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The one-sided invariance of sets with respect to systems of ordinary differential equations in Rn is investi-
gated. We present a general class of sets which preserve such an invariance for a linear combination of
differential equations. As an application of these results, we consider the case of two coupled identical
systems, which is important for the synchronization problem.

Вивчаються множини,однобiчно iнварiантнi вiдносно систем звичайних диференцiальних рiв-
нянь у Rn. Наведено загальний клас множин, що зберiгають таку iнварiантнiсть для лiнiйної
комбiнацiї диференцiальних рiвнянь. Як застосування отриманих результатiв розглядається
випадок двох зв’язаних iдентичних систем, що важливо для проблеми синхронiзацiї.

1. Introduction. The purpose of the present paper is to extend the analysis of invariant sets
to systems of ordinary differential equations. In the study of dynamical systems, the theory of
invariant manifolds has proved to be an important tool [1 – 8]. Here we discuss an approach
which allows to obtain new conditions for the invariance of submanifolds of Rn with boundary.
In order to outline the idea of this paper, consider the following example: let some smooth
submanifold M of Rn be invariant under the action of flows generated by systems of ordinary
differential equations z′ = g1(z) and z′ = g2(z), z ∈ Rn, respectively. This means that both
vectors gi(x) belong to the tangent space TxM of the manifold at any point x ∈ M . It is obvious
that the flow which is generated by the system z′ = αg1(z) + βg2(z), where α and β are some
constants, will also be tangent to M at the point x. Hence, M is invariant with respect to the
latter system as well. Using this idea, we indicate a general class of sets which possesses the
similar property in the case of one-sided invariance. This class will incorporate submanifolds of
Rn with boundary as a special case.

As an example, we consider the system of two coupled equations of the form

dx

dt
= f(x) + g1(x, y),

dy

dt
= f(y) + g2(x, y), x, y ∈ Rn. (1)

We found out a perturbation gi which preserves the invariance of a ”square” A × A,A ∈ Rn,
assuming that A satisfies some additional conditions. To our knowledge, this result is useful in
the framework of the synchronization problem [9, 10]. In more details this question will be dealt
with in Section 4. Main results are formulated in Section 2. The proof of the main theorem is
given in Section 3.
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Recall the definition of an invariant set [5].

Definition 1. A set A ∈ Rn is invariant with respect to some flow ϕ(t, z) ∈ Rn, z ∈ Rn, if
z0 ∈ A implies ϕ(t, z0) ∈ A for all t ∈ R.

Respectively, the notion of one-sided invariance is introduced.

Definition 2. A set A consisting of positive semi-trajectories is called a positively invariant
set of this system. Similarly, a set, consisting of negative semi-trajectories of a system is called a
negatively invariant set of this system.

2. Main results. We first define the admissible subsets of Rn which are the objects of this
study. Denote

Hm
k = {x ∈ Rm : xi ∈ R, i = 1, . . . , k,

xi ∈ R+ = [0,+∞), i = k + 1, . . . ,m}. (2)

Definition 3. We will say that a set U ∈ Rn satisfies condition A if U can be represented as a
union U =

⋃
q Uq, where Uq satisfies the following conditions:

1) Uq are open subsets of the set U (with respect to the relative topology);

2) for all q there exist homeomorphisms fq : Vq → Uq, fq ∈ C1(Vq) and rank
∂f(α)

∂α
=

= m ∀α ∈ Vq, m ≤ n. Vq is an open subset of Hm
k with some k(q) ≤ m.

Remark 1. If k(q) = 0 for all q we obtain the definition of an m−dimensional differenti-
able submanifold of Rn as a special case. If k(q) = 0 or k(q) = 1 then Definition 3 includes
differentiable submanifolds of Rn with boundary. Generally, the defined sets can be considered
as differentiablem-dimensional submanifolds ofRn with boundary where the boundary can not
be smoothly embedded into Rm−1. A representative example is a closed square in R2, where a
neighborhood of a ”corner” point is diffeomorphic to H2

2 . We will prove later (Lemma 1) that
direct product of sets which satisfy condition A will also satisfy condition A.

The following theorem establishes some property of the introduced sets:

Theorem 1. Suppose that a set W , W ⊂ Rn, m ≤ n, is positively (negatively) invariant
with respect to the systems z′ = g1(z) and z′ = g2(z), z ∈ Rn, respectively, and, additionally,
satisfies condition A. Then W is positively (negatively) invariant with respect to the system z′ =
= γ1g1(z) + γ2g2(z) for all nonnegative constants γ1 and γ2.

The following corollary is straightforward.

Corollary. Any linear combination of the form

z′ =
∑
i

αigi(z)

will preserve the positive (negative) invariance of a set, if this set is positively (resp. negatively)
invariant with respect to each system z′ = gi(z), i ∈ Γ, and satisfies condition A.

Finally, as an application of Theorem 1, we will show the invariance of the ”square” A×A
with respect to some symmetric coupled system.
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Theorem 2. Suppose that a set A ⊂ Rn is linearly convex and satisfies condition A. Let also
the set A be positively (negatively) invariant with respect to some system u′ = f(u), u ∈ Rn.
Then the set A×A is also linearly convex set and satisfies condition A. Moreover, it is positively
(resp. negatively) invariant with respect to the following coupled system:

x′ = f(x) + α(y − x),

y′ = f(y) + α(x− y),
(3)

where α is any nonnegative (resp. nonpositive) constant.

3. Proof of Theorem 1. For the sake of convenience we split the proof in a number of
lemmas. We will use the notion of locally invariant sets [5].

Definition 4. A set A ∈ Rn is said to be locally invariant with respect to the flow ϕ(t, z) ∈
∈ Rn, z ∈ Rn, if z0 ∈ A implies ϕ(t, z0) ∈ A for t ∈ (−s, s) with some s > 0.

The notion of positive and negative local invariance is introduced similarly.

Definition 5. A set A ∈ Rn is said to be locally positively (negatively) invariant with respect
to the flow ϕ(t, z) ∈ Rn, z ∈ Rn, if z0 ∈ A implies ϕ(t, z0) ∈ A for t ∈ (0, s) (t ∈ (−s, 0),
respectively) with some s > 0.

Remark, that in those cases when the right-hand side g(z) of a system of ordinary differenti-
al equations is only continuous, i.e., in general, it does not satisfy the conditions of the uni-
queness theorem, we will also accept Definitions 3 – 5 with the only difference that an existence
of solution with the required properties is supposed. For example, in the case of a positively
invariant set (Definition 2), we have to require that for any initial point α0 ∈ U there exists a
solution α(t, α0) of the system which satisfies α(t, α0) ∈ U for t ≥ 0.

Lemma 1. Assume the sets U1, U2, U1 ⊂ Rm, U2 ⊂ Rn satisfy condition A. Then W =
= U1 × U2 ⊂ Rn+m satisfies condition A.

Proof. Suppose z ∈ W . Then z can be represented as z = (u1, u2) where u1 ∈ U1, u2 ∈ U2.
According to Definition 3, there exist sets U1

1 and U1
2 such that u1 ∈ U1

1 , u2 ∈ U1
2 . Here U1

1

is diffeomorphic to some open subset of Hm
k1

, k1 ≤ m, and U2
1 is diffeomorphic to some open

subset of Hn
k2

, k2 ≤ n. It is easy to see that U1
1 × U1

2 is a neighborhood of z in W which is
diffeomorphic to some open subset ofHm

k1
×Hn

k2
, which can be represented asHm+n

k with some
k ≤ n+m. Finally, note that an admissible covering can be chosen as

⋃
q1,q2

U q11 ×U
q2
2 for the set

W to satisfy Definition 3, where {U q11 } and {U q22 } are corresponding coverings of U1 and U2.

Lemma 2. 1. Suppose a closed set W ⊂ Rn is invariant (positively, negatively invariant)
with respect to some flow ϕ(t, z). Then any open subset V of the set W is locally invariant (resp.
positively, negatively invariant).

2. If W =
⋃
q
Vq, where Vq are locally invariant (positively, negatively invariant) sets, then W

is invariant (resp. positively, negatively invariant) with respect to the same system.

Proof. Let us conduct the proof for the case of positive invariance. The other cases can be
treated similarly.

1. Given any open subset V and a point z ∈ V , from the positive invariance of W we have
ϕ(t, z) ∈ W for t ≥ 0.Because the set V is open inW , there exists an open neighborhood Uz ⊂
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⊂ Rn such that Uz ∩W = V . Therefore, there exists some s > 0 such that ϕ(0 ≤ t < s, z) ∈
∈ Uz , which implies the necessary inclusion ϕ(0 ≤ t < s, z) ∈ V.

2. We argue by contradiction. We assume that there exists z ∈ W such that ϕ(0, z) ∈ W
and ϕ(t, z) /∈ W for t ∈ (0, s), s > 0. But for the point z there exists Vq 3 z which is locally
positively invariant. We arrive at the contradiction for the point z to be an ”escape” point.

Lemma 3. A set Hm
k ⊂ Rm (or some open subset V ⊂ Hm

k ) is positively invariant (resp.
locally positively invariant) with respect to the flow, generated by system z′ = h(z), z ∈ Rn, if
and only if the following inequalities hold:

hk+1(z̄) ≥ 0, . . . , hm(z̄) ≥ 0

(4)

∀z̄ = (z1, . . . , zk, 0, . . . , 0)T , zi ∈ R, i = 1, k.

(In the case of an open subset V ⊂ Hm
k , we have to additionally require z̄ ∈ V in Eq. (4).)

Proof. We shall only note the case of an open subset V ⊂ Hm
k , because the case of Hm

k can
be proved similarly. First, for any interior point z ∈ V \ ∂Hm

k , ϕ(t, z) ∈ V for all t ≥ 0 small
enough. Next, consider a boundary point z ∈ V ∩ ∂Hm

k . This point can be represented in the
form z = (z1, . . . , zk, 0, . . . , 0)T with some real zi.

We argue by contradiction. Assume that there exists some k + 1 ≤ j ≤ m such that the
j-component of the flow ϕj(t, z0) < 0 for small t ≥ 0. Let us represent the function ϕj(t, z0)
in the form ϕj(t, z0) = hj(z0)t+ ψ(t, z0), where ψ(t, z0) = o(t2). If hj(z0) 6= 0, than it follows
that hj(z0) < 0 and we arrive at a contradiction. If hj(z0) = 0, then for all points z ∈ V ∩∂Hm

k

close enough to z0, we have ϕj(t, z) = hj(z)t+ ψ(t, z) < 0. For small enough t, sign of ϕj(t, z)
coincides with the sign of hj(z) unless hj(z) = 0. Thus, we obtain the following conclusion:
there exists z ∈ V ∩ ∂Hm

k such that hj(z) < 0 or hj(z) ≡ 0 in some neighborhood of z0. In the
latter case the flow is tangent to the plane zj = 0, and, therefore, it can not escape this plane
in the considered neighborhood. This again leads to contradiction and shows that Eq. (4) is a
sufficient condition for local positive invariance of V . Let us show that Eq. (4) provides also
necessary conditions. Assuming that for some k + 1 ≤ j ≤ m and z ∈ V hj(z) < 0, we get
ϕj(t, z) = hj(z)t + ψ(t, z) < 0 for t small enough, which implies ϕj(t, z) /∈ V for these values
of t. Thus we again argue by contradiction.

Lemma 4. Let a set U ⊂ Rm be positively invariant (locally positively invariant) with respect
to the system

α′ = λ(α), α ∈ Rm. (5)

Assume also that there exists a C1 map f : U −→ Rn, which satisfies

g(f(α)) =
∂f(α)

∂α
λ(α) ∀α ∈ U. (6)

Then f(U) ⊂ Rn is positively invariant (resp. locally positively invariant) with respect to the
system

z′ = g(z), z ∈ Rn. (7)
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(Note, that the same assertion is valid for invariant and negatively invariant sets.)

Proof. Consider an arbitrary point z0 ∈ f(U). Then there exists α0 ∈ U such that z0 =
= f(α0). Denote the solution of Eq. (5) α(t, α0) with by initial condition α(0, α0) = α0. We
want to show that ϕ(t, z0) = f(α(t, α0)) is a solution of z′ = g(z) with the initial point z0.
Indeed, we have ϕ(0, z0) = f(α(0, α0)) = f(α0) = z0 and

dϕ

dt
=
∂f

∂α

dα

dt
=
∂f

∂α
(α(t, α0))λ(α(t, α0)) = g(f(α(t, α0))) = g(ϕ).

The positive invariance of U with respect to Eq. (5) implies α(t, α0) ∈ U for t ≥ 0 (0 ≤ t ≤ t0
in the case of local invariance of U). Hence, ϕ(t, z0) = f(α(t, α0)) ∈ f(U) for these values of t.
This completes the proof.

In a certain sense, the inverse statement is represented by the following lemma which is
formulated for positively invariant sets. The same assertion holds true for invariant and negati-
vely invariant sets.

Lemma 5. Suppose that the set W is positively invariant (locally positively invariant) with

respect to system (7), there exists a homeomorphism f : U −→ W, f ∈ C1(U), rank
∂f

∂α
(α) =

= m ∀α ∈ U, W = f(U). Then there exists a continuous mapping λ(α) : U −→ Rm such that
(6) holds. Moreover, U is positively invariant (resp. locally positively invariant) with respect to
Eq. (5).

Proof. The case of locally invariant sets is similar, therefore we consider only the case when
W is positively invariant. Let us take an arbitrary α0 ∈ U. Then there exists z0 ∈ W such that
z0 = f(α0). Denote a solution of Eq. (7) with the initial condition z0 by z(t, z0). Consider the
function α(t, α0) = f−1(z(t, f(α0))). Because z(t, z0) ∈ W for t ≥ 0, we have α(t, α0) ∈ U for
t ≥ 0, and it is not difficult to check that α(0, α0) = α0.

We also have

d

dt
z(t, z0) = g(z(t, z0)) = g(f(α(t, α0))) =

=
d

dt
f(α(t, α0)) =

∂f

∂α
(α(t, α0))

dα(t, α0)

dt
.

Hence,

g(f(α(t))) =
∂f

∂α
(α(t))

dα(t)

dt
. (8)

Denote λ(t) =
dα(t)

dt
. Equation (8) implies that λ(t) depends on α(t), i.e., we can rewrite

λ(α(t)). Expression (6) follows from this and Eq. (8). Moreover, α(t, α0) is a solution of Eq. (5)
belonging to U for t ≥ 0. This completes the proof.

Lemma 6. SupposeW is a locally positively invariant set for Eq. (7); there exists a homeomor-

phism f : V → W, where f ∈ C1(V ), rank
∂f

∂α
= m ∀α ∈ V, m ≤ n; V is an open subset of
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Hm
k , k ≤ m. Then there exists a continuous mapping λ(α) : Rm → Rm such that (6) holds.

Moreover, λ(α) satisfies the following inequalities:

λk+1(α) ≥ 0, . . . , λm(α) ≥ 0 ∀α = (α1, . . . , αk, 0, . . . , 0)T ∈ V, (9)

i.e., for all α ∈ V ∩ ∂Hm
k .

Proof. Note that the conditions of Lemma 5 are satisfied if U = V is an open subset of
Hm
k . Hence, the set V is locally positively invariant with respect to Eq. (5). The proof will then

follow from Lemma 3.
The next lemma is converse to the previous one.

Lemma 7. Assume thatW ⊂ Rn, V ⊂ Rm, and there exists a homeomorphism f : V → W,

where f ∈ C1(V ), rank
∂f

∂α
= m ∀α ∈ V, m ≤ n, V is an open subset of Hm

k , k ≤ m. Assume

also that there exists a continuous mapping λ(α) : Rm → Rm such that Eqs. (6) and (9) are
fulfilled. Then the set W is locally positively invariant with respect to Eq. (7).

Proof. In view of Lemma 3, V is locally invariant with respect to Eq. (5). Now by Lemma 4,
W = f(V ) is locally positively invariant with respect to Eq. (7).

Consider two systems in Rn:

z′ = g1(z), z′ = g2(z). (10)

Lemma 8. Suppose a set W ⊂ Rn is given and there exists a homeomorphism f : V → W,

where f ∈ C1(V ), rank
∂f(α)

∂α
= m ∀α ∈ V, m ≤ n, V is an open subset of Hm

k , k ≤ m. If,

in addition, W is locally positively invariant with respect to each system (10), then W is locally
positively invariant with respect to the system

z′ = γ1g1(z) + γ2g2(z), (11)

where γ1 and γ2 are nonnegative constants.

Proof. In view of Lemma 6, there exists a function λg1(α) such that g1(f(α)) =

(
∂f

∂α

)
λg1(α)

for all α ∈ V and λg1(α) satisfies conditions (9). Similarly, there exists λg2(α) with the same
properties. Consider the function λγ1g1+γ2g2(α) = γ1λg1(α) + γ2λg2(α). Note first that this
function satisfies conditions (9) when the constants γ1 and γ2 are nonnegative. Also, it is easy

to check that (γ1g1 + γ2g2) (f(α)) =

(
∂f

∂α

)
λγ1g1+γ2g2(α). Thus the conditions of Lemma 7 are

fulfilled for system (11). The result now follows from Lemma 7.
Proof of Theorem 1. We consider the case of positive invariance, because the case of negati-

vely invariant sets can be proved in much the same way. According to Definition 3, W =
=
⋃
q Uq and there exist mappings fq with the corresponding properties. For any q the set Uq is

locally positively invariant with respect to both systems z′ = g1(z) and z′ = g2(z) in virtue of
Lemma 2. Now, Lemma 8 implies that Uq is locally positively invariant with respect to Eq. (11).
Using the second statement of Lemma 2, we obtain that W is positively invariant with respect
to Eq. (11).
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4. Linearly coupled system. The goal of this section is to consider the case of coupled systems
of the form (3), in order to apply Theorem 1 and to obtain conditions for positive and negative
invariance of the direct productA×A. We begin with the proof of Theorem 2, then discuss the
obtained result in the framework of the synchronization problem.

In order to simplify the notations, let us introduce the following notations: z = (x, y)T ,
x ∈ Rn, g(z) = (f(x), f(y))T , n(z) = (α(y − x), α(x − y))T . Using this notations, coupled
system (3) will have the form

z′ = g(z) + n(z). (12)

Here n(z) represents the ”perturbation” term which vanishes for α = 0.

Proof of Theorem 2. The following lemmas are necessary for the proof.

Lemma 9. If some setU is invariant (positively, negatively invariant) with respect to the system
u′ = f(u), then W = U × U is invariant (positively, negatively invariant) with respect to the
system z′ = g(z).

Proof is evident, taking into account that the system under consideration is uncoupled.

Lemma 10. Any set W ⊂ R2n which can be represented in the form W = U × U , where U
is a linearly convex set, is positively (negatively) invariant with respect to the system

z′ = n(z), (13)

if the constant α is nonnegative (nonpositive).
Proof. System (13) is linear. The general solution of this system has the form

x(t) =
1

2

[
e−2αt(x0 − y0) + (x0 + y0)

]
= κ1(t)x0 + κ2(t)y0,

(14)

y(t) =
1

2

[
(x0 + y0)− e−2αt(x0 − y0)

]
= κ2(t)x0 + κ1(t)y0,

where κ1(t) =
1

2
+

1

2
e−2αt, κ2(t) =

1

2
− 1

2
e−2αt, x0 and y0 are initial values. Note that κ1(t) +

+κ2(t) = 1 and κ1(t), κ2(t) ∈ [0, 1] for all t ≥ 0 for α ≥ 0 (for all t ≤ 0 for α ≤ 0). Suppose
(x0, y0) belongs to W . Hence, x0 ∈ U and y0 ∈ U . Equation (14) and convexity of U implies
that x(t) and y(t) also belong to U for any t ≥ 0 if α ≥ 0 (t ≤ 0 if α ≤ 0), i.e., (x(t), y(t)) ∈ W
in the corresponding time interval and the set W satisfies the definition of positive (negative)
invariance.

Now the assertion of Theorem 2 is a straightforward consequence of Lemmas 9, 10, and
Theorem 1.

Let us discuss now the application of Theorem 2 to the synchronization problem for two
coupled systems [9]. Lately, the synchronization problem attracts a lot of attention in the scienti-
fic community, see references in [9], in connection with a wide variety of phenomena in physics,
biology, and economics. In the biological sciences, for instance, one of the most interesting
problems is to understand how a group of cells or functional units, each displaying complicated
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nonlinear dynamic behavior, can interact with one another to produce different forms of coordi-
nated function on a higher organizational level. Similarly, different sectors of the economy may
adjust their behavior relative to one another via the exchange of commodities and capital or via
aggregate signals in the form of interest rates and prices of common raw materials. At the same
time, application of chaotic synchronization for monitoring and control of nonlinear dynamic
systems and for new types of communication are vigorously being pursued by numerous investi-
gators. Therefore it becomes extremely important to obtain some analytical general results in
this direction.

First, we briefly describe the mathematical core of this problem (see, for example, [9, 10]).
Suppose that some system u′ = f(u), u ∈ Rn possess an attractor A with some attracting
neighborhood U. In terms of invariant sets we can describe this situation as existing of some
positively invariant set U which contains an invariant set A ⊂ U ⊂ Rn. Consider a coupled
system of the form

x′ = f(x) + α(y − x), y′ = f(y) + α(x− y). (15)

Then the subject of the synchronization problem is the symmetric set A × A ⊂ R2n

which is invariant in the phase space of system [9]. In the case when this set is asymptotically
stable, the synchronization takes place. Another important question concerns the mechanisms
of desynchronization, i.e., the stability loss of the set A× A. It is clear that for α = 0 this set is
not asymptotically stable in general (it is enough to consider an example whenA is a stable peri-
odic orbit), while for α large enough this set seems to be asymptotically stable [9]. Therefore,
for some α ∈ (0, α0) the symmetric setA×A is not stable. In this case, according to Theorem 2,
there still exists some positively invariant set U × U around A× A for these parameter values.
It implies that, after stability loss of A × A, trajectories of the system are attracted to another
attractor in a neighborhood and never escape to infinity.
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France. — 1901. — 29. — P. 224 – 228.

4. Hale J. Integrale manifolds of perturbed differential systems // Ann. Math. — 1961. — 73. — P. 469 – 531.

5. Samoilenko A.M. Elements of the mathematical theory of multi-frequency oscillations. — Dordrecht: Kluwer
Acad. Publ., 1991. — 314 p.
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