some equivalent nonlinear evolution partial differential
equations with natural Cauchy — Goursat initial data, and prove further their Lax type integrability,
connected via Liouville with the integrability by quadratures. This approach having backgrounds both in
modern differential-geometric and Lie-algebraic techniques, gives rise to a partial solution to the Liouville
problem, effective enough in the case of Riccati equation.

Biavuwe nine cmo n’amoecam pokie momy XK. Jliysinab nocmasus npobaemy onucy pisHanb Pikkami
dy/dx = y* + a(x)y + b(z), inmezposnux y keadpamypax. 3 mux nip ya npob.aema 00caioxcysanacs 6a-
2amo pasis, 610 OMPUMAHO PI3HI HACMKOSI IT p036°A3KU, ane 00 CbO20OHI Hemae egheKkmusHol meopii,
AKa 6 0asana 8iON0BIOb HA NUMAHHA: YU € OdHe DIBHAHHA Pikkami inmezposHUM y Keaopamypax uu
Hi? [I’amnaoyams pokie momy 6ys 3anpononosanuli Hosutl nioxio 00 npoosemu JIiygiaaa, ocnosamutl
Ha meopil inme2posHux 3a Jlakcom OuHamivHux cucmem. Y Oarit cmammi yeil nioxio po3sUusaembCs
0ani 0451 QOCAIONHCEHHA IHMEPOBHOCMI Y3a2anbHeHUX pi8HAHb Pikkami 36edeHHAM IX 00 PIBHAHb 3 Ya-
CMUHHUMU ROXIOHUMU, IHMe2posHUX 3a Jlakcom. Leti nioxio, ujo :pyHmyembcs Ak Ha OughepeHyiaibHO-
2e0MEMPUUHUX, MAK | HA AN2e0PATYHO-2e0MEMPULHUX MEMOOAX, NPUBOOUMb 00 YACMKO8020 PO3BUNI-
Ky npobaemu Jliyginaa, oocums egpekmueno20 041 pieHaHb Pikikami.

1. Introduction. Our purpose is to describe the class of functions a and b € C'(R;R) in the
generalized Riccati — Abel equation

d

D=yt ta@y+b(), (1)
where Z4y > n > 2, for which this equation is integrable by quadratures (i. e. a solution of
this equation can be expressed by means of elementary and algebraic functions as well as of
integrals of them [1]). The backgrounds of the integrability theory via the differential-algebraic
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Picard — Vessiot approach were founded in classical articles [2, 3] and further developed in
[4-6].

First we consider the Cauchy problem for equation (1) with some fixed functions a and
be CHR;R):

dy

Dy ra@yrb@),  y) =, @

with yo € R being an arbitrary Cauchy data at a point g € R.
From the Regularity and Uniqueness Theorem [7] it follows that there exists a unique
solution of (2), differentiable with respect to xy and yp € R satisfying the conditions

9y

y
1. 3
833‘0 T=x0 ( )

=—(yy + +b , =
(Z/o a (xo) Yo (z0)) Do lv=o

Thus, differentiating (2) with respect to zp and yp € R, we obtain a system of nonlinear
evolution equations in the form:

%:v, %:n(nfl)y”‘zv “
on the jet-submanifold Mg° = {(u,v)” € J (R x R*R?) : v, = uv}, where t := (z¢,y0) € R?
-an evolution vector parameter, with the following Cauchy — Goursat data:

9y

8%0 T=x0

9y

1,
9o

= —(yo +a(zo) yo + b (x0)),

:c:xoz

5
9y
8%0

U p=zy = nyg—l +a(xg), V|pmzy = .
The solutions of (2) and (4) are characterized by the following simple but important lemma
(see also [1]).

Lemma 1. All solutions of equations (4) with conditions (5) that reduce to quadratures are
also solutions of equation (2), reducible to quadratures.

Our further main point of the analysis will be concerned with the problem of proving
integrability by quadratures of the Cauchy — Goursat problem (5) for the system of partial
differential equations (4) on the jet-submanifold M°. First, the detailed analysis will be carried
out for the system (4).

2. General differential-geometric analysis. At the beginning we prove that
evolution equations (4) are integrable by quadratures, being linearized via a Lax type
representation. Via the gradient-holonomic algorithm [8, 9] the system (4) on the
jet-submanifold Mg° < J (R xR*R?) can be recast into a set of 2-forms {a} C
C A% (J° (R x R%;R?)) upon the adjoint jet-manifold J° (R x R%* R?) as follows:

{a} = {ozl = dy O A dz +0vOdz A dt; ag = dv©@ Adt — u Q0O da A dt;

as = du® Adz+n (n—1) (y(o))"*%(o)dac Adt (t, z, u(o),v(o),y(0)>T € M}, (6)
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where M is a finite-dimensional submanifold in J° (R x R%R?) with local coordinates
(z,t,u® = u, 0 = v, y® = 4). The set of 2-forms (6) generates a closed ideal I(«), that
is dI(a) C I(«), since

dop = —dz N ag, das = —vOdt A as + uOdz A s,
()
daz =n(n —1)(n — 2)vO (yONY"=3dt A ay — n(n — 1)(y D) 2dz A ay.

Therefore, the ideal I(«) is Cartan — Frobenius integrable (due to the Cartan theorem) with
the integral three-dimensional integral submanifold N® = {(z,t) € R®} C M, being defined
locally by the condition I(«) = 0.

Integrability by quadratures of system (4) is equivalent [8, 10] to the vanishing on the
integral submanifold N® C M the curvature € of the corresponding connection form I' upon
the principal fiber space P(M, G):

Q=dl +T AT € I(a) ®G, (8)

where G is the Lie algebra of a structure group G.

Now we shall look for this connection form I' € A'(M) ® G belonging to some not still
determined Lie algebra G of a structure group G. This 1-form can be represented using (6), as
follows:

I.— @ (um)’vm), y<o>) dr +T® (u(m,v(m,ym)) dt, (9)

where elements I'®*) T() ¢ g satisfy the following determining equations:

_or@

(@) or@) ) or®
=~ ou®

du© A do+ 27 30O A dg + — —dyO Adz +
Ou0)

o (0)
500) 9y du'™’ A dt +

Q

(t) (t)
or dv© A dt + or

) 50 dy©O A dt + 0@, TO]de A dt =
v Yy

+
= g1(dy O A dz +vOdz A dt) 4 go(dv® A dt — u Do O dz A dt) +

+ g3(du® A dz +n(n — 1D)(yO)" 20O dz A dt) € I(0) © G (10)

for some G-valued functions g1, g2, g3 on M. From (10) one easily finds that

or@ or@ 0 or@ ory 0 orw
8U(O) = g3, a’U(O) — Y ay(o) =91, au(o) — Y 81}(0) = 92,
(11)
or®
5O =0, [[®,10] = g0 — gu@vO® 4 gan(n — 1)(y )2,
The set (11) has the following unique global solution:
I = X30® + 3 X (), 10 = X0, (12)

m=2
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where X; € G, j = 0,n, are some constant on M elements of the sought Lie algebra G, satisfying
the following structure equations:

[X1, Xo] = —Xo, [Xo, Xo]=n(n—1) X1, [Xpt1,Xo]=(n—m) X, n>m >2. (13)

3. Lie-algebraic analysis of the case n =2.3.1. We can use (8) for determining the Lie algebra
structure of G, taking into account the holonomy Lie group reduction theorem of Ambrose,
Singer and Loos [11]. Namely, the holonomy Lie algebra G(h) C G is generated by the covariant
derivatives composition of the G-valued curvature form Q € A2(M) ® G:

G :=spang{VI'VY ... VI"O, € G:jr € Zy,s,i,k =1,n}, (14)
where by definition, the covariant derivative V; : A(M) — A(M), j = 1, n, is given as follows
V= ai +T0U)(2), zj € M, j = T, n. Therefore, reducing via the Ambrose — Singer theorem

>

the associjated principal fibered frame space P(M, G) to the principal fiber bundle P(M, G(h)),
where G(h) C G is the corresponding holonomy Lie group of the connection I' on P, we must
verify the following conditions for the set G(h) C G to be a subalgebra in G: VI'VQ € G(h) for
all m,n € Z,. To do this we shall try to close the above transfinite procedure. One can easily
verify, that the simplest equality

G(h) = G(h)1 :=spanc {VIV}Q€G:m+n=0,1}
meets all of the conditions mentioned above. This means that one can put

G(h) =G(h)1 :=spanc {V]'V}g; €G:j=1,3,m+n=0,1} =

09 0g; .
= spang {gj €g; a_ij + [gj,I‘(z)], % + [gj,F(t)] €G:j= 1,3} =
= spang {Xo, X1, [X1, Xo]} = spanc {X; € G:j =0,3,j # 2}, (15)

where, by definition, [X, X2] = X3 € G. To satisfy the set of relations (13) we need to use
expansions over the basis (15) of the external element X3 € G(h):

3

X2 = Z Qij. (16)
J=0,j7#2

Substituting the expansion (16) into (13) we obtain that g = —\, g1 = 0, g3 = 1, for an arbitrary
complex parameter A € C, thatis G(h) = spanc {Xo, X1, X3}, where

(X0, X3] = —2X1, [X1,X3]=-AXo+ X3, Xp=-AXo+ X3, (17)

We can now state that this finite-dimensional holonomy Lie algebra G(h), being generated by
comutator relationships (13) and (17), possesses the following a general solution:

A A
Xo=L_1—-2Lg+ Ly, Xi=L_1—1Ly Xo= <—§ — 1) L_1+ALo— §L1, (18)
with L_y, Lo, L1 satisfying canonical sl(2)-commutation relations and A € C being a parameter.
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It is easy to find such a (2 x 2)-matrix representation of L-elements of G:

[0 0 1r1 0 0 —1

Therefore, from (12), (18) and (19) we obtain the following I'®), I'Y) expressions:
U A A

R R
and the following 1-form ' € A' (M) ® G
I = (Xju + Xo)dz 4+ Xovdt, (21)

generating parallel transporting of vectors f € C? from a linear representation space F ~ C?
of the holonomy Lie algebra G(h):

df +Tf =0 (22)

along the integral submanifold N3 C M of the ideal (), generated by the set of 2-forms (6).
The result (22) means also that the dynamical system (4) is endowed with the standard Lax type
representation, containing the spectral parameter A € C, that is necessary for its integrability
by quadratures [1, 8].

3.2. Now we shall proceed to consider the following generalized spectral problem for system

(4):
Lf:= (é% + 1@ [u,v,/\]> f=0,f€ L (R; CQ) ) (23)

posed in the Banach space Lo (R; C?) with the manifold Mg® being taken 2r-periodic in z €
€ R. We need to analyze [8, 12], in more detail, spectral properties of the problem (23).

Let Y (z,70; \) € L(C?, C?) be the fundamental solution of equation (23), being normalized
to the identity matrix at x = 29 € R, i. e. Y (xg,zo; A) = 1 for all zp € R, A € C. Any solution
of (23) can be evidently represented as

flx,z0; N) = Y(x,20; N) fo(N), (24)

where fy()\) € C?is some initial Cauchy data at z = 2y € R. Consider the value of f(z,z; \) €
€ C?atx = x9 + 27N, where N € Z. Owing to the periodicity of the manifold Mg® in the
independent variable x € R, one obtains from (24) that

fxo 427N, g; X) = SN (20; A) fo(N),

where S(xq; ) := Y (x¢ + 27, z0; A) : C? — C? is the so called monodromy (transfer) matrix of
the periodic differential equation (23).

The monodromy matrix S(zg; \) possesses the following useful properties [8, 12]:

1°) the matrix S(zo; A), A € C, as a function of the parameter z( € R satisfies the following
Novikov — Marchenko equation:

ds

=2 1@ g 25

d:C() [ ’ ] ( )
for all zp € R, where [., ] is the usual matrix commutator;
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2°) the eigenvalue o(\) of the matrix S(zp;A), A € C, does not depend on the variable
xg € R;

3°) the eigenvalue o(\) of the matrix S(zg; A), A € C, as a functional on manifold M§°, is
independent of the evolution parameter ¢ € R2.
do(})

dt

functional of conservation laws of system (4). Hence, one can find an infinite hierarchy of
conservation laws of system (4), making use of (23). We introduce the function o(z;\) =

Since = 0, for all t € R?, we claim that as |A\| — 0o, o(\) € D(MF®) is a generating

= 8%: In f1(z, 20; A), where fi(z,xo; \) is the first coordinate of the vector-eigenfunction f €
€ Lo (R; C?) of the monodromy matrix S(x; \):

S(:E; )‘)f(l‘a Lo; >‘) = Q()\)f(l‘,l’o; )‘))

that is normalized at x = o by identity, i. e. fi(z = x¢,z0; ) = 1. Substituting the function f
into (23) one can find the following differential Riccati equation for the function o(x; \):

1 A A1)
2
T = — —Uy — — - 1 - - - = ) - X 9 2
o U+2u <u+2+>2+<2u 2) u=uvg/v (26)
d" (.
where (.)py := dx(") ,x € R, n € Z,. Assuming that o(x; \) allows an asymptotic solution :
o(z;A) 2 6™(N) Y ojlu,v]d I (N), (27)

JE€EZ4

as |A\| — 400, with respect to the parameter §(\) being analytic on C, and m € Z is some fixed
number, one can find from (26) recurrent equations for o;[u,v], j € Z:

2 1 9 o Uy u?
—05 = 5, 00z = —(0001)°, 012 = —(20002 +07) + = + —,
2 2 4
020 = — (20003 + 20102), 034 = —(20004 + 20103 + 03),
042 = —(20005 + 20104 + 20203), . ..

and from them the following polynomial functionals o;[u,v], j € Z

V2 2i (1 1
UOZTZ, o1 =0, UQZ—T §U2+Ux ) USZZ(UJ:JC"‘UUQJ)?
iv?2 u'
Oy = 1—6 (2’[1/&11 + 2Ugpy + u?z - Z - uxu2> )
05 = _g(uxwxx + Ulpzr + UpUpy — ugua; - UQ'LLxx - 2'LL§U),
V2. 5
06 = @Z —Ugggrr — 2UpUpzy — uzw — 2UlUggry + ?UQU:% + 3u1xu3 + 3u2uxm—|-

. 3 6
+ 16uu, Uy, + 5u§ — ZU4% — %) e
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2w
Since p(\) = exp / o(x;N)dz |, from (27) and 3°) one gets right away that all functionals

0
27

v = / dxoj[u,v], j € Z4, are conservation laws for (4). Thus we have explicit expression for

-0
Vi J € Dy
2T 2T
/2 /2 1
Y = TI'Z'\/Z 1=0, 1= i /Udev 13=0, Y= i/ Wz = u' dz,
8 16 4
0 0
\f 27 6
2 5) U
V5 = 05 Y6 = _3—2 <_uxuxzx + §U2Ui + g) dxa Y7 = 0) (28)
0
\/, 2w .
2 7
Y8 = 64 <_u1x:pxa§ux + §U2uxuxmz + Zuuiumx + §u5uzx - 6_4u8> dz,... .
0

3.3. For a further analysis of system (4) we make use of the Novikov — Marchenko equation
(25). Let us denote A(A) :=TrS(z; M), A € C, as a normalized trace of the monodromy matrix
S(z;A\) : C? — C? at * € R. By virtue of the results stated above we can claim that the
functional A(X) € D(Mg°) is a generating function of conservation laws for (4). The same is
evidently true also for all functionals TrSk(x; A,k eZ, )\ e C,atx € R, butnot all of them are
obviously functionally independent.

Making now use of the Novikov — Marchenko equation (25) one can obtain [1, 12] that the
following relation holds

ngradA (A) = AdgradA (), (29)

for all A € C, where (5, 9) is a pair of implectic operators [12] acting from 7™ (M{°) into
T (Mg©)- Since the system (4) is considered on the singular submanifold MG°, we are forced to
introduce new frame-regularizing coordinates (7,t) € R x R?, defined as follows:

T=x, t=xl+t, (30)

1 .
where 1 = < 1) In these coordinates, the system (4) takes the form of a nondegenerate

evolution system on J(R!; R?):
du

i 20,
i (31)
i Ug — U.
The corresponding to (20) connection matrices I'®) T'® ¢ G, are given as follows:
u oA A -~
@ — _§_U+§ 27" F(@):[—v _U]. (32)
dvoao1 Yopo 2| v
2 2 2
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Whence the Novikov — Marchenko equation (25) takes the form:

= ~—i + ~+~—é—1
Sg = |V B 521 VU B 512,

5198 = —2 <i7— i) s+ (20 + u — \)sjo, (33)
o~ A o~
So1e = —2 <v+u—§—1> s+ (—u— 20+ \)soq,

for the components s;;(Z; \), 4,7 = 1,2, of the monodromy matrix S(z;\) : C> - C?atz € R

for all A € C, where s := 5(511 — S99).

Having taken the operator L := % + I'®, with I'® being given by (32), one finds easily
z
that

gradA(A)z%( TTow > (34)

25 — s12 + 821

forall A € C.
As a result of expression (34) and equations (33) one arrives at the following spectral
gradient identity:

igradA(\) = Agrad A(N), (35)
valid for all A € C, where
—20 0% + ou _
o [ 00 ] , (36)
92+ 7U0 VO + O 0 0

with 0 := é%

Based 0?1 (34) and (35) one can further make the Moser reduction [8] of our problem (31)
on a finite-dimensional nonlocal invariant submanifold carrying a natural symplectic structure.
The latter gives rise to a new reduction of the problem to a one of Liouville — Arnold type.

3.4. Below we shall analyze, using some results of [12], the next useful for further
representation of the holonomy Lie algebra si(2) by means of such vector fields on the circle
St:

n=

0 0

0
8_5’ LO :Ea_ga e

Ll 252057

L= ¢eSt~R/2nZ.

The corresponding connection operators I'*) and ') e G then take the form:

A A 0 0
(@) — ([ —2¢2 _ (u— _2_ il ®) — (p — — €)=
r ( 2& — (u /\)£+(u . 1)) ger TV =(v-20e -5 (37)
Consider now the following system:
of _ ,of of _ ,0f (39)

ox o0& ot O
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where f € H (C) is some complex analytical continuation of f from the circle S! to the whole
C, and A% =T, Bg = —T(®), as defined by (37).
The following lemmas [13] are true:

Lemma 2. The dynamical system (4) is equivalent to the following vector field Lax type
representation:

dL

& = [LPO), (39)
- o0 00 ~. Opd 9o e
here L= L2 P9 oy P2 _ PO a2 YU, (=9 ¢ H(C
where L = o ot “ocow T W = aro¢ o ox " (2:8) jzoj[“’”]g € H(C)

is an element of the Lie algebra, £ is symbol expressions, s € Z, is some nonnegative integer.

A proof of (39) follows simply from the definition of the associative product in the space of
reduced pseudo-differential expressions, which one verifies via a straightforward calculation.

Lemma 3. The following equality holds: | = f, where fis an analytical solution of (38).

Proof. Since Lf = 0 with the operator L being defined in Lemma 2, using the usual
characteristics method one arrives at the equality
s _ ool
de  Ox/ O¢
On the other hand, from the characteristics equations of the first equation in (38), one finds
l l
that dz/1 = —d¢/A. Whence Ag—g = g—x, sol € H(C) is a solution of (38), which proves the

lemma.
Taking into account Lemmas 1 and 2, one can find the following asymptotic solution of (38)

[(z;8) = Z lj [u,v] gD,

Jj=1

After simple calculations we find, for functionals [; € H(C), j € Z, the following a recurrent
chain of differential equations:

A A
lie= —512, log = (A—u)ly — N3, I3, = <U —5~ 1) Iy +2(A —u)l3 — g)\l4, ce

A k
lk:,oc = (u — 5 — 1> (k‘ — Q)Zk_l + (/{ - 1)()\ — u)lk — 5)\lk+1, ce

giving rise to the following expressions:

2 2
h=p 2= _XSO:M I3 = ﬁ(()\ — )Pz + Paz),
_ 4 2 3 2
14_w [(—QU —u$+3)\u—§)\ —|—>\> (p;p+3()\—u)§0mz_‘;0zmx 5

2
ls = Y [(—4)\3 + (12u + 4))\2 — (14u2 + 4u + 6uy) A + 6u® + Tuug + um) Yot

+ (10A% = 2X(10u + 1) + 110® + 4uy) ue + 6(4 — N)Puoz + Pawaa) +- - - »
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with ¢ = ¢ (x;)\) being some R? > t-independent function, accumulating the sought
information about the integrable by quadratures Cauchy — Goursat conditions (5).

A relative analysis of this structure obtained above will be done as a separate subject of
studying this problem elsewhere.

4. The algebraic-geometric properties of the integrable Riccati equations (n =2). 4.1. From
Section 2 it easily follows that the following lemma holds.

Lemma 4. The system (4) on Mg° possesses the commutator Lax type matrix representation

[Xx, Th] =0, (40)
where
u_A A
XA:‘%_ u2—|—)\2—|—1 1u2+)\ 7 TA:%_[—,U” —U”] “b
2 2 2

are linear matrix differential operators in the space of complex vector-valued functions with A € C
being an arbitrary complex parameter.

The notation (40) means that the comutator of the operators (41) on the solutions of (4)
equals identifically zero for all A € C.

The Lax representation (40) enables us to find the solutions to equations (4) by means of the
classical algebraic-geometric methods [1, 10, 12] reducing the problem to the Jacobi problem
of inversion of Abelian integrals on hyperelliptic Riemann surfaces, effectively using for its
solution the multidimensional Riemann J-functions [14]. Following [12, 15], we consider the
following compatible linear equations for the vector-valued complex function gy = (g1,92)" €
€ Lo(R?;C?):

XAgA(xa t) = 07 T)hg)\(l", t) = 07 (42)
where A € Cis an arbitrary parameter.

By a direct computation, from (42) one arrives to equations for ( = g1g2, ¥ = — g%, X = g%:
o¢ A A o¢ oy
8—x—§X+¢<U—§—1>7 E*(X‘H/J)Ua or (u—=A)+ A, )
o ox A Ix _
= w0 P xtu- N2 (-urgr1), =20,

compatible on the solution submanifold of the system (4).
The solutions of (43) are characterized by the following lemma [4, 9, 15].

Lemma 5. The system of differential equations (43) possesses a polynomial in A € C solution
N N N
C=) Gl = Pp(@ )N, x=> xulz,t)AF (44)
k=0 k=0 k=0

with N € 7 fixed, iff the coefficients (i, Vi, Xr, k = 0, N, satisfy certain compatible, autonomous
systems of nonlinear nonlocal ordinary differential equations, and

o CN717 o e CNflv. (45)

ula?) (N o (N
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If, furthermore, the relations

C($/7 t,’ )\*) = C*(x,’ tl? >\)7 zlz)(x/? t,’ A*) = w*(x,’ tl? >\)7

¢N(x/7t,) = CN(QT/,t/) = _XN($/7t/)7 X(I’l,t,,)\*) = X*(l’/,t/,k), (46)
Cv—1(2',t) =y (@, ) = vy (2 ) — Yy (2, F)
are fulfilled at some point (z',t') € R x R2(t' := (},,vy)), then these autonomous systems of

nonlinear ordinary differential equations have a solution for all x € R, t € R? and the functions
u(x,t) and v(x,t) found from (45) are real infinitely differentiable solutions of (4).

Proof. For the proof, we substitute solution (44) into system (43) and equate the coefficients
at the same powers of A\ € C, since it is arbitrary. As a result, we obtain systems both
of differential and algebraic equations. Using these algebraic equations we obtain two
autonomous nonlocal systems of nonlinear ordinary differential equations of the form:

B Fii(z0, ... ,23N+2), 5 = Fyi(z0,- .- s 23N+2), (47)

where z; = (, 2n414i = Yi» 2oN424i = Xi» i = 0, N, and Fy;, k = 1,2, = 0,3N + 2, are
polynomials in z € R3¥+3, The compatibility condition of system (47) can be written as

3N+2
O0F1; 0Fy; —_
Yo (55 R — S 2FR;) =0, i=03N+2,
: aZj (92']'
7=0
which is verified by a direct calculation.
On the other hand, from these autonomous systems one easily obtains the relationship on

the function w:

_ UnN-1—(N-1
U=—-",
(N
: . . s 0. o D : .
which together with the condition v, = C—v coincides with system (4). This proves
N
the lemma.

Remark. As a consequence of system (43) one easily obtains the equalities 9 (C+x¥) =0

ot
0
and %(C 2 + x3) = 0, determining in the natural way from initial data for ,, x a certain

polynomial Px_1(A), A € C, with constant real coefficients (a consequence of Lemma 5) of
the form

2N—-1 2N—-2

Py (N =Cxv= Y pX= [ 0 - E), (48)
k=0

J=0

with the conditions P(0) # 0 and E; # E; # 0fori # j = 0,2N — 2.
Having used now the expansion of the polynomial solution ¢ (x,t, \) with respect to zeros
pi(a,t),j =1,N,

N
=14y [T = ), (49)

=1
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from (43), passing to the limit as A\ — p;(x, ), for each j = 1, N, we get the following system

of nonlinear equations for the zeros pj, j = 1, NV:

i —pjn/Pon—1(py)  Opj Pan—1(p;)
- = Rl E U (50)

du . .
where u; = e Since 1 = const, we have assumed for convenience that ¢y = 1.

4.2. Equations (50) belong to the class of equations integrable by means of the Abel
transformation on the hyperelliptic Riemann surface R of the function w = /Pon_1(\),
A, w € C. So we shall consider systems (50) as ones defined on the hyperelliptic Riemann
surface R of genus N — 1 of the function y/P,ny_1(\). This surface can be realized as a
two-sheeted covering surface of the extended complex plane C with cuts along the intervals
[Eaj, Eoj1], j = 0,N — 2, [Ean—2,00].

Letw;(A), j =1, N, be the following Abelian integrals:

P g y
wWil)) = %7’ . :E CipeNF, 51
]( ) J ¢ P2N—1(§) %(5) = %3 ( )

normalized by the conditions:

%dwj()\) = 5kj7 (52)

where ar,k = 1, N — 1, are a-cycles of the Riemann surface R, and a, is the outline on the
upper sheet of R, surrounding point 0 € R.

It easily follows from (52) [14] that the coefficients Cjy, j, k = 1, N, of (51) are unique.

The zeros Ej, j = 0,2N — 2, of the polynomial Poy_1(A) are not singular, so the integrals
wj(A), j = 1, N, have singularities only in the points 0" and 0~ € R (zeros on the upper and
lower sheet of R).

The differentials dw;, j = 1, N, in the neighbourhoods of the points 0* € R have the form:

Y R & S,
dwj(\) = (iAer g(A)) dX,

with logarythmic residua at 0" and 0~ € R equal to
Cj + 1) iN

Pyn-1(0) 2mi’

respectively. Thus dw;, j = 1, N — 1, are Abelian differentials of the first kind on R, and dwy is
an Abelian differential of the third kind on R with logarythmic singularities at 0" and 0~ € R
and residua equal to 1 and —1, respectively. The differential dwy is normalized, since its a-
periods are equal to zero.

The standard [14, 16] Abel substitution

N

vi(a,t) =Y wi(u(e, 1), (53)

k=1
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turns (50) into

l/j(x, t) = lel‘ + v(t) + uj(O, 0), (54)

Cin
(=N

where j = 1, N and the introduced function ~(t), t € R?, satisfies the equations

N
9v _ —up [[ ! 9 _ ~(0) = 0. (55)
ot ’

Considering (53) as expressions on R, we get the following inversion problem: given
vi(z,t),j =1,N, find p;(x,t), j = 1, N, making use of equations (55).

This Jacobi inversion problem is not evidently standard, being considered on the Riemann
surface R of genus N — 1 with the normalized base of Abelian integrals of the first kind w;, j =
=1, N — 1, and the one normalized Abelian integral of the third kind wy.

To solve this problem we consider the e-deformed hyperelliptic Riemann surface R., ¢ € C,
of the function /(A2 + 2) Pyy_1()), having just the genus N, and the following augmented
equations on this surface:

Ol e \/(Nig + &%) Pan—1(pe) Ottje ut\/(/"big + &%) Pan—1(pe)

ZI | SO TR Trus TS § AU TS )
where p;. € Re,j =1, N.
The following lemma is true.
Lemma 6. Let the initial data for equations (50) and (56) satisfy the inequalities:
maxy<j<n |15 (0,0)] < M, mingz;pi(0,0) = 15(0,0)] > ma, (57)

mini<;j<n|p;(0,0)[ > ma, 1;(0,0) = p1(0,0),

forall e € C, where M, my, ma € R4 are some positive values. Then, there exists a convergent to
zero sequence {ei, : k € Z4},limy_o0 e = 0, such that pj., (z,t), for each j = 1, N, uniformly
tends to pj(z,t), j =1, N, as k — oo for small enough x € R and t € R>

Proof. From (56) and (57), for small enough = € R and t € R?, one finds that there exist
real positive constants C; and C5 being independent on € € C, (z,t) € R x R2, such that

‘%uj,s(x,t) <y, ‘%uj,s(x,t)‘ < Oy,

for all j = 1, N. Therefore, a set of functions y; ., (z,t) : j = 1, N, is compact in the uniform
metric. Whence there exists a sequence of numbers {¢, : k € Z,}, limg_,o, e, = 0, such that
for any j = 1, N the sequence of functions {y;., (z,t) : k € Z} tends uniformly with regard
tor € Randt € R? to uj(z,t), j = 1, N, satisfying equations (50) and the chosen initial
data. Based on (57), the solution of (50) is unique and thus for all subsequences {¢; : k € Z },
limy,_. € = 0, there exists the same limy_, (15 ¢, (2, t), which finishes the proof.

Let w;.(z), 7 = 1, N, be a normalized base of Abelian integrals of the first kind in R.

N
dje . _ Ci N—k 58
/¢@Hnwm0 =2 Ot e
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Then the Jacobi inversion problem

N
Vje(,t) = ij,s(,“k,s(x,t)) (59)
k=1
recasts (56) into
Cine
vje(z,t) = Cjrea + ﬁ%(t) +12(0,0), (60)

where j = 1, N, and 8(%6 = —uy vazl ,u;é, 6675 =0, 7.(0) = 0forall z € R, t € R?, due to the
linearity of (60) in z € R and 7. (t) € C. !

4.3. For studying the convergence of Abelian integrals (58) we make canonical cuts of the
Riemann surface R. by a- and b-cycles. Arbitrary branch of integral w; . (\), j = 1, N, is regular
on the cut region R¥, and as € — 0, it tends continuously (behind the points 0* and 07), to the
respective branch of the integrals w;j(A), j = 1, N, on R*, the region obtained after canonical
cuts of the surface R.

Since the set of the regular Abelian integrals {wj,E(A) tj= I,_N} is uniformly continuous
and bounded with respect to ¢ € C, small enough on an arbitrary compact region K C R*
located at a positive distance from the points 0" and 0~ € R*, the Abelian integrals w; . (\), j =
=1, N, tend uniformly to w;(\) on K C R*, as ¢ — 0. From this, it follows that ;1_% vjie(x,t) =

= vj(z,t),j = 1, N, iff the initial data 11;(0,0), j = 1, N, don’t belong to the neighbourhoods of
0" and 0~. So we have shown, that the problem (59) approximates the problem (53) as ¢ — 0.
The problem (53) evidently is the standard Jacobi inversion problem on the Riemann surface
R.. Now we can formulate the following important lemma.

Lemma 7. If ¢ — 0, then the Jacobi inversion problem (59) tends to the Jacobi problem (53),
where y(t) := lim._0 (), t € R? and w;(\) = lim wje(A), 7 =1,N.

Assuming that 14(0,0) € R, k = 1, N, are pairwise distinet, based on the well known
Riemann theorem one gets that there exists a nontrivial Riemann #-function 6. (\) = ¥ (w:(\)—
—e. ), where by definition

Ye(u) = Z exp[mi < B-m,m > 427 < u,m >|,

meZN

with B. being the matrix of B-periods of the base {w;.(\):j =1,

< .,.>isthe usual inner productin CV, e. = (vj(z,t)+kjc : j =1,N), kj. =

namely the solution of the Jacobi inversion problem.
After a direct computation we get that there exists the limit

T(\) = ;1_13% 0-(\) = In_1(w(N) — eT) +exp[2mi(wn(\) — en)]In_1(w(A) —e”)  (61)
~ 1 S ~ o~ 1
where et = (vj(z,t) + k; = §BN]- :j=1,N-1), ey = vn(z,t) + kN, kj = B Eiv:_ll By; —

—Z, w(A) = (wj(A) : j = 1,N —1), and Un_1(u) is the usual Rimann J-function of u €
ecN-1.B ~j are B-periods of the Abelian integral wx () on the surface R.
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Let us consider also the following associated with (61) 7-function on C*:

B By n—
7(u) = 7(u1,... ,un) = VIn-1 <u1—%,...,u1\z_1— 2 1)—1—
B B _
+ exp(2miun)IN—_1 (u1 + %, c L UN—1 + Ngv 1) , (62)

where u € CV, and Byj, j =1,N — 1, are defined as above.
It is easy to see that

TA) =7(wA) —v(z,t) —e),

with v(z,t) = (vj(x,t) : j = 1,N —1), and w, e € CV~! defined as above. Some more
properties of the function 7'(\) one can also find in [12].

Lemma 8. Zeros of the T-function (61) are the solution to the Jacobi inversion problem (59).

Proof. For the proof, it is sufficient to show that p;(z,t) = i% tie(z,t), 5 = 1,N, that
immediately follows from the fact that the functions 6.(\) tend continuously to the function
T(\), A € K, bounded on an arbitrary compact K in R* that lies at a positive distance from 0.

4.4. Following [1, 12, 14], one can find explicit expressions for the wanted above symmetric
functions ) In p; and ) ;.

To find the first sum, we consider the region R* with one more intersection along the curve
L starting at the point 07 € R* and ending at co € R*, and the function 3(A\) = In A+ 27iwn (),
being the Abelian integral of the third kind with logarythmic residua at 0 and oo € R equal to
2 and —2, respectively.

Consider now the integral

T=— / B(A)dInT(N).
OR*ULtTUL~
By the residua classical theorem,

N N N
T=>Y Blm)—B07)=> I +2mi Y wy(uk) —B07) =
k=1 k=1

=1

I
M=

In pug + 2mivy (z, t) — B(07).

£
Il

1

On the other hand, since §(\) and T'(\) are continuous on b-cycles, 57 (\) — 37 (\) = —B;,
B, — fdm + QWi?édwN()\), Neaj,j=T,N—T,and 8+ (\) — B~(\) = —2i, A € L,

bj bj
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N—-1
7= %m k; (%w(A)dlnTﬂA) = fﬁ—(A)dlnT—(A))Jr
+2im</ﬁ+(A)d1nT+(A) - /ﬂ‘(k)dlnT‘(A)) =
L+ L=
B N—-1 _ T+()\) 1 N-1 _
- (fﬂ (A)dIn T(M) — 5 ; Bkaj{dlnT (\) L[dlnT()\).
Therefore,
N
> Inpg(z,t) = —2mivy(x,t) + B07) +
k=1
N—-1 - N—-1 T( )
*Y fﬁ Vi) = X By + 21 oo (63)
where n; = %dlnT‘(/\),j =1,N.
Followinagj [12, 14] we find similarly that
N N—-1
> e t) = 7{ Adw;j(A) — resy—oo(AdInT(N)). (64)
k=1 j=1"

First we find the residuum at the right side of (64), making use of expansion of the function
1
d N
e InT'(A) in the series with respectto 7 = A 2:
-

d L .ad L NS OMT(N) dwy(N)
TInT(A) = —202 = InT(}) = —2A7 ]; AT

_2A3N2‘1 () OlmT()
=1t AW/ Pan—1(\) 0w

N _
Since ¢;(\) = Y Ciup ANk, j =1, N — 1 (see (51))
j=1

C]j()\) —§< do,_y di,_ 9 )
—— =X 2 [1— =" — =X+ |+
MNPy 2 2

d d
—i—ng)\ig <1—30)\1—?1>\2+"') + -,

with dj, d1 being some constants.
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Whence

)\i InT(\) = -2
dr

and

0?2 lnT(/\)
—4 .
Z CinCn—g=50— 0w;0w;

dInT (A )

resy—so {AdInT(A)} = —2 Z 01167 ( 0w,
J

1,j=1
On the other hand, based on (54) one can find that
0 9?InT(\)
wlnT Z 0]107,1 a_ 8(«(}1 :

i,7=1
Thus from the results obtained above one gets the following equality:

o2

Z,uk x,t) Z j{)\dwj lnT( ).

From (45) and (4) we easily find an exact expression for the solution y(z,t) of (2):

a(x)
y(z,t) = 5 T ——IHH#
Furthermore, in accordance with (5) the following relations are valid for ~y(xg, yo) :

9y _ b+ alzo)yo + b(xo) Oy 2
Do N(z0;7) ’ dyo N(z0;7)’

where N (x;v(xo,y0)) = [T 15(x;20,90), (z0,y0) € R?, is determined as
j=1

N(z;v(zo,90)) =

T2 N-1
= T2(((())i)) exp R —2mivy(x,t) + B(07) + Z %ﬁ A)dwj(N) — ; Bjn;

Lemma 9. The following identity
v(z,y) = v(xo,yo)
holds for any solution to the Cauchy — Goursat problem (4), (5).

Proof. One easily finds that the function v : R? — R satisfies the equation

dy(z,y(@;t) _ Oy  Oydy(z;t) _ Y tal@)y+bx) 2 dy(x)
dx Or Oy dx N(z;7) N(xz;v) dx

=0,

(65)

(66)

(67)

(68)

(69)

on the solutions to (4), where t = (0, yo) € R?, that is y(z, y) = (w0, yo) for all (zg,yo) € R>.
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The equality of the mixed derivatives for v(zo, yo) yields the expression

10 a(x
Yo = §%IDN($ = 20;7(20, %0)) — (TO),
determining apparently the function ~y(x¢, yo) implicitly. Now from (4) and (70) one can find

additionaly that

(70)

U= %lnN(x;’y), Ly (x;v(z0,y0)) == % - %ﬁ =
_d(x) | d(z) _
= — =y () = L), (71)
that is
Ly (257(z0,90)) = L(z), (72)

for all t := (g, y0) € R2.

Since from (4), (43), and (49) one can obtain that v = ¢)x_1 +/2(¢)n—1 —(n—1) and thus u; =
= — Y 1j+/u, making further use of the condition (72) one can easily reduce it to the following
characteristic expression

N

0 0
o ;(w + o) [ =0. (73)

The latter can be used effectively, based on exact formulas (63) and (65), for detecting the
Riemann surface parameters generating integrable Riccati equations.
Thus we are in a position to formulate the following theorem.

Theorem. The Riemann surface R of the function w? = Pyn_1()\) satisfying the condition
(73), generates solutions to (2) representable by quadratures via (66) for given differentiable
functions a(x) and b(z) only if the function z := In N(x;~), with N(x;~) being given by (68)
and defining via (66) and (71) the sought functions a,b € C'(R;R), satisfies the well known
integrable by quadratures Liouville equation

0%2/0z0y + % = 0, (74)
equivalent to (73).

At the same time equation (67) makes it possible to find a still unknown function ~ : R? —
— R incorporated implicitly into the solution expression (66) to the Riccati equation (2).

5. The analysis of the case n =3. For the case n = 3 one follows that the holonomy Lie
algebra G(h) is strictly infinite dimensional. This means that there exists no finite-dimensional
representation of the holonomy Lie algebra. The simplest infinite dimensional Lie algebra,
containing the sl(2)-subalgebra, is the Lie algebra of the group of diffeomorphisms of the circle

S! or the Virasoro algebra:
i 0 o
Lj= §]+18_§’ [Li, L] = (j — @) Lisj, (75)

where ¢ € S' ~R/27Z and j € Z,.
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The associated Lie algebra G(h) being generated by system (13), possesses the following
general representation:

A
Xo=-L_1, Xi=L_1+Ly, Xo= <3 + 5) L_1+6Lg+3L1,
\ \ (76)
X3 = (24-6) L 1+ <3+§> Lo+ 3L + Lo,
where A € C is a spectral parameter. Having substituted representation (75) into (76), one
arrives at the following (A, B) expressions of the induced Cartan — Heresmann connection I" :

B A 1 A 9 3 B
A—( 5V 3) (u+2>£ 3y¢* — ¢, B=w, (77)
0 9 t | .
where A6_§ = —F(m),Ba—g = —TI'®. The corresponding symbol expression [ (z;€) =

=3 1¢ ~U-1 solving equation (37) is described by the following series of coefficients:
j=1

. 1/1 A
li=¢, 12=0, 13:90— ls = =Yz, l5z—<—<pm—<u+—>¢x+9u2¢x>,.--,

27 4\ 2 2
where ¢ = ¢ (x;)) is also some R? > t-independent function as was stated before for
n = 2 containing an information about the integrable by quadratures Cauchy — Goursat condi-
tions (5).

One can also easily verify that for n = 3 assertions similar to Lemma 2 and Lemma 3 hold
too.

6. Concluding remarks. The next problem under investigation of the integrability of
the Riccati — Abel equation (1) consists in analyzing the Lie-algebraic properties of the
corresponding solution manifolds for the n = 3 case, related to the Cauchy — Goursat
conditions (5), and studying their corresponding finite-dimensional Moser type reductions via
the momentum mapping approach and methods of the modern symplectic theory.
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