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In this paper a general second order Cauchy problem in four dimensional space is considered and suffici-
ent conditions for integrability with generalized Lie series method are determined.

Posensanymo zazanvry 3adawy Kouti Opy2020 nopadky 6 “omupusumipHomy npocmopi i 3HatideHo 0o-
CMAamHi ymo8u il IHme2po8HOCME MEMOOOM Y3azanbHeHUX paoig JIi.

Introduction. Let us consider in a 4-dimensional space a problem in an implicit form such as
the following:
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with F', in general, a nonlinear function. In this paper, we will find a solution of such a problem
by using the general technique of Lie series. Equation (1) can be considered as a generalization
of the Klein— Gordon equation of a relativistic particle in a force field.
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The regularization. The first step to solve problem (1) is to make it regular, which means
to explicate the equation with respect to the time derivative. Let us consider in the multi-
dimensional space C®, where C is the complex numbers field, the surface

F(X1,X,...,X3) =0 )

with(z1, z2,... ,zs) a point such that
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We will prove that this condition ensures that
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and Fr (m,...,7m8) = (7r18’—’7T8>, i =1,...,8. D;... D7 are the commuting Groebner’s
U
operators [1-5], having the property that
DyF(my,...,m8) = ... = D7F(m,...,m3) = 0. (5)
To prove our assertion it is sufficient to observe that, being
[eXimm0Pr | elXrenDrr ] qon =X J=L.oT (6)
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we obtain
X1—x1)D X7—x7)D
[etimenDr =Dy, )]y, =
TR=T8

= F(qe(le"’“"l)D1 .. .e(X77x7)D771'1, . eXmm)De e(X7fr7)D7ﬂ'8) =

)

= F(Xla ,XB)' (8)
The first equality follows from the exchange theorem [6], the second one holds by (6) and (7).

The integration. Problem (1) can now be reformulated in its regular form,
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where G has been previously introduced.
Problem (9) can be further written as an autonomous (i. e. time independent) evolution

problem,
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+o0o
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hok =0

To apply the Groebner’s method, we need to transform problem (10)-(14) in an equivalent
initial value problem for a system of first order differential equations.

This can be achieved by the Taylor transform with a nonsingular initial point, e.g. (x = 0,
y = 0,z = 0). Equations (10) and (11) will give infinite equations, which can be written as
follows (the upper index indicates that all derivatives are calculated at the initial point (x = 0,
y = 0, z = 0), while the derivation variable is specified in the lower index by a number in the
position corresponding to (7, x, y, z), this number indicating the order of the derivation):
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while the initial conditions are
P (0) = a1,

P (0) = aoni,

h k1€ No.
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Then if we construct the following noncommuting Groebner’s operators:
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where the finite coefficients are now depending on parameters named 7, the solution of the
above initial value system is

0 _ t(Do+D
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Therefore the solution of the Cauchy problem is
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Conclusions. Groebner’s approach is a very suitable tool to integrate both linear and nonli-
near second order Cauchy problems in a four dimensional space. Hence it is also very useful in
solving problems which arise in particle physics and quantum field theory.

In this paper we have established a sufficient condition to regularize an assigned problem in
implicit form. The equivalence to a system of two evolution equations has allowed to apply the
generalized Lie series method.

We plan to further extend this subject.
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