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STABILITY OF PERIODIC CLUSTERS IN GLOBALLY COUPLED MAPS

CTIMKICTh NEPIOJUYHUX KJIACTEPIB
Y CUCTEMI I''IOBAJIBHO 3B’A3BAHUX BITOBPAKEHDb
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Inst. Math. Nat. Acad. Sci. Ukraine
Tereshchenkivs’ka St., 3, Kyiv, 01601, Ukraine

The phenomenon of partial synchronization, — or clustering, — in a system of globally coupled C*-
smooth maps is analyzed. We prove stability of equally populated K-clustered states with period-n tempo-
ral dynamics, referred to as P, Ck-states. For this, we first obtain formulas giving relation between longi-
tudinal and transverse nultipliers of the in-cluster periodic orbits and then, using these formulas, find exact
parameter intervals for the transverse stability. We conclude that typically, for the symmetric P, Ck-states,
in-cluster stability implies transverse stability. Moreover, transverse stability can take place even if the in-
cluster dynamics is unstable.

IIpo800umvcs aHaNi3 ABUULA HACMKOBOL CUHXPOHI3AYIL, ab0 Kaacmepu3ayil, 8 cucmemi 2100a4bHO 38’5~
3anux 8i006paxcenb 2aa0kocmi C. Poseasadaromovca K-kaacmepHi cmanu 3 n-nepioOuiHoro OUHAMI-
Koo, aki Hasusaromwvca P, Cx-cmanamu, i 00800umwcsa ix cmitikicms. [as yb020 cnowamky ompuma-
HO popmyau, wio no8’a3yroms NO3008XCHI MA MPAHCEEPCANbHI MYALIMUNAIKAMOPU KAACMEPUIOBAHUX
nepioouyuHUx opoim, a NOMIM 3 OONOMO20H0 YUX POPMY.A ZHATIOEHO MOUHI MeXCE IHMeP8anie OAa MPAHC-
sepcanbHol cmiikocmi. 3po6aeHo BUCHOBOK, W0 04 cumempudrux P, Cg-cmanie i3 cmitikocmi gce-
PeOuHi Kaacmepa sunausae CMilKicms mpanceepcanvia. Biavuie moeo, Hasimv y sunaoky, Koau ou-
HAMIKA 8cepeOUHi Kaacmepa HeCmilika, MpaHCeepCanbHa CIILKICIb MOXte Mamu micue.

1. Introduction. The highly complex nature of different dynamical systems in various areas of
science, such as physics, biology, and other natural sciences, has attracted recently a growing
interest. In this context, new interesting phenomena, such as partial synchronization, have been
discovered. This new properties are investigated from both practical and theoretical viewpoints
[1-9]. The effects of synchronization and partial synchronization could be observed in a great
variety of applied problems, such as pattern formation, Josephson junction arrays, multimode
lasers, charge-density waves, insulin secretion, oscillatory neuronal systems, and so on [10-13].
The paper presented has an aim to investigate the stability of partially synchronized states
in a system of globally coupled maps. Together with the “ordinary” stability, the notion of
transverse stability is also of great importance for partially synchronized systems [1, 2]. An
attractor of such a clustered system could be represented as a stable set that belongs to a mani-
fold having lower dimension than the whole initial space. Transverse stability means that the
attractor is stable not only inside the manifold, but also from outside, i.e., along all of the basic
vectors of the whole space. And such an attractor loses its stability when at least one of the
clusters has split up, i.e., when the attractor spreads over the manifold of higher dimension.
One of the main results of the work presented is the analytical proof of the fact that the
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STABILITY OF PERIODIC CLUSTERS IN GLOBALLY COUPLED MAPS 335

transverse stability results from the longitudinal stability for absolutely symmetric clustered
periodic states of different periods.

2. The model. In this paper we study the dynamics of a system of N globally coupled one-
dimensional maps, which initially was introduced by K. Kaneko [14, 15],

N
€ .
FE:me(l—e)f(acﬁ)—i—NZf(x;), i=1,N, (1)
j=1
where x! = {2z} € R}, isan N-dimensional state vector, t = 0,1,... represents a discrete

time index, and f : R + R is a C'-smooth one-dimensional map. In the numerical experi-
ments the one-dimensional map f is taken in the form of the logistic map f(z) = az(1 — z).
Thus, the behaviour of the system (1) is ruled by its two parameters, the nonlinearity parameter
a € [0,4] and the coupling parameter ¢ € [0,1]. When ¢ = 0 the system (1) represents N
noncoupled one-dimensional maps. Every coordinate of the state vector x' = (2!, 2%,... 2%)
moves independently according to the map f. When ¢ = 1, after the first iteration all coordi-
nates z!, i = 1, N, become identical and continue to move synchronously according to the
map f.

For the other values of ¢ € (0,1), in particular, the system (1) can fall into the state of
so-called partial synchronization or clustering [1-5], when the coordinates of the state vector
x! unite into several groups, called clusters, producing the same behaviour within each group.
Then, each cluster can be considered as one dynamical element [1, 3, 4],

to_ ot _ .t df ¢
1'1—1132—...—1:]\71—3/1,
2t — gt _ — gt daf ¢
Ni+1 = TNj+2 = -+ = TNj4N, = Y2 )
2 — gt _ N
Ni+..+Ng_141 = TNy +Ng_142 — -+ — TN = YK,

where N; is the number of elements in the i-th cluster, N7 + Ny + ...+ Ng = N.
Relations (2) define a K-dimensional manifold M(¥) ¢ R(®Y) of the form

K N
M( ):{(xl,xg,...,xN)eR X = X2 = ... = TNy,
ITN1+1 = TNy 42 = -+ = TNy+Nags -+ -y TNy +..+Np_1+1 = --- = TN;
Ni+...+Ng =N} 3)

It is easy to see, that, by virtue of the complete symmetry of the system (1), for any set {N; €

€ N: Y% N, = N} the manifold M%) isinvariant with respect to the map F., i.e., Vx €
e M) itsimage F.(x) € MU, So it is possible to consider the restriction G. & Fe| 0
as a dynamical system on M (%) :

K

Ge:yf = (L=o)f(yh) +ed _pif(y)), i=TK. (4)
j=1
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336 A.A. PANCHUK, YU.L. MAISTRENKO

Here y! = {y!}X, isa K-dimensional state vector, and p; % N;/N, S5 p = 1, is

referred to as population of the i-th cluster given by Eq. (2).

Note that system (4) has also the form of a globally coupled map system but, in contrast
with system (1), different coupling weights p; as a measure for the contribution of the i-th
coordinate y; to the global coupling term. Therefore system (4) is asymmetric; it becomes
symmetric only when p; = po = ... = px = 1/K (then the dimension N of the initial
system (1) must be divisible by the dimension K of the system (4),i.e., N = k1K for some
k1 € N )

Suppose that the K-dimensional map G. hasan n-periodic cycle PéK) = {yl,yg, e ,yn}
such that

yir1 = Ge(yi), i=1,n-1,
5)
Y1 = Gs(Yﬂ)»

where y; = (y1,¥Y2j,---,Yk;) € RE,j = 1,n. Then the original N-dimensional system (1)
has the corresponding n -periodic cycle P\ = {x1,%2,...,%,} of the form

Xi+1 = FE(Xi), Z = 1,’]7,— 1,

(6)
x1 = F.(xp),
which belongs to the manifold M (%) ¢ R,
Xj = (yl])7y1]7y2]77y2j5aijavyK]> ERN? jzlvn (7)

~~

Ny Ny Nk

For system (1) a cycle PN of the form (7) is referred to as m-periodic K-clustered state, or

simply P,,Ck-state. Our goal is to investigate the stability of these periodic states in the whole
N -dimensional space RY.

Definition 1. Consider the P,Cg-state of system (1), i.e., a period-n cycle P,gN) = {x1,

X2,...,Xpn} Ofthemap F. ofthe form (7). Let Vi(N) ,t = 1,N, be eigenvalues of the Jacobian
matrix DF!(x1) = DF.(xn)DF.(xp—1)...DF.(x1), where F! is the n-th iteration of the

) _ ¢ V-(N), i = 1, N, are called multipliers of P,C-state, i.e.,

[ %

map F.. Then, the values p
of the cycle PT(LN).

Definition 2. The P,Cy-state of the system (1), i.e., the cycle PN — {x1,%2,..., %} of
the map F. is called Lyapunov stable if all its multipliers { MEN) }fil lie inside the unit circle,
ie, pN <1, i=1,N.

Any P,Ck-state has N multipliers. K of them, { ,u‘(‘]\i[) K |, correspond to the eigenvec-
tors of the matrix DF? lying in the K-clustered manifold M (%) of the form (3). Hence, they

control stability of the P, C-state inside M (%), They coincide with the multipliers { /J,Z(»K) K
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of the corresponding cycle P of the form (5) for the K-dimensional system (4). We will
call them longitudinal multipliers of the P,C-state. The other N — K multipliers correspond
to the eigenvectors of DF" transverse to the manifold M) (i.e., lying in the supplement
RM\ME) of MK)). They will be referred to as transverse multipliers of P,Cl.

As it was shown [1], if all the numbers N; > 1, ¢ = 1, K (see (3)), then there are K disti-
(N K

nct transverse multipliers {,u 1. fi—; ¢€achhaving multiplicity N; — 1. Otherwise, the number

K of distinct transverse multipliers { M(L]Vi)}i[ill

than 1 element, i.e., Ky = card{i = 1,K : N; > 1}. The transverse multipliers control out-of-
cluster stability of the P,Cx-statein RY space,i.e., stability with respect to small perturbations
beyond the clustered manifold M (K). To ensure the transverse stability of P,,C'x we demand
the transverse multipliers to lie in the unit circle,

equals the number of clusters having more

‘MS_NZ')’<1’ i=1K;, 0<K; <K.

Lemma 1. The transverse multipliers { u(ﬁ? }ZK:ll for the P,Ck-state of the form (6), (7) are
equal to

n

W= ([[fw)| . i=TEK. (8)
j=1

Proof. The proof follows from formula (7) in the paper [1].

(N)

N
(,i)’ and pu; /,

Remark 1. As it is easy to see, both longitudinal and transverse multipliers 1
of the P,Ck-state do not depend on the space dimension N. Therefore we can omit the upper
index (M) writing simply 1 ; and 1, ;.

3. Relations between the transverse and longitudinal multipliers. Let the coupling weights
{pi}E, inthe map G. : RE s RE of the form (4) be equal, p; = p2 = ... = px = 1/K,
and the map f € C'. Consider a period-n cycle P,(LK) of the map G.. Forany N = k1 K
(k1 > 1 is an integer), this cycle generates a P, Ck-state of system (1) in the N-dimensional
phase space (in accordance with formulas (6) and (7), where N; = ki, i = 1, K ). The P,Ck-

K

state has K longitudinal multipliers { |, }fil (which coincide with the multipliers { pl biy

of the cycle P7(LK) ) and K transverse multipliers { 1 L,i}f; (which are given by formula (7)
of the Lemma 1).

Theorem 1. For the transverse and longitudinal multipliers of the P, Ck-state as above the
following relation holds:

K K
[Trei=a=o]Tm. )
=1 =1

To prove the theorem, the following lemma is needed.
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338 A.A. PANCHUK, YU.L. MAISTRENKO

Lemma 2. The determinant of the Jacobian matrix DG, can be represented in the form

K
det DG.(y) = (1—)* T F'(wo) (10)
i=1
forany y = (y1,v2,...,yr) € RE,
Proof. The Jacobian matrix of the map G; is
[ (1_cx & p Eop Lo 1
(1 €+ K)f(yl) =/ (2) 7/ K)
5 5 €
—=f'(y1) l—e+—) fl(y2) - =" (k)
DG.(y) = K ( K ) h
i ! i l _ i /
A o f ) o (T ) )|
Forany j = 1,..., K consider the (j x j)-matrix
[ (1—2)f (yx—j+1) 0 e (=) flyr) ]
0 (1 =e)f'(yx—j42) --- -1 =e)f"(yx)
Aj = : : : SN
€ 5 €
I ?f'(ykjﬂ) ?f’(ykjw) (1 —e+ ?) f'(yx) ]
It is easy to show that
det DG.(y) = det Ak. (12)
The determinant of A; can be represented recursively as
det Aj = (1 —e)f'(yg—j+1) det Aj1 + (—UjH%f'(yK—jH) det Bj1, (13)
where B;_; isa (j — 1) x (j — 1)}matrix of the form
[ 0 0 0 —(1—-¢)f'(yx) ]
(1 =) f (Yr—j+2) 0 e 0 —(1 =) f'(yx)
B, = 0 (L—e)f'(yx—j+3) - 0 —(1—¢)f"(yx)
i 0 0 o (=) f'(yx—1) —(1—e)f'(yx) |
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Its determinant equals

K-1 K
det Bj1 = —(=1/(1—e)f'(yx)(1 =) > [ flw) =) a-" I Fw)
=K j42 =K —j+2

Then, as it follows from (13),

det Aj = (1 — a)f/(yK,j+1) det Ag_1+

K
+ ()= o) () A= T F) =
i=K—j+2
= (1—¢)f'(y1)det Ag—1 + %(1 SO | ()} (14)
i=K—j+1

Let us prove that
. K
o i—1 J€ I
det A; = (1 —¢) <1 —5+K> | H I (i)
i=K—j+1

using the method of mathematical induction. For j = 2 itis easy to see that

(1—-e)f'(yx—1) —(1—e)f'(yx)
det Ay = det
: =P (et ) k)

=(1—¢) <1 —e+ 2;) f'yr-1)f (yx).

: 1 K
Suppose that det A;_; = (1 —¢)72 (1 —e+ U % )6> IT  f'(yi). Substituting the latter
i=K—j+2
expression into Eq. (14) we obtain

K i=K—j+2
K
R |
i=K—j+1
= (1-ey! ﬁ () <1—5+ (j_l)€+€> =
- i=K—j+1 g K K)
K
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From Eq. (12) it follows that

Ke K K
det DG.(y) = det Ag = (1 — )K" (1 —et > 1w =a=a T F )
. 1

The lemma is proved.

Proof of Theorem 1. The longitudinal multipliers { ,uw}f; of the P,Ck-state equal to

the multipliers of the cycle PTKLK) of the K-dimensional map G. of the form (4). They can be

obtained as the n-th roots of the eigenvalues of the Jacobian matrix for the n-th iteration of
the map G,

DGZ(y1) = DG:(yn)DGe(y2) - .. DGe(y1).

By Vieta’s theorem, the product of all eigenvalues of a K x K matrix equals its determinant,
i.e.,

S|=
3=

Hunz = (det DG?(y1))* = (det DG (yy). . det DG (y))

Then using Lemma 2 we obtain

n

n K
Hﬂn = | L G ) (15)
j=1i=1

On the other hand, due to Lemma 1, the transverse multipliers  ;, ¢ = 1, K, of the P,Ck-
state can be represented in the form (8). Therefore, it follows that the product of the multipliers
is equal to

3=

HM 1_5 HHf y’bj . (16)

=1 i=17j5=1

Finally, Egs. (15) and (16) imply Eq. (9).

4. Cyclicity condition. For the map G. of the form (4) with the equal populations p; =
= 1/K, i = 1, K, consider the cycle Pr(n[;) of the period mK for some m > 1. Put € = 0.
Then the coupling term vanishes and the K-dimensional map Gy is a direct product of K
one-dimensional maps f : z — f(z), € R. Therefore, the dynamics of Gy is defined by
the dynamics of f. In particular, if the one-dimensional map f has a period-mK cycle

PmK = {3/173/27~--7ymK};

then for the map Gy there exists a corresponding period-mK cycle ng of the form

P?S@K_{y17y2a"'7ymK} (17)
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such that

y] = (yjﬂym-‘er"aym(Kfl)Jrj)? .7 = 17m7
(18)

Yimij = Tx(y;), i=1,K—1, j=T1,m,

where mg is a cyclical permutation, e.i.,

TFK(Sl,SQ,...,SK) - (527837"')81(;51)

for any set of K real numbers s;, ¢ = 1, K, and 71}( is the i-th iteration of wx. We will call

relations (18) the cyclicity condition for the cycle Pr(,g() Obviously, for m = 1 the cyclicity

condition for the cycle

P[((K) = {YLYQw-wYK} (17/)

becomes
yi1 = (y17y2,---,yK),
(18)
Yi+1 = W}{(}ﬁ), l=1,K-1
Due to the symmetry and smooth dependence of the map G., we expect that the cycles
quﬁ() (e) = {yl, Y2, .. ,ymK} satisfying the cyclicity condition can also exist for ¢ > 0.

Indeed, due to the implicit function theorem, if det DG(()n) (y1) # 0 there exists ¢y >

> 0 such that Ve € [0,¢0] for the map G., there exists a cycle sz) = Pr(n};) (¢) thatisa
continuation of the cycle Prg;) (0), i.e.,
. K K
lim P () = PR (0).
Sufficient conditions for the cycle Pg;) = 7(,5() (e) to satisfy the cyclicity condition (18) (or
(18') for the case m = 1) are given by the following Lemmas 3 and 4.
Lemma 3. Suppose that the one-dimensional map
g:x+— (1—¢)f(x)+eh, h = const, (19)

has a period-K cycle Px = {y1,y2,...,yx} such that
| K

K Zyj = h.
j=1

Then the K-dimensional map G. has a period-K cycle PI(<K) satisfying the cyclicity condition
(18).
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Proof. Consider any point y; = (y1,¥2,...,Yx) € RX. The i-th coordinate of its G,
image is equal to

1, K.

)

K
(Gely); = L= (y1)) + = D F (1)), i =
j=1

Since Pk is a cycle for the map ¢ of the form (19), we have
Yir1 = (L—¢e)f(y)) +eh, i=1K-1,
y = (A—e)f(yk) +ch.

Adding all these K equations and then dividing the result by K we obtain

1 & 1 &
gz:yj = (1*6)§Zf(yj)+6h@
j=1

1 K
Shl-c) = (1-9)=Y fly) <

K <
7j=1
1 XK
& h = Kj;f(yj)
This implies
- K
(GE(Y1))1‘ = (1 - 5)f(yl) + ? Zyj = (1 - e)f(yl) + 5h> =1, K?

j=1

and, therefore,
(Ge(y1)); = wig1, i=1K—-1,
(Geyt))k = w1,
i.e,, G-(y1) = mx(y1). Obviously, applying the map G. K times we obtain
G? (y1) = y1,

which means that PI((K) = {y1,G:(y1), GX(y1),...,GE"(y1)} isa K-cycle of G, satisfying
the cyclicity condition.

Lemmad. Let m > 1 and let the m-dimensional map

g:xi— (1—¢)f(x;) +€h;, h; =const, i=1,m, (20)
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STABILITY OF PERIODIC CLUSTERS IN GLOBALLY COUPLED MAPS 343

have a period-mK cycle P,k = {y1,y2,--.,Ymi} such that

K
E j 1)m+i — ia i:17m-

Then the map G. has a period-mK cycle p) i satisfying the cyclicity condition (17), (18).
The proof of Lemma 4 is analogous to the one of the Lemma 3.

5. Stability of P,,Ci-states. Formula (9) obtained in Section 3 enables to prove the transver-
se stability of P,Ck-states, in the case n = mK, in terms of stability of the cycle Py(LK) inside
the cluster manifold A5,

Consider the P,,xCk-state in the N-dimensional phase space generated by a period- mK
cycle P( ) of the K-dimensional map G. (m € N is any integer). Suppose the P, xCxk-

state to be symmetric, i.e.,

1) N; =k, ki > 1, forall i =1, K (see Eq. (7)),

2) the cycle anf;) satisfies the cyclicity condition (17), (18) (or (17"), (18') resp.).

Theorem 2. Let the conditions 1 and 2 be satisfied. Then all transverse multipliers {p, ;}X
of the P, i Cx-state are equal and can be represented as

Proof. Directly from the Eq. (8) we derive that the transverse multipliers for the P,,xCx-
state of the form (6), (7) are

pii=1-¢) Hf w)| . i=1LK.

Theorem 2 results in the following corollaries.

Theorem 3. If the cycle PéK), n = mK, satisfying conditions 1 and 2 above, is Lyapunov
stable inside the manifold MX), then the clustered P,y Cg-state is Lyapunov stable for any
€ [0,2].

Let us prove the theorem only for the case m = 1. For m > 1 the proof is analogous.

Proo[' Since the longitudinal multipliers {z, 18, of the PgCi-state are the multipliers

(K)

{,u,l- K| of the K-dimensional cycle Pj-’, we have

MSK)‘ <1, i=1K.
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Then, by Theorem 2,

which implies
K
[T ke = uf
i=1

Therefore, using Theorem 1,

\/u,i’K =

K K
(=) [Tma| = 1=l T [yl <1
=1 =1

for any e € [0,2]. Finally, this gives

’MJ_| < 17
which means transverse stability of the PxC'k-state. The theorem is proved.

o K
Denote the product of the multipliers of the cycle Pﬁl K) by

K

i=1

. (K
and call o the generalized saddle value of the cycle P, K) .

Theorem 4. Let the cycle PTSK), n = mK, satisfy the conditions 1 and 2. If the saddle value
of the cycle BSK) lies inside the unit circle, i.e.,

lo| < 1,

then the corresponding P,, i Ck-state is transversally stable in the whole ki K-dimensional phase
space, for any e € [0,2].

Proof. As in the previous proof, due to Theorems 1 and 2,
=|1—¢

K K
™ = lpal™ = = [1 —¢llo].

K
(1-¢) H 2[R
i=1

Since |o| < 1 and € € [0,2], we have

K
ITw
=1

i[5 = ™ < 1

Theorem 5. Let the cycle PﬁK), n = mK, satisfy the conditions 1 and 2. Then the correspon-

ding P,,xCx-state is transversally stable for any

1 1
ce -]
o o]
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Proof. As in the previous proof, we have

i = |1 —ello].

For the P, xCk-state to be transversally stable all the transverse multipliers must lie in the
unit circle,

o < 1.

Therefore,

1 1 1
l—¢llo]l<lel-1< —1l-—<e< 14—

o] o] lo|’

which completes the proof.
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