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Two theorems concerning the existence of positive solutions for the singular equation (), (y/ )), +

+9(t,y,y) = 0,y(0) = y(1) = 0, are presented. The results are obtained by using the nonli-
near alternative of Leray — Schauder and the lower-upper solution method.

Hasedeno 06i meopemu npo icHy8aHHa O000AMHUX PO36°’A3KI6 CUH2YAAPHO0 DIBHAHHA
’ ’ ’

(ep(y)) +9(t,y,y) = 0,y(0) = y(1) = 0. Pegyabmamu ompumano 3 6UKOPUCIAHHAM

HeaiHitinol anbmepramusu Jlepe — lllaydepa i memoQy 8epxHb020 ma HUMCHbO20 PO36 AIKI.

1. Introduction and results. In this article existence results are presented for the second-order
differential equation

(ep() +9(t,y,y) =0, 0 <t <1,
y(0) = y(1) =0,

(1)

where ©,(s) = |s|’ %5, p € R, and p > 1. Equations of the above form occur in the study of
the n-Laplace equation [1], non-Newtonial fluid theory [2], and the turbulent flow of a gas in a
porous medium [3].

Some basic results concerning the boundary-value problem (1) can be found in [4-11] (and
references therein). In all these papers the argument relies on the fact that g(¢,y, z) is conti-
nuous or satisfies a Caratheodory condition. In [12], D. O’Regan established existence results
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118 HAISHEN LU, D. O’'REGAN, CHENGKUI ZHONG
for the second-order differential equation

(ep(W)) +at) f(t,y,y) =0, 0<t <1, 1<p<2,

2
y(0) = A, y(1) = B, @

where f : [0,1] x R? — Ris continuous, ¢ € C (0,1),and [; g¢(s)ds < co.

In this paper, we present existence results for (1 ) with p > 1 The function ¢(t,y, z) can
be singular at both endpoints ¢ = 0, and ¢ = 1, and also y = 0. The present work is a di-
rect extension of some results in [12]. Our technique of proof uses the nonlinear alternative of
Leary —Schauder and the method of upper and lower solutions.

The paper is organized as follows. In Part 1, we present our main results: Theorem 1 and
Theorem 2. Part 2 is devoted to preparatory work for the proof. Finally, in Part 3 we prove the
main theorems.

The main results of this paper are as follows.

Theorem 1. Let g : (0,1) x (0,00) x R — R be continuous and suppose the following
conditions are satisfied:

(K3)3L > 0 such that for any compact set | C (0, 1) there exists ¢, > 0 with
g(t,y,z) > L, forall (t,y,z) €l x (0,g] X R;

(K2) for every T > 0, there are two positive continuous functions q. € C(0,1) and ¢ :
[0,00) — (0,00) such that

l9(t,y, 2)| < g-(1) Y(|2]), forall (t,y,z) € (0,1) x [r,00) xR,
with

1

1
g-(t)dt < oo, and / >/Q‘r
fer0 S

0

here ¢, Lis the inverse function of p,.
Then (1) has at least one solution y € C[0,1] N C1(0,1) with y(t) > 0 for t € (0,1).

Theorem 2. Let g : (0,1) x [0,00) x R — R be continuous and suppose the following
conditions are satisfied:
(G1) there exist constants L > 0 and r > 0 with
9(t,y,z) > L, forall (t,y,z) € (0,1) x [0,r] x R;

(G2) there exist positive continuous functions ¢ : [0,00) — (0,00) and q € C(0,1) such
that

9(t,y, 2)| < a() (), forall (t,y,z) € (0,1) x [0,00) xR,
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with
1 0 d 1
Hdt < oo, and | —=L £)dt:
U/q” oo O/w<¢p1<u>>>o/q”

here p, Lis the inverse function of p,.
Then (1) has at least one solution y € C'[0,1] and y(t) > 0 for t € (0,1).

2. Preparatory work. For p € (0, 1], define the operator

N, : C[0,1] — C[0,1]

by
(Npy)(z) = (Ay +p /9(7, (Jy)(T),y(T))dT) ; 3)
0
where
1
J(y)(r) = b— /y(s)ds, forall 0 < < 1, (@)

and A, € (—o0,00) is such that
! x
-1 T T T))aTt ) dr = 0— a.
U/so (440 [Catrs o) ar) o= ©

Lemmal. Let g : (0,1)xR? — R be continuous and suppose there exist positive continuous
functions q € C(0,1) and 1 : [0,00) — (0,00), with

1
O/q(t) < oo,

and

l9(t,y,2)] < a(t)¥(|z]) forall (ty,2) € (0,1) x R

Then

(I) N, : C[0,1] — C10,1] is completely continuous;

() if @ C {2z € C[0,1] 1 (Npz)(t) = 2(t)} and sup{sup;co 1] |2(t)| : 2 € Q} < o0, then Q
is a relative compact set in C|0, 1].
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Proof. From the proof of Theorem 2.3 in [12], we easily obtain that A, exists and is unique
for every y € CI0,1].

Let © € C[0,1] be bounded, i. e. sup;cjoqy [y(t)] < Ng forall y € Q (here No > 0
is a constant). Now (5) and the Mean Value Theorem for integrals implies that there exists
¢ € (0,1) with

£
o 40 [ o n@ e ar | < o-a
0
Consequently,

Ay =pb—a)—p [ g(r,(Jy)(7),y(7))dT,

o

which implies
Ay + /)/g(ﬂ (Jy)(7),y(7)) dr| < [o(b—a)| +2Ma Q1) =: Po (6)
0

for 0 <z < 1;here Mg = sup.c_n, ng) [¥(]2])], and Q(z) = Iy a(s)ds.
We first show that N, is bounded. This follows since

(Noy)(®)] < sup o, ' (w)], 0 <t <1, Wy € Q.
—Po<u<Pq

We next show the equicontinuity of N,{2 on [0, 1]. Notice ¢, () is uniformly continuous on
[—Pq, Pal, so for e > 0, there exists d; > 0, such that

‘np*l(ul) —gofl(uQ)| <eg, if ui,uy € [—Pq, Po| and |u; — ug| < 07.

Let
Tr

wei= Ayt p [ o (TnE. ) dr 0 <o <1 k=12
0

Since @ is uniformly continuous on [0, 1], we know for the above fixed §; > 0, that there exists
6 > 0, such that

lur — us| < Mq|Q(z1) — Q(x2)] < 61,
ifxl, T € [0, 1],and ]acl —x2| < 9.

Consequently, for e > 0, there exists 6 > 0, such that if z;, x5 € [0,1], and |21 — 22| < 6,
then

[(Npy)(21) = (Npy)(x2)| <€,
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EXISTENCE OF POSITIVE SOLUTIONS FOR THE SINGULAR EQUATION... 121

forevery y € €. This shows that NV, (2 is equicontinuous. The Arzela — Ascoli theorem guarantees
that IV, is completely continuous.

We now claim that N, : C[0,1] — C[0,1] is continuous. Let y, € C[0,1],k = 0,1,...,
and y, — o uniformly on [0, 1]. We must show N,y — N,yo uniformly on [0, 1]. Associate
Ay, with y; in (3). Then

t
(Vo)) = N 0)(®) = 2" [ A 40 [ 90 (T as) ds | -
0
t
e (Ao [ 9l T s)ats)) ds | k=12 )
0
where A, is such that
1 T
[t [an+o [ 90006 mlo) ds | do-
0 0
1 t
[t [ Awte [ 96wt ds | dr=o.
0 0
The Mean Value Theorem for integrals implies that there exists & € (0,1) with
&k
ot | An o [ 9l Tu) e ds | -
0
&k
et Ao [ s i) ats) ds | =0, ®)
0

for k =1,2,..... Thusfor £ = 1,2, .... we have

&k

Ay, — Ay = p / (9 (5, (o) (), yo(s)) — g (5, (Jyr)(5), yx(s))) ds.
0

Now since y; — yo uniformly on [0, 1], we have limy_.o Ayr = Ayo.

Then (7), and the fact that ¢, (u) is strictly increasing and continuous, guarantees that
N, : C[0,1] — C[0,1] is continuous.

(2). The proof is easy and omitted.
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Lemma 2. Let

1 1
€n — W,I—W,nzl, 60:®.

If 0 <&, <1and e, | 0, then there exists X € C1[0,1], with
(1) @p(X) € CU0,1] and maxocizs [(pp(N ()] > 0,
and
(2) A0) = X1) =0 with0 < A\(t) < en, t € ep\ep_1, n > L

Proof. Let r : [0,1] — [0,00) be such that #(0) = (1) = 0 and r(t) = &5 " for all
t € e, \en_1, n > 1. Moreover, let

u(t) :/tr(s) ds, v(t) = /u(s) ds ,
0

¢ 1
and w(t) = [ v(s)ds. It is obvious that u, v, and w : [O, 5] — [0,00) are continuous and
0

1
strictly increasing, with w (Z) < €1.

Choose a natural number & > 2 with

LS 6 R6) D

(16K (k + 1)]

and (2k+1)(p—1) >1if 1 <p < 2. Let

e frenn(3) e )

(k+1) ’

co =

ooty L )

(16K (k + 1)] ’

and

1\ 2(k+D) 1\ 2k
p(t) = co <t—§> +c (t—§> + c.
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Define A : [0,1] — [0,00) as follows:

1

w(t), 0<t<

1 3

At) = t - <t< -

(t) p(t), 1SS
3

w(l —t), Z<t§1.

Then ) satisfies (1) and (2).
The lemma is proved.

Let’s consider the two-point boundary-value problem

(ep() +9(t,y,y) =0, 0<t <1,

€)
y(0) = A, y(1) = B.
We say « is a lower solution for (9) if o € C1[0,1], ¢,(a’) € C1(0,1) and
(op(/ () +g(t,a(t),d'(t)) >0, 0<t<Il. (10)

The definition of an upper solution for (9) is given in a similar way (just reverse the above
inequality).

Lemma 3. Let g : (0,1) x R? — R be continuous, q € C(0,1) with

1
/ q(t)dt < oo,
0

and
lg(t.y. )| < Mq(t), forall (ty,2) € (0,1) x B?,

where M > 0 is a constant. Then (9) has at least one solution y € C'[0,1] with p,(y') €
€ C(0,1).

The proof is easily obtained using the Leray—Schauder nonlinear alternative and Lem-
ma 1. We leave the details to the reader.

Lemma 4. Suppose

(H1) g:(0,1) x R? — R is continuous.

In addition suppose o € C[0,1], 3 € C0,1] are lower and upper solutions of (9), q¢ €
€ C(0,1),and v : [0,00) — (0,00). Assume the following conditions are satisfied:

(H2) a(t) < [B(t) forall 0 <t <1,

(Hz) a(0) < A < f(0) and a(1) < B < ((1),

(Ha) |g(t,y,2)] < q(t)¥(|2]) forall (t,y,z) € Do x R, where Dog = {(t,y) : 0 <t <
<1 a(t) <y < B}
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1
(Hs) q(t) > 0 forall ¢t € (0,1) and / g(t) dt < oo,
0

and
(Hg) v :[0,00) — (0,00) is continuous with

o

ep(|B=Al)

Then (9) has at least one solution y € C'[0,1], p,(y') € C1(0,1), with a(t) < y(t) < B(t) for

all0 <t < 1.
Proof. Choose

N > max{ sup |o/(t)], sup |B'(t)], |B—A|}

te[0,1] te[0,1]
with
wp(N) d 1
,EL > / q(t)dt
(p (u))
wp(|B—Al) 0

Consider the boundary-value problem

(ep) +9*(t,y,y) =0, 0<t<1,
y(0) = 4, y(1) = B,

where
9B (). 0) +a(0) s v > A
g*(t’yvz) = g(t7y>U*)a Oé(t) <y< ﬁ(ﬂ?
sltal®r) 4ot 2V g < at)
and
N if u>N;
— U if —N <u<N;

—-N if uw<—N.
Notice g* : (0,1) x R? — R is continuous with

9°(t . 2)l < Cq(t) for (t,y,2) € (0,1) x R

(11)

(12)

(13)

ISSN 1562-3076. Heainitini koausarnns, 2003, m. 6, N2 1



EXISTENCE OF POSITIVE SOLUTIONS FOR THE SINGULAR EQUATION... 125

here C = sup,¢y,—n) ¥(|2]) + 1. Now Lemma 3 guarantees that (12) has at least one solution
y € C'[0,1], with ¢,(y) € C1(0,1).
If we show

a(t) < y(t) < B(t) for t € [0,1] and sup |y (t)] < N, (14)
te(0,1]

then y is a solution of (9).
First we show «(t) < y(t). If this is not true, then from (H3) there exists ¢y € (0, 1) with

tlg[l(i)}ll] (y(t) — a(t)) = y(to) — a(to) < 0, and y'(tg) = o'(to).

Notice also that

y (to) — a(to)
1+ y(to) — a(to)

(@p(y/))/ (to) — g (to, a(to), &/ (to)) = q (to) < 0,

since N > sup¢(o 1) |@'(t)| > o/(to). Consequently

(ep(®))' (t0) < (p(e)) (t0).
so there exists ¢ > 0 with
(2p()) (1) < (wp(a) () for ¢ € (to.to +e).
Now since ¢/ (tg) = o (ty) we have
ep(y (1) < @p(d (t)) for t € (to,to+¢),
and so
y'(t) < d/(t) for t € (to,to+e),
a contradiction. Then a(t) < y(t) for ¢ € [0,1]. A similar argument shows y(t) < [(¢) for
e I[? ’rtﬂ;lains to show sup,¢(o 1) [¥/(t)] < N. The Mean Value Theorem guarantees that there
exists £ € (0,1) with ¢/ (§) = B — A. Without loss of generality assume ' (¢) £ N.Then there
exist t1, to € [0,1], with ¢/(¢t1) = |B — A|,y/(t2) = N, and

|B— Al <y/(t) < N for t between t; and ts.

Without loss of generality assume ¢; < t2. Now a(t) < y(t) < pB(t),t € [0,1] and (Hy)
guarantees that

(ep(y) () < at)y(y' (t) for t € (t1,t2).
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Divide by ¢ (3 (t)) and integrate from ¢; to ¢, to obtain

ep(N) d to 1
1#(_7116()) < /q(s) ds < /q(s) ds.
eolipapy P 0

This contradicts (11). A similar argument yields a contradiction in the other cases.

3. Proof of Theorems 1 and 2. Proof of Theorem 1. Let I = (0,00), ¢y = () and

1 1
en = {2n+1,1—2n+1] for n =1,2,....

and

fu(t,y, 2) = max{g(0n(t),y,2), 9(t,y,2)}
Note for each n that f,, : (0,1) x I x R — R is continuous. Next we define, inductively

91(t,y, 2) = fit,y, 2),

and

gnt1(t,y, 2) = min{gn(t, y, 2), far1(t,y,2)}-
Each g, : (0,1) x I x R — R is continuous. In addition

9(t,y.2) < ... < gnia(t,y.2) < gnlt,y,2) < ..o < qilt g, 2)
for (t,y,z) € (0,1) x I x R, and
gn(t,y,2) = g(t,y,z) for (t,y,z) € e, x I xR.

It follows easily that for alln > 1 and (¢,y,2) € (0,1) x I x R we have

lgn(t,y,2)] <> 1g(0:(t), 5, 2)| + |g(t, y, 2)I.
=1

Now condition (k) guarantees that there is a constant L > 0 such that for any e, there exists
ae, > 0with

g(t,y,z) > L forall (¢,y,2) € e, x (0,e,] x R. (15)
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Without loss of generality, we may assume that {¢,,} is a decreasing sequence and lim,,_.oc £, =
= 0.
Let’s consider the two-point boundary-value problem

(p) + gn(t,y,9) =0, 0 <t <1,

(165)
y(0) = y(1) = en.
Next we establish four propositions.
Proposition 1. If ¢, € (0,&,] and a,(t) = ¢y, forall 0 <t < 1, then
(oplan, (1)) + gn(t, an (t) 05, (1) 2 0 for 0 <t <1
(i.e. ay,(t) is a lower solution for (16y,)).
Proof. We must show
gn(t,cn,0) > 0 forall ¢, € (0,e,]. (17)

We prove this by induction. Let ¢; € (0,¢;]. Then (15) implies
91(75, C1, O) - fl(tv C1, O) - max{g(el(t)) Cq, 0) ) g(t7 C1, 0)} 2
> g(01(t),c1,0) > %in g(t,c1,0) > L > 0.
€1

Suppose that (17) holds for a given index n > 1. Let’s check its validity for n + 1. If ¢,,4; €
€ (0,ep+1] C (0,&y), then

In+1 (tv Cn+1, 0) - mln{gn(tv Cn+1, 0) ) fn+1(ta Cn+1, O)} Z
> mln{o ) max{g<9n+l(t)a Cn+1, 0) ) g(t7 Cn+1, 0)}} >
>min{0, L} = 0.

Proposition 2. If y, € C1[0,1], p,(y,,) € C(0,1), is a solution of (16,), then

(p(n (£)) + gny1(tsgn (8) 4 (1) <0 for 0 <t <1

(i.e. yp, is an upper solution of (16,,41)).

Proof. Notice

(o)) + grs1 (tyn (), (1) < (2 (1) + gnlt, yn(t), yn(£)) = 0,

and we are finished.
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Proposition 3. For alln > 1, (16,,) has at least one solution y,, € C*[0,1], p,(y,,) € C1(0,1),
with ept1 < Ynt1(t) < yn(t) forall0 <t < 1.

1
Proof. From (K3), for all n > 1, there exists ¢, € C(0,1) with/ gn(t)dt < oo and
0

lg(t,y, 2)| < qn(t)¥(|z]) forall (¢,y,z) € (0,1) X [en,0) x R.

Let

n

Gn(t) = > u(0:(t)) + gu(t) for 0 <t < 1.
=1

1
Then G, € C(0,1), / Gn(t)dt < o0, and
0

9n(t,y, 2)| < @n(t) 9(|2]) for (t,y,2) € (0,1) X [en, 00) X R.

On the other hand, we can easily verify, using Lemma 1 and the Leray - Schauder nonlinear
alternative, that the two-point boundary-value problem

(ep(y' ) +@a@®)w(ly') =0, 0 <t <1,
y(0) = y(1) = e,

has at least one solution yo € C[0,1], ¢, (y)) € C1(0,1),and &1 < yo(t) for 0 < ¢ < 1.
Since (t,yo(t), yo(t)) € (0,1) x [e1,00) x R, we have

(ep(wo(8) + g1(t,90() w6(1)) < =@ (8) e(lypl) + g1(£, yo(), o (£) < 0.

Thus yq is an upper solution for (161).
Proposition 1 guarantees that a; () = €1,0 < ¢t < 1, is a lower solution of (16, ), and

Oél(t) =g < yo(t) for 0 <t < 1.

From Lemma 4 we deduce that (161) has at least one solution y; € C[0,1] with ¢,(y]) €
€ C1(0,1) and

Ozl(t) =¢e1 < yl(t) < yo(t) for 0 <t< 1;
to see this apply Lemma 4 to g where

" g1 (tayaz)v ) 251;
91 (ty, 2) =

g1(ter,2), y<er
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Suppose now that (16,,) has a solution y, € C*[0,1] with ¢,(y,,) € C1(0,1) and &, < y,(t)
for 0 < ¢ < 1. Proposition 1 guarantees that

ant1(t) = epy1, 0 <t < 1,

is a lower solution for (16,,+1). From Proposition 2 we deduce that vy, is a upper solution for
(16n+1). Now

an+1(t) =éepr1 <ep < yn(t) for 0 <t <1,

and Lemma 4 guarantee that (16,1) has at least one solution y,+1 € C*[0,1] with ¢,(y},,,) €
€ C1(0,1) and

ant1(t) = eng1 < yYnt1(t) < yn(t) for 0 <t < 1.

Proposition 4. Suppose h : (0,1) x I x R — R is continuous with
h(t,y,z) > g(t,y,2) forall (t,y,z) € (0,1) x I xR.
Letj € C0,1] with §(t) > 0 for 0 <t < 1 and
(ep(@'(8) + (6, 5(1),5(t) = 0 for 0 <t < 1.

Then, there exists a function \* € C1[0,1], A*(0) = A\*(1) = 0 with \*(t) > 0 for 0 < t < 1,
and y(t) > X*(t) forall 0 <t < 1.

Proof. Lemma 2 guarantees that there exists A € C1[0,1] with ¢,(\) € C1(0,1), A\(0) =
= A1) = 0, M = supp<;<; |[(pp(N'(t))’| > 0, and

0 < A(t) <ep for t €ey\ep_1, n>1.

I\ /(-1
Let m = min < 1, (M) . We now show

g(t)—mA(t) >0 for 0 <t < 1.
Suppose that there exists ¢y € (0, 1) with

min {§(t) = mA®)} = §(ts) = mA(to) < 0. (18)

Then §'(to) — m N (typ) = 0. Also there existsa ¢ > 0 with

§'(te) —mN(t:) > 0 for t. € (to,to + ¢).
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Since ¢, is an increasing function, we get

pp(y'(te) = op(5'(t0)) -

(¢p(?j,(t)))/|t=t0 = lim

e—0+ te — 1o B
> lim ‘Pp(m )‘/(tE)) - ‘Pp(m X(tO)) _
T e—0t tg — to

= (op(m X' (1)) |e=to-
Suppose ty € e, \ en—1. Then 0 < A(tp) < €,. From (18) we obtain
0 < g(to) < mA(tyg) < en,

and so

L < g(to, §(to),§'(to)) < h(to, §(t0), 5" (t0)) = —(p(H'(£) le=to <
< = (pp(mN (@) =ty < M~ [(@p(m N (1)) li=t,] <

<mP'M <L,

a contradiction. Now let \*(¢) = m A(¢).

Proposition 3 guarantees that (16,,) has at least one solution y, € C*[0,1] with p,(y,) €
€ C1(0,1),

O<éent1 <Ynt1 Sy <...<y, 0SS, (19)
and
Yn(0) = yn(1) = en. (20)

Proposition 4 (note g, > g) implies that there exists A\* € C1[0,1], A*(0) = \*(1) = 0, with
A (t) >0 for 0 <t < 1and y,(t) > A(t) for 0 <t <1, n > 1.Let

y(t) = lim y,(t), 0 <t < 1.
n—oo

Now (20) and y,(t) > A*(¢) fort € (0,1) imply y(0) = y(1) = 0,and y(¢t) > 0 fort € (0,1).
Now let [a,b] C (0,1). There is an index n* with [a,b] C e, for all n > n* and so for
n > n* we have

(Pp(Un(0)) + g(t, yn(t), (1)) = 0, a <t <b.

On the other hand \* € C0,1], A*(t) > 0 for 0 < t < 1,and r = ming<;<p A*(t) > 0.
1

Moreover (K>3) guarantees that there exists ¢, € C(0,1) with / qr(t)dt < oo and
0

9(t,y, 2)] < ¢ (D) (l2]), (8y,2) € (0,1) x [r,00) X R.
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It is easy to see that there exists a continuous function § : (0,1) x R? — R with
9(t,y,2)] < qr(t)P(|2]) for (t,y,2) € (0,1) x R?,
and
g(t,y,2) = g(t,y,2) for (t,y,z) € (0,1) x [r,00) x R.
It is clear that y,(t) > r for a < t < b, for all n > 1. Moreover,
(Pp(Un(8)) + 3(t, yu(t), 4 (1)) = 0 for a <t <b.

It is easy to see (look at Lemma 1) that there exists a subsequence S of {n* +1,n* +2,...}
with

sup |yn(t) —y(t)] — 0 and sup |y, (¢t) —4'(t)] — 0 as n — oo in S.
a<t<b a<t<b

Consequently ¢,(y') € C'(a,b) with

(¥ (1)) +9(ty(1).y/ (1)) = 0 for a <t <b.
Since [a,b] C (0, 1) is arbitrary, we find that
y e C1(0,1) and (g (1)) + glt,y(t), /(1)) = 0 for 0 < ¢ < 1.

It remains only to check the continuity of y at¢ = 0 and ¢ = 1. This follows immediately (see
[14]) from the fact that y,,(¢) | y(¢) and y,(0) = y,(1) = &, | 0. Thusy € C[0, 1]. The proof
of Theorem 1 is complete.

Proof of Theorem 2. Note (G1) and (G2) imply (K1) and (K3).

Remark 1. Notice that the regularity of the solution y € C[0,1] N C'(0,1) of Theorem 1
can’t be improved. For example consider

1 4

UEy) gcy<a
(ty) =4 .Y
g7y 17

4—y37 2<y< o™

Then g satisfies (K). It is clear that the problem

(o' (1)) +9(t,y(t) =0, 0 <t <
y(0) = y(m) = 0,

has a unique positive solution y = V/sint (note y € C[0,7] N C1(0,7)). It is easily seen that
y ¢ C1[0,1].
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Remark 2. (K) is more general than (G ). For example let

s

q1(t,y,z) = cos (Z;—t) sin z.

Then ¢; satisfies (K7) but not (Gy).
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