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More than one hundred and fifty years ago J. Liouville posed a problem of describing Riccati equations
dy/dx = y2 +a(x)y+b(x), which are integrable by quadratures. Since this time, the Liouville problem was
considered many times, and there are some partial solutions to it, but up to now there exists no effective
theory answering the question whether a given Riccati equation is integrable or not. Only eighteen years
ago there was made a new attempt to study the Liouville problem based on the theory of Lax type integrable
dynamical systems. In this paper there is developed further an approach of investigating the integrability
by quadratures of generalized Riccati – Abel equations that before was applied to a usual Riccati equation.
We reduce a given Riccati – Abel equation to some equivalent nonlinear evolution partial differential
equations with natural Cauchy – Goursat initial data, and prove further their Lax type integrability,
connected via Liouville with the integrability by quadratures. This approach having backgrounds both in
modern differential-geometric and Lie-algebraic techniques, gives rise to a partial solution to the Liouville
problem, effective enough in the case of Riccati equation.

Бiльше нiж сто п’ятдесят рокiв тому Ж. Лiувiлль поставив проблему опису рiвнянь Рiккатi
dy/dx = y2 + a(x)y+ b(x), iнтегровних у квадратурах. З тих пiр ця проблема дослiджувалась ба-
гато разiв, було отримано рiзнi частковi її розв’язки, але до сьогоднi немає ефективної теорiї,
яка б давала вiдповiдь на питання: чи є дане рiвняння Рiккатi iнтегровним у квадратурах чи
нi? П’ятнадцять рокiв тому був запропонований новий пiдхiд до проблеми Лiувiлля, оснований
на теорiї iнтегровних за Лаксом динамiчних систем. У данiй статтi цей пiдхiд розвивається
далi для дослiдження iнтегровностi узагальнених рiвнянь Рiккатi зведенням їх до рiвнянь з ча-
стинними похiдними, iнтегровних за Лаксом. Цей пiдхiд, що грунтується як на диференцiально-
геометричних, так i на алгебраїчно-геометричних методах, приводить до часткового розвит-
ку проблеми Лiувiлля, досить ефективного для рiвнянь Рiккатi.

1. Introduction. Our purpose is to describe the class of functions a and b ∈ C1(R; R) in the
generalized Riccati – Abel equation

dy

dx
= yn + a (x) y + b (x) , (1)

where Z+ 3 n ≥ 2, for which this equation is integrable by quadratures (i. e. a solution of
this equation can be expressed by means of elementary and algebraic functions as well as of
integrals of them [1]). The backgrounds of the integrability theory via the differential-algebraic
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Picard – Vessiot approach were founded in classical articles [2, 3] and further developed in
[4 – 6].

First we consider the Cauchy problem for equation (1) with some fixed functions a and
b ∈ C1(R; R):

dy

dx
= yn + a (x) y + b (x) , y (x0) = y0, (2)

with y0 ∈ R being an arbitrary Cauchy data at a point x0 ∈ R.
From the Regularity and Uniqueness Theorem [7] it follows that there exists a unique

solution of (2), differentiable with respect to x0 and y0 ∈ R satisfying the conditions

∂y

∂x0

∣∣∣
x=x0

= − (yn0 + a (x0) y0 + b (x0)) ,
∂y

∂y0

∣∣∣
x=x0

= 1. (3)

Thus, differentiating (2) with respect to x0 and y0 ∈ R, we obtain a system of nonlinear
evolution equations in the form:

dy

dt
= v,

du

dt
= n (n− 1) yn−2v (4)

on the jet-submanifold M∞0 =
{

(u, v)τ ∈ J
(
R×R2; R3

)
: vx = uv

}
, where t := (x0, y0) ∈ R2

-an evolution vector parameter, with the following Cauchy – Goursat data:

∂y

∂x0

∣∣∣
x=x0

= − (yn0 + a (x0) y0 + b (x0)) ,
∂y

∂y0

∣∣∣
x=x0

= 1,

u|x=x0 = nyn−1
0 + a (x0) , v|x=x0 =

∂y

∂x0

∣∣∣
x=x0

.

(5)

The solutions of (2) and (4) are characterized by the following simple but important lemma
(see also [1]).

Lemma 1. All solutions of equations (4) with conditions (5) that reduce to quadratures are
also solutions of equation (2), reducible to quadratures.

Our further main point of the analysis will be concerned with the problem of proving
integrability by quadratures of the Cauchy – Goursat problem (5) for the system of partial
differential equations (4) on the jet-submanifoldM∞0 . First, the detailed analysis will be carried
out for the system (4).

2. General differential-geometric analysis. At the beginning we prove that
evolution equations (4) are integrable by quadratures, being linearized via a Lax type
representation. Via the gradient-holonomic algorithm [8, 9] the system (4) on the
jet-submanifold M∞0 ⊂ J

(
R×R2; R3

)
can be recast into a set of 2-forms {α} ⊂

⊂ Λ2
(
J0
(
R×R2; R3

))
upon the adjoint jet-manifold J0

(
R×R2; R3

)
as follows:

{α} =
{
α1 := dy(0) ∧ dx+ v(0)dx ∧ dt; α2 := dv(0) ∧ dt− u(0)v(0)dx ∧ dt;

α3 := du(0) ∧ dx+ n (n− 1) (y(0))n−2v(0)dx ∧ dt :
(
t, x, u(0), v(0), y(0)

)τ
∈M

}
, (6)
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where M is a finite-dimensional submanifold in J0
(
R×R2; R3

)
with local coordinates

(x, t, u(0) = u, v(0) = v, y(0) = y). The set of 2-forms (6) generates a closed ideal I(α), that
is dI(α) ⊂ I(α), since

dα1 = −dx ∧ α2, dα2 = −v(0)dt ∧ α3 + u(0)dx ∧ α2,

dα3 = n(n− 1)(n− 2)v(0)(y(0))n−3dt ∧ α1 − n(n− 1)(y(0))n−2dx ∧ α2.
(7)

Therefore, the ideal I(α) is Cartan – Frobenius integrable (due to the Cartan theorem) with
the integral three-dimensional integral submanifold N3 =

{
(x, t) ∈ R3

}
⊂ M , being defined

locally by the condition I(α) = 0.
Integrability by quadratures of system (4) is equivalent [8, 10] to the vanishing on the

integral submanifold N3 ⊂ M the curvature Ω of the corresponding connection form Γ upon
the principal fiber space P (M,G):

Ω = dΓ + Γ ∧ Γ ∈ I(α)⊗ G, (8)

where G is the Lie algebra of a structure group G.
Now we shall look for this connection form Γ ∈ Λ1(M) ⊗ G belonging to some not still

determined Lie algebra G of a structure group G. This 1-form can be represented using (6), as
follows:

Γ := Γ(x)
(
u(0), v(0), y(0)

)
dx+ Γ(t)

(
u(0), v(0), y(0)

)
dt, (9)

where elements Γ(x),Γ(t) ∈ G satisfy the following determining equations:

Ω ≡ ∂Γ(x)

∂u(0)
du(0) ∧ dx+

∂Γ(x)

∂v(0)
dv(0) ∧ dx+

∂Γ(x)

∂y(0)
dy(0) ∧ dx+

∂Γ(t)

∂u(0)
du(0) ∧ dt+

+
∂Γ(t)

∂v(0)
dv(0) ∧ dt+

∂Γ(t)

∂y(0)
dy(0) ∧ dt+ [Γ(x),Γ(t)]dx ∧ dt =

= g1(dy(0) ∧ dx+ v(0)dx ∧ dt) + g2(dv(0) ∧ dt− u(0)v(0)dx ∧ dt) +

+ g3(du(0) ∧ dx+ n(n− 1)(y(0))n−2v(0)dx ∧ dt) ∈ I(α)⊗ G (10)

for some G-valued functions g1, g2, g3 on M . From (10) one easily finds that

∂Γ(x)

∂u(0)
= g3,

∂Γ(x)

∂v(0)
= 0,

∂Γ(x)

∂y(0)
= g1,

∂Γ(t)

∂u(0)
= 0,

∂Γ(t)

∂v(0)
= g2,

∂Γ(t)

∂y(0)
= 0,

[
Γ(x),Γ(t)

]
= g1v

(0) − g2u
(0)v(0) + g3n(n− 1)(y(0))n−2v(0).

(11)

The set (11) has the following unique global solution:

Γ(x) = X1u
(0) +

n∑
m=2

Xm(y(0))n−m, Γ(t) = X0v
(0), (12)
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whereXj ∈ G, j = 0, n, are some constant onM elements of the sought Lie algebra G, satisfying
the following structure equations:

[X1, X0] = −X0, [X2, X0] = n (n− 1)X1, [Xm+1, X0] = (n−m)Xm, n ≥ m ≥ 2. (13)

3. Lie-algebraic analysis of the casen= 2.3.1. We can use (8) for determining the Lie algebra
structure of G, taking into account the holonomy Lie group reduction theorem of Ambrose,
Singer and Loos [11]. Namely, the holonomy Lie algebra G(h) ⊂ G is generated by the covariant
derivatives composition of the G-valued curvature form Ω ∈ Λ2(M)⊗ G:

G := spanC{∇
j1
1 ∇

j2
2 . . .∇jnn Ωsi ∈ G : jk ∈ Z+, s, i, k = 1, n}, (14)

where by definition, the covariant derivative ∇j : Λ(M) −→ Λ(M), j = 1, n, is given as follows

∇j :=
∂

∂zj
+ Γ(j)(z), zj ∈ M , j = 1, n. Therefore, reducing via the Ambrose – Singer theorem

the associated principal fibered frame space P (M,G) to the principal fiber bundle P (M,G(h)),
where G(h) ⊂ G is the corresponding holonomy Lie group of the connection Γ on P , we must
verify the following conditions for the set G(h) ⊂ G to be a subalgebra in G:∇mx ∇nt Ω ∈ G(h) for
all m,n ∈ Z+. To do this we shall try to close the above transfinite procedure. One can easily
verify, that the simplest equality

G(h) = G(h)1 := spanC

{
∇mx ∇nt Ω ∈ G : m+ n = 0, 1

}
meets all of the conditions mentioned above. This means that one can put

G(h) = G(h)1 := spanC

{
∇mx ∇nt gj ∈ G : j = 1, 3,m+ n = 0, 1

}
=

= spanC

{
gj ∈ G;

∂gj
∂x

+ [gj ,Γ(x)],
∂gj
∂t

+ [gj ,Γ(t)] ∈ G : j = 1, 3
}

=

= spanC {X0, X1, [X1, X2]} = spanC

{
Xj ∈ G : j = 0, 3, j 6= 2

}
, (15)

where, by definition, [X1, X2] = X3 ∈ G. To satisfy the set of relations (13) we need to use
expansions over the basis (15) of the external element X2 ∈ G(h):

X2 :=
3∑

j=0,j 6=2

qjXj . (16)

Substituting the expansion (16) into (13) we obtain that q0 = −λ, q1 = 0, q3 = 1, for an arbitrary
complex parameter λ ∈ C, that is G(h) = spanC {X0, X1, X3}, where

[X0, X3] = −2X1, [X1, X3] = −λX0 +X3, X2 = −λX0 +X3. (17)

We can now state that this finite-dimensional holonomy Lie algebra G(h), being generated by
comutator relationships (13) and (17), possesses the following a general solution:

X0 = L−1 − 2L0 + L1, X1 = L−1 − L0, X2 =
(
−λ

2
− 1
)
L−1 + λL0 −

λ

2
L1, (18)

with L−1, L0, L1 satisfying canonical sl(2)-commutation relations and λ ∈ C being a parameter.
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It is easy to find such a (2× 2)-matrix representation of L-elements of G:

L−1 =
[

0 0
1 0

]
, L0 =

1
2

[
1 0
0 −1

]
, L1 =

[
0 −1
0 0

]
. (19)

Therefore, from (12), (18) and (19) we obtain the following Γ(x),Γ(t) expressions:

Γ(x) =

 −u
2

+
λ

2
λ

2

u− λ

2
− 1

u

2
− λ

2

 , Γ(t) =
[
−v −v
v v

]
, (20)

and the following 1-form Γ ∈ Λ1(M)⊗ G

Γ = (X1u+X2)dx+X0vdt, (21)

generating parallel transporting of vectors f ∈ C2 from a linear representation space F ' C2

of the holonomy Lie algebra G(h):

df + Γf = 0 (22)

along the integral submanifold N3 ⊂ M of the ideal I(α), generated by the set of 2-forms (6).
The result (22) means also that the dynamical system (4) is endowed with the standard Lax type
representation, containing the spectral parameter λ ∈ C, that is necessary for its integrability
by quadratures [1, 8].

3.2. Now we shall proceed to consider the following generalized spectral problem for system
(4):

Lf :=
(
∂

∂x
+ Γ(x)[u, v, λ]

)
f = 0, f ∈ L∞

(
R; C2

)
, (23)

posed in the Banach space L∞
(
R; C2

)
with the manifold M∞0 being taken 2π-periodic in x ∈

∈ R. We need to analyze [8, 12], in more detail, spectral properties of the problem (23).
Let Y (x, x0;λ) ∈ L(C2,C2) be the fundamental solution of equation (23), being normalized

to the identity matrix at x = x0 ∈ R, i. e. Y (x0, x0;λ) = 1 for all x0 ∈ R, λ ∈ C. Any solution
of (23) can be evidently represented as

f(x, x0;λ) = Y (x, x0;λ)f0(λ), (24)

where f0(λ) ∈ C2 is some initial Cauchy data at x = x0 ∈ R. Consider the value of f(x, x0;λ) ∈
∈ C2 at x = x0 + 2πN , where N ∈ Z. Owing to the periodicity of the manifold M∞0 in the
independent variable x ∈ R, one obtains from (24) that

f(x0 + 2πN, x0;λ) = SN (x0;λ)f0(λ),

where S(x0;λ) := Y (x0 + 2π, x0;λ) : C2 → C2 is the so called monodromy (transfer) matrix of
the periodic differential equation (23).

The monodromy matrix S(x0;λ) possesses the following useful properties [8, 12]:
1◦) the matrix S(x0;λ), λ ∈ C, as a function of the parameter x0 ∈ R satisfies the following

Novikov – Marchenko equation:

dS

dx0
= [−Γ(x), S] (25)

for all x0 ∈ R, where [., .] is the usual matrix commutator;
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2◦) the eigenvalue %(λ) of the matrix S(x0;λ), λ ∈ C, does not depend on the variable
x0 ∈ R;

3◦) the eigenvalue %(λ) of the matrix S(x0;λ), λ ∈ C, as a functional on manifold M∞0 , is
independent of the evolution parameter t ∈ R2.

Since
d%(λ)
dt

= 0, for all t ∈ R2, we claim that as |λ| → ∞, %(λ) ∈ D(M∞0 ) is a generating

functional of conservation laws of system (4). Hence, one can find an infinite hierarchy of
conservation laws of system (4), making use of (23). We introduce the function σ(x;λ) :=

:=
∂

∂x
ln f1(x, x0;λ), where f1(x, x0;λ) is the first coordinate of the vector-eigenfunction f ∈

∈ L∞
(
R; C2

)
of the monodromy matrix S(x;λ):

S(x;λ)f(x, x0;λ) = %(λ)f(x, x0;λ),

that is normalized at x = x0 by identity, i. e. f1(x = x0, x0;λ) = 1. Substituting the function f
into (23) one can find the following differential Riccati equation for the function σ(x;λ):

σx = −σ2 +
1
2
ux −

(
−u+

λ

2
+ 1
)
λ

2
+
(

1
2
u− λ

2

)2

, u = vx/v, (26)

where (.)nx :=
dn(.)
dxn

, x ∈ R, n ∈ Z+. Assuming that σ(x;λ) allows an asymptotic solution :

σ(x;λ) ∼= δm(λ)
∑
j∈Z+

σj [u, v]δ−j(λ), (27)

as |λ| → +∞, with respect to the parameter δ(λ) being analytic on C, andm ∈ Z+ is some fixed
number, one can find from (26) recurrent equations for σj [u, v], j ∈ Z+:

−σ2
0 =

1
2
, σ0,x = −(σ0σ1)2, σ1,x = −(2σ0σ2 + σ2

1) +
ux
2

+
u2

4
,

σ2,x = −(2σ0σ3 + 2σ1σ2), σ3,x = −(2σ0σ4 + 2σ1σ3 + σ2
2),

σ4,x = −(2σ0σ5 + 2σ1σ4 + 2σ2σ3), . . .

and from them the following polynomial functionals σj [u, v], j ∈ Z+:

σ0 =
√

2
2
i, σ1 = 0, σ2 = −

√
2i
4

(
1
2
u2 + ux

)
, σ3 =

1
4

(uxx + uux),

σ4 =
i
√

2
16

(
2uuxx + 2uxxx + u2

x −
u4

4
− uxu2

)
,

σ5 = −1
8

(uxxxx + uuxxx + uxuxx − u3ux − u2uxx − 2u2
xu),

σ6 =
√

2
32
i

(
−2uxxxxx − 2uxuxxx − u2

xx − 2uuxxxx +
13
2
u2u2

x + 3uxxu3 + 3u2uxxx+

+ 16uuxuxx + 5u3
x −

3
4
u4ux −

u6

8

)
, . . . .
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Since %(λ) = exp

 2π∫
0

σ(x;λ)dx

, from (27) and 3o) one gets right away that all functionals

γj =

2π∫
0

dxσj [u, v], j ∈ Z+, are conservation laws for (4). Thus we have explicit expression for

γj , j ∈ Z+ :

γ0 = πi
√

2, γ1 = 0, γ2 =
i
√

2
8

2π∫
0

u2dx, γ3 = 0, γ4 =
i
√

2
16

2π∫
0

(
uuxx −

1
4
u4

)
dx,

γ5 = 0, γ6 = − i
√

2
32

2π∫
0

(
−uxuxxx +

5
2
u2u2

x +
u6

8

)
dx, γ7 = 0, (28)

γ8 =
i
√

2
64

2π∫
0

(
−uxxxxxux +

7
2
u2uxuxxx +

7
4
uu2

xuxx +
7
8
u5uxx −

5
64
u8

)
dx, . . . .

3.3. For a further analysis of system (4) we make use of the Novikov – Marchenko equation
(25). Let us denote ∆(λ) :=TrS(x;λ), λ ∈ C, as a normalized trace of the monodromy matrix
S(x;λ) : C2 → C2 at x ∈ R. By virtue of the results stated above we can claim that the
functional ∆(λ) ∈ D(M∞0 ) is a generating function of conservation laws for (4). The same is
evidently true also for all functionals TrSk(x;λ), k ∈ Z, λ ∈ C, at x ∈ R, but not all of them are
obviously functionally independent.

Making now use of the Novikov – Marchenko equation (25) one can obtain [1, 12] that the
following relation holds

ηgrad∆ (λ) = λϑgrad∆ (λ) , (29)

for all λ ∈ C, where (η, ϑ) is a pair of implectic operators [12] acting from T ∗ (M∞0 ) into
T (M∞0 ). Since the system (4) is considered on the singular submanifold M∞0 , we are forced to
introduce new frame-regularizing coordinates (x̃, t̃) ∈ R×R2, defined as follows:

x̃ = x, t̃ = x1 + t, (30)

where 1 =
(

1
1

)
. In these coordinates, the system (4) takes the form of a nondegenerate

evolution system on J(R1; R2):

dũ

dt̃
= 2ṽ,

dṽ

dt̃
= ṽex − ũṽ.

(31)

The corresponding to (20) connection matrices Γ(ex),Γ(et) ∈ G, are given as follows:

Γ(ex) =

 − ũ
2
− ṽ +

λ

2
λ

2
− ṽ

ũ+ ṽ − λ

2
− 1

u

2
+ ṽ − λ

2

 , Γ(et) =

[
−ṽ −ṽ

ṽ ṽ

]
. (32)
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Whence the Novikov – Marchenko equation (25) takes the form:

sex =
(
ṽ − λ

2

)
s21 +

(
ṽ + ũ− λ

2
− 1
)
s12,

s12,ex = −2
(
ṽ − λ

2

)
s+ (2ṽ + ũ− λ)s12,

s21,ex = −2
(
ṽ + ũ− λ

2
− 1
)
s+ (−ũ− 2ṽ + λ)s21,

(33)

for the components sij(x̃;λ), i, j = 1, 2, of the monodromy matrix S(x̃;λ) : C2 → C2 at x̃ ∈ R

for all λ ∈ C, where s :=
1
2

(s11 − s22).

Having taken the operator L :=
∂

∂x̃
+ Γ(ex), with Γ(ex) being given by (32), one finds easily

that

grad∆(λ) =
1
2

(
s− s12

2s− s12 + s21

)
, (34)

for all λ ∈ C.
As a result of expression (34) and equations (33) one arrives at the following spectral

gradient identity:

η̃grad∆(λ) = λϑ̃grad ∆(λ), (35)

valid for all λ ∈ C, where

η̃ =

[
−2∂ ∂2 + ∂ũ

−∂2 + ũ∂ ṽ∂ + ∂ṽ

]
, ϑ̃ =

[
0 0
0 ∂

]
, (36)

with ∂ :=
∂

∂x̃
.

Based on (34) and (35) one can further make the Moser reduction [8] of our problem (31)
on a finite-dimensional nonlocal invariant submanifold carrying a natural symplectic structure.
The latter gives rise to a new reduction of the problem to a one of Liouville – Arnold type.

3.4. Below we shall analyze, using some results of [12], the next useful for further
representation of the holonomy Lie algebra sl(2) by means of such vector fields on the circle
S1 :

L−1 =
∂

∂ξ
, L0 = ξ

∂

∂ξ
, L1 = ξ2 ∂

∂ξ
, ξ ∈ S1 ' R/2πZ.

The corresponding connection operators Γ(x) and Γ(t) ∈ G then take the form:

Γ(x) =
(
−λ

2
ξ2 − (u− λ)ξ +

(
u− λ

2
− 1
)) ∂

∂ξ
, Γ(t) = (v − 2vξ − vξ2)

∂

∂ξ
. (37)

Consider now the following system:

∂f

∂x
= A

∂f

∂ξ
,

∂f

∂t
= B

∂f

∂ξ
(38)
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where f ∈ H (C) is some complex analytical continuation of f from the circle S1 to the whole

C, and A
∂

∂ξ
= −Γ(x), B

∂

∂ξ
= −Γ(t), as defined by (37).

The following lemmas [13] are true:

Lemma 2. The dynamical system (4) is equivalent to the following vector field Lax type
representation:

dL̃

dt
=
[
L̃, P̃ (l)

]
, (39)

where L̃ =
∂l

∂x

∂

∂ξ
− ∂l

∂ξ

∂

∂x
, P̃ (l) =

∂p

∂x

∂

∂ξ
− ∂p
∂ξ

∂

∂x
and l := l (x; ξ) ∼=

∑
j≥0

lj [u, v] ξ−(j−s) ∈ H(C)

is an element of the Lie algebra, ξ is symbol expressions, s ∈ Z+ is some nonnegative integer.

A proof of (39) follows simply from the definition of the associative product in the space of
reduced pseudo-differential expressions, which one verifies via a straightforward calculation.

Lemma 3. The following equality holds: l ≡ f , where f is an analytical solution of (38).

Proof. Since L̃f = 0 with the operator L̃ being defined in Lemma 2, using the usual
characteristics method one arrives at the equality

dξ

dx
= − ∂l

∂x

/ ∂l
∂ξ
.

On the other hand, from the characteristics equations of the first equation in (38), one finds

that dx/1 = −dξ/A. Whence A
∂l

∂ξ
=

∂l

∂x
, so l ∈ H(C) is a solution of (38), which proves the

lemma.
Taking into account Lemmas 1 and 2, one can find the following asymptotic solution of (38)

l (x; ξ) ∼=
∑
j≥1

lj [u, v] ξ−(j−1).

After simple calculations we find, for functionals lj ∈ H(C), j ∈ Z+, the following a recurrent
chain of differential equations:

l1,x = −λ
2
l2, l2,x = (λ− u)l2 − λl3, l3,x =

(
u− λ

2
− 1
)
l2 + 2(λ− u)l3 −

3
2
λl4, . . . ,

lk,x =
(
u− λ

2
− 1
)

(k − 2)lk−1 + (k − 1)(λ− u)lk −
k

2
λlk+1, . . .

giving rise to the following expressions:

l1 = ϕ, l2 = − 2
λ
ϕx, l3 =

2
λ2

((λ− u)ϕx + ϕxx),

l4 =
4

3λ3

[(
−2u2 − ux + 3λu− 3

2
λ2 + λ

)
ϕx + 3(λ− u)ϕxx − ϕxxx

]
,

l5 =
2

3λ4

[(
−4λ3 + (12u+ 4)λ2 − (14u2 + 4u+ 6ux)λ+ 6u3 + 7uux + uxx

)
ϕx+

+ (10λ2 − 2λ(10u+ 1) + 11u2 + 4ux)ϕxx + 6(u− λ)ϕxxx + ϕxxxx
]
, . . . ,

234 ISSN 1562-3076. Нелiнiйнi коливання, 2000, т. 3, № 2



with ϕ = ϕ (x;λ) being some R2 3 t-independent function, accumulating the sought
information about the integrable by quadratures Cauchy – Goursat conditions (5).

A relative analysis of this structure obtained above will be done as a separate subject of
studying this problem elsewhere.

4. The algebraic-geometric properties of the integrable Riccati equations (n= 2). 4.1. From
Section 2 it easily follows that the following lemma holds.

Lemma 4. The system (4) on M∞0 possesses the commutator Lax type matrix representation

[Xλ, Tλ] = 0, (40)

where

Xλ =
∂

∂x
−

 u

2
− λ

2
−λ

2

−u+
λ

2
+ 1 −1

2
u+

λ

2

 , Tλ =
∂

∂t
−

[
v v

−v −v

]
, (41)

are linear matrix differential operators in the space of complex vector-valued functions with λ ∈ C
being an arbitrary complex parameter.

The notation (40) means that the comutator of the operators (41) on the solutions of (4)
equals identifically zero for all λ ∈ C.

The Lax representation (40) enables us to find the solutions to equations (4) by means of the
classical algebraic-geometric methods [1, 10, 12] reducing the problem to the Jacobi problem
of inversion of Abelian integrals on hyperelliptic Riemann surfaces, effectively using for its
solution the multidimensional Riemann ϑ-functions [14]. Following [12, 15], we consider the
following compatible linear equations for the vector-valued complex function gλ = (g1, g2)τ ∈
∈ L∞(R3; C2):

Xλgλ(x, t) = 0, Tλgλ(x, t) = 0, (42)

where λ ∈ C is an arbitrary parameter.
By a direct computation, from (42) one arrives to equations for ζ = g1g2, ψ = −g2

1, χ = g2
2 :

∂ζ

∂x
= −λ

2
χ+ ψ

(
u− λ

2
− 1
)
,

∂ζ

∂t
= (χ+ ψ)v,

∂ψ

∂x
= ψ(u− λ) + ζλ,

∂ψ

∂t
= 2v(ψ − ζ),

∂χ

∂x
= −χ(u− λ) + 2ζ

(
−u+

λ

2
+ 1
)
,

∂χ

∂t
= −2v(χ+ ζ),

(43)

compatible on the solution submanifold of the system (4).
The solutions of (43) are characterized by the following lemma [4, 9, 15].

Lemma 5. The system of differential equations (43) possesses a polynomial in λ ∈ C solution

ζ =
N∑
k=0

ζk(x, t)λk, ψ =
N∑
k=0

ψk(x, t)λk, χ =
N∑
k=0

χk(x, t)λk (44)

withN ∈ Z+ fixed, iff the coefficients ζk, ψk, χk, k = 0, N , satisfy certain compatible, autonomous
systems of nonlinear nonlocal ordinary differential equations, and

u(x, t) =
ψN−1 − ζN−1

ζN
, vx =

ψN−1 − ζN−1

ζN
v. (45)
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If, furthermore, the relations

ζ(x′, t′, λ?) = ζ?(x′, t′, λ), ψ(x′, t′, λ?) = ψ?(x′, t′, λ),

ψN (x′, t′) = ζN (x′, t′) = −χN (x′, t′), χ(x′, t′, λ?) = χ?(x′, t′, λ),

ζN−1(x′, t′)− ψN−1(x′, t′) = ζ?N−1(x′, t′)− ψ?N−1(x′, t′)

(46)

are fulfilled at some point (x′, t′) ∈ R × R2(t′ := (x′0, y
′
0)), then these autonomous systems of

nonlinear ordinary differential equations have a solution for all x ∈ R, t ∈ R2 and the functions
u(x, t) and v(x, t) found from (45) are real infinitely differentiable solutions of (4).

Proof. For the proof, we substitute solution (44) into system (43) and equate the coefficients
at the same powers of λ ∈ C, since it is arbitrary. As a result, we obtain systems both
of differential and algebraic equations. Using these algebraic equations we obtain two
autonomous nonlocal systems of nonlinear ordinary differential equations of the form:

∂zi
∂x

= F1i(z0, . . . , z3N+2),
∂zi
∂t

= F2i(z0, . . . , z3N+2), (47)

where zi = ζi, zN+1+i = ψi, z2N+2+i = χi, i = 0, N , and Fki, k = 1, 2, i = 0, 3N + 2, are
polynomials in z ∈ R3N+3. The compatibility condition of system (47) can be written as

3N+2∑
j=0

(
∂F1i

∂zj
F2j −

∂F2i

∂zj
F1j

)
= 0, i = 0, 3N + 2,

which is verified by a direct calculation.
On the other hand, from these autonomous systems one easily obtains the relationship on

the function u:

u =
ψN−1 − ζN−1

ζN
,

which together with the condition vx =
ψN−1 − ζN−1

ζN
v coincides with system (4). This proves

the lemma.

Remark. As a consequence of system (43) one easily obtains the equalities
∂

∂t
(ζ2 +χψ) = 0

and
∂

∂x
(ζ2 + χψ) = 0, determining in the natural way from initial data for ζ, ψ, χ a certain

polynomial P2N−1(λ), λ ∈ C, with constant real coefficients (a consequence of Lemma 5) of
the form

P2N−1(λ) = ζ2 + χψ =
2N−1∑
k=0

pkλ
k =

2N−2∏
j=0

(λ− Ej), (48)

with the conditions P (0) 6= 0 and Ei 6= Ej 6= 0 for i 6= j = 0, 2N − 2.
Having used now the expansion of the polynomial solution ψ(x, t, λ) with respect to zeros

µj(x, t), j = 1, N ,

ψ = ψN

N∏
j=1

(λ− µj), (49)
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from (43), passing to the limit as λ −→ µj(x, t), for each j = 1, N , we get the following system
of nonlinear equations for the zeros µj , j = 1, N :

∂µj
∂x

=
−µj

√
P2N−1(µj)∏

n6=j(µj − µn)
,

∂µj
∂t

= ut

√
P2N−1(µj)∏

n6=j(µj − µn)
, (50)

where ut :=
du

dt
. Since ψN = const, we have assumed for convenience that ψN = 1.

4.2. Equations (50) belong to the class of equations integrable by means of the Abel
transformation on the hyperelliptic Riemann surface R of the function w =

√
P2N−1(λ),

λ,w ∈ C. So we shall consider systems (50) as ones defined on the hyperelliptic Riemann
surface R of genus N − 1 of the function

√
P2N−1(λ). This surface can be realized as a

two-sheeted covering surface of the extended complex plane C with cuts along the intervals
[E2j , E2j+1], j = 0, N − 2, [E2N−2,∞].

Let ωj(λ), j = 1, N , be the following Abelian integrals:

ωj(λ) =

λ∫
λ0

qj(ξ)dξ
ξ
√
P2N−1(ξ)

, qj(ξ) =
N∑
k=1

Cjkξ
N−k, (51)

normalized by the conditions:∮
ak

dωj(λ) = δkj , (52)

where ak, k = 1, N − 1, are a-cycles of the Riemann surface R, and aN is the outline on the
upper sheet ofR, surrounding point 0 ∈ R.

It easily follows from (52) [14] that the coefficients Cjk, j, k = 1, N , of (51) are unique.
The zeros Ej , j = 0, 2N − 2, of the polynomial P2N−1(λ) are not singular, so the integrals

ωj(λ), j = 1, N , have singularities only in the points 0+ and 0− ∈ R (zeros on the upper and
lower sheet ofR).

The differentials dωj , j = 1, N , in the neighbourhoods of the points 0± ∈ R have the form:

dωj(λ) =

(
±

CjN

λ
√
P2N−1(0)

+ reg (λ)

)
dλ,

with logarythmic residua at 0+ and 0− ∈ R equal to

±
CjN√
P2N−1(0)

= ±
δjN
2πi

,

respectively. Thus dωj , j = 1, N − 1, are Abelian differentials of the first kind onR, and dωN is
an Abelian differential of the third kind on R with logarythmic singularities at 0+ and 0− ∈ R
and residua equal to 1 and −1, respectively. The differential dωN is normalized, since its a-
periods are equal to zero.

The standard [14, 16] Abel substitution

νj(x, t) =
N∑
k=1

ωj(µk(x, t)), (53)
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turns (50) into

νj(x, t) = Cj1x+
CjN

(−1)N
γ(t) + νj(0, 0), (54)

where j = 1, N and the introduced function γ(t), t ∈ R2, satisfies the equations

∂γ

∂t
= −ut

N∏
j=1

µ−1
j ,

∂γ

∂x
= 0, γ(0) = 0. (55)

Considering (53) as expressions on R, we get the following inversion problem: given
νj(x, t), j = 1, N , find µj(x, t), j = 1, N , making use of equations (55).

This Jacobi inversion problem is not evidently standard, being considered on the Riemann
surfaceR of genus N −1 with the normalized base of Abelian integrals of the first kind ωj , j =
= 1, N − 1, and the one normalized Abelian integral of the third kind ωN .

To solve this problem we consider the ε-deformed hyperelliptic Riemann surfaceRε, ε ∈ C,
of the function

√
(λ2 + ε2)P2N−1(λ), having just the genus N , and the following augmented

equations on this surface:

∂µj,ε
∂x

= −

√
(µ2
j,ε + ε2)P2N−1(µj,ε)∏
n6=j(µj,ε − µn,ε)

,
∂µj,ε
∂t

=
ut
√

(µ2
j,ε + ε2)P2N−1(µj,ε)

µj,ε
∏
n6=j(µj,ε − µn,ε)

, (56)

where µj,ε ∈ Rε, j = 1, N .
The following lemma is true.

Lemma 6. Let the initial data for equations (50) and (56) satisfy the inequalities:

max1≤j≤N |µj(0, 0)| < M, mini6=j |µi(0, 0)− µj(0, 0)| > m2,

min1≤j≤N |µj(0, 0)| > m1, µj(0, 0) = µj,ε(0, 0),
(57)

for all ε ∈ C, whereM,m1,m2 ∈ R+ are some positive values. Then, there exists a convergent to
zero sequence {εk : k ∈ Z+}, limk→∞ εk = 0, such that µj,εk(x, t), for each j = 1, N , uniformly
tends to µj(x, t), j = 1, N , as k →∞ for small enough x ∈ R and t ∈ R2.

Proof. From (56) and (57), for small enough x ∈ R and t ∈ R2, one finds that there exist
real positive constants C1 and C2 being independent on ε ∈ C, (x, t) ∈ R×R2, such that∣∣∣∣ ∂∂xµj,ε(x, t)

∣∣∣∣ ≤ C1,

∣∣∣∣ ∂∂tµj,ε(x, t)
∣∣∣∣ ≤ C2,

for all j = 1, N . Therefore, a set of functions µj,εk(x, t) : j = 1, N , is compact in the uniform
metric. Whence there exists a sequence of numbers {εk : k ∈ Z+}, limk→∞ εk = 0, such that
for any j = 1, N the sequence of functions {µj,εk(x, t) : k ∈ Z+} tends uniformly with regard
to x ∈ R and t ∈ R2 to µj(x, t), j = 1, N , satisfying equations (50) and the chosen initial
data. Based on (57), the solution of (50) is unique and thus for all subsequences {εk : k ∈ Z+},
limk→∞ εk = 0, there exists the same limk→∞ µj,εk(x, t), which finishes the proof.

Let ωj,ε(z), j = 1, N , be a normalized base of Abelian integrals of the first kind inRε

ωj,ε(λ) =

λ∫
λ0

qj,ε(ξ)dξ√
(ξ2 + ε2)P2N−1(ξ)

, qj,ε(ξ) =
N∑
k=1

Cjk,εξ
N−k. (58)
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Then the Jacobi inversion problem

νj,ε(x, t) =
N∑
k=1

ωj,ε(µk,ε(x, t)) (59)

recasts (56) into

νj,ε(x, t) = Cj1εx+
CjN,ε
(−1)N

γε(t) + νj,ε(0, 0), (60)

where j = 1, N , and
∂γε
∂t

= −ut
∏N
j=1 µ

−1
j,ε ,

∂γε
∂x

= 0, γε(0) = 0 for all x ∈ R, t ∈ R2, due to the

linearity of (60) in x ∈ R and γε(t) ∈ C.
4.3. For studying the convergence of Abelian integrals (58) we make canonical cuts of the

Riemann surfaceRε by a- and b-cycles. Arbitrary branch of integral ωj,ε(λ), j = 1, N , is regular
on the cut region R∗ε , and as ε→ 0, it tends continuously (behind the points 0+ and 0−), to the
respective branch of the integrals ωj(λ), j = 1, N , on R∗, the region obtained after canonical
cuts of the surfaceR.

Since the set of the regular Abelian integrals
{
ωj,ε(λ) : j = 1, N

}
is uniformly continuous

and bounded with respect to ε ∈ C, small enough on an arbitrary compact region K ⊂ R∗
located at a positive distance from the points 0+ and 0− ∈ R∗, the Abelian integrals ωj,ε(λ), j =
= 1, N , tend uniformly to ωj(λ) on K ⊂ R∗, as ε→ 0. From this, it follows that lim

ε→0
νj,ε(x, t) =

= νj(x, t), j = 1, N , iff the initial data µj(0, 0), j = 1, N , don’t belong to the neighbourhoods of
0+ and 0−. So we have shown, that the problem (59) approximates the problem (53) as ε → 0.
The problem (53) evidently is the standard Jacobi inversion problem on the Riemann surface
Rε. Now we can formulate the following important lemma.

Lemma 7. If ε→ 0, then the Jacobi inversion problem (59) tends to the Jacobi problem (53),
where γ(t) := limε→0 γε(t), t ∈ R2, and ωj(λ) = lim

ε→0
ωj,ε(λ), j = 1, N .

Assuming that µk(0, 0) ∈ R, k = 1, N , are pairwise distinet, based on the well known
Riemann theorem one gets that there exists a nontrivial Riemann θ-function θε(λ) = ϑε(ωε(λ)−
−eε), where by definition

ϑε(u) =
∑

m∈ZN

exp[πi < Bεm,m > +2πi < u,m >],

with Bε being the matrix of B-periods of the base
{
ωj,ε(λ) : j = 1, N

}
on Rε,u ∈ CN , and

< ., . > is the usual inner product in CN , eε = (νj,ε(x, t)+kj,ε : j = 1, N), kj,ε =
1
2

N∑
r=1

Brj,ε−
j

2
,

j = 1, N . It is regular on the (a, b)-cycles cut surfaceR?ε and has justN zeros µj,ε(x, t), j = 1, N ,
namely the solution of the Jacobi inversion problem.

After a direct computation we get that there exists the limit

T (λ) := lim
ε→0

θε(λ) = ϑN−1(ω(λ)− e+) + exp[2πi(ωN (λ)− eN )]ϑN−1(ω(λ)− e−) (61)

where e± = (νj(x, t) + k̂j ±
1
2
BNj : j = 1, N − 1), eN = νN (x, t) + k̂N , k̂j =

1
2
∑N−1

k=1 Bkj −

− j
2
, ω(λ) = (ωj(λ) : j = 1, N − 1), and ϑN−1(u) is the usual Rimann ϑ-function of u ∈

∈ CN−1, BNj are B-periods of the Abelian integral ωN (λ) on the surfaceR.
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Let us consider also the following associated with (61) τ -function on CN :

τ(u) = τ(u1, . . . , uN ) = ϑN−1

(
u1 −

BN1

2
, . . . , uN−1 −

BN,N−1

2

)
+

+ exp(2πiuN )ϑN−1

(
u1 +

BN1

2
, . . . , uN−1 +

BN,N−1

2

)
, (62)

where u ∈ CN , and BNj , j = 1, N − 1, are defined as above.
It is easy to see that

T (λ) = τ(ω(λ)− ν(x, t)− e),

with ν(x, t) = (νj(x, t) : j = 1, N − 1), and ω, e ∈ CN−1 defined as above. Some more
properties of the function T (λ) one can also find in [12].

Lemma 8. Zeros of the T -function (61) are the solution to the Jacobi inversion problem (59).

Proof. For the proof, it is sufficient to show that µj(x, t) = lim
ε→0

µj,ε(x, t), j = 1, N , that

immediately follows from the fact that the functions θε(λ) tend continuously to the function
T (λ), λ ∈ K, bounded on an arbitrary compact K inR∗ that lies at a positive distance from 0−.

4.4. Following [1, 12, 14], one can find explicit expressions for the wanted above symmetric
functions

∑
lnµj and

∑
µj .

To find the first sum, we consider the regionR∗ with one more intersection along the curve
L starting at the point 0+ ∈ R∗ and ending at∞ ∈ R∗, and the function β(λ) = lnλ+2πiωN (λ),
being the Abelian integral of the third kind with logarythmic residua at 0+ and∞ ∈ R equal to
2 and −2, respectively.

Consider now the integral

I =
1

2πi

∫
∂R∗∪L+∪L−

β(λ)d lnT (λ).

By the residua classical theorem,

I =
N∑
k=1

β(µk)− β(0−) =
N∑
k=1

lnµk + 2πi
N∑
k=1

ωN (µk)− β(0−) =

=
N∑
k=1

lnµk + 2πiνN (x, t)− β(0−).

On the other hand, since β(λ) and T (λ) are continuous on b-cycles, β+(λ) − β−(λ) = −Bj ,

Bj =
∮
bj

d lnλ+ 2πi
∮
bj

dωN (λ), λ ∈ aj , j = 1, N − 1, and β+(λ)− β−(λ) = −2πi, λ ∈ L,
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I =
1

2πi

N−1∑
k=1

( ∮
a+
k

β+(λ)d lnT+(λ)−
∮
a−k

β−(λ)d lnT−(λ)

)
+

+
1

2πi

( ∫
L+

β+(λ)d lnT+(λ)−
∫
L−

β−(λ)d lnT−(λ)

)
=

=
N−1∑
k=1

( ∮
ak

β−(λ)d ln
T+(λ)
T−(λ)

)
− 1

2πi

N−1∑
k=1

Bk

∮
ak

d lnT−(λ)−
∫
L+

d lnT (λ).

Therefore,

N∑
k=1

lnµk(x, t) = −2πiνN (x, t) + β(0−) +

+
N−1∑
j=1

∮
aj

β−(λ)dωj(λ)−
N−1∑
j=1

Bjnj + 2 ln
T (∞)
T (0+)

, (63)

where nj =
∮
aj

d lnT−(λ), j = 1, N .

Following [12, 14] we find similarly that

N∑
k=1

µk(x, t) =
N−1∑
j=1

∮
aj

λdωj(λ)− resλ=∞(λd lnT (λ)). (64)

First we find the residuum at the right side of (64), making use of expansion of the function

d

dτ
lnT (λ) in the series with respect to τ = λ

−
1
2 :

d

dτ
lnT (λ) = −2λ

3
2
d

dλ
lnT (λ) = −2λ

3
2

N−1∑
j=1

∂ lnT (λ)
∂ωj

dωj(λ)
dλ

=

− 2λ
3
2

N−1∑
j=1

qj(λ)
λ
√
P2N−1(λ)

∂ lnT (λ)
∂ωj

.

Since qj(λ) =
N∑
j=1

Cjkλ
N−k, j = 1, N − 1 (see (51))

qj(λ)
λ
√
P2N−1(λ)

= Cj1λ
− 3

2

(
1− d0

2
λ−1 − d1

2
λ−2 + · · ·

)
+

+ Cj2λ
− 5

2

(
1− d0

2
λ−1 − d1

2
λ−2 + · · ·

)
+ · · · ,

with d0, d1 being some constants.
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Whence

λ
d

dτ
lnT (λ) = −2

N−1∑
j=1

[
Cj1
τ2

+ . . .

]
∂ lnT (λ)
∂ωj

and

resλ=∞ {λd lnT (λ)} = −2
N−1∑
j=1

Cj1
∂

∂τ

(
∂ lnT (λ)
∂ωj

) ∣∣∣
τ=0

= 4
N−1∑
i,j=1

Cj1Ci1
∂2 lnT (λ)
∂ωj∂ωi

.

On the other hand, based on (54) one can find that

∂

∂x2
lnT (λ) =

N−1∑
i,j=1

Cj1Ci1
∂2 lnT (λ)
∂ωj∂ωi

.

Thus from the results obtained above one gets the following equality:

N∑
k=1

µk(x, t) =
N−1∑
j=1

∮
aj

λdωj(λ)− 4
∂2

∂x2
lnT (∞). (65)

From (45) and (4) we easily find an exact expression for the solution y(x, t) of (2):

y(x, t) = −a(x)
2

+
1
2
∂

∂x
ln

N∏
k=1

µk. (66)

Furthermore, in accordance with (5) the following relations are valid for γ(x0, y0) :

∂γ

∂x0
= 2

y2
0 + a(x0)y0 + b(x0)

N(x0; γ)
,

∂γ

∂y0
= − 2

N(x0; γ)
, (67)

where N(x; γ(x0, y0)) =
N∏
j=1

µj(x;x0, y0), (x0, y0) ∈ R2, is determined as

N(x; γ(x0, y0)) =

=
T 2(∞)
T 2(0+)

exp

−2πiνN (x, t) + β(0−) +
N−1∑
j=1

∮
aj

β−(λ)dωj(λ)−
N−1∑
j=1

Bjnj

 . (68)

Lemma 9. The following identity

γ(x, y) = γ(x0, y0) (69)

holds for any solution to the Cauchy – Goursat problem (4), (5).

Proof. One easily finds that the function γ : R2 → R satisfies the equation

dγ(x, y(x; t))
dx

=
∂γ

∂x
+
∂γ

∂y

dy(x; t)
dx

= 2
y2 + a(x)y + b(x)

N(x; γ)
− 2
N(x; γ)

dy(x)
dx

≡ 0,

on the solutions to (4), where t = (x0, y0) ∈ R2, that is γ(x, y) = γ(x0, y0) for all (x0, y0) ∈ R2.
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The equality of the mixed derivatives for γ(x0, y0) yields the expression

y0 =
1
2
∂

∂x
lnN(x = x0; γ(x0, y0))− a(x0)

2
, (70)

determining apparently the function γ(x0, y0) implicitly. Now from (4) and (70) one can find
additionaly that

u =
∂

∂x
lnN(x; γ), LN (x; γ(x0, y0)) :=

ux
2
− 1

4
u2 =

= − a2(x)
4

+
a′(x)

2
+ b(x) =: L(x), (71)

that is

LN (x; γ(x0, y0)) = L(x), (72)

for all t := (x0, y0) ∈ R2.
Since from (4), (43), and (49) one can obtain that v = ψN−1,t/2(ψN−1−ζN−1) and thus ut =

= −
∑
µj,t/u, making further use of the condition (72) one can easily reduce it to the following

characteristic expression

∂

∂γ

 N∑
j=1

(µj +
∂

∂x
lnµj)

 = 0. (73)

The latter can be used effectively, based on exact formulas (63) and (65), for detecting the
Riemann surface parameters generating integrable Riccati equations.

Thus we are in a position to formulate the following theorem.

Theorem. The Riemann surface R of the function w2 = P2N−1(λ) satisfying the condition
(73), generates solutions to (2) representable by quadratures via (66) for given differentiable
functions a(x) and b(x) only if the function z := lnN(x; γ), with N(x; γ) being given by (68)
and defining via (66) and (71) the sought functions a, b ∈ C1(R; R), satisfies the well known
integrable by quadratures Liouville equation

∂2z/∂x∂γ + ez = 0, (74)

equivalent to (73).

At the same time equation (67) makes it possible to find a still unknown function γ : R2 →
→ R incorporated implicitly into the solution expression (66) to the Riccati equation (2).

5. The analysis of the case n= 3. For the case n = 3 one follows that the holonomy Lie
algebra G(h) is strictly infinite dimensional. This means that there exists no finite-dimensional
representation of the holonomy Lie algebra. The simplest infinite dimensional Lie algebra,
containing the sl(2)-subalgebra, is the Lie algebra of the group of diffeomorphisms of the circle
S1 or the Virasoro algebra:

Lj = ξj+1 ∂

∂ξ
, [Li, Lj ] = (j − i)Li+j , (75)

where ξ ∈ S1 ' R/2πZ and j ∈ Z+.

ISSN 1562-3076. Нелiнiйнi коливання, 2000, т. 3, № 2 243



The associated Lie algebra G(h) being generated by system (13), possesses the following
general representation:

X0 = −L−1, X1 = L−1 + L0, X2 =
(

3 +
λ

2

)
L−1 + 6L0 + 3L1,

X3 =
(

2 +
λ

6

)
L−1 +

(
3 +

λ

2

)
L0 + 3L1 + L2,

(76)

where λ ∈ C is a spectral parameter. Having substituted representation (75) into (76), one
arrives at the following (A,B) expressions of the induced Cartan – Heresmann connection Γ :

A =
(
−λ

2
y − 1

3

)
−
(
u+

λ

2

)
ξ − 3yξ2 − ξ3, B = v, (77)

where A
∂

∂ξ
= −Γ(x), B

∂

∂ξ
= −Γ(t). The corresponding symbol expression l (x; ξ) ∼=

∼=
∑
j≥1

ljξ
−(j−1) solving equation (37) is described by the following series of coefficients:

l1 = ϕ, l2 = 0, l3 =
ϕx
2
, l4 = −yϕx, l5 =

1
4

(
1
2
ϕxx −

(
u+

λ

2

)
ϕx + 9u2ϕx

)
, . . . ,

where ϕ = ϕ (x;λ) is also some R2 3 t-independent function as was stated before for
n = 2 containing an information about the integrable by quadratures Cauchy – Goursat condi-
tions (5).

One can also easily verify that for n = 3 assertions similar to Lemma 2 and Lemma 3 hold
too.

6. Concluding remarks. The next problem under investigation of the integrability of
the Riccati – Abel equation (1) consists in analyzing the Lie-algebraic properties of the
corresponding solution manifolds for the n = 3 case, related to the Cauchy – Goursat
conditions (5), and studying their corresponding finite-dimensional Moser type reductions via
the momentum mapping approach and methods of the modern symplectic theory.

7. Acknowledgements. The research was partially supported by the University of Mining
and Metallurgy local grant 11.420.04. The author is grateful to participants of the Seminar
“Nonlinear Analysis” at the Department of Applied Mathematics at the AGH in Krakow,
especially to Professors M. Malec and A. Prykarpatsky for many useful discussions of the results
obtained. The autor is also thankful to the referee for valuable comments and suggestions
concerning the final results of the paper.

1. Novikov S. P., Manakov S. V., Pitaevskii L. B., Zakharov V. E. Theory of solitons. — New York: Plenum, 1984.

2. Kovacic J. Ann. Math . — 1969. — 89. — P. 583 – 608.

3. Kolchin E. R. Differential algebra and algebraic groups. — New York: Acad. Press, 1973.

4. Prykarpatsky A. K. Sov. Math. Dokl. — 1980. — 21. — P. 596 – 600.

5. Grigorenko N. Math. Sbornik . — 1979. — 109, № 3. — P. 355 – 364.

6. Gardner C. S. J. Math. Phys. — 1971. — 12, № 8. — P. 1543 – 1551.

7. Coddington E. A., Levinson N. Theory of ordinary differential equations. — New York etc.: Mc Graw-Hill
Book Comp., 1955.

8. Prykarpatsky A. K., Mykytiuk I. Algebraic integrability of nonlinear dynamical systems on manifolds:
classical and quantum aspects. — Netherlands: Kluwer, 1998.

244 ISSN 1562-3076. Нелiнiйнi коливання, 2000, т. 3, № 2



9. Wahlquist H., Estabrook F. J. Math. Phys. — 1975. — 16. — P. 1 – 7; 1975. — 17. — P. 1293 – 1297.

10. Newell A. C. Solitons in mathematics and physics // SIAM, CBMS-NSF. — 1985. — 48.

11. Sternberg S. Lectures on differential geometry. — Englewood Cliffs.: Prentice-Hall, 1964.

12. Mitropolsky Yu. A., Prykarpatsky A. K., Bogoliubow N. N. (Jr. ) and Samoilenko V. H. Integrable dynamical
systems. Spectral and differential-geometric aspects. — Kyiv: Naukowa Dumka, 1987. — (in Russian).

13. Bogoliubov N. N., Samoylenko V. H., Prykarpatsky A. K. On Benney type hydrodynamical systems and their
Boltzmann equations kinetic models. — Kyiv, 1991. — Preprint 91.25.

14. Zverovich E. I. Uspehi Mat Nauk. — 1971. — 26. — P. 113 – 179 (in Russian).

15. Marchenko V. A. The Sturm – Liouville operators and applications. — Basel: Birkhauser Verlag, 1986.

16. Chebotarev N. G. Theory of algebraic functions. — Moscow: OGIZ, 1948 (in Russian).

Received 28 . 08 . 99

ISSN 1562-3076. Нелiнiйнi коливання, 2000, т. 3, № 2 245


