
UDC 517.986

DETERMINATION OF AN EXACT SOLUTION TO THE INTEGRAL
GELFAND – LEVYTAN – MARCHENKO EQUATION FOR THE
STURM – LIOUVILLE OPERATORS WITH THE STEP-TYPE POTENTIAL
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A method for solving the integral Gelfand – Levitan – Marchenko (GLM) equation for the Sturm – Liouvi-
lle operator with a step-type potential is obtained. The scattering function is found explicitly. An associated
system of infinite recurrence equations is solved. The integral operator kernel is presented in an exact form
using Bessel function. A series of new integral representations for Bessel functions is obtained for the first
time.

Запропоновано спосiб розв’язання iнтегрального рiвняння Гельфанда – Левiтана – Марченка для
оператора Штурма – Лiувiлля у випадку ступiнчастого потенцiала, заданого на додатнiй пiвосi
або на всiй дiйснiй осi. Розв’язано (точно) асоцiйовану з задачею нескiнченну систему лiнiйних
рекурентних рiвнянь. Отримано ядра iнтегральних операторiв у явному виглядi через функцiї
Бесселя. Знайдено вперше ряд нових iнтегральних спiввiдношень для функцiй Бесселя.

Introduction. Finding a solution to the integral GLM equation for the Sturm – Liouville ope-
rator is one of the main tasks when studying many applied problems of mathematical physics
[1 – 4]. At present, only solutions to the ”notreflected” potentials and N -soliton solutions are
known. In what follows we shall use the notations of [2]. The integral GLM equation of spectral
scattering problem on the whole axis R1 for the Sturm – Liouville equation

L · e(z, x) = z2e(z, x), (1)

where the Sturm – Liouville operator L = − d2

dx2
+ g(x) acts in the space L2(R1), g(x) is an

operator-valued potential, z ∈ C is a spectral parameter, reads [2] as

K+(x, y) + F+(x+ y) +

∞∫
x

K+(x, t)F+(y + t)dt = 0, (2)

where the function F+(x) is found as the Fourier transform of the scattering function [2 – 4].
This kernel K+(x, y) defines a solution to problem (1) in the form

e+(z, x) = exp(izx) +

∞∫
x

K+(x, y) exp(izy)dy. (3)
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The absence of the upper index + in relations (2), (3) will correspond to the scattering
problem on the positive semi-axis. A series of papers considers the potential in the form of a
finite step-type function g(x) = U , U ≥ 0 if x ∈ [0, a], g(x) = 0 if x ∈ (a,∞). In particular,
for such a potential, solutions to equation (1) were studied in [1, p. 36 – 46] as solutions to the
steady-state Schrodinger equation, but the solution to the GLM integral equation (2) for this
potential remained still unknown. The aim of our presentation is as follows. First, we solve the
problem (2), (3) for the Sturm – Liouville operator with a step-type function on the positive
semi-axis R1, and then this solution is extended to the whole axis R1.

1. Construction of a scattering function and the corresponding function F (x) for R1. Not
specifying here all details of the deduction, we shall present an explicit form of a continuous
solution to equation (1) for a given potential with the asymptotics exp(izx) at infinity:

for x ∈ [0, a], e(z, x) = eiaz
((z + w)eiw(x−a) − (z − w)e−iw(x−a))

2w
, (4)

for x ∈ [0, a], e(z, x) = eizx. (4′)

Here we put w =
√
z2 − U . Solution (4) is given on the interval [0, a] and then extended conti-

nuously as exp(izx). In [2] it is shown that the function F (x) can be defined as the Fourier
transform

F (x) =
1

2π

∞∫
−∞

(1− S(z))eizxdz,

where S(z) = e(−z, 0)/e(z, 0) is a scattering function ( obtained from the representation e(z, x)
(4)) and analytic in the upper half-plane of the parameter z ∈ C+ and, besides, it satisfies the
condition

|1− S(z)| ≤ C

|z|
exp(2aIm (z)). (5)

Having used the classical Jordan lemma and condition (5), we obtain

for x > 2a, F (x) = 0, (6)

for x ≤ 2a, F (x) = − lim
R→∞

1
2π

∮
CR

(1− S(z)) exp(izx)dz, (7)

where CR is the semi-circle with radius R in the upper half-plane z ∈ C+ with centre at the ori-
gin. To obtain the Fourier transform (7), we use the standard procedure of finding the integrals
of many-valued functions. The integrand function has the branching point at z = ±

√
U = ± b,

in order that it be one-valued on the complex plane z ∈ C+, we shall make two linear cuts along
the real axis from the point +b to −b and along the imaginany axis from the point 0 to −∞.
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Choose the positive branch of the function
√
z2 − U , for which the estimate

∣∣∣∣∣
√
z2 − U − z√
z2 − U + z

∣∣∣∣∣ <
<
|A|
|z|2

holds for sufficiently large |z| >> 1. Expand the denominator of the function 1 − S(z)

into the series,

(
√
z2 − U + z)−1 exp

(
−ia(z −

√
z2 − U)

) ∞∑
k=0

(
z −
√
z2 − U

z +
√
z2 − U

)k
exp

(
2aik

√
z2 − U

)
, (8)

which is absoluty convergent in the upper half-plane z ∈ C+. Substituting expansion (8) into
integral (7) and taking into account representations (4), from the Jordan lemma we obtain for
0 ≤ x ≤ 2a, that

F (x) =
1

2π
lim
R→∞

∮
CR

√
z2 − U − z√
z2 − U + z

exp (iz(x− 2a)) dz. (9)

To find the limit in (9), we complete the semi-circle to a closed curve of two quarter-circles
of radius R in lower half-plane of the parameter z ∈ C, a vertical cut connecting the point
z = −Ri and the origin, two small circles of radius ε → 0 around ± b ( the branching point),
and a cut connecting those two branching points. In the domain of the complex parameter,
the integrand function (9) constructed in this way is analytic and the contour integral along
the domain boundary is equal to zero. Applying once again the Jordan lemma and assuming

R → ∞, ε → 0, we obtain F (x) = − 2
πU

b∫
−b

z
√
z2 − b2 exp(iz(x− 2a))dz, or making use of [5,

p. 69], we reduce this integral to the following form:

F (x) = −2
J2 (b(2a− x))

2a− x
(10)

for 0 ≤ x ≤ 2a, where J2(x) is the corresponding Bessel function [6].

2. Solution of the integral equation (GLM) onR1
+. To simplify the subsequent presentati-

on, we assume for convenience that b = 1. Taking into account condition (6) and expression
(10), the integral equation (2) is reduced to

K (x, y)− 2
J2 (2a− x− y)

2a− x− y
− 2

2a−y∫
x

K (x, t)
J2 (2a− y − t)

2a− y − t
dt = 0. (11)

Moreover (cf. [2]), the kernel K(x, y) = 0 if x > y for all x, y > 0. According to condition
(6), from equation (2) it follows that K(x, y) = 0 if x + y > 2a. After the change of variables,
v = y − x, s = 2a− 2x, and introduction of the notation

K(x, y) = K(x, v + x) = K1(s, v), (12)
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the integral equation (11) is reduced to the form

K1 (s, v)− 2
J2(s− v)
s− v

− 2

s−v∫
0

K1(s, t)
J2(s− v − t)
s− v − t

dt = 0. (13)

Expand now the kernel K1(s, v) into the Neumann series [3,5] in the Bessel functions

K1(s, v) =
∞∑
n=0

An(s)Jn(v). (14)

Upon substituting expansion (14) into equation (13) and making use of the convolution formula
for Bessel functions [6], we obtain

∞∑
n=0

An(s) Jn(v)− 2
J2(s− v)
s− v

−
∞∑
n=0

An(s) Jn+2(s− v) = 0. (15)

Taking into account values of the variables s, v ∈ R+ in equation (15), the following functi-
onal equation can be obtained

∞∑
n=0

An(s) · Jn(s− v)− 2
J2(v)
v
−
∞∑
n=0

An(s)Jn+2(v) = 0. (16)

Having used the addition formulas and recursion relations for Bessel functions, we expand
the known functions contained in equation (15), (16) into the corresponding Bessel functions
series

Jk(s− v) = Jk(s)J0(v) +
∞∑
j=1

(
Jk+j(s) + (−1)k Jj−k(s)

)
· Jj(v),

−2
J2(s− v)
s− v

=
∞∑
n=0

dn(s)Jn(v),

−2
J2(v)
v

= −J1(v) + J3(v)
2

=
∞∑
n=0

anJn(v),

where

d0 (s) = −2
s
J2 (s) , dn(s) = −(n+ 2) Jn+2(s) + (n− 2) Jn−2(s)

s
, n ∈ N,

a1 = −1/2, a3 = −1/2, and all other coefficients an being equal to zero. If we introduce the
notations

Bk(s) =
∞∑
m=0

Am(s)Jm−k(s), (17)
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and equate to zero the coefficients of the Bessel functions of order one in equations (15), (16),
then we obtain two systems of equations,

−B−2(s) +A0(s) + d0(s) = 0,

−B−n−2(s)− (−1)nBn−2(s) + dn(s) +An(s) = 0, n = 1, 2, . . . , (18)

and

B0(s) = 0, B−1(s)−B1(s)− 1
2

= 0,

(19)
B−n−2(s) + (−1)nBn+2(s) + an+2 −An(s) = 0, n = 0, 1, 2, . . . .

If we add (for the same n ∈ Z+), equation (18) and equation (19), respectively, then the recursi-
on relations are obtained to define the functions Bn(s) in the form

Bn (s) = Bn−4 (s)− (−1)n dn−2 (s)− (−1)n an, n = 3, 4, . . . . (20)

In order to solve the recursion relations (20), we have to find four first coefficients Bn(s), n =
= −1, 2. To find B−1(s), let’s integrate equation (15) with respect to v from 0 to s and, after
easy calculations, we obtain

B−1 (s) = −J1 (s)
s

+
1
2
.

The coefficients B0 (s) , B1 (s) , B2 (s) are easily found from equations (18), (19). If the values
of these coefficients are substituted into the recursion relations (20), then an explicit expression
for functions Bk (s) is obtained in the form

Bk (s) = (−1)k kJk (s) /s, k = 0, 1, 2, . . . . (21)

The system of equations (21) can be simplified, if relations (17) are differentiated and the
dependences (21) are used. Then an infinite system is obtained relative to the unknown functi-

ons Xm (s) =
d

ds
Am (s) in the form

∞∑
m=0

Xm (s) Jm−k (s) =
1
4
δ0,k, k = 0, 1, 2, . . . , (22)

where δ0,k is the Kroneker symbol. The infinite system of equations (22) can be solved in an
explicit form using the inversion algorithm for linear relations in combinatoric analysis [7].
Without going here through cumbersome calculations, we give values of the functions,

Xm (s) =
sm

2m+2m!
, m = 0, 1, 2, . . . , (23)
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for which system (22) is satisfied identically, which is easy to check if we represent the Bessel
functions Jn (s) in the form of a series and substitute relations (23) into system (22). Integrating
equations (23) with respect to s and using conditions (21) to find the unknown constants of
integration, we obtain

Am (s) =
sm+1

2m+2 (m+ 1)!
− 1

2
δm,1, m = 0, 1, 2, . . . . (24)

If we substitute expression (24) into the Neumann series and take into account the change of
variables made, we find the unknown kernel in the form

K (x, y) =
∞∑
n=0

(a− x)n+1

2 (n+ 1)!
Jn (y − x)− J1 (y − x)

2
. (25)

The solution (25) was obtained with the assumption that U = 1. For any U ∈ R+, b =
√
U ,

solving equation (11) with the method presented above, we obtain the following representation
of the kernel (25):

K (x, y) = b

∞∑
n=0

(b(a− x))n+1

2 (n+ 1)!
Jn (b(y − x))− bJ1 (b(y − x))

2
. (26)

If in formula (26), an explicit representation of the Bessel functions is used,

Jn (bx) =
∞∑
m=0

(−1)m (bx)n+2m

2n+2m (n+m)! (m)!
,

(27)

In (bx) =
∞∑
m=0

(bx)n+2m

2n+2m (n+m)! (m)!
, n = 0, 1, 2, . . . ,

and the order of summation is changed (series (26), according to [6], is absolutely convergent),
then after easy transformations we set

K (x, y) =
b (2a− x− y)

2z1
I1 (bz1) , where 0 ≤ x ≤ y, x+ y ≤ 2a, (28)

and, outside the domain indicated, the kernel is equal to zero. Here z1 =
√

(2a− x− y) (y − x).
The obtained kernel gives a solution to problem (1) – (3), and also it is a solution of the equati-
on in partial derivatives [2]

∂2

∂x2
K (x, y)− ∂2

∂y2
K (x, y) = g (x)K (x, y) , where 0 ≤ x ≤ y, x+ y ≤ 2a,

where g(x) is described in the Introduction. By the direct substitution we can verify the follo-
wing interesting property of the kernel K (x, y): it is infinite together with all its partial deri-
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vatives at the point x = a, where the potential g(x) has a discontinuity. It is easy to verify the
formula [2, p. 168] to obtain the kernel

g (x) = −2
d

dx
K (x, x) = U, if 0 ≤ x < a, g (x) = 0, if x > a.

Knowing the explicit form of the kernel K(x, y), we can obtain several formulas for the Bessel
functions. Thus, if we substitute the kernel (28) into representation (3) and separate the real
and imaginary parts, after some transformations that are not complicated, we have

bv

v∫
0

I1

(
b
√
v2 − y2

)
√
v2 − y2

cos (zy) dy = cos
(
v
√
z2 − b2

)
− cos (zv) , (29)

b

v∫
0

I1

(
b
√
v2 − y2

)
√
v2 − y2

y sin (zy) dy =
z

λ
sin
(
v
√
z2 − b2

)
− sin (zv) , (30)

where v = a − x, λ =
√
z2 − b2. It is easy to see that formulas (29), (30) assign, respectively,

the cosine- and sine-Fourier transforms (where the integrand functions are extended by zero
for y > v) and if the inverse Fourier transform is applied to them, we obtain

∞∫
0

(cos
(
v
√
z2 − b2

)
− cos (zv)) cos(zy)dz =

πbv

2

I1

(
b
√
v2 − y2

)
√
v2 − y2

, (31)

∞∫
0

(
z

λ
sin
(
v
√
z2 − b2

)
− sin (zv)) sin(zy)dz =

πby

2

I1

(
b
√
v2 − y2

)
√
v2 − y2

. (32)

In relations (31), (32), the right-hand sides are identically equal to zero if y > v. Formulas
(29) – (32) are obtained for the first time.

3. Finding the kernel K+ (x, y) on the whole axis R1. From [2] and expression (11), it
follows that for x ≥ 0, K+ (x, y) = K (x, y) , e+ (z, x) = e (z, x) , and representation (3)
reads

e+(z, x) = eizx +

2a−x∫
x

K(x, y)eizydy. (33)

On the other hand, if x < 0, the presentation of the kernel is K+ (x, y) = Q1 (y − x) +
+Q2 (y + x), where Q1 (y) , Q2 (y) are arbitrary functions that can be defined from the conti-
nuity condition for the solution and the derivative e+ (z, x) at the point zero. In addition,
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representation (3), if 0 ≥ x, can be expressed in the form

e+(z, x) = eizx + eizx
2a∫

0

Q1(y)eizydy + e−izx
2a∫

0

Q2(y)eizydy =

= a(z)eizx + b(z)e−izx, (34)

where the coefficients a(z), b(z) are defined as follows if representations (4) and continuity
conditions on the function e+ (z, x) at the point x = 0 are used,

a(z) = eiaz[cos(aλ1)− i2z
2 − U

2zλ1
sin(aλ1)],

b(z) = −iUeiaz sin(aλ1)/(2zλ1), λ1 =
√
z2 − U.

Taking into account that the solution e+(z, x) is continuous at the point x = 0, together with
the first derivative, and using the expression for the kernel K(x, y) (28), after some transforms,
the unknown functions Q1(y), Q2(y) are found to be

Q1(y) = G1(y) +G2(y), Q2(y) = G1(y)−G2(y), (35)

where

G1(y) =
b(2a− y)

2z2
I1(bz2), z2 =

√
y(2a− y),

G2(y) =
iUaeiaz

8 sin(az)
+

bi

4zz2
I1(bz2) +

aUi

4zy
I2(bz2).

Using relations (34) and taking into account the expression for the functions Q1 (y) , Q2 (y)
(35), an integral representations for the coefficients a (z) , b (z) can be obtained in the form

a (z) = 1 +

2a∫
0

Q1(y)eizydy, b (z) =

2a∫
0

Q2(y)eizydy. (36)

From relations (36), the functions of kernel, Q1 (y) , Q2(y), can be expressed conversely in
terms of the coefficients a (z) , b (z) (cf. the derivation of formulas (31), (32) from formulas
(29), (30)). Taking into account uniqueness of the solution to the problem (2), (3) (cf. [2]), we
have obtained that the kernelK (x, y) (28) for x ≥ 0, y ≥ x, and the kernelsQ1 (y − x) , Q2(y+
+x) for 0 ≥ x, y ≥ x give a solution to the equation of GLM on the whole real axis R1.
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