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We consider evolution variational inequalities with \g-pseudomonotone maps. The main
properties of the given maps have been investigated. By using the finite differences method,
strong solvability for the class of evolution variational inequalities with \o-pseudomonotone
map has been proved. Using the penalty method for multivalued maps, the existence of weak
solutions for evolution variation inequalities on closed convex sets has been shown. The class
of multivalued penalty operators has been constructed. We also consider a model example to
illustrate the given theory.

Pozensdarombcs e80AtOUIIHI 8apiayitiHi HePIBHOCMI 3 \g-NCe80OMOHOMOHHUMU 8I006ODANCEH-
HAMU. [[08e0eHO OCHOBHI 8aacmuU8ocmi 0aHux 8i000paxceHb. 3a 00NOMO2010 MeMOOY CKIH-
YEeHHUX PISHUUD 86CIMAHOBACHO ,,CUAbHY” PO38°AZHICMb 047 KAACY e80NOUIUHUX 8aAPIAUIIHUX
HepigHocmell 3 A\g-NCe800MOHOMOHHUMU 8I000paNEHHAMU. 3a 0ONOMO2010 MeMOOY Wmpa-
¢ha 0osedero icHysarHa caabko20 po38’aA3Ky 044 e80AYILHUX 8apiayiliHUX HePIBHOCMell Ha
3AMKHEHUX OnyKaux mHoxcunax. [1o6yoosano kaac 6azamosHaunux onepamopis wmpaga.
Hasedero modeavruti npukaad, Aakuil inrocmpye 0amy meopiro.

Introduction. There exist many methods to study nonlinear evolution equations, including the
following: Faedo — Galerkin, singular perturbations, difference approximations, nonlinear semi-
groups of operators and others [1, 2]. An extension of these approaches to evolutionary inclusi-
ons and variational inequalities presents a series of basic difficulties. The method of nonlinear
semigroups of operators in Banach spaces for evolution inclusions was developed in works of
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A. A. Tolstonogov [3], A. A. Tolstonogov and J. I. Umanskij [4], V. Barbu [2] and others. The
method of singular perturbations (H. Brezis [5] and Yu. A. Dubinskiy [6]) for evolutionary
inclusions was presented by A. N. Vakulenko and V. S. Mel'nik in [7 - 9], the method of Galerkin
approximations in P. O. Kasyanov’s works [10—-12]. In the paper [13] the method of finite di-
fferences was extended to a class of multivalued operators for the first time.

In the present work we attempt to extend the method of difference approximations [1]
to evolutionary inclusions and variational inequalities with \y-pseudomonotone multivalued
maps. Then, by using the obtained results and the multivalued penalty method, we will prove
the existence of the weak solution of an evolution variational inequality with the mentioned
above maps on a convex closed subset.

The multivalued penalty method is used for the first time in this case.

Setting of the problem. Let @ be a separable locally convex linear topological space, ®* be
the space identified to its topologically conjugate such that ® C ®*, (f, ) be the inner product
(canonical pairing) of components f € ®* and p € .

We consider the three spaces V, H and V* such that

dPCVCP, PCHCP, &CV CPI (1)

with continuous and dense embeddings. Let H be a Hilbert space (with an inner product
(h1,h2)x and the norm ||h|[7), V be a reflexive separable Banach space with a norm ||v||y,
V* be its conjugate space (with respect to the bilinear form (-, -)) with the dual norm || f||-.
We also consider that the pairing (¢, ¢) of arbitrary elements ¢, € & coincides with its inner
product (¢, )3, and with the pairing (¢, ).

Now we assume that V = Vi NV and || - [|y = || - |y; + || - [lv;, where (V;, || - ||y,) are some
reflexive separable Banach spaces such that

dCV,C® and P CV C P, =12

with dense and continuous embeddings. The space (V}, || - [|ly+) is the topologically conjugate of
(Vi, || - llv;) with respect to the bilinear form (-,-). Then V* = V{ + V5.

For some multivalued map A : V;Z V] with non-empty convex closed (in the corresponding
topology) bounded values, some convex lower semicontinuous functional ¢ : Vo — R, some
linear densely defined operator A : D(A;V,V*) C V — V*, and some closed convex set K C
C V, we consider the following problem on solvability of the next evolution variation inequality
in the space V :

(Av,v —u) + [Auw), v —uly + ¢(v) —p(u) = (fv—u) Yo e KNDA;V, V), (2)
u e K, 3)
where f € V*is an arbitrary fixed element,

[A(u),v] = sup (d(u),v) Yu,v € V.
d(u)eA(u)

Main assumptions. We assume that
a) the set @ is dense in the space (V N V*, |[v|ly + [[v]y+).
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Remark 1. [1, p. 241]. From a) it follows that

YNy* c H.

Remark 2. If V C 'H then it is possible not to introduce ¢ but, at once, identify H with H*,
in order to get the following relation of continuous and dense embeddings:

Y CHCV. 4)

Definition 1. The family of the maps {G(s)}s>o refers to a continuous semigroup on some
Banach space X, if

Vs > 0G(s) € L(X;X),G(0) =1d, where Idz = xVx € X,

G(s+1t) = G(s) o G(t) Vs,t > 0,

G(t)x — x weaklyin X ast — 0+ Vr € X.

The operator A. Similarly to [1, p. 243, 244] we consider a continuous semigroup {G(s)}s>o0
on V, H,V* i.e., there are three semigroups defined on the spaces V, H, and V*, respectively,
that coincide on ®. We denote each of them by {G(s) }s>0. We also assume that

b) {G(s)}s>0 is a non-expanding semigroup on H, i.e.,

1G(S) gy <1 Vs > 0.

We denote by —A the infinitesimal generator of the semigroup {G(s) }s>o with the definition
domain D(A;V) (respectively, D(A;H) or D(A;V*)) in V (respectively, in H or in V*). Due to
[14] (Theorem 13.35) such a generator exists, moreover, it is a densely defined closed linear
operator in the space V (respectively, in H or in V*).

Let {G*(s)}s>0 be the semigroup conjugated to {G(s)}s>0. We assume that it operates
respectively in V, in ‘H, and in V*. Let also —A* be the infinitesimal generator for the semi-
group {G*(s) }s>o with definition domains D(A*; V) in V, D(A*; H) in H and D(A*; V*) in V*.
The operator A* in H (respectively, in V or in V*) is the conjugate of the operator A in H
(respectively, in V or in V*) in the sense of unbounded operator theory.

Lemma 1 [1, p. 243]. The sets D(A;V*) NV and D(A*;V*) NV are dense in the space V.

Now we define A as an unbounded operator, which operates from V into V* with the defini-
tion domain D(A;V, V*). Let us fix

c) D(A;V, V) ={v eV |theformw — (v, A*w) is continuous on D(A*; V*) NV
in the topology induced from V}.

Then there is a unique element &, € V* such that (v, A*w) = (&, w). If v € D(A; V*) NV, then
&, = Av. Thus we can fix, in the general case, £, = Av and get that

(v, A*w) = (Av,w) Yw € D(A;V*)NV. (5)

If we consider, in the linear space D(A;V,V*), the norm ||v|y + ||Av|y+, then we obtain a
Banach space. Let us similarly define the space D(A*;V, V*).
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Remark 3 [1,p.244]. If V C H, then
DAV, V') =VND(A;V*) and DA%V, V") = VN DAY V).

In the case where H does not contain V), we assume that
d) VN D(A; V*)isdense in D(A; V,V*), VN D(A*V*)isdense in D(A*;V, V*).

Remark 4 [1, p. 244]. We have

(Av,v) > 0 Yv € DAV, V), (A*v,v) >0 Yv e DA%V, V).

The main classes of multivalued maps. Let X be some Banach space, X* be its topologically
conjugate,
()x  X*xX =R
be the duality form on X. For every nonempty subset B C X* let us consider its *-weak closed

convex hull co(B) := clx: (co(B)).
For each multivalued map A we introduce its upper and lower function of support,

[A(y),wl+ = sup (dw)x, [A@y),w]_ = inf (dw)x
deA(y) deA(y)

where y,w € X. We also consider its upper and lower norms,

[AWI+ = sup [ld[x-, [AW)I_ = o

de A(y)

The main properties of the given maps are considered in the papers [15-17]. Further we will
denote with C,(X*) the class of all nonempty convex subsets *-weakly compact in X*.
The next properties take place.

Proposition 1 [18, p. 58]. Let A,B : X — C,(X*). Then for arbitrary y,v,vi,va € X we
have the following:

1) the functional X > v — [A(y),v]+ is convex positively homogeneous and lower semi-
continuous;

2) [A(y), Ul+v2]+ < [A(), vi]+ + [A(y), va] 1, [Aly), Ul+vz]— > [A(
[A(Y), v1 + val 1 = [A(y), v1l4 + [A(y), va] -, [A(y), v1 + va] - < [A(y), v1]

3) [A(w) + B(). vl = [A(w), vl + B). vl [AW) +Bly).ol- =

4) [Aly), v+ < [AW+llvllxs [A), v]- < [A@)I-lvllx;

+S
+ <
— =
|
—
< +
~
e X
N~
S
‘\_/
<
N
|

5) the functional || - ||+ : Cyp(X*) — Ry defines a norm on C,(X*);
6) the functional || - |- : C,(X™) — Ry satisfies the conditions
0€Aly) <« [AW)I- =0,
lA)]- = [l A)]|- Vo e R,y e X,
[A(y) +By)ll- < [[AW)I- + 1Byl
7) Il A(y ) B(y)l+ = ‘llA( )t = [1B(y )H—)a IA(y) = By)ll- = (AW~ = 1B)ll+,
dr (A(y), B(y)) > 1AW sy — IBW)l+(—)|, where dp (-, -) is the Hausdorff metric;

8)d€A() & VweX[()w] >< w)x.
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Remark 5. Further y, — y in X will mean that y,, weakly converges to y in the Banach
space X. If the space X is not reflexive, then y,, — yin X* will mean that y,, *-weakly converges
to y in the Banach space X™.

Now we consider the main classes of maps of \gp-pseudomonotone type.

Definition 2. The multivalued map A : X — X* is:
A-pseudomonotone, if for every sequence {yn}n>0 C X such thaty, — yo in X, from the
inequality

lim (dn, yn — yo)x < 0, (6)

n—oo
* . .
where d,, € © A(yy), n > 1, it follows the existence of subsequences

{Ynp te>1 C {yntn>1 and  {dn, }k>1 C {dn}tn>1

such that

lim <dnk,ynk —w)x > [A(y),yo - ’LU]_ Vw € X; (7

k—o0

Xo-pseudomonotone on X, if for every sequence {y, }n>0 C X :
Yn — Yo in X, dp, — dy in X7,
*
where d,, € ¢0 A(yy),n > 1, from the inequality (6) it follows existence of subsequences

{ynk}kzl C {yn}nZI and {dnk}k21 C {dn}n21

such that inequality (7) is true;
+-coercive, if

lyll¥ [A),yl+ — +00 as |yllx — +oo;

monotone, if Yyi,y2 € X

A1), y1 — y2l— > [A(y2), y1 — y2l+;

locally bounded, if for every fixed y € X there exist constants m > 0 and M > 0 such that
A+ <M forall £ X : |ly—¢Ellx <m

locally finite-dimensionally bounded, if its restriction to arbitrary finite-dimensional subspace
of X is locally bounded.
A multivalued map A : X~ X" satisfies

condition (1), if for an arbitrary k > 0, a bounded set B C X, yy € X and some d € %.A
such that

(dy),y —yo)x < ki Vy € B,
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there exists C > 0 such that
ld(y)||x+ < C Vy € B;

property (k), if for an arbitrary set D bounded in X there exists ¢ € Ry such that
[A(v),v]4 > —c|lv]|]x Vv € D.

We remark that every bounded multivalued map and every monotone multivalued operator
with bounded values, including subdifferential maps, satisfy property (k).

Remark 6. The idea of passage to subsequences in the Definition 2 was adopted by us from
I. V. Skripnik’s work [19].

The main properties of \o-pseudomonotone maps.

Remark 7. 1t is obvious that every A-pseudomonotone map is Agp-pseudomonotone. For
bounded maps defined in reflexive Banach spaces the converse implication is true too.

Proof. Let A : X~ X* be a \p-pscudomonotone map, y, — y weakly in X and let (6)

hold, where d,, € %A(yn). Boundedness of the operator A immediately implies boundedness
of €0 A and, hence, boundedness of the sequence {d,} in X*. Consequently, there exists a
subsequence {d,,} C {d,} and, respectively, {yn} C {yn} such that d,, — d weakly in X*
and, at the same time,

lim {dp, ym — v)x < lim (dp,yn —v)x < 0.

m—0o0 n—~o0

Since the operator A is A\g-pseudomonotone, there exists one more subsequence (we use for it
the same notations) for which

Jim (do ym —v)x < [A(y)y =0l Vo € X,

and this proves our statement. (Let us pay our attention that in the classical definitions (without
passing to subsequences, this statement is complicated!).

In the work of E Browder and P. Hess [20] a class of the generous pseudomonotone operators
was introduced. An operator A : X— X* is called generous pseudomonotone if

1) A(y) € Cp(X™*) and A(y) is bounded in X* Vy € D(A);

2) for every pair of sequences {y,}n>1 C X and {d,}n>1 C X* such thatd, € A(yn),
yn — y weakly in X, d,, — d *-weakly in X* and inequality (6) implies that d € A(y) and
(dnsYn)x — <d> y>X'

Proposition 2. Every generous pseudomonotone operator is \o-pseudomonotone.

Proof. Let y,, — y weaklyin X, A(y,) > d, — d *-weakly in X* and let (6) hold. Then, in
view of generous pseudomonotony, (d,,y,)x — (d,y)x and d € A(y), consequently,

m <dnayn_U>X = <d7y_v>X Z [A(y)ﬂy_v]_ VU € X.

n—oo

The proposition is proved.
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The converse implication is not true. However the next statement is true.

Proposition 3. Let A : X7 X* be a \g-pseudomonotone operator. Then the next property
takes place:

*

if yo — y weakly in X, 0 A(y,) > dn, — d *weakly in X* and inequality (6) is true, then
there exist subsequences {y.,} C {yn} and {dy,} C {d,} such that (d,,, ym)x — (d,y)x and, in
particular, d € ¢6 A(y).

Proof. Let {y,}, {d,} be the required sequences. Hence we can choose subsequences {y, },

{d,,} such that the inequality (7) is true. Setting v = y we obtain that (d,,,, ¥, — y)x — 0 or
(dm,ym)x — (d,y)x. In particular,

(dyy—v)x = lIm (dpm,ym —v)x > [Aly),y —v]- Vv e X.

m—00

From here and from the Proposition 1 we obtain that d € %A(y).
The proposition is proved.

Proposition 4. Let A : X X* be a A-pseudomonotone map with bounded values. Then the
next property holds:
ifyn, — yweaklyin X, d, € co A(yn), and inequality (6) is true, then there exist subsequences
{ym}, {dm} such that for every v € X there exists ((v) € %A(y) such that
Lim (dm,ym —v)x = (C(v),y —v)x - (8)

m—00

Proof. Let y,, — y weaklyin X, d,, € %A(yn), and inequality (6) be true. Then, passing to
the corresponding subsequences, we come to

lim (dm, ym —v)x = [A(y),y —v]_ Vv e X. )

m—00

The next proposition is an alternative of the generous Weierstrass theorem [21].

Lemma 2. Let X be a Banach space, K C X* be *-closed set in X*, L : X* — R =
= RU{+4o00} be lower *-semicontinuous functional. Moreover, let one of the following conditions
hold:

the set K is bounded,
lim L(v) = +o0.
l[oll xx—o0

Then the functional L is bounded from below on K, it reaches on K its infimum m and the

set

E ={v e K| L)} =m.

is *-compact in X*.
The proof is similar to the proof of the Theorem 9.3 from [21].

Now let us continue the proof of the Proposition 4. The set ¢o A(y) is *-weakly closed and
bounded; the functional X* 5> w — (w,y — v)x is *-weakly lower semicontinuous for every
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€ X. Then in virtue of Lemma 2 there exists ((v) € %A(y) such that [A(y),y —v]- =
(¢(v),y — v)x. From here and from the inequality (9) we get (8).
The proposition is proved.

Definition 3. The multivalued map A : X — C,(X") satisfies the property (M), if from
{Un}tn>0 C X, dp € A(yn), n > 1, such that

I =

Yn —=1yo in X, d, —~dy in X*, and i_)rgo<dn,yn>x < {do, yo)x

n

it follows that dy € A(yo).
Definition 4. The operator L : D(L) C X — X* is called maximal monotone if it is
monotone and from the inequality

(w—L(u),v—u)x >0 Vu € D(L),

it follows thatv € D(L) and L(v) = w.
Definition 5. The set

Ip(v) = {p € X7 {p,u —v)x < p(u) = p(v)Vu € X} =

={pe X" {pu—v)x < [0p(v),u—v];Vu € X}

refers to the subdifferential map of the functional ¢ : X — R at the pointv € X.

Proposition 5. Let a Banach space X be reflexive, A : X7 X* be a \o-pseudomonotone
operator, and the map B : X— X* have the following properties:

1) the map %B : X7 X* is compact, ie., it maps sets bounded in X into sets precompact in
X

2) the graph €6 B is closed in X x X* with respect to the weak topology in X and the strong
onein X*.

Then the map C' = A + B is \g-pseudomonotone.

Proof. Let y,, — y weaklyin X, d,, € wC (yn), dn — d *-weakly in X*, and inequality (6)
hold. . i} .

Since the operator B : X~ X* is compact, c6 C' = ¢o A +¢o B and, hence, d,, = d], + d!, for
some d], € c0 A(yn), d. € o B(yy).

In virtue of property 1) we get that, for some subsequence {yx} C {yn},d; — d” stronglyin
X* forsome d’ € %B(y) (Condition 2)). Hence, d;, — d” *-weaklyin X*.Sod; — d' = d—d”
*-weakly in X*.

From inequality (6), passing to a subsequence {y,,} C {yx}, we find

0> lim (dp,yn —Yy)x > km (disyr —Y) x =

Y
V

Jim (di e —y)y + Jm (ditsyn —y)x =

Y

m@)o <d;nvym - y>X + TY}EI]-OO <d,7$w Ym — y>X :
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Then

m—0o0
Now, if we pass again to subsequences (we use the same notations) in virtue of A\g-pseudomonotony
of A, we obtain
lim (dy,, ym —v)x > [A(y),y —v]- Vv € X,

m—00

liim <dmaym7U>X = hirn <d%,ym*0>x+$@m<d%aym*0>x >

m—00 m—00

> [A(y),y —v]-+(d",y—v) > [Cy),y—v]_ VYveX.

The proposition is proved.

Proposition 6. Let A : X= X* be a \yp-pseudomonotone operator, there be a reflexive Banach
*
space Y such that X is compactly and densely embedded in Y, 6 B : Y'Y ™* be a locally bounded

demiclosed multivalued map (i.e., gr% Bis closedin'Y x Y* with respect to the strong topology
on'Y and the *-weak topology on Y*). Then C = A + B is a Ag-pseudomonotone map.

Proof. Let y,, — y weaklyin X, d,, € %C’ (yn), dn, — d *-weakly in X*, and inequality (6)
hold. .
The operator ¢o B is locally bounded, i.e., Vy € X 3N > 0 and ¢ > 0 such that

[coBE)l+ <N, as [[§—ylx <e.

It is obvious that every locally bounded operator is bounded-value. Therefore

* *

e C(y) = co Aly) + 0 B(y)

and d,, = d], + d! for some d], € %A(yn) and d] € %B(yn). Since y,, — y strongly in

Y, in virtue of the locally boundedness of ¢o B it follows that the sequence {d!'} is bounded
in Y*. Hence there is a subsequence {d,,} C {d!'} such that d/, — d"” *-weakly Y*. Under
the conditions of the proposition, the embedding operator I* : Y* — X* is continuous, so I*
remains continuous in *-weak topologies [22] too. Hence, d],, — d” *-weakly in X* and, finally,
d, =dpn—d! — d =d—d" *weaklyin X*.

From inequality (6), passing to a subsequence {yx} C {ym}, we find

0> lim <dnayn_y>x > lim <dmaym_y>X >
n—oo m—o00

> lim <dlmaym—?/>x+ lim <d§§1,ym—y>y =

m—0o0 m—oo

v

k@o <d;€)yk - y>X + k11—>r{olo< Zayk - y>Y :
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In virtue of the compact embedding X C Y we have that y;, — y strongly in Y. Moreover, the
sequence {d] } is bounded in Y*, therefore,

{disyk —y)y — 0.
Then we obtain
lim {(d},,yx —v), < 0;
k—oo < ko Yk >X -
hence after the transition to a subsequence, due to the A\gp-pseudomonotonicity of A, we obtain

lim <d;nk,ymk—v>XZ[A(y),y—v]_ Vo e X.

mj— 00
* *
Further, since the operator ¢o B is demiclosed, d” € co B(y) and

h7m <dmkaymk*U>X: hinl <dlmk7ymk*U>X+

mj— 00 mp—00

+ lim (dy, ,ym, — 7}>Y > [A(y),y —v]- +{d",y —v), >

M, —00
> [C(y),y—v]. VoveX.

The proposition is proved.

Definition 6. The operator A : X X" is
radially continuous from above, if ¥V z,h € X

fim [A(z + th), h], < [A(z), ]

t510 +’

radially semi-continuous, if V. x,h € X the next inequality takes place

Tm [A(z + th),h]_ < [A(z),h]

t—+0 +

(it is clear that every radially continuous from above multivalued operator is radially semi-conti-
nuous).

Proposition 7. Let A : X X* be an upper semi-continuous multivalued operator which
operates from a Banach space X with the strong topology into X* with the topology o(X*; X).
Then A is radially semi-continuous.

Proof. Every upper semi-continuous multivalued map which operates from X with the
strong topology into X* with the topology o(X*; X) is hemicontinuous from above [23], i.e.,
from z,, — =z strongly in X it follows that

lim [A(x,),v]

n—oo

< [A(z),v]

L = L VvelX

It is necessary to note that operator an hemicontinuous from above is radially continuous from
above, so it is radially semi-continuous.

The proposition is proved.
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Furthers, we denote by @ the class of all functions C' : Ry x Ry — R such that for every
r > 0 the real-valued function C(r, -) is continuous on R and

t_IC(T‘l,t’I”g) —0 as t—= 04+ Vry,re > 0.

Definition 7. A multivalued map A : X= X* is
an operator with semibounded variation (s.b.v.), if VR > 0 for any y1,y2 € X such that
lyillx < R,i = 1,2, the next inequality fulfills:

[AG), 31— ) > [Awa)wn — 2l — € (Rsllyn — sl ) (10)

where C' € @, ||- ||/X is the compact norm on X,
an operator with [-s.b.v,, if instead of (10), the following inequality is true:

(A1), y1 — yol— > [A(y2), 01 — y2)— — C(R; ly1 — wall'x)-

Proposition 8. Let A = Ay + Ay : XZ X*, where Ay : XZ X* is a monotone map, and the
multivalued operator Ay : X=, X* has the following properties:

1) there is a linear normalized space Y in which X is compactly and densely embedded;

2) the operator A1 : YY* is unequivocal and locally polynomial, i.e., VR > 0 there exists a
natural n = n(R) and a polynomial

Pat) = Y Aa(R)

0<a<n

with continuous factors Ao (R) > 0 such that

[A1(y1) — Ar(w2)ll, < Pr(lyr —22lly)  Viwilly < R, i=1,2.

Then A is an operator with s.b.v.

Proposition 9. Let in Proposition 8 the operator Ay : X=, X* be [-monotone, i.e.,

[Ao(y1),y1 —y2]_ > [Ao(y2),y1 — 2] V1,42 € X,

and instead of the condition 2) we have the following:
2') the multivalued map Ay : YY* is locally polynomial in the sense that for an arbitrary
R > 0 there exist n = n(R) and a polynomial Pr(t) for which

dp (A1(y1), A1(v2)) < Pr(llyr —v2lly)  Ylwilly < R, i=1,2, (11)
where dg (-, ) is the Hausdorff metric.
Then A = Ag + Ay is an operator with [-s.b.v.

Proof. The proof is related to Proposition 9. In the case of Proposition 8 the reasonings are
similar. Since

Vyr,yo € X+ [Ao(y1),y1 —y2)_ > [Ao (y2) ,y1 — y2]_,
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we only need to estimate

[A1 (Y1) sy1 — yo] — — [A1 (y2) ,y1 — yo2] .

Foreachd; € Ay (y1), da € A; (y2) we find that
(do,y1 —y2) x — (di,y1 — y2) x = (d2,y1 — y2)y —

—(d1,y1 —y2)y < |ldi —d2|ly« ly1 — v2lly

hence
[A1(y2),y1 — y2l_ — [A1(y1), y1 — y]_ < dist(Ar(y1), A1(y2))ly1 — velly-

From here and from estimate (11), since ||y;||x < R (then ||y;||y < R),i = 1,2, we obtain

A () v = 9] = > [ ()1 — ) - — C (Bsllon — ol )

where |- x = [-lly, C (R,t) = Pr(t)t.
It is now easy to check that C' € ®.
The proposition is proved.

Proposition 10. Let one of the following conditions be fulfilled:

1) A : X~ X* is a radially semi-continuous operator with s.b.v;;

2) A : X7 X* is a multivalued operator radially continuous from above with l-s.b.v. and with
compact values.

Then A is a \o-pseudomonotone multivalued map.

Proof. Let y, — y weakly in X, %A(yn) > d, — d x-weakly in X*, and inequality (6) be
true.
At first we assume that the condition 1) is true. Hence, by using s.b.v. property for A, we get

(s Yn—v)x = [Alyn)sgn = 01— = [A@V),yn = vl = C(Rs Iy — vllx) Vv € X.

The functional X > w — [A(v), w];+ is convex and lower semi-continuous. So it is weakly lower
semi-continuous. Therefore, if we substitute in the last inequality v = y and pass to the limit
as n — oo, from the properties of the function C, we obtain that lim (d,,y, —y)x > 0, i.e.,

<dn7yn - y>X — 0.
Foreachh € X and 7 € [0,1] let us put w(r) = 7h + (1 — 7)y. Then

(s — w0 (7)) > [A(w (1), — w ()], — C (B ym —w (7))

and, passing to limit as n — 400,

r lim (g~ by > T[A(w(r)y A, ~C (Rirly —hllx).

n—oo
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If we divide the obtained inequality by 7 and pass to the limit as 7 — 40, using the radial
semi-continuity and the properties of the function C, we get

Vhe X:  lim (dp,y—h)x = lim [A(w(7)),y—h], +

n—o00 T—+0
4+ lim 1C’ (R'THy*hHl ) > [A(y),y — h]
oo T 3 X = ’ -

In virtue of (dy,, yn — y) y — 0 we have that

n—oo n—oo

which proves the first statement of the proposition.
Now let us consider the main distinctive feature of the second statement. From [-s.b.v. of the
multivalued operator A, we have

lim (dy,yn —v)x > lm [A(yn),yn —v]_ >

n—oo n—oo

> dim [A(0),yn— o]~ C (R lly—ollx).- (12)

n—oo

Let us estimate the first component in the right-hand side of (12). At first, we prove that the
functional

X 3hw— [A(v),h]_

is weakly lower semi-continuous for every v € X. In fact, let z,, — z weakly in X. Then for
everyn = 1,2,... there exists §,, € co A(v) such that

[A(U)vzn]* = <£nazn>X'

From the sequence {&,; z, } let us pass to a subsequence {&,; 2z, } such that

lim [A ('U),Zn]_ = lim <£nazn>X = n}gnoo <€m,zm>X .

n—oo n—oo

In virtue of compactness of the set %A(v), we get that &,, — ¢ strongly in X*. Hence, £ <
€ %A(v) and

m [A(U)azn]_ = lim <§m,zm>X = <§aZ>X > [A(U),Z]_,

n—00 m— 00

which proves the weak lower semicontinuity.
From the estimate (12) it follows that

lim <dn>yn_U>X > lim [A(yn)ayn_v]_ >

n—oo n—oo

> [A(v),y—v]_ —C(R; H?/—UHIX>
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If we fix, in the last inequality, v = y we obtain that (d,,y, — y) y — 0. Therefore,

lim (dy,yn —v)x > [A(v),y—v]_—-C (R; Hy—v||/X> Vv e X.
If we put, in the last inequality, v = tw + (1 —¢) y, where w € X,t € [0, 1], then, by dividing
the result by ¢ and passing to the limit as ¢ — +0, radial continuity from above of A gives that

lim (dn,yn —w)x > [A(y),y —w|_ Vw € X.
The proposition is proved.
Now let X be some Banach space such that X = X; N X5, where X, X, are reflexive
Banach spaces, densely and continuously embedded in some locally convex linear topological
space Y.

Definition 8. A pair of multivalued maps A : X, — 2XT and B : Xy — 252 s s-mutually
bounded, if for every M > 0 there exists K (M) > 0 such that from

lylx <M and (di(y),y)x, + {d2(y), y)x, < M

it follows that
or |ldi(y)lx; < K(M), or |[dx(y)|

x; < K(M)
for some selectors dy € Aand ds € B.

Lemma 3. Let A : X1 — Cy(Xy) and B : Xo — Cy(X3) be s-mutually bounded \o-
pseudomonotone on X1 and respectively on Xo multivalued maps. Then C .= A+ B : X —
— Cy(X™) is a M\g-pseudomonotone on X multivalued map.

Remark 8. 1f the pair (A; B) is not s-mutually bounded, then the given lemma is true only
for A-pseudomonotone (respectively, on X; and on X3) multivalued maps.

Remark 9. 1t is obvious that if A : X; — 2% or B : Xy — 2%2 is a bounded map, then
the pair (4; B) is s-mutually bounded.

Proof. At first we check that Vy € X C(y) € C,(X™*). The convexity of C(y) follows from
the same property of A(y) and B(y). In virtue of Mazur’s theorem, it is enough to prove that
the set C(y) is weakly closed. Let g be a frontier point of C(y) in the topology o(X*; X**) =
= o(X*; X) (the space X is reflexive due to reflexivity of X; and X3). Then

Hgmtm>1 C Cly) :  gm — g weaklyin X* as m — oc.
From here, since the maps A and B have bounded values, thanks to the Banach— Alaoglu
theorem we may consider that for every m > 1 there exists v,, € A(y) and w,, € B(y)
such that v,,, + w;,, = g, and passing (if it is necessary) to subsequences we obtain

Uy — v in X{ and w, — w in X;

for some v € A(y) and w € B(y). Hence, g = v+ w € C(y). So, the set C(y) is weakly closed
in X*.
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Now let y, — g in X (from here it follows that y, — yo in X; and y, — yo in X32),
C(yn) 2 d(yn) — dpin X* and inequality (6) is true. Hence, for some

dA(yn) € A(yn) and dB(yn) € B(yn)7 dA(yn) + dB(yn) = d(yn)a

since the pair (A4; B) is s-mutually bounded, and from the estimate

<d(yn)7yn>X = <dA(yn) + dB(yn)vyn>X = <dA(yn),yn>X1 + <dB(yn)7yn>X2 <k

it follows that either [[da(yn)|lx; < C or |[dp(yn)llx; < C. Then, due to the reflexivity of X;
and X5, passing (if it is necessary) to a subsequence, we obtain

da(yn) — dyin X{ and dp(y,) — dj in X5.
From inequality (6) it follows that

lim (dp(Yn), yn = Y0)x, + 1 (da(yn), yn — yo)x, < Tm (d(yn), yn — yo)x <0,

n—00 n—00

or, symmetrically

lim (da(yn), yn — yo)x, + Hm (dB(Yn). yn — v0) x> < lim (d(yn), yn — yo)x < 0.

n—oo n—oo

Let us consider the last inequality. It is obvious, that there is a subsequence {ym}m C {Yn}tn>1
such that

0> lim (dB(Yn), Yn — Yo) xo + Lm (da(yn), yn — yo)x, =

> 1Iim (dp(Ym), ym — y0)x, + m (da(¥m), Ym = Yo)x; - (13)

From here we obtain
cither  lim (da(ym), ym — t0)x; <0 or  im (dp(ym),ym — yo)x, < 0.
Without loss of generality we assume that
im (da(ym), ym — yo)x, < 0.
Then, in virtue of A\g-pseudomonotony of A on X, there exists {y,,, }x>1 in {ym }m such that
kli_)n;0<d,4(ymk),ymk —v)x, > [A(yo),y0 —v]- Vv € Xi.
If we put v = gy in the last relation we obtain that

<dA(ymk)7ymk - yO)Xl — 0 as k — +oo.
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Then, due to (13),
lim (dB(Ymy, )s Ymie — Y0) x5 < 0.

k—o0

So, in virtue of Ap-pseudomonotony of B on Xy, passing to a subsequence {y,,,, } C {ym }r>1,
we will find

liim <dB(ym;$)7y7n;C - ’UJ>X2 > [B(y0)7y0 - w]* Vw € X27

k—oo

and, finally

lim <d(ym;g)7ym;C - x>X > khm <dz‘1(:l/m;€)aym;v - ZL‘>X1+
—00

k—oo

+ hirn <dB(ym;€)7ym;c - x>X2 > [A<y0)ay0 - l’]_—i‘

k—oo

+[B(wo),y0 — x]— = [C(yo), 50 — x]- Vz € X.

The lemma is proved.

Lemmad. Let A : X1Z X", B : X2, Xo" be +-coercive maps satisfying property (k). Then
the multivalued map C := A+ B : X X* is +-coercive too.

Proof. We obtain this statement arguing by contradiction. Let {z;,},>1 with z,, # 0 and

|lznllx = llznllx, + ||Znllx, — +00asn — +oo, but
C

sup (€@l

n>1 llznllx
Let also

A B
va(r) := inf M, vp(r) :== inf M, r > 0.
lolx, = lvllx, lwiix,=r  [wllx,

We remark that v4(r) — +oo, vg(r) — 400 asr — +oo.
In case ||z, ||x, — +ocasn — ooand ||z,||x, < cVn > 1 we get

A(xy), InllX
Bl Zult ol B oo as i, — +oo
[Znllx [[n]x
and, moreover,
[B(@n), 2n]- > —01H$n||X2 — 0 as n — oo,
NS lznlx

where ¢; € Ry is a constant as in property () with
D={zeXs|lzlx, < o}
Consequently,

[C(@n), Tn]+ [A(zn), znl+ | [B(Tn), Tnl+

= + — 400 as n — oo.
|0l x [E2M[P [E[P
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We have a contradiction with the boundedness of the left-hand side of the above expression.
If ||z,||x, < cand ||z,|x, — 0o asn — oo, the reasoning is the same.
When ||z,||x, — oo and ||z,||x, — oo asn — oo, and we get the contradiction

[C(xn)axn]-i- ||33nHX1
+00 > sup ——————— 2 va(||zn|lx
W el = Al e T
ol o
T 15 (lznllxs) > minfya(lealx ), va(lznlxs)} — +o.

[zn ]l + llznllx,

The lemma is proved.

The approximation of evolution inclusions by stationary. For multivalued maps A : V; —
— Cy(V5)and B : Vo — C,(V3), for the nonbounded operator A that maps from D(A; V,V*) C
C Vinto V*, we consider the next problem:

uw € D(A;V, V), (14)

Au+ A(u) + B(u) > f, (15)

where f € V* is arbitrary and fixed.

Theorem 1. Let the next conditions be true:

AV — C,(VY) is a bounded multivalued map \o-pseudomonotone on Vy;

B : Vo — Cy(V3) is alocally finite-dimensional bounded multivalued operator \y-pseudomo-
notone on Vs that satisfies condition (I1);

the operator A satisfies all conditions listed above, including conditions b) and d);

f € V* is such that for some R > 0

[A(u) + B(u) — fyu]l+ >0 YueV: |uly=R. (16)

Then there exists u € V that satisfies (14) and (15).
Remark 10.1f V C H, inclusion (14) implies that u € V N D(A; V*).
Proof. The approximate solutions. A natural approximation of inclusion (15) is

1-G(h)

N up + A(up) + B(up) > f, h > 0. (17)

Although, if V is not included in H, problem (17), has no solutions in general, and it is necessary
to modify the given inclusion in an appropriate way. Let us choose a sequence 0, € (0, 1) such
that

1—06y

—0 as h— 0. (18)
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Note that we put 6, = 1 as )V C 'H. Further, let

_ I-6,G(h)
Ay = —
So, we replace (17) with the inclusion
Apup + A(up) + B(up) > f. (19)

Lemma 5. Problem (19) has a solution uy, € V N 'H such that ||uy|ly < R.

Proof. Let us introduce a new map,
Dp,=A,+A:HNV — CU(H—FVT),

and consider the following inclusion:
Dh(uh) + B(uh) > f.

Now we prove existence of a solution u;, € V N H for the given inclusion such that ||uy||y <
< R. The given statement follows from [24] (Theorem 2.1) with V' = HNV;, W = Va, A = Dy,
B=B,L=0,D(L) =V, f= f, R= Rand using the following lemma.

Lemma 6. The operator Dy, satisfies to the following conditions:
(i) [Dn(u) + B(u) = f,ul4 =0 VueV: [lully = R;

(ii) D, is MAo-pseudomonotoneon HNVy;

(iii) Dy is boundedon HNVi.

Proof. i). Since the semigroup G(s) is not-expanding on H,

1
Yo e H (Apv,v) = E(U — 0,G(h)v,v) >

1-6,

> (ol — 6u1G(s)ollellol) > 2l 0. (0)
Due to (16), (20) and Proposition 1, we will obtain i).

iii). Boundedness of Dy, on H N V; follows from the boundedness of Aj, on H and from the
same condition for .A on V;. Boundedness of A;, on H immediately follows from the definition
of Ay and from estimate b).

ii). Let us prove Agp-pseudomonotonicity of Dy, on H N V. To this end, we will use Lemma
3withA =Ap,onV = Hand B = Aon W = V;. From here, due to \p-pseudomonotonicity
and boundedness of A on V1, it is enough to prove A-pseudomonotonicity of A, on H. Let us
prove this. We assume that

yp =y in H and lim (Apyn,yn —y) < 0.
n—oo
Then, from estimate (20) we have

m (Apyn,yn —y) > Hm (Apyn — Ay, yn —y) + lim (Apy,yn —y) > 040 = 0.

n—oo n—oo n—oo
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Hence, lim (Apyn,yn —y) = 0. Furthermore, for arbitrary u € H, s > Oletw := y+ s(u —y).
n—oo
Then, for every n > 1,

3<Ahyn73/ - ’LL) Z _(Ahy'ru Yn — y) + (Ahw7 Yn — y) - S(Ah'UJ,'LL - y>7

s lim (Apyn,y —u) > —s(Apw,u—y) and  lim (Apyn,y —u) > —(Apw,u —y).

n—oo n—oo

Now let s — 0+. Then

lm (Apyn,y —u) > —(Apy,u —y) = (Apy,y —u)

n—oo

and

im (ApYn, yn —u) > Hm (ApYn, yn —y) + Hm (Apyn,y —u) > (Apy,y —u) Vu € H.

n—oo n—oo n—oo

Thus we obtain the required statement.
Lemma 6 is proved.
Lemma 5 is proved.

Boundary transition on h. From Lemma 5, for arbitrary A > 0, it follows that there exist
up, € HNV,d), € A(up) and dj € B(uy) such that

Apup +dj, +dy, = f, (21)

lurlly < R as h > 0. (22)
From estimate (22) and boundedness of the multivalued operator A on V1, it follows that
A(up) are uniformly boundedin V' as h > 0. (23)
Now we prove that
dy are uniformly boundedin V; as h > 0. (24)

At first, from equality (21), estimate (22), boundedness of the map .4, and Proposition 1, we
obtain that for A > 0

sup(dy, up) = sup(f,up) + sup(—dj,, up) + sup(—Apup, up) <
h>0 h>0 h>0 h>0

IN

LFII sup [lun[lv + sup [A(un) ||+ sup [[un|v < +oc.
h>0 h>0 h>0

Hence, due to condition (II) for B, estimate (24) follows.
From equality (21), estimates (22) —(24), and the Banach — Alaoglu theorem, it follows that
there are elements u € V, d" € V;j,d" € V3, x € V*, and subsequences {u, }n>1 C {un}r>0,
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{d}, Yn>1 C {dy}ns0, {d) ta>1 C {dytns0 (0 < hn ™\, 0+), which we further denote by
{untns0, {d},}r>0, {d} }rn>0, respectively, such that

upb =~ u in V,d, ~d in Vi d,—~d in Vi Lyu, —x in V"
From here, in particular, it follows that
vp =dy +dp =~ d +d" = w in V. (25)

Now let us consider the following map: C(v) = A(v) + B(v) : V — C,(V*) and prove that
it satisfies property (M). For this purpose, it is enough to show \p-pseudomonotonicity of C on
V. Indeed, if C is Ap-pseudomonotone on V and {y, }n>0 C V, dy, € C(y,), n > 1, are such that

Yn — Yo in V, dn — d() in V* and im (dn,yn) < (do,yo),

n

then
lim (dmyn - yO) < n@o(dmyn) + n@o(dm _yO) < (dDaQO) - (dO’yO) = 0.

n—oQ

Hence, due to Ap-pseudomonotonicity of C on V, it follows that there are subsequences
{ng, Yi>1 C {Untn>1, {dny Ji>1 C {dn}n>1 such that

Yw €V him (dnkvynk - ’LU) > [C(yO)a Yo — U)]_.

k—o00

From here,

[C(yo),yo - w]* < h7m (dnkaynk _w) < m (dnayn _w) < (d0790 _w) Yw € V.

k—00 n—oo

Hence dy € C(yo). Thus C satisfies condition (M) on V.

In virtue of Lemma 3, due to A\g-pseudomonotonicity of A on V; and B on Vs, thanks to
boundedness of .4 on V;, we obtain that C is Ag-pseudomonotone on V. Therefore, it satisfies
condition (M) on V.

Now we will use the last fact to prove that u € V is a solution of problem (14), (15). Let v
be an arbitrary element from V N D(A*; V*). From (21) and (25) it follows that

(uhv A;kzv) + (vha ’U) = (f: ’U), (26)
but
I — * I —
Ajv = (}j(h) v+ hGhG(h)*U,

and, due to (18), Ajv — A*vin V*. So, if we pass to the limit in (26) as h \, 0+, then we obtain
(u, A*v) + (w,v) = (f,v), Yo € VN D(A*; V*).
Then, due tob) and ¢), u € D(A,V,V*), Au = ¥,

Au+w = f,
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and the theorem will be proved if we show that
w € C(u). (27)
On the other hand, in virtue of (21) and (25), for every v € V N D(A; V*) C 'H we obtain

(v, up —v) = (f,up —v) — (Apv,up —v) — (Ap(up —v),up —v) <

S <f7uh - 'U) - (AhU,Uh - U)?
since A, > 0in L(H,H). From here,

i (vnyun) < (w,0) = (fru=v) = (Av,u—v) Vo € VN DAVY).

But, due to assumption (5), the same inclusion is fulfilled Vo € D(A;V,V*), and if we put
v = u, in the last inequality we obtain

lim <
h{%ﬁ(ﬂhﬂéh) < (w,u),

hence inclusion (27) follows since C is an operator of type (M).
The theorem is proved.

The multivalued penalty method for evolution variation inequalities with )\(-pseudomono-
tone maps. Let us again consider the operators A, A and the convex set K such that

A) the operator A : D(A) = D(A;V,V*) C V — V* satisfies all the conditions mentioned
above, in particular, the b) and d);

B) K is a convex closed subset from V such that for every v € K there exists a sequence
v; € KN D(A)such that v; — vin) and j@(Avj, v;—v) <0 (see[l,p.396]);

C) the multivalued map A : V — C,(V*) is A\p-pseudomonotone on V, locally finite-dimen-
sionally bounded, satisfies the condition (II), and for some

[A(y), y — o+

w € KNDA) =00

— +oo as |ylly — oo;

bbs

D)g : V — C,(V*)is amonotone, bounded, radially semicontinuous multivalued “penalty
operator that corresponds to the set K, i.e., K = {y € V|5(y) > 0}.

Remark 11 [1, p. 284]. A sufficient condition for B) is
G(s) K C K Vs> 0.

If 0 € K, then this condition is fulfilled.

Theorem 2. Let conditions A)—D) hold, f € V* be arbitrary and fixed. Then for each ¢ > 0
the problem

Aye + A(ye) + 25(0e) .

(28)
Yy € D(A),
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has a solution. Moreover, there is a sequence {y.}. C D(A) such that
for every e > 0y, is a solution of problem (28);
there exists a subsequence {y;}; C {y:}c such that for somey € V y, — y weakly in V;
y is a solution of the problem

(Av,v —y) +[AYy),v—yl+ > (fiv—y) Yv e KND(A), yeEK. (29)

Proof. By analogy with [1, p. 396] without loss of generality we can assume that yy = 0 € K.
Otherwise, the maps A(-) = A(- — o), f = f — Ayo, A = A, theset K = K —ypand o = 0
satisfy the conditions A)-D).

For every € > 0 let us consider a new multivalued map,

Adly) = AW) + 25), yeV.

In virtue of the Lemma 3 and Proposition 10, A; : V — C,(V*) is Ag-pseudomonotone on V.
Due to boundedness of 3, thanks to condition (II) and local finite-dimensional boundedness
for A it follows that A, is locally finite-dimensionally bounded and satisfies condition (II).

Now, let us use the coercivity condition. From C) it follows that there exists of R > 0 such
that

[Aly) = f,yl+ >0 Yy eV:|ylly =R
Then, for every ¢ > 0,

A) — Fouls > [AW) — F.ule + 218y — 0 >

> [A(y) ~ f.ul +Z180), 0l = [AG) ~ il 20 Vilylx = B

Hence, we can apply Theorem 1 for
Vi=Vo =V, DIA;V;V)=DA), A=A A=0,B=A,, f=f, R=R.

Then we obtain that for every ¢ > 0 there exists y. € V such that
e) y. isasolution of (28), |ly-|lv < R.
We remark that the constant R does not depends on e > 0.
From e) it follows that there exist d. € A(y.), b € 3(y-) such that

1
Ay +d. + gba = f. (30)

Due to 0 € K N D(A) and monotonicity of A and 3 we have

1 _
(dmya) < _(Aymya) + g(baao - ya) + (f7 ya) < ||f| v« R < +o0.

In virtue of property (II) for A and from e) it follows that there exists ¢; > 0 such that

|de|[y+ < 1 Ve > 0. (31)
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Moreover, from (30) and (31) it follows that

0< (baays) = 5(f —d. _Ayavya) <

A

e(Iflv-+e)R =1 ca-e =0 as e\, 0+. (32)
Since [ is monotone, using (32) we get that for everyw € V

(be,w) < [B(ye),w — Yel 4 + (b, ye) < [B(w),w —ye|4 + 22 <

< [[Bw)ll-(lwllv + R) + coe.
Hence, due to the Banach — Steinhauss theorem there exists c3 > 0 such that
|belly+ < e Ve € (0,¢0), (33)

for some 5 > 0.
Conditions A) imply that for every w € D(A™)

(Aye,w) = (Mw,4:) < |lw[panR Ve > 0.
Hence, there exists ¢4 > 0 such that
[AYel| pasy < ea Ve > 0.
From here, due to equality (30) we obtain that
b- — 0 in D(A*)" as e\, 0+. (34)
From (30), (31) and monotonicity of A it follows that
(Aye,w) = (Aye, w = 4e) + (Aye,ye) < (Aw,w —ge) + ([[flve + )R <
< [Awllv(lwlly + R) + ([ fllv- +e1)R - Yw € D(A).
Therefore, there exists ¢s > 0 such that

[AYe|lpay < s Ve > 0.

Passing to limit. From estimate e), (31), (33), convergence in (34), due to the Banach -
Alaoglu theorem it follows that there exists a subsequence {y. }. from {y. }. such that for some
yeV,deV,

yr =y in V,d; =d in V* b, —=0 in V* as 7\, 0+. (35)
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In virtue of Proposition 10, the map 5 is A\g-pseudomonotone on V. Moreover, due to (32) and
(35) we have

li s Yr — — 17 s Yr — < 0.
A, bryr=9) = 1 Brove =) <0

Hence, since we consider a subsequence, for every w € V,

0= 1171?(1 (bTayT_w) > [ﬁ(y%y_w]*'
7\.0+

The last relation is equivalent to 0 € 3(y). Hence, in virtue of D), we obtain that
y € K. (36)
Now, let us show that

lim (d-,y, —y) < 0. 37
T{‘r&( Yr —y) < (37)

Indeed, from (30) and D) it follows that for every v € D(A) N K

1
(drayT*U) = g(bﬂ'vv*yf)?L (f,yT—v)Jr(AyT,v—yT) <

IN

28w~ yrls + (e — o) + (oo — ) <

28(0), 0~ yrl -+ (o — )+ (Av, ) <

IN

< (f)yT*v)+(A’Uavin)v (38)
since 0 € 3(v). So,

{7%1+(d7,y7) < (d,v)+ (f,y—v)+ (Av,v—y) Yv € D(A)NK.

But, in virtue of B) and (36), we can choose v; € K N D(A) such that v; — yin V and
lim (Avj,v; —y) < 0.1f we put v = v; in the last relation, we obtain

J—00

lim (d-,y,) < (d,y).
&1&( yr) < (d,y)

Therefore, due to (35), inequality (37) is true.
Let us use the \p-pseudomonotonicity of A. From (35) and (37) it follows that there exist
subsequences {y, }, C {y,}- and {d, }, C {d;}; such that

lim (dy,yy —v) =2 [A(y),y —v]- Vv €V, (39)
\,0+
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in particular, from inequality (37) it follows that

lim (d,,y, —y) = 0.
y{f&( Yy —Y)

Hence, due to (35), (38), and (39),
[A(y),y —vl- < (f,y —v) + (Av,v —y) Yo € KN D(A),

that is equivalent (due to Proposition 1) to (29).
The theorem is proved.

Corollary 1. Let assumptions A), B) and D) hold, f € V* be arbitrary fixed. Moreover, let
E) the multivalued map A : Vi — C,(Vy) be \o-pseudomonotone on V,, locally finite-
[A(y)7 Yy — y0]+

dimensionally bounded, A satisfy condition (11) and, for some yo € KND(A), ol
Ylivy

— 400 as [yl — oo
F) the functional ¢ : Vo — R be convex, lower semicontinuous on Vo and satisfy the next
o(y)

[yl
Then for each € > 0 the problem

coercivity condition: — 400 as |ylly, — oo

(Ayerw = 42) + [A(e), v = gels + Z[5(0e), 0 — el o+

T o) —pye) = (f,v—y:) Vo eV, g € D), (40)

has a solution. Moreover, there is a sequence {y.}. C D(A) such that
for every € > 0 y. is a solution of problem (40);
there exists a subsequence {y.}. C {y:}- such that for somey € V y, — y weakly in V,
y is a solution of problem (2), (3).

Proof. At first let us consider the multivalued map
B(y) = 0p(y) € Cu(V3) Vy € Va.
Let us check that the given map satisfies the next conditions.
Property (IT). Let yog € Vo, kK > 0 and the bounded set B C V> be arbitrary fixed. Then

Vy € B and Vd(y) € 0p(y) such that (d(y),y — yo) < k is fulfilled. Let u € V), be arbitrary
fixed, then

(d(y),u) = (d(y),u+yo —y) +(d(y),y — o) < ¢(u+yo) —ply) + 5 <
< p(u+1yo) — ;gg o(y) + k = const < +o0,

because every convex lower semicontinuous functional is bounded from below on every boun-
ded set. Hence, by the Banach —Steinhaus theorem, there exists N = N(yo, k, B) such that
ld@)lv, < Nforally € B.
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+-Coercivity on Vs. Let us put v = g in Definition 5. Then

Iyl [02(y), v — wol+ = iy, o) — Iyl e(yo) — +oo as |lylly, — +oo.

Ao-Pseudomonotony on Vs. Let y, — yo in Vo, 0p(yn) 2 d,, — d in V3 and inequality (6)
hold. Then, due to the monotonicity of dyp, for each dy € dp(yo) and for all n > 1,

(dnsYn — Y0) = (dn — do, Yn — yo) + (do, Yn — o) = (do, Yn — o)

Hence,
lim (dn,yn —yo) > lim (do,yn —yo) = 0,

n—-4o0o n—-4o00

which, together with (6), gives
lim (dy,yn —y0) = 0.

n—-4o00

Thus, for every w € Vs,

lim (dy,yn —w) = N (dp,yn —yo) + Um (dn,yo —w) = (do,yo —w).  (41)

n

n—+o00 n—-+oo
On the other hand,
(dosw—yo) < Tim (dn,w—yn) < p(w) = Im () < p(w) = p(y),  (42)

n—-+o00

because every convex lower semicontinuous functional is weakly lower semicontinuous. From
(42) and from Definition 5 it follows that dy € 0¢(yo). From here, due to Proposition 1 and
inequality (41), we will obtain inequality (7) for A = dp on Vs.

So, due to Lemma 3, Lemma 4, and Remark 11, all the assumptions C) for the multivalued
map

Cly) = Aly) + By), yeV,
are true. In order to finish the proof of the statement, it is enough to note that problem (40) is

equivalent to problem (28). Furthermore, problem (2), (3) is equivalent to problem (29). The
last one follows from Definition 5, Proposition 1, and the formula [23]

Digp(u;v —u) = lim plu+t(v—u)) — p(u)

Jim. t — D), v —u]s.

The corollary is proved.

The class of multivalued penalty operators. Let X' C ) be a nonempty closed convex subset,

Pk (y) = argmin |ly —v|y, y € V.
veK

We consider the main convex (generally not strictly convex) lower semicontinuous functional
2
e(y) = lly — Prylly, y € V.
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Let us put
Bly) = Oply) € Cu(V"), yeV.

In virtue of properties of subdifferential maps (see [23]), the multivalued operator /3 is monotone,
bounded, radially semicontinuous. So, it is enough to show that

K ={yeV|0ec by}

2

»C”. Lety € K. Then ¢(y) = 0 and foreveryw € V,t > 0,

B(y),w]y = [0¢(y),w]s — 90(y+tu;) —o(y) _ QD(Z/—t&-tw) ~ o,

ast \, 0+ . Hence, 0 € §(y).
»,27. Let0 € B(y). Then for every w € V (in particular for w € K),

0 < [B(y),w—ylt+ = [0p(y),w —yl+ < p(w) —p(y).

Hence, ¢(y) < 0andy € K.

Example. Let ) be a bounded domain in R™ with regular boundary, 092, S = [0,7] be a
finite time interval, @ = Q x (0;T), 'y = 09 x (0; 7).
As the operator A let us take (Au)(t) = A(u(t)), where

(

Further let £ > 1, A ¢ R¥ be a non-empty compact set. Let us also consider a family of maps
U, : R" — R, where o € A, which satisfies the next conditions:

the map R"” x A > (§, ) — U,(§) € Ris continuous;

R™ 5 & — U,(&) € Ris convex for all & € A;

there exist a > 0, b > 0 such that

p—2 D

890 p—2
Rkl B D(Q).
a@) +elP e, ¢ € D(Q)

al‘i

"9
Alp) == 5
i=1

10U+ < a+blE]l V€ € RY, Vo € A.
Together with {U,(§) }aca, let us consider the next function:

U :=maxU,(§) : R" - R
acA

and the multivalued map with compact values

A(§) == H{a e A|U(§) = U9},

where z € 0, £ € R". Let us also assume the next coercivity condition:
d) there exist constants M, C' > 0 such that

U > M|g|>+C Ve
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We consider that
Vi=Wh(Q), Vo= HY(Q), H= L),

and
Vi = Ly(0,T;Vi), H = La(0,T;H), Vs = Ly(0,T;Va).

1 1
If we put V = Vi NV, (from here V* = L,(0,7;V*) + L2(0,T; L2(S2)), where > + p =1,

then with p > 2 we will obtain situation (4). Since 1 < p < 2 the usual case will be if we take
o =D(0,T;V) (see [1]).

For the operator A we take the derivative operator in the sense of the scalar distributions
space D*(0,7; V*),

DAY,V = {y e VAH |y € H+ V", y(0) = 0},

G(s)p(t) :={p(t—s) as t>s0 as t<s}

(see [1, p. 291)).
By the analogy with [1, p. 293] let us also consider a family of nonempty subsets I'; (¢) from
I' such that

Li(t) D Ty(t), if ¢t <,
K={veVvt)>0 on I}
By the analogy with [1] (Chapter 2.9.5), due to Theorem 2 and Corollary 1, the next problem:

8y (t, ) oy(t,z)|P -2 Qy(t,x)
Z ox; (‘ Ox;

ox; ) + Jy(t, 2)|P2y(t, z)—

-2 32,00 ( U aUa(Vy(t,m))> > ft,x), (tx) €@,
! a€A(

i=1 Vy(t.z)

y(t,z) >0 on X ={(t,z)|x € I'1(t)},

oy(t,x
yéy)zo on X,
oy(t, x
y(t, x) yéy ):0 on i,
WET) _ g on wy =%,
ov

y(0,2) =0 on
has a weak solution y € Lo(0,7; HY(Q)) N L,(0, T; WHP(Q)) for every

f € La(0,T; H(Q)) N Ly(0,T; WH(Q)).
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