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We show that the Bogolubov generating functional method is a very effective tool for studying distribution
functions of both equilibrium and nonequilibrium states of classical many-particle dynamical systems. In
some cases the Bogolubov generating functionals can be represented by means of infinite Ursell— Mayer
diagram expansions, whose convergence holds under some additional constraints on the statistical system
under consideration. The classical Bogolubov idea to use the Wigner density operator transformation for
studying the nonequilibrium distribution functions is developed, a new analytic nonstationary solution to
the classical Bogolubov evolution functional equation is constructed.

Losedeno, ujo memoo nopooxcyouux ynkyionasie bozoarob6o8a e docums ecpekmusHum 045 BUBHEH-
HA PYHKYIL pO3n00iny PIBHOBANCHUX MA HEPIGHOBANCHUX CIAHIE8 KAACUHHUX 06A2amO1acmMUHKO8UX Ou-
HAMIYHUX cucmem. Y 0eaKux sunaokax nopooxcyioui gpyrnkuionasu Bozoarwbosa moxcrna supasumu ue-
pe3 HeCKIHYeHHI po368UuHeHHs Olazpam Ypceanra— Mapmina, axi 36ieatombca NpU HAKAAOAHHI 000am-
KOBUX YMO8 HA PO3AA0YSaHI cmamucmudti cucmemu. Possunymo kaacuuny ioero Bozoaw6osa npo
BUKOPUCMAHHA NepemeopenHsa Bienepa onepamopa ujinbHocmi 04 8USUEHHS HEPIBHOBANCHUX (YHK-
yitt posnodiny ma noO6yo008aHo HOBUIL HECMAUIOHAPHUIL PO36 A30K KAACUYHO20 PIBHAHHA €80MIOUIL
¢ynxuionasa bozonrobosa.

1. Introduction. Bogolubov functional equation and distribution functional. Let a large system
of N € Z, (one-atomic and spinless) bose-particles with a fixed density p := N/A in a volu-
me A C R3 be specified by a quantum-mechanical Hamiltonian operator H : Lgsym) (R3N,

C) — L{Y™(R3N;C) of the form
B2 N N
- ) |
H .= m;vj+§V(x] — 1), (1.1)
j= j
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where V; := 0/0z;,j = 1, N, his the Plank constant, m € R, a particle mass and V (z —y) :=
= V(|z — y|), z,y € A, a two-particle potential energy allowing for a partition V = V) +
+V ) with V() being a short range potential of the Lennard — Johns type and V() a long range
potential of the Coulomb type. Making use of the second quantization representation [1, 2], the
Hamiltonian (1.1),as A — R3 and N — oo, can be written as a sum H = Hy+V, where

h2
H, = —/d?’xwviw,
2m
R3

(1.2)
Ve / o / ByV (@ — )t @)t @) )o(E),
R3 R3

and the operator H : & — & acts on a suitable Fock space [1, 2] with the standard scalar
product (-, -), and ¢*(x),+(y): ® — ® are creation and annihilation operators defined, corres-
pondingly, at points z € R and y € R3.

Assume now that our particle system is under the thermodynamic equilibrium at an “inverse”
temperature Ry > 3 — oo. Then the corresponding Bogolubov n-particles distribution functi-
ons can be written [1, 3] as

Fu(wn, @0, 20) = (21 pl@)p(@1) ... p(za) : ), (13)
wheren € Z,, p(x) := 7 (x)y(x) is the density operator at z € R3, : : the usual [1, 2] Wick
normal ordering over the creation and annihilation operators, and 2 € ® is the ground state of

the Hamiltonian (1.2) at the temperature 3 — oo, normalized by the condition (2,Q) = 1. If
we introduce the Bogolubov generating functional

L(f) = (@, explip(f)]Q) (1.4)

for any “test” Schwartz function f € S(R3;R), where p(f) := / d3z f(x)p(x), then for n-
R3

particle distribution functions we can get the expression

1 6 1 o 1 9
F,(r1,z9,...,0,) = = - = L —0- 1.5
(w1, 22 ) i 0f(x1) 1 0f(x2) i 0f(xp) ()ls=0 (15)
Here z; € R3,j = 1,n,n € Zy, and the symbol : ~ 0 1 29 1o : imitates the
R T P 6 ) i 0f () i 0f ()
application of the symbol : : to the operator expressions p(z1)p(z1) ... p(x,), that is,
1. 6 1 ¢
Cidf(x) i df(a)’
(1.6)
1 6 1 o 1 0 1 6

L= - : —5(1‘1—1‘2) y

i 6f(x1) i 0f(xa) i 0f(x1) [i0f(x2)
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THE BOGOLUBOV GENERATING FUNCTIONAL METHOD IN STATISTICAL PHYSICS... 39

and so on. Consider now the expression (1.4) at some 5 € R, , making use of the statistical
operator P: & — & and the “shifted” Hamiltonian H® := H—y / d3zp(x) with g € R,
R3

which give a suitable “chemical” potential,

exp(—BHW)

L) = (PelipN), P = T

(1.7)

where “tr” means the operator trace-operation in the Fock space ®. Posing within this work the
problem of studying distribution functions (1.3) in the classical statistical mechanics case, we
need to calculate the trace in (1.7) as i — 0. The latter gives rise to the following expressions:

£f) = Gl 2U) = expl-BV Lol
(18)
Lo(f) = exp | = [ dafexplif() - 1} |
R3
where z := exp(Bu)(2rh?fm — 1)~%/2 is the system “activity” [1], and
V() = ;/d?’:c/d?’yV(m—y) : 15;@)15;@ . (1.9)
R3 R3

Based now on expressions (1.8) and (1.9) we can formulate the following proposition.

Proposition 1.1. The functional (1.4) satisfies [1, 3, 4] the following functional Bogolubov
type equation:

16L(f 15 % S o, (L10)

[V _ivff(x)]z‘cﬁ(x)) = _/B/d3:UVmV(-%' —y): 55]0(%) W :
R3

with the expression (1.8) being its exact functional-analytic solution.

Below we proceed to construct effective analytic tools allowing to find exact functional-
analytic solutions to the Bogolubov functional equation (1.10), describing equilibrium many-
particle dynamical systems, as well as, we will generalize the obtained results to the case of
nonequilibrium dynamical many particle systems.

2. The Bogolubov - Zubarev ‘“collective” variables transform. Taking into account two-
particle potential energy partition V' = V) 4+ V() owing to representation (1.8), one can
easily write the following expression for the generating functional Z(f), f € S(R*;R) :

Z(f) = exp[—BV(S)]LD(f), LD(f) = exp[-BVI(5)]Lo(f), (2.1)
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where we put

V(s [ 8w, . L 0 1 0
_2/”/‘“” =) i@ st
R3 R3

/d3 /dByV(S Ty 25(2)1(2):.

To calculate the functional L (f), f € S(R*;R), corresponding to the long range part V)

(2.2)

of the full potential energy V' : & — &, we will apply the analog of Bogolubov—Zubarev [5]
“collective” variables transform within the grand canonical ensemble, suggested before in [4,

6, 7]. Namely, denote by EEQ)( f), n € Z,, a partial solution to the functional equation (1.10),

possessing exactly n € Z, particles. Then, owing to the results of [3], for LU (f), n € Z,, the
following exact expression holds:

06 = [dr [ [t T ewlif(e) e(-oV0), (23)
R3 R3 R3

j=1

where Vngl) is the long term part potential energy of an n-particle group of the system. Then we

get that

-1
L) = Y S e Qo= (Z jﬁﬁ%(@) . (24)

n€Z+ nEZ+

The sum in (2.3) can be calculated exactly, giving rise to the expression

coN(f / D(w { / Prexplif(z)]g (:U;w)} J(w), 2.5)

where D(w) := [] E(dwk Adwg), wi == w_g € C, k € R3,
keR? 2

: : B
g(z;w) = exp |:2m d®kwy, exp(ikz) + 5 d3ky(k)] ,
J !
(2.6)

. 3 272 3 ™
J(w) = exp [/d kﬁy(k)wkw_k+/d klnﬁu(k‘)] ,
R3

]R3
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and v(k) := (2m)3 / BV W exp(—ikz), k € R3. Now from (2.4), (2.5) and (2.6) one easily

R3
finds that

= / D(w) exp ( / d*w{explif () — 1]}g<x;w>) TV ()™, (27)
RS

where zZ := zexp (g /d?’ku(k)) = zexp [gv(l)(O)} and the function J® (w), w € R?, allows

R3
for the following series expansion:

27)?

JO(w) := J(w)exp /d%g(w;w)] = J(w)exp [( 51 (2w)3/d3kwkwk +

3 R3

n N
2 )3/d3k1/d3k2.../d3anwkj(5 (Zk))] . (28)
R3 R3 R3 Jj=1 J=1

The expression (2.7) can be represented now [6] in the following cluster Ursell form:

n#2

E(l)(f) = exp (Zi;/dgxl/dgxg.../d?’xn H{exp[if(:):) — 1]}gn(x1,x2,...,xn)) .
n=1 .]RB R3 R3

j=1
(2.9)

Here, for any n € Z,,

gn(T1, 22, ..., Tp) = Z( D™ (m H 1(@x € alj]),
on] Jj=1
(2.10)
Rp(z1,22,. .. ,20n) == Z Hga[j} (z1 € J[]])7
oln] j=1

where g, (z1,z2,...,2,),n € Z4, are called the n-particle Ursell cluster functions, R, (x1, za, . . .

.,Tp), n € Z4, are suitable “correlation” functions [1, 4, 6] and o[n] denotes a partition of
the set {1,2,...,n} into nonintersecting subsets {o[j] : j = 1,m}, thatis, o[j] N o[k] = @ for

Jj # k =1,m,and o[n] = UJL,0]j]. Having separated from the function JO(w), w € C3, the

natural “Gaussian” part Jé )( ), w € R3, one can write down that

(1) (2)
nien) = GEL galaraa) = ) — (e @.11)
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where g,(j = —2mi Y " exp(ikxzs), k € R3 n € Z,,
ey - Dw)g®(
(gk; ) exp fk; ; ) (w)7

M( ](gn)) — Z 2772 /d3k‘1/d3k2 /d3km(5 (Zmzl ]’v’s> ﬁ(;(n)a (212)

ks

n

g Mg w) = [T o).

Jj=1

Since the integrals [ D(w)g" (¢ ,(Cn) :w)JW(w), n € Z,, are calculated exactly, the formulae (2.9)
and (2.10) are sources of the so-called “virial” variables for the Ursell - Mayer “cluster” correla-
tion functions g, (z1, z2, ... %), n € Z, which have important applications. In particular, from
the function J)(w), w € C3, one gets right away that the cluster expansion for the functions
gn(z1,22,...2,), n € Z,, are fulfilled by means of the “screened” potential function V) (2 —
—y), z,y € R, where

ey [l

In particular, from (1.5) and (2.9) one easily finds that

H@ﬂ—z/DW)wau {/D ]1_

e [gfd’“lwg ;(ﬂ <)2 >3}

1

=

(2.14)

Fy(or,a) = 2 [ Dwigloriwglosio [/p ]12

~ p?exp[—BV W (z9 — x1)] {1 + ﬁ/d3a:3 {exp (—[ﬂ_/(l)(rm - mg)) —1+

]R3

+ V0 (2 — xg)] {exp (—ﬁ‘_/(l)(ﬂfg - x3)> — 148V (2y — xg)} +

+ p/dgccg[—ﬂ‘_/(l) (21 — 3)][exp(—BV D (23 — 23)) — 1+ BV (29 — z3)]+
R3

+5 / P3| ~BVO (w3 — w3)[exp(— BV D (21 — 23)) — 1+ BVO (21 — 3)]+.. } -
R3
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and so on. The result, presented above, can be obtained by means of a little formal calculations,
based on generalized functions and operator theories [4, 8]. Indeed, as i — 0, one has that

LO(f) = exp[-BVIILo(HHQ™ =

= tr exp(—ﬂH(()“))exp —g/dgkl/(k) P PEP—k : exp[i(p(f)] =

= tr exp(—ﬁH(()“))exp 6/d3ku(k)/d3xp(:r) X
2
X /D(w) exp |:R[ dgkﬁi?k:)wkw_k R[d?’kﬂm'wkpk] expli(p, f)]} Q! =
/ D(w {exp( SHY) exp { (p,f — 27 / dkwy exp(ikz)—
R3

— Zf/d?)ky(kz) Q' =

= /D(w)J(w)Eo(f— 27r/d kwy exp(ikx) — ?/d‘gkl/(k))Q_l =

= /D(w)J(l)(w)eXp /d?’k:{exp[if(x)] —1}g(z;w) |, (2.15)
R?)

where HY = H, —,u/ dxp(x), pr = / d3xp(z) exp(ikz), k € R3. The expression

(2.15) coincides exactly with that of (2.9), thereby proving the validity of our expressions (1.8)
and (2.1) for the N. N. Bogolubov type generating functional £L(f), f € S(R3;R), satisfying the
functional equation (1.10) in Proposition 1.1.

3. The Ursell-Mayer type diagram expansion. Having considered expressions (2.1) and
(2.7) as starting ones, with known functions g, (x1,x2,...x,), n € Z,, for the functional L(f),
f € S(R?;R), one can obtain the following result:
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EU?==§%3,ZU?zemm—ﬁV“NﬁﬂﬂNf)z

= exp[—BV ) (5)] exp Z;/del/d3x2.../d3xn X
n=1 ‘R3 R3

R3

X H{exp[if(xj)] - 1}971(1'1;3727 e 7xn> =

j=1

, (3.1)

= exp

00 1 .
> e
N=1

where the functionals W(GS?), N = 1,00, are calculated via the following rule. Denote by
Gg{;), N = 1,00, aconnected graph and that consists of exactly N generalized vertices of [y(n;)]
type,j = 1, N, and Zévzl n; ordinary vertices of [a] type. Let it each vertex [y(n)] is necessari-
ly connected with n vertices of type [a] by means of dashed lines, but between themselves
[a] vertices can be connected arbitrarily by means of solid lines. If now we assign the factor

gn(x1, 29, ...,2,) to each generalized [y(n)]-vertex the factor z / d3z explif(z)] to each simple
R3

[a]-vertex, and the factor {exp [-3V(®)(z;, — 2,)] — 1} to the line connecting them, then the
obtained resulting expression will be exactly equal to the functional W(Gg\‘;)). The final sum-
ming up over all such connected graphs gives the expression (2.15), where the factor 1/N!
counts for the symmetry order of the graph GE\C,) under permutations of the generalized vertices.

It is evident that, by representing the factor exp[i f(x)] that enters the vertex [a] as {expli x
X f(z)]—1}+1, the expression (2.15) can be easily resumed into Ursell - Mayer type expressions
but already with suitably another functions g, replacing the former ones and giving rise to
expansions similar to (2.14), based already on the “screened” potential (2.13), which we will
not discuss here in more details.

Thereby, taking into account the results of [4, 6] we can formulate the next proposition,
characterizing the Bogolubov type generating functional £(f), f € S( R3;R), satisfying the
functional equation (1.10).

Proposition 3.1. Let the Bogolubov type generating functional L(f), f € S(R3;R), represen-
ted analytically as a series (3.1) of graph-generated functionals, satisfy the following conditions:
i) continuity with respect to the natural topology on S(R3;R), |L(f)| < 1, f € S(R3;R);

ii) positivity, szzl c;jciL(f; — fx) = 0 forany f € S(R%R)andallc; € C,j = 1,n,
n € Zy;

iii) symmetry and normalization conditions, L*(f) = L(—f) for all f € S( R*R) and
L(0) = 1;

iv) translational-invariance, L(f) = L(f.), where f,(z) := f(x —a), x,a € R3, for any
f € S(R%R);
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v) cluster condition or, equivalently, the Bogolubov correlation decay, limy_.[L(f 4+ gra) —
_E(fa)ﬁ(g/\a” = 07 a € R37 fOl’ any f7g € S( R?’;R);
. . .. 10L(f)
vi) density condition, ;T(:c)‘fzo =p e R,
Then the functional (3.1) solves the Bogolubov type functional equation (1.10), giving the
positive measure dpexp Fourier representation on the adjoint tempered generalized function
space S'( R3; R) as

£(f) = / d7i(€) expli(é, ). (32)

S’ (R%R)

where (€, [) = /R () f(x) for € € 8R4 R) and | € S(RYR)

The obtained result makes it possible to find the many-particle distribution functions (1.5)
and apply them for constructing different thermodynamic functions that are important [1, 9] in
applications.

Below, following the Bogolubov method [3], we obtain, based on the expression (2.3), the
important Kirkwood — Saltzbourg — Simansic functional equation for the Bogolubov generating
functional L(f), f € S( R3;R). Namely, making use of the expression (2.3) we can write the
following relationship:

16L N+1)Z
P20 gl I £ 1) iV - ) 63
for any 2 € R3. Since, by definition,
. ) N+1)Z
Jim Lon(h) = L), e S@ER), tim SEUI g,
from (3.3) one gets right away that
expl-if (@) 350) = () +iBV (-~ ), (34

which is called the Kirkwood — Saltzbourg — Symansic functional equation, which is very impor-
tant for proving Proposition 3.1 by means of the classical Leray — Schauder fixed point theorem
[1,2, 10] in some suitably defined Banach space. In particular, at f = 0 from (3.4) one finds the
following important relationship:

p = 2L(iBV (- —z)) (3.5)
for any 2 € R3.
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4. The quantized Wigner operator and the N. N. Bogolubov generating functional method
in nonequilibrium statistical mechanics. For studying nonequilibrium properties of a many-
particle classical statistical system it was proposed [4, 6] to use the quasiclassical quantized
Wigner density operator

1

w(z;p) = @)’ /d3a exp (iap) YT <:c + h;) Y(x — %y), 4.1)
R3

where the one-particle phase space variables satisfy (z;p) € T*(R?). By means of simple
calculations one can see that the Hamilton operator H : ® — & can be written as

2
H- [ ol w@p [ @t [ ey owpume , @2)
m
T*(R3) T*(R?) T*(R?)

where the symbol : : as before, denotes the usual Wick ordering of creation and annihilati-
on operators on the Fock space ®. With regard to the following applications, let us mention
formulae for Wigner density operators (4.1) in the Wick sence,

[ et @vivw. | = w),

R3

/ i / PyViz—) : p@)oy) ulz0)| =2 / By (V(z - ). ply)u(z0) ),
R3 R3 R3
(4.3)

w(zs p)w(y, €) "= w(wp)w(y, &) : +w(a;p)da — y)ilp — &),

where the bracket [, -] means the usual commutator of operators in the Fock space ® and
{-,-} means the classical canonical Poisson bracket on the phase space T*(R?). Following the
Bogolubov ideas, we will define a Bogolubov generating functional £(f), f € S(T(R?);R), as

L(f) := tr (Pexpli(w, f)], (4.4)

where, by definition, (w, f) := / dBrd®pw(z;p)f(z;p) and P : & — P is the statistical
T(R3)
operator satisfying the following [1, 3, 4, 7] evolution equation with respect to the time variable
t e R+ :
oP i _
E - ﬁ[lp,H], trP = 1, P‘t:o = P, (45)

where the initial operator P : & — ® is assumed to be given a priori.
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Concerning the n-particle distribution functions F),(x1, x2, ..., Tn; D1, P2, .-, Pult),n € Z4,
the expressions

Fn(x17x27 s s Ty PL, P2y - - 7p'f7«’t) =

= tr (P : w(xy;pr1)w(ze; p2) ... w(Tn;pn) 1) =

1 6 1 6 19
T i of(wup) i 0f(wasp2) i 0f (@nspa) A=
(4.6)

hold as 1 — 0, where

1 0 1 o

: ;5f(371;]91) o E5f(9?1;p1),

'1515‘_15<15

S ) ) (e ) 67

and so on, owing to the last expression of (4.3).

For finding the distribution functions (4.6) we will derive, following N. N. Bogolubov [1, 3],
the corresponding evolution functional equation on the N. N. Bogolubov generating functional
(4.4). Making use of the relationship (4.4), one obtains easily that

oL _ (?Zexp[i(%f)]) =t (P;[H’exp[i(w’f)]o B

—ulr | d%d?’p{i,w<x;p>exp[¢<w,f>]} ¥

T(R3)

sy [P [ #ady [ @y (Via ) wpu:e) s evlitw, 1)
T(R3) T(R3)
(4.8)

Now, based on relationships (4.3), we finally obtain the following Bogolubov type evolution
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functional equation:

1 [ el ).

T(R3)

0 1)
vy [ awt | dgyd%{v(m_y)"16f(x-p>16f<y-s) iy } (*+9)
T(R3) T(R3) ’ 7

2
where, by definition, T'(p) := %, p € R3, is the kinetic free particle energy.
m

Having analyzed the Bogolubov generating functional (4.4) within the quasiclassical Wigner
density operator representation (4.1), one can obtain an exact functional-operator solution to
the evolution Bogolubov functional equation (4.9):

L) = % Z(f) = exp[®(8)]Lo(f) (4.10)

for f € S(T(R?);R). Here we denoted

Z TL' / d3x1d3p1 / d31'2d3p2 oo X

n€Z+ T(R3)

/ d3xnd3pnq)n(xlvx2a"'7zn;p17p2a"'apn|t)x
T(R3)

><:1 0 ! g 1 d 5 (4.11)

i 0f(x1;p1) 3 6f(wa5p2) 0 0f(wn;pn)

Z /d3x1d3p1 / d3x2d3p2... / dgzvnd?’pnx

nezy " T(]R3 T(R3) T(R3)

n
- P1 D2 D .
x F, (arl — gy = o= pLp, ,pn) Hl{eXp[Zf(xj;pj)] —1},
]:

where Fy, (21,72, ..., 2Zn;P1,D2,---,Pn), n € Z., are given n-particle distribution functions at
t = 0, that is, owing to the definition (4.6),

Fo(21,29, .., 20 D1,02, - - Pn) - = tr (P w(wy; pr)w(ze; p2) ... w(xn;pn) @) =
1 ) 1 ) 1 )

T Ao (@) i 6f(waipe) i 0f (@nipn) £l o =0
(4.12)
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and @, (x1,x9,...,Tn;P1,P2,---,Dn|t), n € Z,,areso called cluster potential functions determi-
ned recursively by means of the following functional-operator relationships:

log(Py 1 P) : Z / B d®py / dP*zod’ps ... / d* 2y d®pp x
n€Z+ T(R3) T(R3)
X Dy (21,22, .., Tni D1, D2y - - - Pult) + w(Tsp1)w(T2;p2) . w(Tn;pn) : (4.13)
with
it _ it
Py = exp (_hHO> P exp <5H0> (4.14)

being the statistical operator of a noninteracting particle system.
If the initial distribution at ¢ = 0 is “chaotic’; that is, for all n € Z, the relationships

n
Fn(xhx?a"-vxn;php%'"7pn HF xjvp] (415)

hold, one gets easily from (4.11) and (4.15) that

o) = e | [ dadyh (o - Lop) eolis@p) -1} | @16)
T(R3)

If the “chaotic” condition is not fulfilled, we can proceed to the usual cluster Ursell - Mayer
type representation [4, 6] for the Bogolubov generating functional (4.10),

Lo(f) = exp Z /d3x1d3p1 / dBrod’ps . . . / A3z d3p, x

nez " T(R3) T(R3)

n
_ b1 P2 p .
X Gn (xl - Et T — mt,...,xn — Ent;pl,pg, e ,pn> H{exp[zf(xj;pj)] -1},
j=1
(4.17)

where the “cluster” distribution functions g, (x1,x2,...,Tn;P1,P2,-.-,0n), n € Z4, have the
form

?]n($1,132a <o Ty P1, P2, - - apn) = Z(il)m—i_l(m - 1)' H Fo’[]}((xkapk‘) € U[]])a

on] J=1

Fn(x17$27'"7xn;p17p27"'7pn = ZHQO‘ xkvpk € U[J])’
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and o[n| denotes a partition of the set {1,2,...,n} into nonintersecting subsets {o[j] : j =
= 1,m}, thatis, o[j] No[k] = @ for j # k = 1,m, and o[n] = UL, o]j]. In particular,

gi(x1;p1) = Fi(zm),

G2(x1, 23 p1,p2) = Fo(x1, x2;p1,p2) — Fi(z1;p1) Fi(x2;p2),. .-,

and so on. The N. N. Bogolubov generating functional (4.10), owing to (4.11) and (4.17), allows
a natural infinite series expansion whose coefficients can be represented as above by means of
the usual Ursell —Mayer type diagram expressions, which can be effectively used for studying
kinetic properties of our many-particle statistical system.

5. Conclusions. In the article we showed that the N. N. Bogolubov generating functional
method is a very effective tool for studying distribution functions of both equilibrium and
nonequilibrium states of classical many-particle dynamical systems. In some cases the
N. N. Bogolubov generating functionals can be represented by means of infinite Ursell - Mayer
diagram expansions that converge under some additional constraints on the statistical system
under consideration. We show for the first time that the Bogolubov idea [1] to use the Wigner
density operator transformation for studying the nonequilibrium distribution functions proved
to be very effective, having proposed a new analytic form of a nonstationary solution to the
classical N. N. Bogoliubov evolution functional equation.
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