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We present conditions ensuring the existence of a solution in the class C1([0, T ]) for the singu-
lar periodic boundary-value problem (r(x′))′ = H(p(t) + q(x))k(x′)f(t, x, x′), x(0) = x(T ),
x′(0) = x′(T ). Here the function k is singular at u = 0 in the following sense: lim

u→0
k(u) = ∞.

Since the derivative of any solution to our periodic boundary-value problem vanishes at least
once on [0, T ], solutions of the considered problem pass through the singular point x′ = 0 of
the phase variable x′.
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1. Introduction, Notation

Let T > 0 and J = [0, T ]. Throughout the paper ‖x‖ = max{|x(t)| : t ∈ J} denotes the
norm in C0(J) and ‖x‖L =

∫ T
0 |x(t)| dt the norm in L(J). Next we use the following sets.

Lloc(R) is the set of Lebesgue integrable functions on any compact interval [a, b] ⊂ R.
AC(J) is the set of absolutely continuous functions on J .
ACloc(R) is the set of functions x such that x ∈ AC([a, b]) for any compact interval [a, b] ⊂

R.
AC1(J) is the set of functions having absolutely continuous derivative on J .
Carloc(J ×D) is the set of functions satisfying the local Carathéodory conditions on J ×D,

where D is a subset of R2.
Consider singular differential equations of the form

(r(x′(t)))′ = H(p(t) + q(x(t)))k(x′(t))f(t, x(t), x′(t)) (1)

together with the periodic boundary conditions

x(0) = x(T ), x′(0) = x′(T ), (2)

where r,H, p, and q are continuous, k is continuous on R \ {0} and singular at u = 0 in the
following sense lim

u→0
k(u) = ∞ and f ∈ Carloc(J ×D) or f ∈ C0(J ×D).

In the case of f ∈ Carloc(J ×D), we say that x is a solution of the periodic boundary-value
problem (PBVP) (1), (2) if x ∈ C1(J), r(x′) ∈ AC(J), the set A = {t : t ∈ J, x′(t) = 0} is
finite, x satisfies the periodic conditions (2) and (1) holds a.e. on J .
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In the case of f ∈ C0(J ×D), a function x ∈ C1(J) is said to be a solution of PBVP (1), (2)
if the set A = {t : t ∈ J, x′(t) = 0} is finite, r(x′) ∈ C1(J \ A), x satisfies the periodic
conditions (2) and (1) holds on J \ A.

There are many papers which deal with singular PBVPs where the considered second order
differential equations have singularities in the phase variable x at the point x = 0 (see, e.g., [1 –
7] and the references therein). Common in these papers is the fact that the considered solutions
are either positive or negative, that is, solutions do not pass through the singular point x = 0.
This situation has been partially overcomed in [8] where differential equations of the form

(r(x(t))x′(t))′ = µq(t)f∗(t, x(t))

with a positive parameter µ were studied. Here f∗ may be singular at x = 0 and x = A > 0.
If lim
u→0+

r(u) = ∞ and some assumptions on r, q and f∗ are satisfied, then there exists µ∗ > 0

such that for µ ∈ (0, µ∗) the above differential equations have a solution x in the class C1(J)
satisfying the periodic boundary conditions x(0) = x′(0) = 0, x(T ) = x′(T ) = 0 and 0 <
x(t) < A for t ∈ (0, T ) (see [8], Theorem 2).

In this paper we present conditions ensuring the existence of a solution to the singular
PBVP (1), (2) where the differential equation (1) is singular at the point x′ = 0 of the phase
variable x′. Since for any solution x of PBVP (1), (2) the derivative x′ has at least one zero on J ,
we see that solutions of our PBVP pass through the singularity of (1). The proofs of existence
results are based on a trick in [9] by which we transform the singularity on the right-hand side
of (1) to its left-hand side. The obtained differential equation has now regular right-hand side,
and so we can apply, to the transformed PBVP, existence results given in [10]. The solvability
of PBVP (1), (2) is presented in Theorem 1 under the assumption that f satisfies the local
Carathéodory conditions and for continuous f in Theorem 2.

From now on, we assume that the functions r, H, k, p, q, and f in (1) satisfy the following
assumptions:

(H1) r ∈ ACloc(R) is increasing and maps R onto R, r(0) = 0;
(H2) k ∈ C0(R) \ {0}) is positive, lim

u→0
k(u) = ∞, and lim inf

|u|→∞
k(u) > 1;

(H3)

∫
0

1

k(r−1(s))
ds < ∞,

0∫
1

k(r−1(s))
ds < ∞,

0∫
−∞

1

k(r−1(s))
ds = ∞,

∫
0

t∞ 1

k(r−1(s))
ds = ∞;

(H4) The inverse z−1 to z : R → R, z(t) =

u∫
0

1

k(r−1(s))
ds, is a locally Lipschitzian function

on R;
(H5) H ∈ C0(R) is increasing on R and H(0) = 0;
(H6) p ∈ C0(J) and there exist α, β ∈ R, α < β, such that q ∈ C0([α, β]) is increasing on

[α, β],

p(t) + q(α) ≤ 0 ≤ p(t) + q(β) for t ∈ J,



ON SOLVABILITY OF SINGULAR PERIODIC BOUNDARY-VALUE PROBLEMS 531

q−1(−p) is differentiable on J and (q−1(−p(t)))′ 6= 0 for t ∈ J , where q−1 is the inverse to q
and either

(H7) f ∈ Carloc(J × [α, β]× R) and

χ(t) ≤ f(t, x, y) ≤ (h(t) + |y|)ω(|y|) for (t, x, y) ∈ J × [α, β]× R,

where χ, h ∈ L(J) are positive on J and ω ∈ C0([0,∞)) is positive and nondecreasing on
[0,∞) or

(H8) f ∈ C0(J × [α, β]× R) and

0 < f(t, x, y) ≤ (h(t) + |y|)ω(|y|) for (t, x, y) ∈ J × [α, β]× R,

where h ∈ C0(J) is positive on J and ω ∈ C0([0,∞)) is positive and nondecreasing on [0,∞).

Remark 1. The condition lim inf
|u|→∞

k(u) > 1 in (H2) can be replaced by the weaker one

lim inf
|u|→∞

k(u) > 0. Indeed, if γ = lim inf
|u|→∞

k(u) ≤ 1, we use in (1) for example the functions 2k/γ

and γf/2 instead of k and f , respectively.

Remark 2. If we set

%(u) =


1

k(u)
for u ∈ R \ {0},

0 for u = 0,

then % is continuous and bounded on R.

Let w ∈ ACloc(R) and for each n ∈ N the functions [1/k]n ∈ C0(R) and wn ∈ ACloc(R) be
defined by the formulas

w(u) =

r(u)∫
0

1

k(r−1(s))
ds, (3)

[
1

k

]
n

(u) =


1

k(u)
if k(u) ≥ 1

n
,

n if k(u) <
1

n
,

0 if u = 0,

(4)

wn(u) =

r(u)∫
0

[1

k

]
n
(r−1(s)) ds. (5)

Then [1/k]n (u) ≤ [1/k]n+1 (u) for u ∈ R and n ∈ N, lim
n→∞

[1/k]n (u) = 1/k(u) for u ∈ R \ {0}
and

0 ≤ wn(u) ≤ wn+1(u) for u ∈ [0,∞), n ∈ N,
0 ≥ wn(u) ≥ wn+1(u) for u ∈ (−∞, 0], n ∈ N.

(6)
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By (H2), there is a c ∈ (0,∞) such that k(u) ≥ 1 for |u| ≥ c, and so [1/k]n (u) = 1/k(u) for
|u| ≥ c and n ∈ N. Hence, by (H1) and (H3),

lim
u→±∞

wn(u) = ±∞ for n ∈ N. (7)

According to Levi’s theorem

lim
n→∞

wn(u) =

r(u)∫
0

1

k(r−1(s))
ds for u ∈ R (8)

and combining (6), (8) and Dini’s theorem we conclude that lim
n→∞

wn(u) = w(u) locally uni-

formly on R and
0 ≤ wn(u) ≤ w(u) for u ∈ [0,∞), n ∈ N,

0 ≥ wn(u) ≥ w(u) for u ∈ (−∞, 0], n ∈ N.
(9)

For the inverse w−1
n to wn we have (cf. (6) and (7))

w−1
n (u) ≥ w−1

n+1(u) ≥ 0 for u ∈ [0,∞), n ∈ N,
w−1
n (u) ≤ w−1

n+1(u) ≤ 0 for u ∈ (−∞, 0], n ∈ N
(10)

and since lim
n→∞

w−1
n (u) = w−1(u) for u ∈ R, where w−1 is the inverse to w, Dini’s theorem

gives that the last convergence is locally uniform on R.

2. Auxiliary Regular Periodic Boundary-Value Problems

Consider the family of regular differential equations

(wn(x′(t)))′ = H(p(t) + q(x(t)))f(t, x(t), x′(t)) (11)

depending on n ∈ N. Here wn is defined by (5).
If f ∈ Carloc(J ×D), a function x is said to be a solution of PBVP (11)n, (2) if x ∈ C1(J),

wn(x′) ∈ AC(J), x satisfies the periodic conditions (2) and (11)n holds a.e. on the interval J .

Lemma 1. Let n ∈ N and let assumptions (H1) – (H7) and

0∫
−∞

1

ω(|w−1
1 (s)|)

ds =

∞∫
0

1

ω(w−1
1 (s))

ds = ∞ (12)

be satisfied with w−1
1 the inverse to w1 given by (5). Then there exists a solution of PBVP

(11)n, (2) such that
α ≤ x(t) ≤ β, |x′(t)| ≤ P for t ∈ J, (13)

where P is a positive constant satisfying the inequality

min


0∫

w1(−P )

1

ω(|w−1
1 (s)|)

ds,

w1(P )∫
0

1

ω(w−1
1 (s))

ds

 > 2L(‖h‖L + 2 max{|α|, |β|}) (14)

with L = max {|H(u)| : |u| ≤ ‖p‖+ max{|q(α)|, |q(β)|}}.
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Proof. By (H6) and (H7),

H(p(t) + q(α))f(t, α, 0) ≤ 0 ≤ H(p(t) + q(β))f(t, β, 0)

for a.e. t ∈ J , and so we see that the constant functions α and β are lower and upper functions
of PBVP (11)n, (2) (for the definition of lower and upper functions of PBVP (11)n, (2), see
[10]. Then, by [10], there exists a solution x of PBVP (11)n, (2) such that

α ≤ x(t) ≤ β for t ∈ J (15)

and from (15) and (H7) it follows

(wn(x′(t)))′ ≤ |H(p(t) + q(x(t)))|(h(t) + |x′(t)|)ω(|x′(t)|)

≤ L(h(t) + |x′(t)|)ω(|x′(t)|)

for a.e. t ∈ J and applying Lemma 1 in [10] to the above inequality we have ‖x′‖ ≤ Pn, where
Pn is a positive constant satisfying the inequality

min


0∫

wn(−Pn)

1

ω(|w−1
n (s)|)

ds,

wn(Pn)∫
0

1

ω(w−1
n (s))

ds

 > 2L(‖h‖L + 2 max{|α|, |β|}). (16)

We are going to show that Pn can be selected such that Pn = P . First assume that u ∈ (−∞, 0].
Since 0 ≥ w1(u) ≥ wn(u), w−1

1 (u) ≤ w−1
n (u) ≤ 0 by (6) and (10), and ω is positive and

nondecreasing on [0,∞) by (H7), we see that ω(|w−1
1 (u)|) ≥ ω(|w−1

n (u)|) and

0∫
wn(u)

1

ω(|w−1
n (s)|)

ds ≥
0∫

w1(u)

1

ω(|w−1
1 (s)|)

ds for u ∈ (−∞, 0]. (17)

Similarly we can verify that

wn(v)∫
0

1

ω(w−1
n (s))

ds ≥
w1(v)∫

0

1

ω(w−1
1 (s))

ds for v ∈ [0,∞). (18)

Set

∆j(v) = min


0∫

wj(−v)

1

ω(|w−1
j (s)|)

ds,

wj(v)∫
0

1

ω(w−1
j (s))

ds


for v ∈ [0,∞) and j ∈ {1, n}. Then ∆1, ∆n are continuous and increasing on [0,∞) and
∆1 ≤ ∆n on [0,∞) by (17) and (18). In addition, lim

v→∞
∆1(v) = ∞ by assumption (12). Since

∆1(P ) > 2L(‖h‖L + 2 max{|α|, |β|}) by (14), we deduce that (16) is satisfied with Pn = P . We
have proved that ‖x′‖ ≤ P .
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Remark 3. If the function k in (1) satisfies k(u) ≥ 1 for u ∈ R \ {0} then [1/k]1 (u) =
1/k(u) for u ∈ R \ {0} and so (cf. (5)) w1(u) = w(u) on R. Hence conditions (12) and (14) can
be written in the form

0∫
−∞

1

ω(|w−1(s)|)
ds =

∞∫
0

1

ω(w−1(s))
ds = ∞

and

min


0∫

w(−P )

1

ω(|w−1(s)|)
ds,

w(P )∫
0

1

ω(w−1(s))
ds

 > 2L(‖h‖L + 2 max{|α|, |β|}),

respectively.

3. Existence Results

Theorem 1. Let assumptions (H1) – (H7) and (12) be satisfied. Then there exists a solution x
of PBVP (1), (2) satisfying (13), where P is a positive constant for which (14) holds.

Proof. By Lemma 1, for each n ∈ N, there exists a solution xn of PBVP (11)n, (2) such
that

α ≤ xn(t) ≤ β, |x′n(t)| ≤ P for t ∈ J, n ∈ N. (19)

By (19), {xn} is bounded in C1(J). We now verify that {x′n(t)} is equicontinuous on J . First
we show that {wn(x′n(t))} is equicontinuous on J . Since f ∈ Carloc(J × [α, β] × R), there is a
ν ∈ L(J) such that 0 ≤ f(t, xn(t), x′n(t)) ≤ ν(t) for a.e. t ∈ J and n ∈ N. Then

|wn(x′n(t1))− wn(x′n(t2))| ≤ L

∣∣∣∣∣∣
t2∫
t1

f(t, xn(t), x′n(t)) dt

∣∣∣∣∣∣ ≤ L

∣∣∣∣∣∣
t2∫
t1

ν(t) dt

∣∣∣∣∣∣
for t1, t2 ∈ J and n ∈ N, where L is defined in Lemma 1. Consequently, {wn(x′(t))} is equicon-
tinuous on J . Assume, on the contrary, that {x′n(t)} is not equicontinuous on J . Then there
exist ε0 > 0, a subsequence {kn} of N, and sequences {t̂n}, {t̄n} ⊂ J such that
lim
n→∞

(t̂n − t̄n) = 0 and

|x′kn(t̂n)− x′kn(t̄n)| ≥ ε0 for n ∈ N. (20)

From the boundedness of {t̂n} and {t̄n} it follows that we can assume their convergence and,
with respect to lim

n→∞
(t̂n − t̄n) = 0, we then have

lim
n→∞

t̂n = lim
n→∞

t̄n = t∗. (21)

We claim that there is a % > 0 such that

r(v)∫
r(u)

1

k(r−1(s))
ds ≥ % whenever u, v ∈ [−P, P ] and v − u ≥ ε0. (22)
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If not, there are sequences {un}, {vn} ⊂ [−P, P ], vn − un ≥ ε0 for which

lim
n→∞

r(vn)∫
r(un)

1

k(r−1(s))
ds = 0.

Without loss of generality we may assume that {un}, {vn} are convergent, say lim
n→∞

un = u∗,

lim
n→∞

vn = v∗. Of course, v∗ − u∗ ≥ ε0. Then

0 = lim
n→∞

r(vn)∫
r(un)

1

k(r−1(s))
ds =

r(v∗)∫
r(u∗)

1

k(r−1(s))
ds,

contrary to r(v∗) > r(u∗) and 1/k(r−1(s)) > 0 on R \ {0}. Hence (20) and (22) yield∣∣∣∣∣∣∣∣
r(x′kn (t̄n))∫
r(x′kn (t̂n))

1

k(r−1(s))
ds

∣∣∣∣∣∣∣∣ ≥ % for n ∈ N. (23)

We know that lim
n→∞

wn(t) = w(t) uniformly on [−P, P ] and {wn(x′n(t))} is equicontinuous on

J . Therefore there exist µ ∈ (0,∞) and n∗ ∈ N such that

|wkn(x′kn(t1))− wkn(x′kn(t2))| < %

6
for n ∈ N and t1, t2 ∈ J, |t1 − t2| < µ, (24)

|wkn(u)− w(u)| < %

6
for u ∈ [−P, P ], n ≥ n∗, (25)

and
|t̂n − t̄n| < µ for n ≥ n∗. (26)

By (24) – (26),

|wkn(x′kn(t̂n))− w(x′kn(t̂n))| < %

6
, |wkn(x′kn(t̄n))− w(x′kn(t̄n))| < %

6

and

|wkn(x′kn(t̂n))− wkn(x′kn(t̄n))| < %

6

for n ≥ n∗. Hence,

|w(x′kn(t̄n))− w(x′kn(t̂n))| ≤ |w(x′kn(t̄n))− wkn(x′kn(t̄n))|

+ |wkn(x′kn(t̄n))− wkn(x′kn(t̂n))|+ |wkn(x′kn(t̂n))− w(x′kn(t̂n))| < %

2
,

and consequently ∣∣∣∣∣∣∣∣
r(x′kn (t̄n))∫
r(x′kn (t̂n))

1

k(r−1(s))
ds

∣∣∣∣∣∣∣∣ = |w(x′kn(t̄n))− w(x′kn(t̂n))| < %

2
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for n ≥ n∗, contrary to (23). Therefore {x′(t)} is equicontinuous on J .
Applying the Arzelà – Ascoli theorem we can assume without loss of generality that {xn}

is convergent in C1(J), lim
n→∞

xn = x. Then x ∈ C1(J) satisfies the periodic conditions (2)

and inequalities (13). Since lim
n→∞

wn(t) = w(t) uniformly on [P,−P ] and lim
n→∞

x
(j)
n (t) = x(j)(t)

uniformly on J for j = 0, 1, we have lim
n→∞

wn(x′n(t)) = w(x′(t)), lim
n→∞

q(xn(t)) = q(x(t))

uniformly on J and, by the Lebesgue dominated theorem,

lim
n→∞

t∫
0

H(p(s) + q(xn(s)))f(s, xn(s), x′n(s)) ds

=

t∫
0

H(p(s) + q(x(s)))f(s, x(s), x′(s)) ds

for t ∈ J . Taking the limit as n → ∞ in the equalities

wn(x′n(t)) = wn(x′n(0)) +

t∫
0

H(p(s) + q(xn(s)))f(s, xn(s), x′n(s)) ds

for t ∈ J and n ∈ N, we have

w(x′(t)) = w(x′(0)) +

t∫
0

H(p(s) + q(x(s)))f(s, x(s), x′(s)) ds for t ∈ J. (27)

Set A = {t : t ∈ J, x′(t) = 0}. On the contrary, suppose that A is an infinite set. Then there
exists a sequence {tn} ⊂ A, ti 6= tj for i 6= j and we can assume that {tn} is convergent,
lim
n→∞

tn = t0. Clearly, t0 ∈ A. Now from (27) it follows

tn∫
t0

H(p(s) + q(x(s)))f(s, x(s), x′(s)) ds = 0, n ∈ N.

By (H7), f(t, x(t), x′(t)) ≥ χ(t) for a.e. t ∈ J with χ ∈ L1(J) positive on J and consequently,
by the mean value theorem, there exists a sequence {ξn}, where ξn lies in the open interval
having the end points t0 and tn, such that p(ξn) + q(x(ξn)) = 0. Then from the continuity of
p, q and from lim

n→∞
ξn = t0 we deduce that p(t0) + q(x(t0)) = 0. Since x(ξn) = q−1(−p(ξn))

and x(t0) = q−1(−p(t0)), we have

x(ξn)− x(t0)

ξn − t0
=
q−1(−p(ξn))− q−1(−p(t0))

ξn − t0
, n ∈ N.

Letting n → ∞ yields x′(t0) = (q−1(−p(t)))′t=t0 . But t0 ∈ A gives x′(t0) = 0, contrary
to (q−1(−p(t)))′t=t0 6= 0 by (H6). Hence A is a finite set. Now from (27) we deduce that
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w(x′) ∈ AC(J) and since w(x′(t)) =

r(x′(t))∫
0

1

k(r−1(s))
ds, we have r(x′(t)) = z−1(w(x′(t))) for

t ∈ J , where z−1 is the inverse to z given in (H4). By (H4), z−1 is locally Lipschitzian on R,
and so r(x′) ∈ AC(J). We know that w(x′(t)) = 0 if and only if t ∈ A, where A is a finite set
and k(u) > 0 for u ∈ R \ {0}. Hence

(w(x′(t)))′ =
(r(x′(t)))′

k(x′(t))
for a.e. t ∈ J

and then (27) implies

(r(x′(t)))′ = H(p(t) + q(x(t)))k(x′(t))f(t, x(t), x′(t)) for a.e. t ∈ J.

Hence x is a solution of PBVP (1), (2).

Theorem 2. Let assumptions (H1) − (H6), (H8), and (12) be satisfied. Then there exists a
solution x of PBVP (1), (2) satisfying (13) with a positive constant P for which (14) holds.

Proof. As in the proof of Theorem 1, let {xn} be a sequence of solutions of PBVPs (11)n, (2)
satisfying inequalities (19). Since now f is continuous by (H8), we have x′n, wn(x′n) ∈ C1(J)
and (11)n with x = xn holds for t ∈ J . Arguing as in the proof of Theorem 1 with

ν(t) = ν = max{f(t, x, y) : (t, x, y) ∈ J × [α, β]× [−P, P ]}

we show that without loss of generality {xn} is convergent in C1(J), lim
n→∞

xn = x and (13) and

(27) hold. Therefore w(x′) ∈ C1(J). By (H8),

min{f(t, x(t), x′(t)) : t ∈ J} = ε > 0

and setting χ(t) = ε in the proof of Theorem 1, we verify that A = {t : t ∈ J, x′(t) = 0}
is a finite set. Now from the equality r(x′(t)) = z−1(w(x′(t))), t ∈ J , we deduce that r(x′) ∈
C1(J \ A), (w(x′(t)))′ = (r(x′(t)))′/k(x′(t)) for t ∈ J \ A, and so (27) yields

(r(x′(t)))′ = H(p(t) + q(x(t)))k(x′(t))f(t, x(t), x′(t)) for t ∈ J \ A.

Hence x is a solution of PBVP (1), (2).

Example 1. Let n ∈ N, γ ∈ (0,∞), and a ∈ (1,∞). Consider the differential equation

x′′ = (sin t+ x)2n+1

(
1

|x′|γ
+ a

)
f1(t, x), (28)

where f1 ∈ Car(J × [−1, 1]) and χ(t) ≤ f1(t, x) for (t, x) ∈ J × [−1, 1] with a positive function
χ ∈ L(J). Then (28) satisfies assumptions (H1) − (H7) and (12) with r(u) = u, k(u) =
1/|u|γ + a, H(u) = u2n+1, p(t) = sin t, q(x) = x, ω(u) = 1 and α = −1, β = 1. Hence
Theorem 1 can be applied to PBVP (28), (2).
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