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In this work we consider a linear thermoelectromagnetic material, whose behaviour is charac-
terized by two rate-type equations for the heat flux and the electric current density. We derive the
restrictions imposed by the laws of thermodynamics on the constitutive equations and introduce
the free energy which yields the existence of a domain of dependence. Uniqueness, existence and
asymptotic stability theorems are then proved.
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1. Introduction

Electromagnetic materials in presence of thermal effects have been studied by Coleman
and Dill, who have also derived the restrictions which the laws of thermodynamics place on the
constitutive equations [1, 2]. Heat conduction in electromagnetic solids has been considered in
[3] to study its effects on the asymptotic behaviour of the solutions when constitutive equations
with memory have been supposed for the heat flux and for the electric current density.

In this work we are concerned with a linear thermoelectromagnetic solid, characterized by
a rate-type equation both for the heat flux and for the electric current density, while the simple
proportionality is assumed between the electric displacement, the magnetic induction and the
electric and magnetic fields, respectively.

After introducing in Sect. 2 Maxwell’s equations with the energy one, in Sect. 3 we consider
the thermodynamics of simple materials [4, 5], in order to derive the restrictions on the consti-
tutive equations and to introduce the free energy, which allows us to obtain, in the following
section, a domain of dependence. A theorem of uniqueness, existence and asymptotic stability
of solutions is then proved in the last section.

2. Basic Equations

We consider a thermoelectromagnetic solid B, which at time ¢ occupies a bounded and
regular domain ( in the three-dimensional Euclidean space R®. The position vector in {2 is
denoted by x and n is the unit outward normal to the smooth boundary 0f2.

We restrict our attention to the linear thermoelectromagnetic theory, where B is homoge-
neous, isotropic and conducting material characterized, in particular, by two rate-type equa-
tions both for the electric current density and for the heat flux. Thus, we assume for the electric
displacement D, the magnetic induction B, the rate at which heat is absorbed per unit volume
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h the following constitutive equations:

D(x,t) = cE(x,t) +Y(x,t)a, B(x,t) = pH(x,1), (2.1)

h(x,t) = cd(x,t) + Og |A1 - D(x,t)/e + Ay - B(x,t) /1|, (2.2)

where E and H are the electric and magnetic fields, 1} is the temperature relative to the uniform
absolute reference temperature O in (2, while for the electric current density J and for the heat
flux q [6] we suppose that the following equations

aJ(x,t) +J(x,t) = cE(x,1), 7q(x,t) + q(x,t) = —kg(x,t), (2.3)

hold, where g = V4 is the temperature gradient.

In these relations the dielectric constant ¢, the permeability ; and the specific heat ¢ are
positive constants as well as the other two parameters « and 7; moreover, a, A; and A, denote
three constant vectors.

The fundamental system of thermoelectromagnetism consists of Maxwell’s equations to-
gether with the energy equation, i.e.,

V x H(x,t) = D(x,t) + J(x,t) + Jf(x,t), V xE(x,t) = —B(x,1), (2.4)
V- B(x,t) =0, V-D(x,t) = p, (2.5)
h(x,t) = =V -q(x,t) + r(x, 1), (2.6)

where p is the free charge density, J; denotes a forced current density and is a known function
of x and t as well as r , which is the heat sources for unit volume; moreover, we have supposed
that the mass density is unitary in (2.6).

Sometimes we will understand the dependence on x.

3. Thermodynamic Restrictions on the Constitutive Equations

The assumed constitutive equations allow us to consider B as a simple material, whose
state is s = (E,H,J,q,?), while the process of the material element is given by P(t) =
(E(t), H(t),9(t),g(t)) and the response function is U(t) = (D(t),B(t),J(t),h(t),q(t)) for
everyt € [0,dp) C RY, dp being the duration of the process.

The First Law of Thermodynamics for these materials is expressed by this equality

7{ h(t) + D) - B(t) + B(t) - H(t) + 3(t) - B(8)]dt = 0, 3.1)

which must hold for any cyclic process [1, 2], and, for smooth processes, yields the existence of
the internal energy e which satisfies

é(t) = h(t) + D(t) - E(t) + B(t) - H(t) + J(t) - E(¢). (3.2)
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The Second Law states that for any cyclic process the inequality [1, 2]

75 [h(t)/[00 + 0(1)] + a(t) - g(t)/[O0 + O(t)]2} dt < 0 (3.3)

holds, with the equality sign referring to reversible processes.
Also by (3.3) it is possible to derive, for smooth processes, another local relation,

0(t) = h(t)/[Oo +I(t)] +a(t) - g(t)/[00 +I(1)]?, (34)
where 7 denotes the entropy.

We are concerned with the linear theory, therefore we must consider the approximation of
the Second Law; thus, (3.3) and (3.4) become [7]

f {h(1)[©0 — 9(8)] + a(t) - g(t)} dt/O3 < 0, (3.5)

0(t) = {h(t)[00 — I(t)] +alt) - g(1)} /65, (3.6)

We first examine (3.5), which, eliminating ©h(¢) by use of (3.1) and integrating on any
cycle, yields

74 {h(t)o(t) — @0[B(1) - D(t) + F1(1) - B(t) ~ I(1) - B®)] — a(t) -g(®)} dt > 0. (37)

If we substitute into (3.7) the constitutive equations (2.1), (2.2) and the two relations, we
can derive from (2.3) for E and g on supposing o # 0 and k£ # 0, we get an inequality, which,
integrated on any cycle, reduces to

jf { (A1~ ) - B0) + A - FL(1)] 9(0) + %JQ(t) + k1@0q2(t)} dt > 0, (3.8)
From this inequality, taking account of the independence of E, H and g, it follows that
A = a, A, =0, o >0, k> 0. (3.9)
In particular, the expression (2.2), using (3.9); 2 and (2.1), becomes
h(x,t) = (c+ ©pa’/e) I(x,t) + Opa - B(x,1). (3.10)
Let us introduce the pseudo-free energy

Y(x,t) = e(x,t) — Ogn(x,t). (3.11)

Substituting into (3.6) the expression of & derived by (3.2) and using (3.11) yields

d(t) < [M(B)I(t) — alt) - g(t)]/00 +D(¢) - E(t) + B(¢) - H(t) + I(t) - E(¢). (3.12)
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We introduce the following functional

11 1
D(x,t) = = |=D2(x,t) + ~B2(x,t) + “I2(x,t) + ——q°
2 |e " o

k0,

c

@OﬁQ(X, t).  (3.13)

(x,t) +

We observe that this free energy ¢ satisfies (3.12). In fact, if we differentiate ¢) with respect
to time, taking account of (2.1) and (3.10), eliminating J and ¢ with (2.3), we get

(t) = So[h(t)ﬁ(t) —q(t)-g(t)] +D(t) - E(t)
FB() - HE) + 30 - Bt) — ——q2(t) — ~32(1), (3.14)
kO o

which satisfies (3.12).

4. Domain of Dependence Inequality

The system of equations of the evolutive problem of the thermoelectromagnetic solid B
consists of (2.4) and (2.6), which, on account of (2.1) and (3.10), can be put in the following
form:

V x H(x,t) = eB(x,t) + J(x, t)a + J(x,t) + T £(x,1), (4.1)
V x B(x,t) = —uH(x,t), (4.2)
(c+ ©0a%/e) V(x,t) + Opa- E(x,t) = —V - q(x,t) + r(x,1), (4.3)

together with (2.3) and (2.5);, which becomes
V-H(x,t) =0 (44)
for any (x,t) € O x RT. We observe that Eq. (2.5),eV-E+Vd-a = p, allows us to determine
" To this system we must add the initial conditions
E(x,0) = Eo(x), H(x,0) = Ho(x), J(x,0) = Jo(x),
q(x,0) = qo(x), 9(,0) = Jo(x) Vx € Q (4.5)
and the boundary conditions

E(x,t) xn =0, 9(x,t)=0 V(x,t) €90 xR". (4.6)

Compatibility of the boundary conditions and the initial ones is assumed.
We dente by P this initial-boundary-value problem.
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Theorem 4.1. The free energy defined by (3.13) satisfies

—[E(t) x H(t) + 9(t)a(t)/O0] - u < x4)(1), (4.7)

where u is a unit vector and

X =2 { (Tc> + ” e24 | a| <CO> 2y (4.8)

Proof. To prove (4.7) it is enough to consider (3.13), from which it follows that

1 9 12 4 9 1/2 o 112 9 712
Yipi< M LiB< [w] lal< [@ow} 19 |< [@0?4 . (49)
5 5 U 5 T c

and to derive from (2.1) the expressions of E and H, which, taking account of (4.9), », yield

91/2 /o) /27 9 1/2
Bl I | al (20) a1 | 29] (4.10)

"

These inequalities give (4.7) at once.

We are now in a position to show the existence of a domain of dependence introducing the
total energy

E(D,t) = /q;(x,t)dx VD C Q. (4.11)
D

Theorem 4.2. The total energy E(D,t) satisfies the following inequality

E(B(x0,p),T) < E(B(x0,p + xT),0)
T
_|_
/

for any fixed (xo,T) € Q x RY, with B(xq,p) = {x € Q: |x —x¢| < p} and x given by (4.8).

[ér(x, D9, £) — 3 5(x,1) - E(x, 1) | dxd (4.12)
0
QNB(x0,p+x(T—t))

Proof. Let

Ey(Q,1) (x, )b (x, t)dx, (4.13)

Il
EO\
<
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where ¢(x,t) € C"O(R3 R™); its derivative with respect to time, taking account of (3.14) and
eliminating , B and D by the use of (2.6) and (2.4), can be written as

Ey(,t) :/{éo [r) — V- (ﬁq)]—Jf-E+V><H-E—V><E-H}¢dx

1 1 y
_ / <JJ2 + k@Ooﬁ) padx + / Pix. (4.14)

This equality, using the identity VX E-H -V x H-E = V- (E x H) and taking account
of the boundary conditions (4.6) and (3.9)3 4, gives the following inequality:

E4(Q,t) g/(rﬁ/@o ~J;-E) ¢dx+/ [(z?q/®o+E X H)-v¢+¢3¢'>] dx

Q Q

- / (9q/©0 + E x H) - ngda. (4.15)
oN

We now put

1 Vy< =6

P(x,t) = ¢s5(x,t) = ds(|x —x0| —p = x(T' = 1)) = ¢s(y) = { 0 Vy> s ’ (4.16)

where ¢5 € C*°(R) is a nonnegative, monotonic decreasing function, 6 > 0, p > 0 and y is

given by (4.8), for any fixed point xg € Qand T € R* with ¢ € (0,7).
We have

d5(y) <0, s(x,t) = d5(y)x, Vos(x,t) = ¢s(y)u(x), (4.17)

where u = V [x — x| is a unit vector.
Substituting (4.17) 3 into (4.15) and using (4.17)1, (4.7) and (4.6) yield

418E, (1) < / Ir(x, 1)9(x, £) /O — 3 ;(x, 1) - B(x, £)] ds(x, t)dx, (4.18)
Q

which, integrated over (0,7, gives

T
Eys (0, T) — Ey,s(€2,0) // ¥(x,t)/00 — I f(x,1) - E(x,1)] ps(x, t)dxdt. (4.19)
0

Whence, the limit as § — 0 yields (4.12), because ¢s(x, t) tends to the characteristic function of
B(xg, p+ x(T' - 1))
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S. Existence, Uniqueness and Asymptotic Stability

The problem P, expressed by the system of equations (4.1) —(4.4) with (2.3) to which are
associated the initial-boundary conditions (4.5), (4.6), can be transformed into an equivalent
one with zero initial data, we shall denote by P’.

For this purpose, we put

E(x,t) = E(x,t) + 1(x,t), H(x,t) = H(x,t) + p(x,t), J(x,t) = J(x,t) + w(x, 1),

a(x,t) = q(x,t) + z(x,t), ¥(x,t) = 15(x, t) + v(x,1),

where (E,H,J,§,9) and (1, p, w, z, v) belong to the function spaces of the solution (E, H, J, g, 9)
and hence, in particular, satisfy the boundary conditions (4.6); moreover, taking in mind (2.5),
we suppose that (1, p, ) satisfies V-p = 0 and eV -1 = —V~ - a and we impose the following
initial conditions:

1(x,0) = Ep(x), p(x,0) = Hy(x), w(x,0) = Jo(x), z(x,0) = qo(x), (x,0) = Jo(x).

Then, we see that (E, H,J,q, 75) satisfies the system of equations of P, where the sources J ¢
and r must be changed and other sources must be introduced in the other equations; all these
sources are expressed by

F(x,t) = Js(x,t) + el(x, 1) + 4(x, t)a + w(x,t) = V x p(x, 1),
G(x,t) = —pp(x,t) = V x 1(x, 1),
R(x,t) = r(x,t) — Opl(x,t) -a— (c+ Opa’/e) 4(x,t) — V - z(x,1),
I(x,t) = —aw(x,t) — w(x,t) + ol(x,t),
Q(x,t) = —rz(x,t) —z(x,t) — EVy(x,1).
We observe that the hypothesis that 1 and ~ satisfy (2.5), without p implies that E and ¢

satisfy (2.5)2 and give p without any new source.
Using the same notation (E, H, J, q, ), without ~, the problem P’ is the following

—eE(x,t) —d(x,t)a+ V x H(x,t) — J(x,t) = F(x,1), (5.1)
pH(x,t) + V x E(x,t) = G(x, 1), (5.2)

Ooa - E(x,1) + (c + 6pa%/e) d(x,t) + V - q(x,t) = R(x,1), (5.3)
ad(x,t) + I(x,t) — oE(x,t) = I(x,1), (5.4)

T4q(x,t) + q(x,t) + kVI(x,t) = Q(x,1), (5.5)
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with (4.4), (4.5), which now become
EO(X) =0, HO(X) =0, JO(X) =0, qO(X) =0, 190(X) =0, (56)

and the boundary conditions (4.6).
Taking account of the Maxwell equation (4.4) and the boundary conditions (4.6), we intro-
duce the function spaces

I(Q) = {H(x) € L*(Q) : /H-Vgp dx =0 Vy e C'SO(Q)},
Q

Hp(Q) = {E(x) € L*(Q) : VX E € L?, E(x)xn |[po= 0},
Hy(Q) = {H(x) € H'(Q): V-H=0, H(x) n |sgo=0},
Hj(Q) = {9(x) € H'(Q) : 9(x) [og= 0},
HQ,RY) = L2 (R HE(Q) x AR Hy(Q)) x LARY; LA(Q))
x L*(RT; L2(Q)) x L*(R*; Hy(Q)),
W(Q,RT) = HY(R'; L*(Q)) x H'(R'; L*(Q)) x H'(RT; L*(Q))
x HY(R*; L2(Q)) x {H'(RY; L2(Q)) N LARY; HY(Q)},
V(Q,RY) = LART; L%(Q)) x L2 (RT;1(Q)) x L*(R*; L*(Q))
x L*(R*; L*(Q)) x L*(RT; L*(Q)),

which are Hilbert’s spaces with the usual scalar products.
The sources belong to V (2, R1), modified in the following manner

8n+1
V/(Q,RT) = {(F,G,I,Q,R) € V(Q,R") : ori(F.GLQR) € V(Q,RY),
on
[ n(F,G,I,Q,R) =0 (n:0,1,2,3)},
ot t=0

where the last conditions on the initial values of the derivatives of the new sources are satisfied
by a suitable choice of the corresponding derivatives of 1, p, w, z and ~.
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Definition 5.1. A 5-tuple (E,H,J,q,9) € H(Q,R") is called weak solution of the problem
P’ with sources (F,G,1,Q,R) € V'(Q,R") if

+oo
/ /[EE(x,t) +9(x,t)a] - &(x,t) — pH(x,t) - h(x, t) — aJ(x,t) - u(x, t)
00

—71q(x,t) - v(x,t) — O [(c/@o + a2/6) Ix,t) + a-E(x, t)] B(x, t)
+V x E(x,t) - h(x,t) + [V x H(x,t) — J(x,1)] - e(x,t) — q(x,t) - VS(x,1)
+ [J(x,t) — oE(x,t)] - u(x,t) +[q(x,t) + kVI(x,t)] - v(x,t)} dxdt

“+oo

= / /[F(x, t)-e(x,t) + G(x,t) - h(x,t) + I(x,t) - u(x,t)

0 Q

+ Q(x,1) - v(x,t) + R(x,t)B(x, t)]dxdt (5.7)

forall (e,h,u,v,3) € W(Q,R") such that e(x,0) = 0, h(x,0) = 0, u(x,0) = 0, v(x,0) = 0,
B(x,0) = 0.

Let us introduce the time-Fourier transform of the causal extension on R of a function
g: R™ — R",

“+oo

g(w) = /g(t)exp[—iwt]dt. (5.8)

— 00

If gand ¢’ € L?>(R"), then the Fourier transforms § and §’ € L?(R) and we have
i) = iwge) = 90), 90) =+ [ gwide (59)

We denote by H(Q,R), W(Q,R) and V'(Q,R) the spaces of the Fourier transforms with
respect to time of the corresponding functions of H(Q,R"), W(Q,R") and V'(Q,R"). Be-
tween each pair of these spaces there exists an isomorphism by virtue of Plancherel’s theorem,
which allows us to define in a natural way the scalar products in (9, R), W(Q,R), V'(Q,R)
and to transform our problem as follows.
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By use of Plancherel’s theorem and (5.9) with zero initial data, (5.7) yields

iﬂ' / / ({—iw[ef}(x,w) +d(x,w)a] + V x H(x,w) +j(x,w)} &% (x,w)
—00

+ liwpH(x, w) + V x B(x,w)] - h*(x,w) + [(1 + iwa)J (x,w)
— oB(x,w)] - 0" (x,w) + [(1 + iwT)d(x, w) + kVI(x,w)] - ¥*(x, w)
+iwOq[(c/Og + a%/e)V(x,w) + a - B(x,w)]F*(x,w) — a(x,w)

+oo
-Vﬁ*(x,w)) dxdw = % / /[f‘(x,w) -8 (x,w) + G(x,w) - h*(x,w)

—oo

=

+1(x,w) -0 (x,w) + Q(x,w) - V¥ (x,w) + R(x,w)B*(x, w)|dxdw (5.10)

for any (&, h, ﬁ,\“/,B) € W(Q,R).
Here * denotes the complex conjugate.

Remark 5.1. Let (E, H,J 4, 19) be the Fourier transform of a weak solution of P/, as a
consequence of (5.10) it follows that it is a weak solution of the problem we can derive by the
formal application of the Fourier transfom with respect to time to the problem P, i.e.,

—iw[eB(x, w) + J(x,w)a]) + V x H(x,w) — I(x,w) = F(x,w), (5.11)
iwpH(x,w) + V x B(x,w) = G(x,w), (5.12)
w [@Oa B(x,w) + (c+ ©pa2/e) d(x, w)] FV-d(xw) = Rx,w), (5.13)
(1 +iwa)d(x,w) — oB(x,w) = I(x,w), (5.14)
(1 + iwr)a(x,w) + kVI(x,w) = Q(x,w), (5.15)
with

E(x,w) xn = 0, I(x,w) = (5.16)

forallw € R.

We observe that these boundary conditions, the first of which yields H - n = 0 too, and the
assumed hypothesis on the greater regularities of ¥ € H}(2) and H € H};(2) with Q simply
connected [8] yield the following inequalities:

/‘ ‘ dx < By(92 /‘w‘ dx, /‘H‘ dx < Bu(©Q /‘va’ dx, (5.17)

Q
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where (y(£2) and Sy (£2) are constant and depend only on the domain . X
We denote by A[(E, H,J,q,9), (&,h,0,¥, )] and by (F, G,1,Q, R), (&,h, 0, ¥, 3)) the first
and the second integral of (5.10), respectively.

Theorem 5.1. Forany (F,G,1,Q, R) € V'(Q, R) there exists a unique solution (E, H,J, §,9) €
H(Q, R) such that

B,
(]
o
[
,52)
$>
>
=
o
<>
E>
I
s
Q
>

,Q. R), (&,h, 0,9, ) (5.18)
for any (&,h, 1‘1,\7,3) € W(Q,R).

Proof. Uniqueness. To show the uniqueness of the solution, we prove that the homo-
geneous system obtained by (5.11)—(5.15), where the right-hand side of each equation is put
equal to zero, has only the zero solution for all w € R.

Thus, keeping always in mind the system so modified, if we consider the inner product of
the conjugate of (5.12) with H and integrate over 2 we have

~ |2 ~ ~
—iw,u/‘H) dx—i—/ V x B Hdx = 0, (5.19)
Q
Q

whose real part gives
Re/v x B* - Hdx = 0. (5.20)

~

From (5.11), the inner product with E*, taking account of the identity V x E*- H -V x H -
E* = V- (E* x H) and (5.16)4, yields

~ |2 o~ N A PN
—iws/ E dx—z’wa-/ﬂE*dx+/VxE*-de—/J-E*dx:0, (5.21)
Q Q Q Q

from which and (5.20) it follows that

wlma-/éﬁ*dx _Re/j - Brdx. (5.22)

The real part of

1—zwa

/ E* . Jdx = 0, (5.23)

Q
derived by the inner product of the conjugate of (5.14) with J, together with (5.22) give

wIma-/@E*dx: 1/
o

Q Q

2
dx. (5.24)

-~

J
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From (5.13), multiplying by J*, upon an integration by parts and on account of (5.16)s, it
follows that

it {@oa-/ Eﬁl*dx+/(c+@oa2/s) &de} —/q-vé*dx —0, (5.25)
Q

Q Q
whence

. 1 o

wIma~/E19*dx lrow Re/q-Vﬁ dx. (5.26)

Q o
The real part of
1 , .12 TN
%(1 —iwt) [ |47 dx+ [ VU*-qdx = 0, (5.27)
Q Q

obtained by taking the inner product of the conjugate of (5.15) with @, allows us to rewrite
(5.26) as

wIma~/E1§*dx = k;%)/\Cﬂde. (5.28)
Q Q
Adding (5.24) and (5.28) we get

7

Q

J

Y +1/|‘\2d =0 (5.29)
X 1Oy q| dx =0, .
Q

from which, taking account of (3.9)3 4, we have

~12
/‘J‘ dx = 0, /\612dx — 0. (5.30)
Q Q

Then, from (5.14) and (5.15) it follows that
. |2 ~12
/‘E‘ dx = 0, /}w‘ dx = 0 (5.31)
Q Q

and from (5.17), or (5.13) and (5.12), analogous results hold for 9 and H.
Existence. To prove the existence we consider the following lemmas.
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Lemma 5.1. For all w € R, any weak solution to the problem (5.11)—(5.16) satisfies the
following inequality

~ |2 ~ 12 ~ 12 ~12
2w)/<F +)G] +|R )dx, (5.32)
Q
where
~ |2 ~ |2 ~12
:/(E 4l
Q
9 ~12 ~ |2 ~ |2 ~12
1@l + [0+ |V < B+ |9 x|+ | V] )ax (533)

and v(w) is a positive function of w, ) and the material constants.

Proof. Let us integrate over (2 the relations derived by taking the inner products of (5.11)
by E*, ad* and V x H*, of the conjugate of (5.12) by H and V x E, of (5.14) by E* and of the
conjugate of the same (5.14) by J, V x H and ad, of (5.15) by VJ*, of the conjugate of the same
(5.15) by g and multiplying (5.13) by J*.

Thus, from (5.11), with two integrations similar to the one made to derive (5.21), we get

~ 2 o~ N -~
—iws/ E dx—z’wa-/ﬁE*dx—i—/H-VxE*dx
Q
- / 5. Brdx = / B Brax, (5.34)
Q Q
~ A N 2
—iwsa~/E19*dx—7jwa2/ Y /V x HO*dx
Q
/ Jordx / F - ad*dx, (5.35)
Q

~ A ~ ~ ~ |2
—iwa‘/vXE-H*dx—iwa-/ﬁVxH*dx—F/‘VXH‘ dx
Q

—/j-VxPI*dx:/ﬁ‘-fo{*dx; (5.36)
Q Q
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from (5.12) we have

151

—iwu/
Q

N ~ ~ |2 ~ ~
—iw,u/H*‘Vxde—F/‘VxE‘ dx:/G*‘Vxde;
Q Q

2 ~ ~ ~ ~
dx—i—/VxE*‘de:/G*‘de,
Q Q

from (5.13), with an integration by parts taking account of (5.16)2, we obtain

PN ~12 ~ A A
iw@oa-/Eﬂ*dx—i—iw (c+@0a2/€)/‘19} dx—/Q~V19*dx— /Rﬂ*dx.
Q
Q

Q Q

Moreover, (5.14) yields

~|2 aL o a, A
(l—iwa)/‘J‘ dx—J/E*-de:/I*-JdX,
Q

Q Q

A o~ ~ |2 A A~
(1—|—iwa)/J~E*dx—a/‘E’ dx:/I-E*dx,

Q Q Q

(l—iwa)/j*-Vxfldx—a/VxE*-f{dx:/i*-Vxﬂdx,
Q Q Q

(1 —iwa)a- /j*ﬁdx—aa-/ﬁ)*ﬁdx = /i*-a@dx,
Q Q Q

in the last relation by one we have integrated as for (5.21).
Finally, (5.15) gives

(l—in)/](i]de+k/V1§*-de = /Q*-de,
Q Q Q

N ~12 N R
(1+iw7)/q-Vz9*dx+k/‘V19‘ dx = /Q-Vﬁ*dx.
Q Q Q

We first consider that the real and the imaginary parts of (5.44)

o 1 ~
Re/q-w*dx: - Re/Q*-de/q2dx),
Q Q

Q

~ 1 ~
Im/q-w*dXZ - Im/Q*-de+wT/q2dx) ,
Q Q Q
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(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)
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from which, subtracting (5.47) multiplied by wr from (5.46) and taking account of
R R . R .12
Re/q VO dx — wTIm/q Vdx = Re/ Q- Vi*dx — k:/ ‘w‘ dx,
Q Q

the real part of (5.45), we obtain

512 1 2 9 12 A o
k ‘w‘ dx— 2(1+7%?) [ (g dx = Re [ Q- Vi‘dx
Q Q

Q

1 ~ .
+E (wTIm/Q*-deRe/Q*'de).
Q Q

Analogously, from the real and the imaginary parts of (5.40),

~ 2 ~ ~ A
/J dx—aRe/E*-dezRe/I*-de,
Q Q Q

~wa [

Q

and the real part of (5.41),

~ A ~ A ~ |2 ~ A
—Re/J.E*dx+wa1m/J-E*dx:—a/‘E‘ dx—Re/I-E*dx,
Q
Q

Q

2 ~ ~ AL A
dx—UIm/E*-JdX:Im/I*-JdX,
Q

we have

/’E‘ dx—— 1+a2w2 / —Re/i-ﬁ)*dx
Q

Q
1 o a a4
- — (Re/ I*-dewalm/l*-.]dx) .
o Q
Q
A useful relation follows at once from the real part of (5.37),

Re/VxE*~ﬂdx:Re/é*-ﬂdx.
Q

Q

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

If we consider (5.41) again, adding its real part (5.52) to the imaginary one, multiplied by

wa, we obtain the relation

A A 1 ~ |2 A A~ A
Re/J‘E*dx: a/‘E) dx+Re/I-E*dx+waIm/I-E*dx ,  (5.55)
1+a2w2 Q
Q Q

Q
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which, together with (5.54), allows us to write the real part of (5.34) in as:

wlma -/ﬁf]*dx: Re/F-E*dx—Re/G*-ﬂdx
Q

1
+1—|—a2w2 (U/
Q

A different expression for the left-hand side of (5.56) can be derived from the real part of (5.39),
which, on account of (5.46), can be written as follows:

E

2 &~ - A A
dx—l—Re/ I-E*dx-l—walm/I-E*dx) . (5.56)
Q

wlma - /79E*dx = o Re Rﬁ dx—i—— Re/ —/]Q|2dx . (5.57)
0
Q

Finally, subtracting (5.57) from (5.56), we get

o / 4 dx

Q
1 ~ A A PN
= (1+ a*w?) o Re/Q*.qczx+kRe/Rz9*dx —Re/F-E*dx
’ Q Q
+Re/é*~ﬂdx —Re/ i-E*dx—waIm/i-E*dx. (5.58)
Q

This relation, if we subtract (5.53), yields

1 [(<]2 1 , 1 ) L

- J‘d g dx =— . qdx + k b*d

a/’ x+k@0/]q| X N Re/QQ qdx + Re/R e
Q Q Q

_ 1Re/i*-jdx—wa Im/i-ﬁ)*dx—i—llm/i*-jdx
1+ a?w? |o o Q
Q Q
—Re/F-E*dx+Re/(‘;*-ﬁdx (5.59)
Q Q

1
and, moreover, gives an increase for o / &% dx, which allows us to derive from (5.49) the
0
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inequality

2 1 R . R
dx < — Re/ Q-Vz?*dx+wz Im/Q*-de
SN Q k
Q

k .
@(]/‘w
Q
o 1
+wT Re /Q qu)} 1+7’ o x+Re/
0
Q Q

Re/f‘-ﬁ)*dx) L+ 7w (Re/ dx+walm/I E*dx) . (5.60)
Q Q

><

1+ a2w?

It remains to consider the real parts of (5.38) and (5.36), that is

i/‘VX B ; / Vxde—wIm/Vx]:]-I:I*dx, (5.61)
Q Q

Q

2 1 . R . .
dxE(Re/F~VxH*dx+Re/J-VXH*dX
Q
Q

1 A
/‘VXH
€

¢

—wlIma -/év X I:I*dx) - wIm/V x B H*dx, (5.62)

Q

where only the last three terms must be evaluated.
To do this we first consider the imaginary part of (5.39), which, on account of (5.47), assumes

the following form:
PR 1 O 1 Ay .
wRea -/Ef}*dx = o (Im/Rﬁ*dx+ kIm/Q*'qu)
0
Q Q

Q
vl ol [arax— (&%) |
v k@o 4 @0 9
Q

~

9

2
dx] . (5.63)

Q
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The imaginary part of (5.34), together with (5.51) and (5.63), yields the required quantity,

—wIm/VXE-I:I*dx:w {Im/ﬁ‘-]ﬁj*dxllm/i*-jdx
o
Q Q Q

1 PN 1 A ~ |2
+<Im/R19*dx+Im/Q*-(‘1dx>] +w? 5/ E| dx
O Q k Q
L @
B Y P /@de—o‘/ jfdx (5.64)
k@o N @0 S g ' '
Q Q

Then, from (5.43), adding its imaginary part to the real one multiplied by wa, we obtain a
relation, which, after introducing (5.57) and (5.63), gives

w an 1 o c a’

—1 YA = ————— 20 — 1+ &

e /Q T Trak?e wa<@0+€>/
Q

SO 1 5 1 A
—wQQRe/I*-aﬁdx— Re/Rﬁ*dx+Re/Q*-fldx
o ©o k

Q Q

Y1 / i a@dx} : (5.65)
g
Q

This expression, together with (5.63), allows us to evaluate, from the imaginary part of
(5.35), the other quantity

1 1| o

w - o w ~ A
—gIma-/ﬁVdenglm/F-aﬂ dx—mg @—0
Q Q

Re / RO*dx
Q

1 ~ ~ ~ ~ ~
+ kRe/Q*-QdX) + w (waRe/I*-aﬁdx—{—lm/l*-aﬂdx)]
Q Q @
ao 1 w A o
1—— I *Loqdx + k1 9*d
—i—( 51+a2w2>k®0(m/Q qdx + m/R x)
Q Q
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+ w? 1 aofc /
14+ 02w? ¢ @0

1 oo 1 o 1
2 ~12
+ [“" (1 - ng) e 5] 70, / Al dx. (5.66)

Finally, for the third quantity we must derive, consider (5.42). Subtracting from its real part
the imaginary one multiplied by wa and taking into account (5.54) and (5.64), we get

1 a N 1 1 ~ o ~ o
Re/J-VXH*dX: URe/G*-deJrRe/I*-VXHdX
€ 1+ a2w?e Q

Q Q

—waIm/i*-VXI:Idx—waa |:Im/]§‘-]§)*dx11m/i*'jdx+
o

Q
Im/Q qu+kIm/R19*dx +w?aco a/

k:@o o
Q

+<@§0+ 2)/ de] - (s/EdeJrkT@O/Qq%x))}. (5.67)
Q Q

2
dx

~

J

A~

v

Thus, we have an estimate for all the quantities of (5.33), which, taking account of (5.17),
can be increased as follows:

£G(w) </Ha B +kl@0(1—|—a2w2) yqﬂ <(1j j 2+kl®01*|2) +|vxE
Q
+ 1+ eBu(Q ‘v X H( dx + {1 + 20519(9)} @ﬁ ‘vﬁf} , (5.68)
0

where { = min{o,1,1/0,1/k©¢,1/p,1/c,k/O0} .
We consider the relations (5.58), (5.59) and (5.60) together with (5.61) and (5.62), which
must be substituted into this inequality. We observe that in (5.64), (5.66) and (5.67), to be

considered for (5.61) and (5.62), there are some negative terms which can be neglected, but
there are the following positive terms
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{[2 e (@lr? + [+ e8] (e + T ) } (kgo / eﬁczx)
Q

+2 + eﬁH(Q)]§w2 (a /

Q
CH) aoc [ ¢ a? w? k 12
201 D)—(—+= ) ——— [
+ k:[ +&Bn( )]5 <@0+5>1+a2w2 (@0/19 dX)’
Q

whose four expressions, in parenthesis and containing the four integrals, can be increased by
the right-hand sides of (5.59), (5.58), (5.59), (5.17); and (5.60), respectively.
To simplify the result, it is useful to put

f1=[14eBu(Q)]o/e, Ba=[2+eBu()]e/o, B3 =I[3+2u()]T,

Bi=1+008s(Q)/k, Bs=2(c/O¢+a’/c) aOBy(Q)/k,

with which we define

ca=2+pB1, c2=0a’+Pa+fBs c3= P’ s = Bifs,

cs = Pao/e — fray, ¢ = Pifo, =1+
and finally we introduce

di = c1+ B4, do=co+Puar, d3 =kei+Ba/O0, dy = keg+ Bar?/Oy,

2
ds = c5 —ceao, dg = co+ 47", d7 = P47 + cee.

Thus, (5.68) becomes

14 a2w?

+C57w Im [ F-E*dx | + [ cgRe [ F-V x H*dx | + | cewIm [ F-ad*dx
1 2,42
+ afw
Q Q

Q

1 2,2 ]_ ~ ~
+ <|:d1 + <d2 +c4+7—w> w? + cgw? +51] Re/G* -de)
Q

1 2, .2 R
£G(w) < (— [dl n <d2 n 04+Tw) w? + 03w4} Re/F - Brdx
Q

1+ a2w? 1+ a2w?
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1 245 - ey 14+ 7202\ 4
Q

51 1 / A A 1 1 / ~ o
—_ ¥ d — ds———— I ¥ d
O 1+ a?w? Re [ 1t dx + O¢ Gt + T+ a2a? ) R dx
Q Q

2

1 2, .2 A
—([1+Bzw2+<ﬁ4+C4 - ) +Tw]Re/I-E*dx+[1+ﬁzw2

1+ a2w? ) 1+ a2w?
Q

2 2,2
w 1+ 7w 9 1 A
i) T 04 ) ] e [ 18 dx)
Q

(c7 4 Baw?) Re/i* SJdx — [c5 + (c7 + B3w2)oz]whn/i* - Jdx >
Q

Q |

1 A ~ A ~
+<c6 Re/I*-VXdeawIm/I*-VXHdX
Q

Q

CGL awRe/i*-aﬁdx+Im/i*~az§dx )
Q Q

1 -

2 2 4 N

Ton . [Cl + dgw” + (63 + eyt 1o at? n Oz2w2> wr - 6171 n a2w2:| Re/Q* - qdx
Q

1 N
2y L+ £ A
+ [d7+(d5+047-w )1 3 Z]WImQ qu})

1 w? A -
Q

If we denote by the \; j(w), i = 1,2,...,12; j = 1,2, the coefficients of the real (j = 1) and
the imaginary (j = 2) parts of the twelve different integrals in (5.69) and consider

AMw) = zmax (Ao (@)] + Mo, i =1,2,... 12}, (5.70)

from (5.69) with applications of Schwarz’s inequality it follows that
1/2
12 (A2 (a2 A2 | A2 s
G(w) < 12A(w)max {1, ||} /<‘F) +‘G‘ +‘1] +‘Q‘ +‘R‘ >dx G2 W) (5.71)
Q

and hence (5.32).
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Lemma 5.2. If the sources (F,G,1,Q, R) € V'(Q,R"), the hypotheses there stated assure
that the inverse Fourier transforms of (B, H,J,q,9) € H(Q,R) exist and are L?-functions with
zero initial data.

Proof. Since the 5-tuple (F,G,I,Q,R) € V’'(2,R"), the hypotheses assumed on the
sources together with the form of v(w), which is a continuous function of w € R and ap-
proaches infinity as w?, allow us to integrate over R the right-hand side of (5.32), i.e.,

[ [
—oo

Thus, from the inequality (5.32) it follows that

~ |2 A2 ~ |2 ~ 12
+ ’G‘ + ‘I‘ + ‘Q‘ + (R( )dxdw < +o. (5.72)

+oo
/g(w)dw = 27rH(E(X,w),ﬂ(x,w),j(x,w),Q(x,w),ﬁ(x,w))H%

+oo
1/200
/mé @

whence, by virtue of Plancherel’s theorem, the inverse Fourier transforms of (E,ﬁ,j , q,ﬁ)
exist.

.2 12 (a2
F| +|G| +]I

IN

2
) dxdw, (5.73)

From the linearity of system (5.11) —(5.15) and inequality (5.32) of Lemma 5.1 we have this
corollary.

ing solutions of our problem (E(i), H

27r’

BO — B AO _fg® JO 5@ g0 _g®@ §o _ 19(2)))‘%

H
// <‘F<1> F<2>‘2+ G - ae .

—oo

§1) _§@ ‘2

+ ‘Q“) —Q® ]2 + ‘R“) ) ]2) dxd. (5.74)

Lemma 5.3. The subset

S, {(F G.1,Q,R) e V(QR): 3 (B340 € HQR)
which satisfies (5.10) V(&,h, &,%,0) € W(Q,R)} (5.75)

is dense and closed in V'(Q, R).
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Proof. To prove that S, is dense we suppose that there is a nonzero element (F°, G0, 1°,
Q% R% e V'(Q,R)\S,, S, being the closure of S, in V/(Q2,R). We use the Hahn —Banach
theorem, which states that there exists (éo,flo,ﬁo,ffo7 BO) € W(QR) which satisfies these
relations

(#°,G"1°.Q% ), (8%, h°,0°,9%,8%) # 0,

(F,G,1,Q,R), @, 0% a 9% %) =0 VE# GIQR) c (5.76)

The second condition is equivalent to

~

A[(B,H,7,4,9),(@,0°,0°9° 8% =0 V(B H J,4,9) € HQ,R) (5.77)
because of (5.18), whence it follows that
(&% h%, 1%, 9%, 3% =0, (5.78)

which does not satisfies (5.76). Hence, S, is dense in V(L R).
To show the closure of S, in V/(€2, R) we consider a sequence of sources, which is denoted

by {(f‘(”),G(”),i(”),Q("),}?(")) €8, n=1,2, } and assumed convergent to (F,G,T,Q,
Rye VQR). ) )

Denoting by (E(")7 H® J0) 61("),19(”)) € H(,R) the corresponding solutions, we con-
sider (5.74) of Corollary 5.1, which gives

- - N N N “ ~ N 2
’ (B0 — fm) g _ fm j _ jm) g _ gm jo) g(m))Hﬁ
1 e 2 2 2
<L / /y2(w) ( £ _F(m)‘ Llam — @) 4o _i<m>‘
i
—00 Q

whence it follows that {( EM g0 J0) gm) 19(”)), n=1,2, } is a Cauchy sequence and the
completeness of the space gives

lim (B H® JM g™ 90y = (E,H,3,q,9) € HQ,R). (5.80)

Thus, it is enough to consider the sequence of identities obtained by substituting the so-
lutions (E(”), H® J0), q(”),ﬁ(”)) and the sources (F(™ G () Q) ]%(”)) into (5.18); the
limit of these identities as n — +o0, consists of a similar identity in terms of the limits (E, H, 7,
q, 19) and (F, G, 1, Q, R); therefore, we conclude that (F, G,1I,Q, R) € S,.

The application of the Plancherel theorem yields the existence of (E,H,J, q,9) € H(Q,R™),
which is the solution of our problem.

Thus, the proof of Theorem 5.1 is complete.
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