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Polynomial differential equations are considered. We apply Erugin’s two-isocline method for the global
qualitative analysis of such equations and give a geometric interpretation of the quadratic centers.

Pozenanymo noainomianvhi oughepenvianvri pieHAHHA. [Iasi 24004AbHO0 AKICHO20 AHAAIZY MAKUX
PIBHAHD 3ACMOCOBAHO 080I30KAIHHUL Memo0 Epyzina. HasedeHo 2eomempuyny iHmepnpemayiro K6ao-
PAamu4HUX UeHmpie.

1. Introduction. We consider differential equations

dr  Py(z,y)’

where P,(z,y) and Q,(x,y) are polynomials of real variables x, y with real coefficients.

It is well-known [1] that existence of a center in the polynomial equation (1) is equivalent to
vanishing all Lyapunov’s focus quantities of this equation calculated at the singular point having
a center in the linear part of (1). Therefore, the center condition for the polynomial equation
of degree n is defined by an infinite number of algebraic equations for the finite number of
its coefficients. By Hilbert’s basis theorem, this infinite system of algebraic equations is equi-
valent to a finite system, and the problem of distinguishing center and focus for the polynomial
equation of degree n is to find this system.

Lyapunov’s focus quantities are calculated by means of recurrence relations, and this calcu-
lation is programmed. The unsolved part of the problems is formulated as follows.

Problem. For any degree n of the polynomial equation (1), find N = N(n) such that vani-
shing the first N focus quantities implies existence of a center.

For the case of n = 2, an unexpectedly simple answer was obtained by H. Dulac [2] and
M. Frommer [3], namely: N (2) = 3;1i.e., if the first three focus quantities vanish, the quadratic
equation has a center. For the equation

@ _ 9:+Q3(x,y) (2)
dx B _y+P3($vy)7

where P3(z,y) and Qs(x,y) are homogeneous polynomials of the third degree, N = 6 [4].
However in the general case, it is not known even if the number N (n) is less than the dimension
of the parameter space of the polynomial equation (1), and we do not know the geometric sense
of a center for (1).
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In this paper, we will give a geometric interpretation of a center in the quadratic case of the
equation (1).

2. Lyapunov’s focus quantities for a quadratic equation. Consider the quadratic equation

dy =+ ax® + bry + cy?
dr  —y+mzy + ny?

®)

which was studied in [5—10] and in many other works. Let us write down formulas for the first
Lyapunov’s quantities Ly, Lo, L3 for a singular point at the origin [5, 10].
The first focus quantity for the equation (3) has the form

Ly = - (bla+¢) —n(2c+m)).

o |

Under the condition L; = 0,
_ 1 o 2 2
Ly = oG (An(c —a—m)(3(a+c)* —n*) +

2 —(a+e)?) -

+ 6(n(c —a) + bm)(n
— ((n=0)* = (c+m —a)*)(n(2a+m) + ba + ¢)) +
+ 2(n—b)(c+m—a)(nb+n)+(c—a—m)ate)—
— 6n(a+c)(n*+m?*—v* — (c—a)* +

+ 4(a+c)(b+n)(3n* — (a + c)?)).

Under the conditions Iy = 0, Ly = 0,

Ls = (4(n” + (a +¢)*)(16(a + ) ((b+n)((n — b)* —

T 2048
— (e+m—a)?) +2(n—b)(m*— (c—a)?) +

+ 16n((c +m — a)((c — a)> = m? — 2(n® — b?)) —
~ (n=b)*(c—a-m)) -

— 106(bm + cn — an)(n® — (a + ¢)* +
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+ 106n(a + c)(m* +n* —b* — (c —a)* +

+ 69n(c —a—m)(n® —3(a+c)?) +

+ 69(a +c)(b+n)((a+c)? — 3n?)) +

+ 5((b+n)*+ (c—a—m)?)(Bn*(a+c)(b+n) —

— (a+cPb+n)+nlc—a—m)(3(a+c)—n?)+

2

+ 2(bm +cen —an)(n?® — (a + ¢)? +

+ 2n(a+ ¢)(b* + (c — a)* — m? — n?))).

By means of these Lyapunov’s quantities, the following theorem can be proved (it was
proved for the first time by M. Frommer).

Theorem 1 [3]. The equation (3) has a singular point of the center type at the origin iff one of
the following conditions is satisfied:

Hb=n=0;

2)b=2c+m = 0;

3 n=a+c=0;

4)ym = 5a+ 3¢, b = 5n,2(a® +n?) +ac=0.

3. Classification of the symmetric cases. Let us apply Erugin’s two-isocline method [11] for a
geometric classification of the center cases. By means of various transformations of the coordi-
nate system (a parallel translation, a rotation and a scaling), the first (linear) approximation of
a quadratic equation with a singular point of the center type can always be reduced to the form

- )

de vy
i.e., we can suppose that the center is at the origin and the “inclination” of each isocline is
orthogonal to its tangent at this point.

The most obvious cases of a center (their number is overwhelming, as is known) appear
when the quadratic equation has a symmetry of the direction field (for example, with respect to
the z-axis). We will consider first these cases.

Since in the case of a symmetry there is at least one pair of orthogonal straight lines (or one
straight line) among the isoclines, the isoclines

P(z,y) =+ az? + cy?, (5)
Q(z,y) = —y + mxy (6)
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can be chosen as isoclines of “zero” and “infinity’; respectively, where without loss of generality
we will suppose that m = —1 or m = 0. As a result, for the study of the quadratic equation in
the case of a symmetry and with a center at the origin, it is enough to have the equation of the
form

dy  x+az?+ cy?
dr — —y+may

™)

where m = —1 orm = 0.

Begin with the most typical nondegenerate cases, when the pair of orthogonal straight lines,
Yy = Oa xr = _17 (8)

is the “infinity” isocline. The second line is an integral line of the equations (7). Let this equation
have four singular points. Then we should take an ellipse or a hyperbola as a “zero” isocline.
There are two possibilities of intersection of the straight lines (6) with the hyperbola, when:
1) the left branch of the hyperbola passes through the origin; 2) its right branch passes through
this point. Consider these cases in more detail.

1) a < 0, ¢ > 0. Itis clear that in this case the points Cy(—1/a,0), Ci(—1,—+/(1 —a)/c),
Cy(—1,4/(1 — a)/c) are saddles, and the point O(0, 0) is a center. Depending on properties of
the “zero” hyperbola-isocline, we will obtain three possible types of boundary of the domain of
the center O: a) if the hyperbola

z+ar? +ey? =0 9)

is equilateral, i. e., its basis rectangular is a square (e = —c), then the asymptotes of all hyper-
bola-isoclines will be orthogonal; the lines forming two pairs of straight line isoclines will also
be mutually orthogonal. This follows, for example, from the general equation of isoclines:

z—c(z? —y?) +ky(z+1) = 0. (10)

The straight lines CyC; and CyC5 here are integral lines, and hence the boundary of the center
domain is the triangle CyC1C5; b) if the hyperbola (5) is expanded along the xz-axis (its basis
rectangular is expanded: a + ¢ > 0), then the isocline portrait of the equation (7) shows that
the center domain is bounded by the digon formed by the segment of the straight line and
by the arch of the curve C1Cy; c) if a + ¢ < 0, then the boundary of the center domain is a
separatrix loop of the saddle Cj. In this case, there are three singular points (nodes) at infinity.
The corresponding phase portraits are represented in Fig. 1 (cases 1-3).
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Fig. 1. Phase portraits in the case of a symmetry.

ISSN 1562-3076. Heainitini koausanns, 2003, m. 6, N> 1

25



26 V.A. GAIKO

2) a > 1, ¢ < 0. The point O(0,0) is a center, A;(—1, —+/(1 —a)/c), A2(—1,+/(1 —a)/c)
are nodes, and C(—1/a,0) is a saddle (see cases 4—7 in Fig. 1). The boundaries of the center
domain here are the following: a) if a + ¢ = 0, they are straight lines, more precisely, rays of
straight lines passing through one of the nodes A; or A and intersecting in the saddle C; b) if
a+ ¢ < 0, the boundary of the center domain is a curve leaving to infinity. The isocline portrait
shows that this curve leaves to saddles at infinity; c) if « + ¢ > 0, the boundary is a separatrix
loop of the saddle C. Two cases are possible here depending on how many singular points there
are at infinity. If, in the shaded domain in Fig. 1 (cases 6, 7), the “inclination” of the hyperbola-
isocline coincides with the inclination of its asymptote, then there are three singular points (a
node and two saddles) at infinity; if there is no such coincidence, then there is only point (a
saddle) at infinity. Both possibilities are realized. The equation of infinite singular points

9 a
RECESY )
other than u = oo, shows that (there are three singular points at infinity for ¢ < —1 and only
one for —1 < ¢ < 0).

Consider the center case when four singular points are obtained by intersection of the
straight lines (6) with an ellipse.

3) 0 < a < 1,¢ > 0. There are two centers O(0,0), A(—1/a,0) and two saddles C(—1,
—/ (1 —a)/c), C2(—1,+/(1 — a)/c) in this case. The isocline portrait of the equation (7) shows
that both center domains are bounded here by the segment of the straight line C;C5 and the
closed curve intersecting this straight line at the points C, C5 (case 8 in Fig. 1).

Suppose now that an ellipse (a pair of parallel straight lines) intersects the lines (6) (more
precisely, the line y = 0) in two singular points.

4) a > 1,c>0ora < 0,c < 0. The point O here is still a center, the point C'is a saddle. In
both cases, the center domain is bounded by a separatrix loop of the saddle C. In the first case,
there is one singular point (a node) at infinity; in the second case, there are either three points
(two nodes and a saddle: ¢ < —1) or only one (anode: —1 < ¢ < 0). If a hyperbola (a pair of
parallel straight lines) intersects the line y = 0 in two points, we will also obtain two cases.

S5) -1 <c<0andec < —1,where 0 < a < 1. In the first case, the domains of the centers
0(0,0) and A(—1/a,0) are bounded by the straight line z = —1; in the second case, they are
bounded by curves leaving to saddles at infinity.

The listed cases will be regarded as basic (nondegenerate). Consider intermediate (degene-
rate) cases. If a parabola intersects the straight lines (6) (in three points), i. e., in other words, if
in case 3 the point A leaves to infinity, we will obtain a new case of a center.

6) a = 0, ¢ > 0, where there is a complex singular point with an open saddle domain,
a closed node domain and two adjoining node domains at infinity.

Distinguish further two cases, when the line x = —1 is tangent to a hyperbola or an ellipse
in the point of its intersection with the line y = 0, i.e., when there are a simple singular point
(a center) and a complex (triple) point in a finite part of the plane.

7) a=1,¢<0.

8 a=1,¢c>0.

In case 7, three subcases can be distinguished: a) —1/2 < ¢ < 0, when the center domain is
bounded by a closed curve tangent the line x = —1 in a complex singular point having, together
with a saddle domain, a closed node domain and two adjoining node domains; b) —1 < ¢ <
< —1/2, when the closed curve turns into the line z = —1; ¢) ¢ < —1, when the boundary
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is a curve leaving to saddles at infinity (in this case, unlike the previous ones, there are three
singular points at infinity, two saddles and a node). In case 8, the the center domain is bounded
by a closed curve tangent the line x = —1 in a complex singular point (a triple saddle).

Suppose there are two simple singular points in the finite plane and they are obtained by
intersection of a hyperbola or an ellipse (a pair of parallel straight lines) with a line which is an
“infinity” isocline (m = 0).

9) a>0,c<0(a<0,¢c>0).

10) a > 0,¢ > 0(a < 0,c < 0).

Distinguish the following possibilities in case 9: a) a + ¢ = 0, when the center domain is
bounded by rays of two intersecting straight lines leaving to saddle-nodes at infinity; b) a + ¢ >
> 0, when the boundary is a curve leaving to saddle-nodes at infinity; ¢) a + ¢ < 0, when the
center O(0, 0) is bounded by a separatrix loop of the saddle C'(—1/a,0). In case 10, the center
domain can be bounded only by a separatrix loop of the saddle C, and there is only singular
point at infinity in this case: a node (of multiplicity-5 for ¢ = 0). Consider the case of one
(isolated) singular point in a finite part of the plane. If m = —1, we obtain the following cases.

11) a =0,¢ < 0.

12) a =1,¢=0.

If m = 0, we have a trivial (linear) case.

13) a=c=0.

Distinguish a few subcases for case 11: a) —1/2 < ¢ < 0, when there is a complex singular
point with open saddle and closed node domains at the “ends” of the xz-axes and there is a
simple saddle at the “ends” of the straight line z = —1;b) —1 < ¢ < —1/2, when the saddle
domain becomes closed and two node domains adjoin it; ¢c) ¢ = —1, when infinity is filled
with singular points in all directions; d) ¢ < —1, when there is a complex saddle with a closed
domain at the “ends” of the z-axes and there is a simple node at the “ends” of the line x = —1.
In case 12, the whole straight line x = —1 consists of singular points, and if to reduce the
common cofactor (x + 1) both in the numerator and in the denominator of the right-hand side
of the corresponding equation (7), then the last 13th case of a center with an axial symmetry of
the direction field will be obtained. The phase portraits of all these cases are given in Fig. 2.

It is clear, that the considered cases 1-13 do not settle all center cases for the quadratic
equation (1). The most general form of the equation with a center, taking into account the
reasoning mentioned above, will be the form (3), where m = —1 or m = 0. However, for many
problems, it is sufficient to know only these center cases (for example, for the classification of
separatrix cycles), because other cases can be considered only as possible bifurcations under
the change of stability of a focus (the separatrix cycles will be determined uniquely in these
cases).

4. A geometric interpretation. Let us list all possible center cases of the equation (3) [6—10]
and give their geometric interpretation (see Fig. 2 and Fig. 3).

Theorem 2. The equation (3) has a singular point of the center type at the origin iff one of the
following geometric conditions is valid:

1) axial symmetry of the inclination field;
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Fig. 2. A center in the case of a symmetry (continuation).
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2) local symmetry (zero divergence) of the corresponding vector field;
3) orthogonality of the asymptotes of the hyperbolas (or straight lines) forming the family of

isoclines;
4) orthogonality of the asymptotes of the saddles at infinity.

Proof. 1. Axial symmetry (see the equation (7)):

dy z + ax? + cy?
de  —y+mzy

In this case we have the z-axial symmetry of the inclination field of (7) for the function

F(J}, _y) = _F(xv y)
2. Local symmetry (zero divergence) on the whole phase plane (the Hamiltonian case):

dy  x+az?+cy?
de  —y—2cxy + ny?’

(12)
Here the divergence of the corresponding vector field

o) = Pay) g+ Qalary) 5

vanishes on the whole phase plane:
div f(z,y) = —2cy+2cy = 0.

3. Orthogonality of the asymptotes of the hyperbolas (or straight lines) forming the family
of isoclines (the Lotka— Volterra case):

dy x + ax® + bry — ay?

= 13
dx —y + mzxy (13)

It is easy to show that there are only hyperbolas with orthogonal asymptotes or orthogonal
straight lines among the isoclines of this equation:

z+ky+ar®+(b—km)zy—ay* =0, keR.
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4. Orthogonality of the asymptotes of the saddles at infinity:

dy o —x*—bnay +2(n? + 1)y?
dr —y+ (6n2+1)zy —ny?

(14)

Here, without loss of generality, we had put the second finite singularity (which is a node for
any value n) into the point (1,0). Then an infinite node lies in the direction u = —1/n and two
infinite saddles are determined by the equation

w2 —dnu—1=0

which gives orthogonal directions. Theorem 2 is proved.

Applying the isocline portraits like in Fig. 1, it is easy to see that for all considered cases, the
direction field of the equation (3) is rotated in such a way that the separatrix cycles of the equati-
on will be maintained under the variation of the parameters b and n (with the corresponding
compensation by the parameters a, ¢, m), namely: 1) b = n = 0, i.e., neither the parameter b
nor n is present; 2) only the parameter n is present (b = 0); 3) only the parameter is present b
(n = 0); 4) both parameters b and n are present. This geometric properties can be used for a
geometric center criterion for an arbitrary polynomial equation (1).

5. Conclusion. Studying contact and rotation properties of the isoclines we can also construct
the simplest (canonical) systems containing limit cycles.

Theorem 3 [12]. Any quadratic system with limit (separatrix) cycles can be reduced to one of
the systems either

T = _y(1+x) +04Q(.T,y), Y= Q(a:,y) (15)

or

i=—-y+vy’, §=Qy), v=01, (16)

where

Q(z,y) = z+ Ay + az® + By(1 + z) + cy’.

The advantage of the systems (15) and (16) is that they contain the minimal number of
essential parameters and some of these parameters («, 3, \) rotate the vector fields of (15), (16).

By means of these systems and using the center cases, we can carry out the classificati-
on of separatix cycles and can study the limit cycle bifurcations solving the most complicated
problems of the qualitative investigation of the polynomial equation (1) [12, 13].
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