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This work will consider Volterra’s theory of elastic dislocations in the case of a transversally isotropic
homogeneous hyperelastic hollow cylinder. We obtain explicit equations for vector field of displacements,
for tensor fields of strain and stress, and for forces upon the boundary.

Pozeaanymo meopiro Boavmeppu 041 NPYHCHUX OUCAOKAYILL Y 8UNAOKY MPAHCEEPCANALHO I30MPONHUX
OOHOPIOHUX HAONPYICHUX HOPOICHUCIUX UUAIHOPIB. O0epHCaHO PIBHAHHA 045 BEKMOPHO20 NOAS nepe-
MiUYeHb, MEH30PHO20 NOAS HANPYHICEHD I CUA HA MENCL.

Introduction. In his note on distorsions !, Volterra studies the equilibrium of multi-connected
elastic homogeneous bodies, particularly hollow cylinders, limiting his study only to isotropic
bodies (see e.g. [1-3]). Recently G. Caricato proposed an extension of that theory in the case
of a transversally isotropic homogeneous hiperelastic hollow cylinder (see e.g. [4, 5]).

In this work we will reconsider and expand the findings [4, 5]; we will obtain explicit formulas
for the equilibrium equations, for the boundary conditions, for the vector field of displacements,
and for tensor fields of strain and stress 2.

Thus we are presenting the following:

That the hypothesis in [4, 5] of the parallelism of the two vectors h and k, characteristic of
the displacement (3), plays no role in our research.

From the analysis of the equilibrium equations we show that the coefficient I3, present in
the displacement (3) and arbitrarily retained in the notes [4, 5], assumes instead the expression
(19), so the displacement (3) depends only on the parameters a; and l4.The strain (35) and the
stress (23) are calculated from the following form (21) of the displacement; they only depend
on the parameters a; and /4. From examining the boundary conditions we can then deduce
that the coefficient /3 vanishes and, as a consequence, the parameter a; assumes the explicit
form (32).

! Volterra calls the deformations which his theory refers to ,, distortions”. Love prefers to call them dislocations”
(see [1, p. 221], art. 156, note ).

2 We have utilized the Computer Algebra System Mathematica, which allows not only to verify the calculations
rapidly, but also automatically generates the IXTEX sources of formulas.
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Fig. 1 Fig. 2

The final displacement (33), together with the strain (35) and stress (36) tensors, become
exclusively dependent on the arbitrary parameter /4. The only components of the strain and
stress tensors depending on the parameter [, are €13, €23 and o3, 023, respectively.

The vector field displacement becomes dependent on the ratio N/A of only two of the five
elastic constants, which characterize the transversally isotropic case.

Finally we have found under what conditions Volterra’s formulas (2) for the isotropic case
can be attained again.

It remains to be calculated, in a following paper, a generic auxiliary displacement u’, to
obtain the complete explicit form of Volterra’s dislocations in the case under examination (see
[5], §2.1, note 5).

1. Volterra’s dislocations in the case of an isotropic homogeneous hollow cylinder. Briefly
let’s refer to Volterra’s dislocations theory, limiting it to the case of cylinder C, circular, hollow
(therefore doubly connected), homogeneous, hyperelastic and isotropic, which is found, at a
certain assigned temperature 7, in a natural state C7, and assumed as a reference configuration 3,
So we introduce into an ordinary space a Cartesian rectangular reference
O x93 of respective versors {c1, c2, cg}. We choose the axis O x3 coinciding with the sym-
metry axis of the cylinder and the coordinate plane O x;z2 placed over the base a*1; d =
= (x3)a*, > 0is the height of the base a*2 (Fig. 1). Finally X* is the lateral surface of C*, made
from the two cylindrical coaxial surfaces >*;, internal surface of radius r, and >*,, external

surface of radius R (Fig. 2). P* is the generic point of C}, # = arctan 2 is the anomaly of P*
I

and p = V/x12 + 292 is the distance of P* from the axis of the cylinder. Since the cylinder C is
doubly connected, many-valued displacements u are possible (see e.g. [1, p. 221], art. 156).
Volterra used Weingarten’s note [6] as a starting point, where it is shown that an elastic
body occupying a dominion, not simply connected, can find itself in a state of tension also in
the absence of external forces. Volterra developed a general theory, with some improvements
from Cesaro (see e.g. [2] and [1, p. 221], art. 156). Volterra began with the observation that
Weingarten’s considerations could not be validated in the case of simply-connected bodies in
the range of regular deformations. With this in mind he constructed his well-known Volterra’s
formulas, which obtain the displacements of the points of an elastic body, once assigned the

3 The theory of dislocations initially has a very general character, but subsequently is substantially focused to
obtain explicit results in the study of equilibrium of hollow homogeneous and isotropic cylinders.
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58 E.LASERRA, M. PECORARO

linearized tensor of deformation. Then he examined the field of displacements whose Cartesian
components are 4

1
up = —(1+ qrs — ra2) 0 + (azq + baa + cxz + €) log p?,

27
1 ! / ! ! 2
ug:%(m+m’1—px3)9+(a£01+b$2+6333+6)IOgP7 (1)
1 " /! U 14 2
us :%(n—|—px2—qx1)9+(a r1 + 0"z + "z3 +€") log p,

where the two triplets (I, m,n) and (p, ¢, r) are the respective Cartesian components of the two
assigned constant vectors h = (I,m,n) and k = (p, q,r). He determined the twelve constants
a,b,c,e; o’ b, e5 a’ b, " €’ so that the three functions (1) would verify the equilibrium
equations (see e.g. [2, p. 428]); so he obtained the formulas

1 1 r
U1 —{(l+qx3—m2)9+—<—m+px3+ a 3[:1) logpQ},

T or 2 At 2p
2 =5 1= pwg) 0+ 5 T g2 ) Bl
1 1 2
uz = - (n +pxo —quy) 0 — 5(17951 +qra) logp” o,

where A and p are the two Lamé constants (see e.g. [3]).

He observed that the displacement (2) generates a distribution of forces not identically
vanishing on the surface of the cylinder. So he calculated a supplementary field of displacements
u’(P*) single-valued, which would satisfy the indefinite equations of elastic equilibrium in the
absence of forces of mass and would generate the same distribution of surface forces on the
boundary of the cylinder. The field of displacements,

u’(P*) = u(P) —u'(P),

satisfies the indefinite equations of equilibrium equally, but does not generate any distribution
of forces on the boundary of the cylinder and is many-valued like u(P*) .

The many-valued field of displacements, u”(P*), can be physically interpreted in terms of
the following operations (see e.g. [1, p. 224]):

1. By making a transversal cut on an axial semi-plane, we make the hollow homogeneous
cylinder C; simply-connected and it assumes a natural state C:. We’ll denote the two faces of
the cut by 7] and ~5.

* Conforming to [3, 5] the p,q,r have opossite signs as compared with Volterra’s original work (see e.g. [2,
p. 427)).

5 So we obtain the real Volterra’s dislocation, which consists of two parts: the many-valued main displacement
u(P*) and the single-valued supplementary displacement —u’(P*).
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2. We'll impose a translatory displacement h = (I,m,n) and a rotatory displacement k =
= (p,q,r) to one of the two faces, e.g. 7], with respect to the other. The two characteristic
vectors h and k together will be parallel to the semi-plane 7. In this way making the face
v{ penetrate into «5 or distance itself from +3 according to the vector k will levogyrous or
dextrogyrous accordingly.

3. If k is levogyrous we’ll remove a thin slice of matter, a thickness proportional to the
distance from the axis of the cylinder. If instead k is dextrogyrous we’ll add a thin slice of matter,
the same material as the cylinder, between the two faces of the cut, a thickness still proportional
to the distance from the axis of the cylinder. In this way we create a state of deformation in the
cylinder and therefore of stress.

4. Finally we’ll remake the cylinder doubly connected by soldering the two faces of the
cut. In this way the cylinder assumes a helicoidal configuration absent of superficial forces and
results in a state of regular internal stress.

Collectively, Volterra called the described operations a dislocation whose characteristics are
l,m,n,p,q,r (see e.g. [2]).

2. Volterra’s dislocations in the case of a transversally isotropic homogeneous hollow cyli-
nder. Now let’s consider a transversally isotropic ¢ hyperelastic homogeneous hollow cylinder
and let’s suppose it is found in a natural state C}’ at temperature 7.

In analogy to Volterra’s procedure, conforming to [5], let’s consider a displacement of the
following type:

1
u(P*) = —(h+kAOP")0 +
+ [(a-OP* +as)c1 + (b - OP* 4+ by) ca + (1- OP* + 1y) 3] log p?, (3)

where we can assign the two vectors h and k, characteristic of the dislocation, while we have to
determine yet the vectors a, b, 1 and the constants a4, b4, l4.

If we project (3) onto the axis we obtain

1
Uy = —(h1 + koxg — k3$2) 0+ (alxl + a2x2 + azxz + a4) log p2,

27
1
Uy = %(hg + ksx1 — klxg) 0+ (bll‘l + boxo + b3xg + b4) log p2, (4)
1 2
uz = %(hs + kixo — ko) 0 + (liz1 + lazg + l3x3 + 14) log p°.
The displacement gradient Vu = ' Oun relative to the displacement (3), (4) is
Tk

8 Since it conserves its mechanical characteristics along any direction perpendicular to the axis of symmetry.
" Therefore absent of external mass and/or superficial forces.
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= (dragwy — hixe + 47ra1x% + drasryTo + Amaszixs + kyxe® — koxoxs) +

27 p?

+ay log p?,

1
= ﬁ(hlxl + dragxy — (ks — 4maq)xi1x0 + 47Ta2x§ + koxix3 + Amazxrors) —

2mp

k
— 23 arctand + as log p?,
27

k
— 22 arctan® + azlog p2’
2

1

= 72(4771)4561 — hoxo + 47Tb1£L‘% — (k‘g — 47Tb2)l‘1332 + 4dmbsxix3 + klﬂjg.rg) +

2mp

k
+ 3 arctand + by log p?,
27

1
= —(hQI'l + 47byxy + ]{3.%12 + drbixire + 47Tb2$% — kizirs + 47Tb3$2.%’3) +

27 p?

+ b2 log p2a

k
= — L arctand + bs log p?,
27

©)

1
= (47Tl4£61 — h3xo + kox120 — kliﬂg + 47Tl1£6% + 4drloxix0 + 47Tl31‘1£l73) —

27 p?

k
— 22 arctan® + Iy log p?,
27

1
= —2(h3x1 + 4rlyxy — ]{Q.TU% + (k‘l + 47Tl1).1‘11‘2 + 47Tl2$% + 47Tl3.%'3) +

2mp

k
+ L arctan @ + I5 log p?,
27

= l3log p*
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and the components of the strain tensor

1 T 1L /ouh  OuF
are 8
1
€11 = 5 (Aragzy + Aax1? — hixe + ATaswzo + kszo® + AmasryTs — kaxoxs) + aq log 0%,

2mp

1
€99 = W(hg.%l + k:3x12 + 4mbyxo + 4wbix120 + 47T52.1’22 — kixixs + 47T()3:B2£C3) + bs log ,02,

€33 = l3log p?,

(6)
1
€12 = 12 ((hl + 47Tb4).fc1 + 47Tb1.7}12 — (hg — 47ra4)a:2 — Q(kg — 2ma; — 27Tbg)x1l’2 +
Yy

1
+ dragwe® + (ko + 4mbg)z123 + (k1 + dmaz)vars) + §(a2 + b1) log p?,

1
€13 = W(47‘(‘l41’1 + 47['[13312 — h3xo + (kz + 47Tl2)2311‘2 — k1x22 + 471'[31‘11'3) +

1
+ 5(% + 1) log p?,

1
€93 = 47rp2 (hgxl — k2$12 + dmlgxo + (kl + 47Tl1)1‘1$2 + 471’[2.%’22 + 47T131‘2.T}3) +

1
+ §(b3 + ly) log p2.

In analogy to Volterra’s procedure, to calculate the unknown constants a1, as, as, a4, b1, b2, b3, by,
l1,12,13,14, we have to impose the verification of the indefinite equations of equilibrium and the
boundary conditions on the field of displacements. °

2.1. Constitutive equations. If a homogeneous body, linearly elastic and transversally isotro-

pic, experiences an isotermic displacement at an assigned temperature 7, and departs from its
natural state C¥, then its isotermic strain-energy-function W, can be written in the form

1 1
We(e) = 514(6%1 + 6%2) + 506%3 + (A —2N)ej1€99 + Fer1 + €22)€33 + 2L(e%3 + 6%3) + 2N6%2

8 In engineering practice the characteristics of strain, e, = eni if h = k, enr, = 2eni if h # k, are usually used
(see e.g. [1, p. 39], art.10).

? Tt’s evident the strain (6) proves to be congruent, in that De Saint-Venant’s conditions of congruence are
automatically verified, independently of the value of the unknown constants.
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62 E.LASERRA, M. PECORARO

(see e.g. [1, p. 160], (16) or [7], Capter V, §2), where the coefficients A, C, F, L, N are the elastic
constants' of the cylinder C, and are, by hypotesis, not vanishing and different from each other.

Given the tensor field of stress o = Ho,(;)H at a temperature 7, the constitutive equations
take the form!!

(h7 k) = (2a3)7 (173)3 (172) (7)

(see e.g. [1,5]).

Writing (7) in an explicit form, we obtain the stress-strain relations:

Uﬁ—) = — A611 — (A — 2N)622 — F633, o'g) = —2N€127
Uég) = — (A —2N)e11 — Aea — Fless, ag) = —2Ley3, (8)
Uég) = — F(e1 + €22) — Cess, Uég) = —2Leos.

Taking into account the relationship between the displacement gradient and the strain tensor,
the preceding relations can also be written:

() _ _ g0u g oy Ou2  Ous () _ (0w, Ou

o = Aa:vl (A 2N)6x2 Faa::;’ 912 = N(axg 8:(:1 ’
() _ _ g0u2 4 o0 Ous (1) _ _p (0w, Ous

02z = A@xg (4 2N)8x1 F(?xg’ 713 = L<8x3+8x1 ’ ©)
) _ duy Ous B Ous " _ % %

933 = F<81‘1+a$2> Ca$37 923 = L<8$3+6$2

(see e.g. [9)]).
Through the stress-strain relations (8) or the preceding equations (10), we obtain the followi-
ng explicit expression for the components of the stress tensor o (relative to the field of di-

19 Since the cylinder is homogeneous, the coefficients A, C, F', L, N are constant.

I The signs of o, are chosen conforming to [4, 7], so a pressure is a positive stress and a tension is a negative
stress, as it is usual in theoretical mechanics (see e.g. [8]). Many authors define the stress tensor with the opposite
sign from the definition adopted here (see e.g. [1]), as it is almost universal in engineering practice.
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splacements (4))

- 1
oD = W(((A—QN)h2+47rAa4)x1 +(—Ahy+47by (A—2N))zo+ ((A—2N)ks +
+anAay)z > +4n(Aag+ (A —2N) b)) xyag+ (Aks — (N — A) by) 2% +
+((2N*A)k§1+47TA03).T1333+(*A/€2+47T(A*2N)b3)$2333)*
— (Aay + (2N — A)b2 + Fl3)log p?,
- 1
Ué2) = —W(Ah2+4a4 (A—2N) 7r)x1—|—4a1 (A—2N)’/‘FLU12+(}L1(—A—|—2N)+
—|—4Ab47r)a:2+4(Abl+a2 (A—2N))7rw1x2—2(/<:3N—2Ab27r)a:22+
k
+(—Aki+4a3 (A—2N) 7) 2123+ (ks (—A+2N) +4Abs) xgxg)—ﬁA—
— (Aby+ Flz4a; (A—2N)) log p?,
O _pl_ F (44 4 24 (=hy +4b 4 b
O35 = — %—W(( 9+ a47r)x1+ a1 ™I +(— 1+ 477)5624- (a2+ 1)7Tx1:62+
+4by x5 (ki +4dazm) x1ax3+ (ko +4bs7) zo23) — (F (a1 + ba) + Cl3) log p?,
(10)
- N
0‘52) = — 27Tp2((h1+4b47r)ml+4blﬂ'x12+(—h2+4a4ﬂ')$2+(—2k3+4a1ﬂ'+
—|—4b27T)1’1l’2+4(L27T1’22—|—(k’2+4bgﬂ')l‘1l’3—|—(k‘1—|—4a37T)l'2{L‘3)—
— (az + b1) N log p?,
(7) L 2 2
013 = —W(4l4ﬂ'l‘1—|—4l1ﬂ'$1 —h33§‘2—|—(k§2+412ﬂ') T X9 — k1 X9 +4137T131$3)—
— L (ag +11) log p?,
(7) L 2 2
093 = — (hgl’l—k‘QJEl +4l47T.CI}2+(k}1+4l17T).%'11‘2+4ZQ7T.7}2 +4l37Tl'2£L’3)—

27 p?

— L (b3 +12) log p2.
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64 E.LASERRA, M. PECORARO

Remark. Since the cylinder is transversally isotropic, the stress-strain relation (8) are invari-
ant with respect to the exchange of the axes x1 and z5. We can obtain from (8), (10) the stress-
strain relations for a homogeneous and isotropic cylinder by making them invariant with respect
to the exchange of any pair of axes or to the directional change of any one of the axes (see e.g.
[1, p. 102]). The five elastic constants therefore, must verify the following three conditions of
isotropy:

C = A, L =N, F=A-2N (11)
reduce the independent elastic constants to only A and V.

2.2. Indefinite equation. Because C is initially found in a natural state, Cauchy’s static equati-
ons, in absence of the force of mass, must be verified:

dive =0  VP* e C. (12)

If (12) is projected onto the axes, and expressions (9) of the stress-tensor are taken into account,
we obtain

62u1 62u1 82u1 82u2 82’&3
A L A— F+L =
@a? TN @me T L@z RNl P P
8211,2 82U2 82u2 82u1 82u3
N A L — F+L 13
(8.1‘1)2 + (81‘2)2 + (8.2?3)2 +( 69518952 +( + )(9.7}28.273 07 ( )
82U3 82U3 82U3 82u1 82u2
L L F L =
(81'1)2 + (8332)2 + C(8x3)2 +( + )8.%'18.%'3 +( + )89528903

(see e.g. [9)]).
Referring to (13) or the expressions of stress (10), the equations of equilibrium (12) can be
written in the explicit forms:

(dive), = ﬁ(m — N)(dmas + ho)a12 + 2(A — N)(dmby — hn)z1as —
— (A — N)(4way + ho)z? — 2(2ma1 (A + N) + 27(A — N)by — Nk3 +
+ 21(F + L)I3)z1® — 4n((3N — A)ag — (A — N)by)x1 %20 +
+ (A — N)(4mas — k1)x1 %23 + 2(27(N — 3A)ay + 2n(A — N)by + Nkz —
—271(F 4 L)l3)x122% + 2(A — N)(4nb3 — ko)x12973 — 47((A+ N)ag +
+ (A — N)by)xo® — (A — N)(4maz — ky)z2’z3) = 0, (14)
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. 1
(dive)s = 5

> ((A = N)(hy — 4mby)x1? + 2(A — N)(hy 4 4mag)z120 + (A — N)(47by —

4
— h)za? — 4m((A — N)ag + (A + N)by)a1® + 2(27(A — N)ay + 21(—3A +
+ N)by + Nk — 21(F + L)l3)x1%x2 + (A — N) (kg — 4mbs)x1 %3 +
+47((A — N)ag + (A — 3N)by)z129% + 2(A — N)(4maz — k1 )z10003 —

— 2(27T(A — N)(Ll + 27T(A—|— N)bQ — Nks + 27T(F —|—L)l3)$23 —

— (A — N)(47Tb3 — /Cg)x22$3) = 0, (15)
(dive)s = — 22 ((4m(F + L)az + (L — F)ky + 8nLly)x1 + (4n(F + L)bs +
+ (L — F)kg + 87TLZ2).TU2) = 0. (16)

If we make the coefficients of the various monomials (x1)7 (22)*(x3)! equal to zero, we atrive at
a system of linear equations, not all independent, for the unknowns ay, by, 1y, b = 1,2,3,4. By
annulling the coefficients of the monomials z?x3 (or x3x3 ), 22 (or 23), x17273, T122, in (14) (or
in (15)) we find respectively (in the aforementioned hypothesis A # N)

k1 ha ko 0}

LS = ——= == = —. 17
1o M i BT s T o (17)

az —

If we annul the coefficients of the monomials z3x5, #3 in (14) (or the coefficients of the monomi-
als 7123, 3 in (15)), we obtain the homogeneous system

(3N — A)CL2 + (N — A)b1 =0,

(N+A)az + (N —A)b; =0

where the only solution is a = 0, by = 0 (in the same hypothesis A # N). If we annul the
coefficient of ;1 in (16), we obtain the equation

47T(F + L)CL3 - (F — L)kl + 87TLl1 = 0.
k
And if we take into account the calculated value of a3, we find [} = —4—1. By annulling the
v
coefficient of x5 in (16), we obtain the equation
47T(F + L)bg - (F — L)kz + 8rLly = 0.

k
And by taking into account the calculated value of b3, we find lo = —4—2.
™
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66 E.LASERRA, M. PECORARO

Finally, by annulling the coefficients of the monomials x%, z123 in (14) and the coefficients
of the monomials 3, x2z9 in (15), we obtain the following subsystem of four linear equations
in the three unknowns ay, bo, l3:

27[(A+ N)ay + (A — N)by + (F + L)ls] = Nks,

27(3A — N)ay — 2w(A — N)ba + 2n(F + L)ls = Nks,

(18)
27T(A — N)(ll —|—27T(A+N)b2 —|—27T(F+L)l3 = Nk‘g,
27T(N—A>CL1 —|-27T(3A—N)b2 —|—27T(F+L)l3 = Nk3
which has the oo solutions!?
B _ Nks —4nAay
by = ay, I3 = o (F + L) (19)

In summary we can say that the displacement (3) satisfies the indefinite equations of elastic
equilibrium, and therefore can be considered as an elastic displacement in an equilibrium
problem if the following conditions are verified (and A # N):

a _0 a —ﬁ a __@
20 BTy M T
k h
bl — 07 bQ = ai, b3 = ﬁ’ b4 — ﬁ? (20)
L TR L L
1 3 o e 3 1 B (P D)

while the constants a; and /4 are still undetermined.
So the Cartesian components of the displacement (3), which satisfy the indefinite equations
(12), take the form

1
U = —
! 2

h k
(h1 — ksxg + koxs) 0 + (—ﬁ + ﬁl’g + a1x1> log p2,

1 hy k
up = o5 -(ho + ks — kwg) 0+ (—1 + g+ am) log p°, 1)
2 Ar ' ar

1 k1 ko 2
- = _ _ (M Mo _ 1
U3 5 (hs — kax1 + k122) 0 <47T:L'1 + 47Ta:2 l3x3 l4) og p

where I3 has the expression (19).

12 1t is sufficient to consider any two of (18) to obtain (19);. Therefore (18) reduce to the unique equation
47 Aa; — Nks + 27T(F 4+ L)l3 = 0.
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2.2.1. Deformation, stress and forces on the boundary. If (21) are introduced into (6), we
find the following expression for strain tensor, relative to the vector field of displacements (21)

1

€11 = W(_hQ:El — hixo + 47Ta1$12 + k3$22 + kix1x3 — ]{}Ql‘gxg) + aq log p2,
1 2 2 2
€29 = W(hwm + hixg + 4mar1xe” + k3x1” — kw123 + koxoxz) + a1 log p,

€33 = l3log p?,

(22)
1
G2= 9% (h1m1 — hawg — (k3 — 4mayr)r179 + ko123 + k17973,
(4l haxy + 4l ) i
€ = ——5\amlqxr1 — X 31T —_ —
13 = g mlazs = sty 8T1L3) = 7
1 k
€93 = Inp? (Amlyxo + hazy + Amlzzoxs) — ﬁ

If (22) are substituted into (10), which express the components of the stress tensor by those of
the tensor of deformation, we obtain the stress which satisfies Cauchy’s equations of equilibri-
um (12):

N
Uﬁ) = (how1 + haza + k3zi® + Amayxo® — kizias + koxows) —

_71'—/)2

A
— — (k3 + 4mar) + [2a1 (N — A) — Fl3]log p?,

2w
Ugg) - 702 (—hzl‘l — hixy + ksxzo? + dmarz, 2 + kyxyas — k2x2$3) _
A 2
b (k3 + 4ma1) + [2a1(N — A) — Fl3)log p?,
@ = al ks + 4 o2OF Cl2) log p2
O33 = _%( 3 +4mar) — (2Fa; — Cl3)log p°,
(23)
n_ N
019 = —= [—hix1 + hoxa + (k3 — 4mar)x129 — ko3 — kixaxs)] ,
P2
T L Lkl
0'53) = 27Tp2 (hgfL‘Q — 47Tl4l’1 — 47rl3x1x3) =+ §7
n _ L Lk

093 = 27 p? (—hszy — Amlyzy — Amlzzows) + o
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2.2.2. Boundary conditions. Finally, the boundary conditions must be verified,
ocon—-f=0 < OhyMN1 + OpyN2 + Opan3 = fn, h=1,23, VQ* S 86:, (24)

where f(Q*) are the vectorial surface forces and n = (n1, ng,ng) is the unitary vector normal
to OCZ, with an internal orientation.

To calculate the forces which we must apply on the boundary of the cylinder to determine
the principal displacement (21), we divide the boundary JC} into the parts ¥*;, ¥*5, a*; and
a*9. By taking into account (23) and projecting (24) onto the axes, we obtain four groups of
equations.

First we consider the boundary conditions on the two lateral surfaces:

on¥*y (n=cpcosf+cesinh, =z =rcosh, o = rsinfh, 0 < z3 < d)

T ) 1
|:U§1) cos 9—1—0%2) sin 0} . %[QNhg + ((2N — A)ks — 4AwAay)xy — 2Nkyxzs +
1

+4n(N — A)ayz log p* — 20 Flzzy log p?s, = (f1)s+,s

T ) . 1
[ak) cos 9+0£2) sin 0} i %[—QNhl + ((2N — A)ks — AwAay)xy — 2N kozs + (25)
1

+47(N — A)ayzs log p* — 20 Flzxslog pls-, = (f2)s+,,

T T) o L
|:U§3) cos 9+a§3) sin 0} = —[—Awly + k1x1 + kowe — Awlzxs] = (f3)s,;
>*q 2rr
2)on¥*y (n = —cycosf —cgsinf, x; = Rcosf, x9 = Rsinf, 0 < z3 < d)
T T) . 1
[—0%1) cos — a§2) sin 9] = ——[-2Nha — ((2N — A)ks — 4ma1)z1 + 2Nk1z3 —
Yi*g 27TR

—4n(N — A)ayzy log p? + 2xFlzxy log p?lse, = (f1)s+y,

T ) . 1
{—052) cosf — 052) sin 6’] o, = ﬁ[ﬂvhl — ((2N — A)ks — 4may)xg + 2Nkoxs — (26)

—47n(N — A)ayzolog p* + 21 Flzzalog p?lse, = (f2)sey,

T ) . L
[—053) cosf — 0'53) sin 9] e, = m[47rl4 — kixy — koxa + 4Amlzzs] = (f3)me,.
2

We can divide the surface forces (25), (26) applied on ¥*; and on ¥*5 into the following vector
fields, all equivalent to zero:
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i) {P*, f(l)/(P*) dX*; }2 , consisting of couples of zero arms and so equivalent to zero, in
*1

fact
/ 1
[fl(l) (1’1,172,%3)}2*1 =5 [((2]\7 — A)ks — 4w Aar)zy — 2Nkyz3 + 4n(N — A)aiz log p*—
/
—27T'Fl3111 log p2:| o, = - |:f1(1) (_xla —Zx2, x3):| ;
3%
' 1
fz(l) (1'1, X2, .%'3)} = = W [((QN — A)kg — 47['14(11).%’2 — 2Nk2$3 + 47T(N - A)a1$2 log /32—
/
—27wFl3zslog pQ]E*l = — |:f2(1) (=1, —302,333)} )
3%
(1)/ L (1)/
[fg ($1,£B2,$3):|E*1 =5 [—47ly + k121 + koo — 4Awlzas]) = — [fg (=1, _1‘274”3)} . )

i1) {P*, f(2)/( P*)d Z*Q}E , which, analogously, consists of couples of zero arms;
*2

iif) the pair of two constant vector fields, parallel and opposite,

{f<1>”d2*1} E{f(l)ll%rrdxg} and {f<2>”dz*2} E{f(z)”QWRdxg}

¥y >*q Y*o Yi*o

(fOVe dS*) = 2Nhodas,  (f{)4 dS*) = —2Nhydes, (f{)%. dS* = —dnLlydas,
(27)
(FOVe. dx*y = —2Nhodas, (f).,dS*s = 2Nhydas, (f32)k.,d X%y = 4rLlydas,

that together have, by symmetry, their center coincident with the center of the cylinder, and are
equivalent to their resultant applied to the center. Since their two resultants r’(’l) and r’(’Z) are!3

A”" = 2Nhod , rél)// = —2Nhd, T§1)” = —4nLlyd,

(28)
" " "
i = aNhad, P =2Nmd, " = drLid,

it is obvious that, being ;) + r{;, = 0, also the vector field {(P*, £ oo (P @ g Vs
equivalent to a couple of zero arm.

Finally we consider the boundary conditions on the two bases:

R

N0 ant = £ 2mrd, @7 = -

13 LM _ f@7an; = £@"2nRd .

X*q
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3)ona*; (n=-cg=(0,0,1),21 = pcosh, xo = psind, z3 = 0),

’ LT 1 |
[Ugg)]a*l = % -kl + ?(hgxg — 471'14.7;1)- . = (fl)Oé*17
r LT 1 1
(05 oy = or |2 — (haxy + 4mlyxs) = (f2)a*, (29)
n L P la*,
(7) r 2
o33 Jaxy = | 5~ (ks + 4ma1) + (2Fay + Cls) log p = (f3)ar;

a*q

4)yona*y (n=—cg = (0,0,-1), z; = pcosh, xo = psiné, x3 = d)

’ L[ 1
[0\ P ]y = — o |F1 T P (hawa — 47 (l3d + l4)21) = (f1)as
L Ja*q
(1) L 1 ]
[—093]ary = — o k2~ e (hawy + 4n(l3d + 14)z2) = (f2)as, (30)
L Ja*s
. F
[—0§3)]a*2 =— g(l{fg +4may) + (2Fay 4 Cl3) log p2 = (f3)a*s-
a*o

Also the surface forces exerting on the two bases must be equivalent to zero. So, taking into
consideration (20), (30), we must put

I3 =0, (31)
and consequently we obtain from (19)
N ks

Condition (31) together with (32) must be verified so that the surface forces corresponding to the
dislocation are equivalent to zero, therefore l3 and a1 are not arbitrary.

2.3. Vector field of displacements. From (31), (32) we can now write the definitive expression
for the vector field of displacements (21),

1 1 N
Uy = 5= (hl — k3xo + k2$3) 0+ = —ho+ kixs+ —ksz1 | log p2 ,
2w 2 A
1 1 N )
Uz = % (h2 + k3x1 — k1$3) 0+ § hi + koxs + Zk3x2 log p~ ¢, (33)

1

u3:27r

1
{(hg — kg&?l + k1$2) 0 — 5 (kla:l + le‘Q — 47Tl4) log p2} .
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These formulas demonstrate that the vector field of displacements depends exclusively
on the ratio N/A of only two of the five elastic constants which characterize a transversally
isotropic elastic body.

Remark. If we impose the isotropy conditions (11) on the five elastic constants, and put
A = X+2u, N = pandly = 0, we once again obtain, from (33), Volterra’s formulas (2)
relative to the isotropic case.

2.4. Deformation, stress and surface forces corresponding to the established displacement.
N
If we substitute the values I3 = 0 and a; = Zf—?’ in (5), (22), (23), and (25)-(30), we obtain
7

the following explicit definitive expressions (corresponding to the displacement (33)):
1) for the gradient of displacement Vu,

g—;ﬁ:#(-hgm—h1$2—I-%ksxﬂ+k3x22+k11‘1$3—k2m2x3) ]Zf log p?,
Z—Z; = 27 2 (hl r1 — hoxo + <% - 1) ks w1 o + kox1 23 + Ky :L’z.’l:‘g) — 2k—j’r arctan 6,

Z—Z; :;ﬁ—;arctanﬂ—l—f—;logp%

g—zj = 27rlp2 (h1:c1 — hoxo + <%—1) k3x1x2+k2x1x3+k1x2x3> +§—73T arctan 6,

g_zz :27rlp (h2x1+h1m2+zk‘3x2 + k3 21 —k1x1x3+k2x2x3)+zf—10gpa (34)
g—zzz —%arctan9+f—irlogp27

Oug 1

k k
. = W(4wl4x1 — hgxy — k1212 — Ky 29%) — ﬁarctan@ + ﬁlogpQ,

0 1 k k
a—zz = 2 (Amlyxe + hyxy — ko 12 — ko x22) + ﬁ arctan — ﬁ logpz,

Ous
8%3

2) for the tensor field of strain,

1 N N kg
€11 = W (—hg[L’l —hizo + Zk3$12 + k3.7322 + k1r103 — k2$2x3) + 24_ Ing )
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N N k3
€22 = <h2x1 + hawa + —kswo® + ksw1® — ks + k‘29€23«"3> + = log p?,

1
27 p? A A 4w

€33 =0,
(35)

1 N
€12 =5 <h1$1 — hazo + <— - 1) ksrizo + kow123 + k1902333> ;
o A

k1

= (47l —h - =
€13 47rp2( T4 372) A

1 ko
€23 = W(47Tl4$2 + hgz1) — o
3) for the tensor field of stress,

n_ N N
51) =2 <h2x1 + hizo + Zk3$22 + kswr® — kiziwg + k2$2x3> -

55 Jog o7,

- (N+A)§7T + (N - A)Z2—3

N N
Uég) = - P <h2901 — hizo + Zk?,xlz + k3xo® 4 kyxy23 — k2$2$3> -

k N k3
(N+A)—3 + (N - A)ZQ—IOgP ;

B N Nk
o = —r (G ) - e,

2 A2

(36)
n_ N

N
01y = 5 —hix1 + hoxy — <— —

1) k3x1$2 — kgxl.%'g - k1x2x3> 5
TP A

(7) Lk
= 4 R

(r) L Lky,
= 4l h
023 27 (4mlyxo + haxy) + or

4) for the surface forces, respectively, on

1 N
(fl)z*l = 271_ |:2Nh2 + (Z — 1) (A + Nlogp2)k‘3:1/:1 — 2Nk‘1{l}3] s
¥
* 1 N
¥ = (fo)s+, = Py [ 2Nhi + (Z — 1) (A+ NlngQ)kg.T}Q — 2Nkox3 , (37)
3*q

L
{ (f3>2*1 = ﬁ[—llﬂ'h + klxl -+ kgwg]g*l
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1 N
(fi)s+, = R [—2Nh2 — <Z — 1> (A+ Nlogp2)k:3x1 + 2Nk1x3} o ,
” 1 N
¥y = .= —— [2Nh; — [ = —1) (A+ Nlogp? 2N 38
2 (f2)s+, e [ hq (A )( + Nlog p”)k3xo + 2Nkox3 . (38)
L
(f3)2*2 = ﬁ[llﬂ-lll — ]{31(171 — ksz]E*z,
L 1
v, = — — —4
(f1)ar o [/ﬁ + e (h3x2 7Tl4361)} .
. L 1
a = (f2)ar, = Gy [k2 - ?(h?@l +47rl4x2)} . ) (39)
Fks o IV
a* = — 1 1 1 - 9
(f3) 1 ot |: +( + ng)A:|a*1
L 1
(fl)oc*Q = % I:_k'l - F (h3x2 - 471’[41‘1)] s )
L 1
a*o
Fks o IV
a* — —_— 1 1 1 —
(f3) 2 ot [ +( +logp ) A:|a*2

Conclusion. If a hollow elastic cylinder, homogeneous and transversally isotropic C, is initi-
ally found in a natural state C; and experiences a many-valued isotermic displacement CX — C;
as in (21) (and consequently a regular deformation), then, in the equilibrium configuration C,
stress (36) and congruent deformation (35) are present in every internal point; and surface
forces (37) - (40) equivalent to zero are exerted on the boundary.

Remark. While displacement (33) and tensor field of strain (35)) depend only on the ratio
N/A, the tensor field of stress (36) depends on four of the five elastic constants.
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