UDC517.9

OSCILLATION OF A CLASS OF NONLINEAR
PARTIAL DIFFERENCE EQUATIONS
WITH CONTINUOUS VARIABLES*

O CHWJIAIIIA KITACY HEJTHIMHUX
YACTKOBO PIBHUIIEBUX PIBHSIHb
3 HENIEPEPBHUMMU SMIHHNMUA

Y. Guo

Graduate School China Acad. Eng. Phys.
P O. Box 2101, Beijing, 100088, P R. China
Guangxi Univ. Technology

Liuzhou, 545006, P R. China

A. Liu, T. Liu, Q. Ma

School Math. and Phys. China Univ. Geosci.
Wuhan, 430074, P R. China
e-mail:wh_apliu@sina.com

This paper is concerned with a class of nonlinear partial difference equations with continuous variables.
Some oscillation criteria are obtained using an integral transformation and inequalities.

Poseaanymo kaac HeAHIIHUX YACMKO080 PI3HUUEBUX PIBHANHD 3 HenepepsHUMU 3MIHHUMU. OmMpPUMano
O0eaKi Kpumepii OCUUAAYIL 3 BUKOPUCIAHHAM IHME2PAAbHUX NePEemBOPeHb Ma HePIBHOCMELL.

1. Introduction. Partial difference equations are difference equations which involve functions
with two or more independent variables. Such equations arise in investigation of random walk
problems, molecular structure problems [1], and numerical difference approximation problems
[2], etc. Recently, oscillation problems for partial difference equations with invariable coeffici-
ents and discrete variables have been investigated in [3—8]. We can further investigate oscillati-
on properties of nonlinear equations with variable coefficients and continuous variables and
obtain some oscillation criteria.

In this paper, we consider a class of nonlinear partial difference equations with continuous
variables,

p1(z,y) Az + a,y +b) + pa(z, y) Az + a,y) + p3(x,y) Az, y + b) — pa(z,y) Az, y)+

m

—l—Zhi(x,y,A(x—oi,y—n)) =0, (1)
i=1
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where pl(SU, y) € C(R+ X R+7 [07 OO)), pQ(xa y),p3($, y)apll(xa y) € C(R+ X R+a (0’ OO))a a, b, o4,
7; are negative and h;(z,y,u) € C(R* x R* x R,R),i = 1,...,m.

Let 0 = maxj—1, . m{0oi}, 7 = max;—1 {7} A solution of (1) is defined to be a conti-
nuous function A(x,y), for all z > —o,y > —7, which satisfies (1) on R™ x RT. A solution
A(z,y) of (1) is said to be oscillatory if it is neither eventually positive nor eventually negative.
Some oscillation criteria for a solution of (1) are obtained using integral transformation and
inequalities. Our results extend some oscillation properties of nonlinear equations with invari-
able coefficients and discrete variables to nonlinear equations with variable coefficients and
continuous variables.

-----

2. Main lemmas. We assume that the following conditions are satisfied throughout this
paper:

(D pi(z,y) = pr = 0, p2(2,y) = p2 > 0, p3(2,y) = p3 > 0,0 < pa(z,y) < p4, and p;,
1 = 1,2,3,4, are constants and also satisfy pa2, p3 > py;

) 7, = kija+0;,0 = ;b+&,1 = 1,...,m, where k;, [; are nonnegative integers and
; € (a,0],& € (b,0].

Lemma 1. Assume that

(i) h; € C(RT x R x R, R), uhi(z,y,u) > 0 foru # 0, and h;(x,y,u),i = 1,...,m,isa
nondecreasing function in u;

(ii) hi(z,y,u), i = 1,...,m, is convex in u for u > 0.

Let A(x,y) be an eventually positive solution of (1), then there exists a positive function

(VR
Z(z,y) = o / A(u,v) du dv eventually satisfying the following results:
ad Jzta Jy+b
(1) if min;—y . m{ki} # 0and min;—; ., {li} # 0, then

piZ(x+a,y+0b)+pZ(x+a,y)+p3sZ(x,y+0b) —psZ(z,y)+

m

+ Zhl(l',y,Z(.fL' — 0 Y — T’L)) < O’ (2)
i=1

(2) ifminl-:17,,,7m{ki} = 0 and minizl,._,7m{li} = 0, then

p1Z(x+a,y+0b)+pZ(x+a,y)+p3Z(z,y+b) —psZ(x,y)+

m

+ Y hi(x,y, Z(z — kia,y — 1)) < 0; 3)
i=1

(3) ifmini:17...’m{ki} = 0and minizl’wm{li} 7& 0, then

p1Z(x+a,y+b)+p2Z(x+a,y)+psZ(x,y+0b) —psZ(z,y)+

m

=1
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(4) ifmini:17.,,7m{ki} 75 0 and mil’lizl’m’m{li} = O, then

piZ(x+a,y+0b)+pZ(x+a,y)+p3Z(x,y+b) —psZ(x,y)+

—I—th(l',y,Z(l' - kiaay_Ti)) < 0.
=1

Proof. From (I), we have the following inequality:

p4(A(l‘ +a, y) + A(x,y + b) - A(:E7y)) <

< prA(z +a,y +b) + poA(z + a,y) + psA(z,y +b) — paA(z,y) <

< pi(z,y)A(z + a,y + b) + p2(z,y)A(z + a,y)+

+P3($7y)A(l‘,y+b) _p4($7y)A(x’y) <0

eventually.
Since
1
Z S A
@)= [ [ Awvyduds
z+a y+b
we have
0Z(xy) 1 [
rny) 1 o
5 = ab /(A(x,v) Az +a,v))dv > 0
y+b
and
0Z(x,y) 1 [
Y
b Sk X A A —A .
5ol = = [ (At~ Alwy -+ B> 0

r+a

From the above, we have Z(x,y) is nondecreasing in x and y eventually.
Integrating (1), from (I) we have

p1Z(x+a,y+0b)+p2Z(x+a,y) +p3Z(x,y+b) —psZ(z,y)+

m Tta y+b

1
7 1\ Uy aA — O, U— 4 <0.
+ab;/ /h(uv (u—o04,v—m;))dvdu <0

T Yy

By (i), (ii), and Jensen’s inequality, we obtain the following inequality:

m

307

)

(6)

™)

)

piZ(@+a,y+b)+paZ(x+a,y) +psZ(w,y+b) —paZ(z,y)+ Y hilw,y, Z(x =01,y — 7)) < 0.

i=1
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Thus (2) holds.

Since a, b, 7;, 0; are negative real numbers, there exist nonnegative integers k; and [; sati-
stying o, = kja+0;, 7 = [;b+ &, wherea < 0; < 0,b < & <0,i=1,2,...,m. From (7) and
(8), we obtain Z(z,y) is nondecreasing eventually. So if

“min {k;} #0, min {l;} #0,

i=1,....,m i=1,....,m
we have Z(x — o,y —1;) > Z(x—kija,y—1;b),i = 1,2,...,m. Since h;(z,y,u),i = 1,2,...,m,
is nondecreasing in u, we have

P Z(x+a,y+b)+paZ(w+a,y) +psZ(w,y+b) —paZ(z,y)+ Y hi(z,y, Z(x —kia,y—Lib)) < 0.
=1

Hence, (3) holds.

Similarly if min;—y __m,m{k;} = 0, minj— _{li} # 0, Z(x,y) is nondecreasing in = and y
eventually, we have Z(z — 04,y — 1) > Z(x — o4,y — I;b). Since h;(x,y,u), i = 1,2,...,m,is
nondecreasing in u eventually, we have the following inequality:

prZ(@+a,y+b)+p2Z(z+a,y) +p3Z(,y+b) —paZ(@,y) + Y hi(w,y, Z(x =05,y —1ib)) <0,
=1

implying (4).

Similarly if min;—; _{ki} # 0, min;—1__,{li} = 0,i =1,2,...,m, Z(z,y) is nondecrea-
sing in z and y eventually, we have Z(z — o;,y — 1) > Z(x — kia,y — 7;). Since h;(x,y, u) is
nondecresing in u, we have the following inequality:

p1Z(x+a,y+b)+paZ(x+a,y)+psZ(w,y+b) —paZ(x,y)+ Y hix,y, Z(x—kia,y—7:)) < 0.
=1

Hence, (5) holds.
The proof is completed.
By a similar method, we can obtain properties of an eventually negative solution of (1).

Lemma 2. Assume that

(i) h; € C(RT x RT x R, R), uhi(x,y,u) > 0 foru # 0and h;i(z,y,u),i = 1,...,m,isa
nondecreasing function in u;

(ii) hi(z,y,u),i = 1,...,m, is concave in u for u < 0.

Let A(x,y) be an eventually negative solution of (1), then there exists a negative function

1 [* Y
Z(z,y) = pr / A(u,v)dudv eventually satisfying the following results:
av Jeta Jy+b
(1) if ming—y _m{ki} # 0and min;—; _,,{l;} # 0, then

p1Z(x+a,y+0b)+pZ(x+a,y)+p3Z(z,y+b) — psaZ(x,y)+

m

i=1
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(2) l'fmini:17.,‘7m{ki} = 0 and mil’lizl’m’m{li} = O, then

p1Z(x+a,y+0b)+pZ(x+a,y)+p3Z(z,y+b) —psZ(x,y)+

m

+ Y hi(x,y, Z(z — kia,y — 1)) > 0; (10)
i=1

(3) ifmini:17.."m{ki} = 0and minizl,m,m{li} 75 0, then

p1Z(x+a,y+0b)+p2Z(x+a,y)+p3Z(z,y+b) — psaZ(x,y)+

m

i=1

(4) ifminizl,,_.7m{ki} 75 0 and mini:L_,_’m{li} = 0, then

piZ(x+a,y+0b)+pZ(x+a,y)+psZ(x,y+0b) —psZ(z,y)+

m

+Zhi(x7yvz($_kiaay_7i)) > 0. (12)
i=1

3. Main results. In the following, we investigate oscillatory properties of a solution of (1)
and obtain the main results of this paper.

Theorem 1. Assume that
(i) hi(z,y,u) € C(R* x RT x R, R) is nondecreasing in u and uh;(z,y,u) > 0,i =
=1,2,....,m, forallu # 0,
(ii) hIJrrliIlf Oh(xy, u)/u=.S5; >0, ZS >0,i=1,2,...,m,
T,y——+00,u— —1
(iii) hi(x,y, u) is convex in u for u > 0, h (x,y,u),i = 1,...,m,is concave in u for u < 0,
(iv) one of the following conditions holds:

1 ni+1
ZS (m: + (P2 +572J:)p3) > 1, n; =min{k;,;} >0, i=1,...,m, (13)
Dy

ZSi RN L, min {k} >0, min {I;} =0, (14)

m llz pl —1

Y St >1, min {k}=0, min {L} >0, (15)

el (lz — 1)ZZ pif i=1,....m i=1,....m
1 : :
— ZSZ- >1, min {k}= min {l;} =0. (16)
P4 1 i=1,....m i=1,....m

Then every solution of (1) is oscillatory.
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Proof. Assume the contrary. Let A(z,y) be an eventually positive solution of (1), and
Z(z,y) be defined by (6). Then by Lemma 1, we obtain lim, .40 Z(x,y) = ¢ > 0. In the
following, we claim that ¢ = 0. Otherwise, let > 0. By Lemma 1, we know that (2) holds.
From (2) and condition (I), we have

pZ(@+a,y+b)+ps(Z(@+ay)+ Z(x,y+b) — Z(z,y)) <
<piZ(@+a,y+0b)+pZ(x+a,y) +p3Z(x,y+b) —paZ(z,y) <0.
So
Z(x+a,y)+ Z(z,y+b) — Z(x,y) <O0. (17)

Taking the limit on both side of (17), we have ¢ < 0. Consider ¢ > 0. Then we have ¢ = 0.
If min;—y _m{ki} > 0, min;—; __,,{l;} > 0, in the view of (2), we have

(p1+p2+p3)Z(z+a,y+b) y cmZ(ztay+b)+ppZetay) +psZ(zy+b)

—pu <
Z(x,y) = Z(z,y) P
= hl :1: y: — 0y Y — Tl))
< - . 18
2 Ty (1%
Since Z(z,y) is nondecreasing eventually, from (18) for all large = and y we have
(pLtp2tps)Z(x+ay+b) Z (z,y, Z(x —mia,y —mb)) _
Z(x,y) pot (a:, Y)
— hi(z,y, Z(x —mia,y — m x — ja,y — jb)
S - , 19
2 Z(x — mia,y — nib) HZw—J—l)ay (J —1)b) (19)

i=1

where 7; = min{k;,[;},i =1 .
Let a(z,y) = Z(z,y)/Z(x + a,y + b). Then a(x,y) > 1 for all large = and y. From (19), we
have

PRI

P1 +p2 +p3 Z (x y, x — mia,y —nid)) 15 ( , ) <
alr — 1a —
Z(x —ma,y — n;b) jI—l1 Ja,y —J0) < pa,

=1

i.e.,

™ hi(z,y, Z(x — nia,y — b)) 1a . .
(p1+p2+ps)+ ( Z0r _( n,any — 17~b)77 ) [ @ —ja,y — jb)a(e,y) < pra(z,y).
i=1 v ! j=1

(20)
By (ii), (20) implies that «(z, y) is bounded.
Let lim mf a(z,y) = (. Taking the limit inferior on both sides of (20), we obtain

{Z*}

m
(p1+p2+ps)+ Y SiB"H! < paB,
i=1
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i.e.,
pLtpatp S
1+p2+p3 ,
BB <3S < (21)
H P1+Pp2+p3 . m mit1 .
ence, 3 > ——————. Since ) ;" S;8"" /(paff — (p1 + p2 + p3)) < 1, computing the
minimum of the function f(x) = 2" /(pyx — (p1 + p2 +p3)) as z > PLt P2t Ps we obtain
P4
min gt — (i + )" (p1 + pa +p3)"
g>2rizates paff — (p1 + p2 + p3) n" plitt ’
o4 1)t M
Sowehave >, S; (: + n-) (p + p2_ J: ) < 1 which is contrary to (13). Therefore if
n; pzl

(13) holds we can obtain that every solution of (1) is oscillatory.
Ifmin—y _p{ki} > 0, min;—; _,»{l;} = 0, by Lemma 1, we obtain

p1Z(x+a,y+b)+paZ(x+a,y)+psZ(w,y+b)—paZ(x,y)+ Y _ hi(x,y, Z(x—kia,y—7)) < 0.
i=1

Then we have

pZZ(x+a7y) < = hi(x,y,Z(x—kia,y—Ti)
PREV DI py < — _
Z(x,y) Pt Z(z,y)
m ki .
_ _Zhi(x,y,Z(x—kia,y—n))Z(a:—a,y—n) Z(x —ja,y —m) (22)
— Z(x — kia,y — 7;) Z(x,y) i Zx—(j—VDa,y—1)

Since Z(z,y) is nondecreasing in z, y eventually, we have Z(z — a,y — 7;)/Z(x,y) > 1 for
all large x and y. From (22), we have

m ki .
ng(:E—I—a,y) hi(‘rvyaz(x_kiaay_n)) 7 Z(l'—ja,y—ﬂ;)
, < py. 23
2w T2 Ze-kay-1 HZe-G-Day-m o @
Let o(z,y) = Z(z,y)/Z(xz + a,y) > 1. From (23), we have
m ki
hi(z,y, Z(x — k;a
by mnp Aty H ola— jay—1) < pa (24)

Z(x — kja,y — 7

=1 =

By condition (ii) the above inequality implies that a(x, y) is bounded. Let liminf a(z,y) =

T, Yy—100

= (3. From (22), we can obtain

k;
i(x,y, Z(x — kja,y —
< : 2
p2+Z Z(z —Taa,y — 1) H —ja,y —mi)a(z,y) < pso(z,y) (25)
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Taking the limit inferior on both sides of (25), we have py + > | S;% < psf3.
Hence we have % + 3, S8k < py e, % <py— 3, 8Bk < py.

Then we obtain 3 > % and >, S B8R/ (paB — p2) < 1.
4

o i py R m o P
Since ming,m g = (= DT we have > 7" S; g (o= DT <
which contradicfs (14). So if (14) holds we can obtain that every solution of (1) is oscillatory.

Similarly, we can prove that if (15) holds then we can also obtain every solution of (1) is
oscillatory.

If mini—y _m{ki} = min,—; _n{l;} = 0, from Lemma 1, we know that (3) holds.

Hence we have

i—1 k;
ki

L,

p1Z(x+a,y+b)+p2Z(x+a,y)+p3Z(x,y+b) —psZ(z,y)+

+ > hilw,y, Z(x,y)) < piZ(w+a,y+b) +paZ(x +a,y)+
=1
+p3Z(x,y +b) — paZ(z,y) + Y hilz,y, Z(z — 01,y — 7)) < 0.
=1
Then
= hz ) aZ )

Taking the limit inferior on both sides of (26), we have Y ;" | S; < p4, which is contrary to
(16). So if (16) holds we can obtain that every solution of (1) is oscillatory.

If A(x,y) is the eventually negative solution of (1), we can obtain a contradiction by assu-
ming that A(z,y) is an eventually negative solution of equation (1). Therefore we know the
result is correct.

The proof is over.

The results indicate that there are some criteria of oscillatory properties of solutions of some
partial difference equations with forward front difference. In some sense, the results play some
roles in investigating properties of solutions of advanced partial differential equations.
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