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Dynamics of modulated waves are studied in the one-dimensional discrete nonlinear electrical transmis-
sion line. Contribution of the linear dispersive capacitance is appreciated and it is shown via a reductive
perturbation method that evolution of such waves in this system is governed by a higher order nonlinear
Schrödinger equation. Passing through the Stokes analysis, a generalized criterion for the Benjamin – Feir
instability in the network is established and the exact solutions of the obtained wave equation are determi-
ned by the means of the Pathria and Morris’s approach.

Вивчається динамiка модульованої хвилi в одновимiрнiй дискретнiй нелiнiйнiй лiнiї електропе-
редач. Враховано внесок лiнiйної дисперсiйної ємностi та показано за допомогою методу редук-
тивного збурення, що еволюцiя таких хвиль у системi описується нелiнiйним рiвнянням Шрьо-
дiнгера вищого порядку. За допомогою методу Стокса встановлено узагальнений критерiй не-
стiйкостi за Бенджамiном – Фейрi у мережi i знайдено точнi розв’язки хвильового рiвняння за
методом Патрiа та Моррiса.

1. Introduction. It is well known that exactly integrable nonlinear differential equations have
soliton solutions that travel stationary and collide elastically. Many wave spread phenomena
can be explained by integrable equations in some ideal conditions and there is a great vari-
ety of applications of the concept of solitons in Condensed Matter Physics [1]. It is possible
to divide these applications into two parts: In one part continuum media are treated, e.g. in
hydrodynamics [2], and solitons arise as solutions of partial differential equations (pde’s). In
the other part, intrinsically discrete models are considered, e.g. chains of magnetic ions or
hydrogen-bonded chains in proteins [1, 3]. Here differential-difference equations have to be
solved instead of the pde’s of the first part. However, apart from very few exceptions like Toda
lattice [4], the differential-difference equations cannot be solved exactly. Therefore, several soli-
ton perturbation theories have been developed to study the effect of small perturbations on
integrable equations. In these theories, the reductive perturbation method [5, 6] is well known.
Within this method, we have the semi discrete approximation that consists of considering the
continuum approximation to describe the envelope of the signal and to treat the carrier wave
with its discrete character.
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Fig. 1. Schematic representation of one unit cell of a discrete nonlinear electrical
transmission line. The network is composed of N identical cells.

The main purpose of this paper is to study the dynamics of modulated wave trains in the di-
screte nonlinear electrical transmission line using the semi discrete approximation. This paper
is organized as follows. In Section 2, we present a nonlinear electrical network representing
a bandpass filter with a linear dispersive capacitance Cs. In Section 3, we use the reductive
perturbation method to derive the higher order nonlinear Schrödinger (HONLS) equation
describing the propagation of modulated waves in the semi discrete limit. The impact of Cs

on the dispersion relation is presented. In Section 4, the resulting HONLS equation is utilized
to determine the condition for instability of slowly modulated waves. A detailed calculation
to predict the modulational instability is given. In Section 5, the Pathria and Morris method is
exploited to establish that the HONLS equation possesses solitary wave solutions showing that
solitons can propagate in the network. Finally, Section 6 is devoted to concluding remarks.

2. Model description. The model under consideration is a lossless discrete nonlinear transmi-
ssion line made of N identical unit cells as illustrated in Fig. 1. Each cell contains a linear
inductance L1 in parallel with a linear capacitance Cs in the series branch, and a linear inductan-
ce L2 in parallel with a nonlinear capacitance C(V ) in the shunt branches. This nonlinear capaci-
tance consists of a reversed-biased diode with differential capacitance function of the voltage
Vn across the nth capacitor [7] and biased by a constant voltage V0 : C(V0 + Vn) = dQn/dVn in
which Qn is the corresponding nonlinear charge. For low voltages chosen around V0 the quanti-
ty Qn(Vn) can be approximated by [8]:

Qn(Vn) = C0

(
Vn − αV 2

n + βV 3
n

)
, (2.1)

where C0 = C(V0), α and β are positive constants. From the Kirchhoff’s laws applied to the
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circuit of Fig. 1, we derive the system of nonlinear equations for the voltage Vn(t) :

d2Vn

dt2
+ u2

0 (2Vn − Vn−1 − Vn+1) + λ
d2

dt2
(2Vn − Vn−1 − Vn+1) +

+ ω2
0Vn = α

d2V 2
n

dt2
− β

d2V 3
n

dt2
(2.2)

wherein n = 1, 2, . . . , N with N being the number of cells considered. In Eq. (2.2), we have set

u2
0 =

1
L1C0

, ω2
0 =

1
L2C0

and λ =
Cs

C0
. (2.3)

During the computations the following values of the network’s parameters are used [9]:

L1 = 200± 5µH, L2 = 470± 10µH, V0 = 2V, C0 = 370± 10pF,
(2.4)

α = 0, 21V −1, β = 0, 0197V −2, and Cs = 1850± 10pF.

3. Oscillatory solutions. Now, our attention is focused on the propagation of modulated
waves in the system. For this aim, we employ the semi discrete approximation [5, 6] to obtain
short wavelength envelope solitons. This approach allows us to treat properly the carrier with
its discrete character and to describe the envelope in the continuum approximation. Therefore,
slow variables (ξ, τ) are introduced as follows: ξ = ε(x − Vgt), τ = ε2t, where ε is a small
parameter and Vg denotes the group velocity of the packet wave.

Leaning on the idea developed by Taniuti and Yajima [10], the solution Vn(t) of Eq. (2.2)
can be taken in the form [11]:

Vn(t) = ε1/2V11(n, t)eiθ + ε
[
V20(n, t) + V22(n, t)e2iθ

]
+

+ ε3/2
[
V30(n, t) + V33(n, t)e3iθ

]
+ ε2

[
V40(n, t) + V42(n, t)e2iθ + V44(n, t)e4iθ

]
+

+ ε5/2
[
V50(n, t) + V53(n, t)e3iθ + V55(n, t)e5iθ

]
+ C.C + o

(
ε7/2

)
, (3.1)

in which θ is the phase given by θ = kn − ωt; C.C stands for the complex conjugation and ε is
the smallness parameter that measures the size of the amplitude of the perturbation. During the
computations, there are nonzero voltages Vlm(n ± 1, t) which are expanded in the continuum
limit around Vlm(x, t) with n = x. So the fast changes of the phase θ in Eq. (3.1) are correctly
taken into account by considering differences in the phase for the discrete variable n. We have
also scaled the time and space derivatives as ∂/∂t ∼ o(ε) and ∂/∂x ∼ o(ε) respectively and
neglected consistently high order in ε terms. Then we keep up to the second order derivative
terms of Vn(t) to balance dispersion and nonlinearity. Introduction of Vn(t) and its derivatives
into Eq. (2.2) yields series of equations distinguished by the power of ε.

From the equations of (ε1/2, eiθ) that is the term of o(ε1/2) for the first harmonic, we derive
the following linear dispersion relation:(

1 + 4λ cos2(k/2)
)
ω2 = ω2

0 + 4u2
0 sin2(k/2), (3.2)
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Fig. 2. Theoretical linear dispersion curves defined by relation (3.2). Diverse
constants used here are given by expression (2.2).(a): case where λ 6= 0;
(b): case where λ = 0. While comparing these two plots, we note that the gap
zone is larger in the absence of the linear capacitance Cs.

where the wavenumber k is taken in the Brillouin zone. The linear dispersion curve that deals
with expression (3.2) is shown on Fig. 2(a) and represents a bandpass filter. As displayed on this
figure, the corresponding linear spectrum has a gap f01 = ω01/(2π) which is the lower cutoff
frequency introduced by the parallel inductance L2 and it is limited by the cut-off frequency

fmax =
ωmax

2π
=

1
2π

(
ω2

0 + 4u2
0

)1/2
(3.3)

due to the lattice effects. On the other hand, Fig. 2(b) presents the plot of (3.2) in the case where
λ = 0 that is for Cs = 0.While comparing the graphs of Fig. 2(a) and Fig. 2(b), we remark
that the upper cut-off frequency fmax has not changed in the presence of the linear dispersion
capacitance Cs in the system. But its existence reduces the value of the lower cutoff frequency
since f01 < f02 with f02 = ω02/(2π). The direct physical consequence of such result is that the
extension of the gap zone in the system is highly reduced. Because the width of the interval
[f01, fmax] is bigger than that of [f02, fmax], introduction of Cs in the circuit has increased the
propagation domain of the signal. On the other hand, relation (3.2) is very different from the
result established in [12] that corresponds to the figure λ = 0 with no parallel linear inductance
(L2 = 0).

From the equations of (ε3/2, eiθ), we obtain the expression

i

[
Vg

∂V11

∂ξ
+

∂V11

∂τ

]
= −Q(k) |V11|2 V11 (3.4)
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in which

Q(k) =
ω

2
[2α (N20 + N22)− 3β] =

ω

2

{
4α2

(
2ω2

D
+

V 2
g

V 2
g − u2

0

)
− 3β

}

with D = 4ω2(1 + 4λ cos2 k) − 4u2
0 sin2 k − ω2

0. Here we follow Kakutani and Michihiro idea
[13] and assume that4k = k− kc is of o(ε) and write Q = εQ1 where Q1 is of o(1) and is given
approximately by

Q1(k) =
4k

ε

(
dQ(k)

dk

)
k=kc

=
Vg

ω
Q(k)−

(
ωu2

0

V 2
g

)
N2

20

[
6λω

χ
sin k − Vg

ω
+

cos k

sin k

]
+

+ 2αN22Vg −
N2

22

ω

[
2ωVg

(
1 + 4λ cos2 k

)
−
(
u2

0 + 4λω2
)
sin 2k

]
. (3.5)

In relation (3.5), the group velocity is expressed as

Vg =
∂ω

∂k
=

2
χ

(u2
0 + λω2) sin k, χ = ω(1 + 4λ cos2(k/2)) (3.6)

and the real kc designates the critical value of the wavenumber of the signal. Therefore at
o
(
ε3/2

)
, Eq. (3.4) becomest

Vg
∂V11

∂ξ
+

∂V11

∂τ
= 0. (3.7)

This result means that in the reference frame moving with the group velocity Vg, the complex
amplitude V11 of the signal remains constant to the concerned scale [14]. Hence, the right-hand
side of Eq. (3.4) is shifted to the corresponding nonsecular condition at o(ε5/2).

From the equations of (ε5/2, eiθ), we establish that the resulting equation that describes the
dynamics of a packet wave in the discrete nonlinear transmission line (Fig. 1) is the HONLS
equation:

i
∂V11

∂τ
+ P

∂2V11

∂ξ2
= Q1|V11|2V11 + Q2|V11|4V11 + iQ3V

2
11

∂V ∗
11

∂ξ
+ iQ4|V11|2

∂V11

∂ξ
(3.8)

in which

P =
1
2ω

[
(u2

0 + λω2
0) cos k − 4λV 2

g sin2(k/2)− 4ωVg sin k
]
, (3.9)

Q2 = ω

[
α(N40 + N42 + N22N33)−

3β

2
(2N2

22 + N33 + N2
20 + 2N20N22)

]
, (3.10)

Q3 = 2Vg

[
β − α(N20 + N22

]
, (3.11)

Q4 = αωÑ42 + 2Q3, (3.12)
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Fig. 3. Dispersive coefficient in terms the wavenumber k taken in the Brillouin zone
for the line parameters given by (2.2). (a): case where λ 6= 0; and ω0 6= 0;
(b):case where λ 6= 0 and ω0 = 0; (c): case where λ = 0 and ω0 6= 0. These
plots show that P admits both positive and negatives values and inform that
the range values of the dispersion coefficient P increases with the introducti-
on of Cs in the system.
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and Q1 is given by relation (3.5). The diverse parameters and voltages that intervene in Eq. (3.8)
are determined in the Appendix.

The HONLS equation (3.8) is known to govern the modulations of weakly nonlinear ions
in acoustic plasma waves [5], ferromagnetic chains [15] and the modulations of Stokes waves
[13, 16]. This equation is also used as envelope equation for describing a weakly subcritical
bifurcation to counter propagating waves [17] and also accounts for the slows modulations of
an oscillatory mode close to a subcritical bifurcation [18] when Q3 = Q4 = 0. In Eq. (3.8),
the first two terms of the right-hand side are the nonlinear terms while the others represent the
nonlinear dispersion.

Using the line parameters (2.2), the coefficient of the spatial dispersion (3.9) is plotted as
function of the wavenumber k taken in the Brillouin zone (Fig 3). We could remark from these
graphs that the coefficient P has both positive and negative values whether λ is null or not.
When comparing Fig. 3 (a, b) and Fig. 3 (c), we note that the presence of Cs (i.e., for λ 6= 0)
increases the interval of the values of P . In other words, introduction of Cs adds the dispersi-
on in the system. This result will be useful to predict the stability of modulated waves in the
network.

4. Modulational instability. In this section, we research under which conditions a uniform
wave train moving along the discrete nonlinear electrical transmission line of Fig. 1 will become
unstable to a small perturbation. For this purpose, we use the HONLS equation (3.8) derived
from the exact equations (2.2) describing the wave propagation in the network. First, we look
for solutions of Eq. (3.8) in the form:

V11(ξ, τ) = E0 exp [i(knξ − ωnτ)] , (4.1)

where E0 is a complex constant amplitude. Report of (4.1) into Eq. (3.8) liberates the nonlinear
dispersion relation

ωn = ωn

(
kn, |E0|2

)
= Pk2

n + Q1|E0|2 + Q2|E0|4 − kn(Q3 −Q4)|E0|2 (4.2)

in which kn and ωn are respectively the wavenumber and the angular frequency of the carrier
wave. From relation (4.2), the sinusoidal wave is nonlinear and the principle of superposition is
invalid. To investigate the modulational instability [19] of the carrier wave, a small perturbation
of the solution (4.1) is taken as follows [5, 20 – 22]:

V11(ξ, τ) =
[
1 + A(ξ, τ)

]
E0 exp

[
i(knξ − ωnτ)

]
(4.3)

where A(ξ, τ) is a complex quantity. Substituting this solution into the HONLS equation and
linearizing the result with respect to A(ξ, τ) give the following differential equations:

iAτ + ωn(1 + A) + P
(
Aξξ + 2iknAξ − k2

n(1 + A)
)

=

= Q1(1 + 2A + A∗)|E0|2 + Q2(1 + 3A + 2A∗)|E0|4+

+ i(Q3A
∗
ξ + Q4Aξ)|E0|2 + kn(Q3 −Q4)(1 + 2A + A∗)|E0|2 (4.4)
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in which the asterisk denotes the complex conjugation. The use of relation (4.2) permits to
simplify Eq. (4.4) as:

iAτ + P (Aξξ + 2iknAξ) = Q1(A + A∗)|E0|2 + 2Q2(A + A∗)|E0|4+

+ i(Q3A
∗
ξ + Q4Aξ)|E0|2 + kn(Q3 −Q4)(A + A∗)|E0|2. (4.5)

Solutions of Eq. (4.5) could be found in the form

A(ξ, τ) = A1 exp
[
i(lξ + Ωτ)

]
+ A∗

2 exp
[
−i(lξ + Ω∗τ)

]
, (4.6)

where l and Ω indicate respectively the wavenumber and the angular frequency of the perturbati-
on. Parameters A1 and A2 are complex constants. Substitution of relation (4.6) into Eq. (4.5)
yields a linear homogeneous system for A1 and A2, i.e.,

(Ω + Pl2 + b + c)A1 +
(
c− lQ3|E0|2

)
A2 = 0,

(4.7)
−
(
c + lQ3|E0|2

)
A1 + (Ω− Pl2 + b− c)A2 = 0

wherein

b = 2knlP − lQ4|E0|2 and c = Q1|E0|2 + 2Q2|E0|4 + k4(Q3 −Q4)|E0|2. (4.8)

The condition of nonrtrivial solutions of the system (4.7) determines the dispersion relation for
the perturbation wave:

Ω2 + 2bΩ +
(
b2 − P 2l4 − l2Q2

3|E0|4 − 2cP l2
)

= 0 (4.9)

which is a second order equation for Ω with real coefficients. If its discriminant (∆) is negative,
then the frequency Ω will be complex and the perturbations will grow in the system which
becomes unstable. This situation occurs when ∆ < 0, i.e.,

2l2PQ1|E0|2 + 4l2PQ2|E0|4 + l4P 2 + l2Q2
3|E0|4 + 2l2knP (Q3 −Q4)|E0|2 < 0. (4.10)

Some simple arrangements of expression (4.10) lead to

PQ1 − r < −
(

l2P 2 + Q2
3|E0|4

2|E0|2

)
< 0 (4.11)

and necessarily

PQ1 − r < 0 (4.12)

with

r = kn(Q3 −Q4)|E0|2 − 2PQ2|E0|2. (4.13)
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Relation (4.12) together with (4.13) represent the modulational instability criterion associated
to the HONLS equation in the electrical transmission line of Fig. 1. This criterion is a functi-
on of the nonlinear and dispersive parameters β and λ since it depends on the coefficients of
Eq. (3.8) which are related to β and λ. The result (4.12) is more general than the one obtained
by Ketchakeu et al. [11] during the study of φ4 models. It also generalizes the family criteri-
on for the standard nonlinear Schrödinger (NLS) equations [19, 23]. However, this criterion is
similar to that established by Kakutani and Michihiro [13] when they examine the motion of
water waves near the marginal state of instability.

5. Exact solitary solutions. The main purpose of this section is to check whether the discrete
nonlinear transmission line under study can support solitary waves. Hence, we follow Pathria
and Morris [24] idea and set τ = Pt. Then, the amplitude wave equation (3.8) takes the form:

iV11,τ + V11,ξξ = qc|V11|2V11 + qq|V11|4V11 + iqmV 2
11V

∗
11,ξ + iqu|V11|2V11,ξ (5.1)

with qc = −Q1/P, qq = −Q2/P, qm = −Q3/P, and qu = −Q4/P. At this level, we introduce
the following notations:

Qc = qc, Qq = qq +
1
8

(qu + 2qm)
(

3
2
qu − qm

)
,

(5.2)

Qm = qm −
1
2
(qu + 2qm) = −1

2
qu and Qu = qu.

The solutions of Eq. (5.1) strongly depend on the sign of the coefficient Qq [24]. Two cases can
be distinguished. When Qq < 0, the solution of Eq. (5.1) is given by

V11(ξ, t) =
(

r1r2

r1 + (r1 − r2) sinh2(χ0)

)1/2

exp [iφ(ξ, t)] (5.3)

in which

φ(ξ, t) = −
(

qu + 2qm

4

)√
−3/Qqtanh−1

(√
r1

r2
tanh(χ0)

)
+

η

2
(ξ − µt) + ϑ0,

with χ0 = (−r1r2Qq/3)1/2(ξ − ηt) + ϑ1.

In expressions (5.3), the quantities µ and η denote the speeds of the carrier and envelope
waves of V11 respectively; ϑ0 and ϑ1, are arbitrary constants. The values of r1 and r2 determine
the form of this solution. Solitary waves arise in the system if r1 and r2 are real, with r1 > r2 > 0
[24].

On the other hand, if Qq > 0, r1 and r2 are real with r1 > 0 > r2, a solitary wave also exists
and the corresponding solution for Eq. (5.1) is [24]:

V11(ξ, t) =
(

r1r2

r2 + (r2 − r1) sinh2(χ0)

)1/2

exp [iφ(ξ, t)]
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which

φ(ξ, t) = −
(

qu + 2qm

4

)√
3/Qqtan−1

(√
−r1

r2
tanh(χ0)

)
+

η

2
(ξ − µt) + ϑ0,

and χ0 = (−r1r2Qq/3)1/2(ξ − ηt) + ϑ1.
Furthermore, if r1 and r2 are real with r1 > r2 > 0, then the solution is oscillatory and has

the following form:

V11(ξ, t) =
(

r1r2

r1 + (r2 − r1) cos2(χ1)

)1/2

exp [iφ(ξ, t)]

where

φ(ξ, t) = −
(

qu + 2qm

4

)√
3/Qqtan−1

(√
r2

r1
tanh(χ1)

)
+

η

2
(ξ − µt) + ϑ0,

and χ1 = (r1r2Qq/3)1/2(ξ − ηt) + ϑ1.
From this investigation, we note that the HONLS equation possesses solitary wave solutions

for both positive and negative values of Qq.

6. Conclusion. In this paper, we have considered a discrete nonlinear electrical transmi-
ssion line and examined dynamics of modulated waves in the system. Exploiting the reducti-
ve perturbation method, it has been shown in the semi discrete limit that propagations of
modulated wave trains are governed by a modified form of the NLS equation that involves
higher orders nonlinearities, i.e., the HONLS equation. Through our investigation, it has been
obtained that the capacitance Cs adds the linear dispersive effects in the circuit with the conse-
quence that the gap zone is greatly reduced and the range of frequencies for the propagation of
the signal has substantially increased.

Based on the obtained amplitude wave equation, we have utilized the Stokes wave analysis
to construct the criterion for the modulational instability of a plane wave introduced in the
electrical line. It has appeared that the new criterion generalizes the family criterion for NLS
equations and depends both on the amplitude and wavenumber of the propagating signal.

Besides this study of the asymptotic behaviour of the signal in the network, the Pathria
and Morris’s method has been exploited to show that the discrete nonlinear transmission can
support solitary waves. This last result is of higher importance since it is known that solitons are
good waves for the transport of information in some physical systems.

Appendix. The equations of (ε3, e0iθ) lead to the potential

V20 = N20|V11|2 with N20 =
2αV 2

g

V 2
g − u2

0

. (A.1)

From the equations of (ε3, e2iθ), we get

V22 = N22(V11)2 where N22 =
4αω2

D
. (A.2)
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The equations of (ε5/2, e2iθ) and (ε3, eiθ) yield respectively the voltages

V30 = 0 and V50 = 0. (A.3)

From the equations of (ε3/2, e3iθ), we obtain the potential

V33 = N33(V11)3 in which N33 =
1

D1
(18αω2N22 − 9βω2) (A.4)

with D1 = 9ω2(1 + 4λ cos2(3k/2))− 4u2
0 sin2(3k/2)− ω2

0.
The equations of (ε3, e0iθ) liberate

V40 = N40|V11|4 with N40 =
1
2
N20(N2

20 + 2N2
22)−

β

α
N20(2N20 + 3N22). (A.5)

From the equations of (ε2, e2iθ), we determine the voltage

V42 = N42|V11|2V 2
11 + iÑ42(V 2

11)ξ (A.6)

in which the divers coefficients are defined by

N42 =
4ω2

D

[
2α(N33 + N20N22)− 3β(N20 + 2N22)

]
and

Ñ42 =
2
D

[
2ωVgN22(1 + 4λ cos2 k)− (u2

0 + 4λω2)N22 sin k − 2αωVg

]
.

Remark. The other coefficients are nonzero but do not intervene in the derivation of the
amplitude wave equation that characterizes the motion of the signal in the system. Nevertheless,
we have found their expressions which are listed below.

From the equations of (ε2, e4iθ), we deduce

V44 = N44(V11)4 wherein N44 =
1

D2

[
16αω2(N2

22 + 2N33)− 48βω2N22

]
(A.7)

with D2 = 16ω2(1 + 4λ cos2(2k))− 4u2
0 sin2(2k)− ω2

0.
The equations of (ε5/2, e2iθ) help to determine the voltage

V53 = N53|V11|2V 3
11 + iN ′

53(V
2
11)ξV11 + iN ′′

53(V
3
11)ξ (A.8)

in which the different parameters are given by

N53 =
18ω2

D1

[
α(N42 + N44 + N20N33)− β(2N33 + 2N20N22 + 2N2

22)
]
,

N ′
53 =

6αω

D1
(3ωÑ42 − 2VgN22)
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and

N ′′
53 =

1
D1

[
6ωVgN33(1 + 4λ cos2(3k/2))− 2(u2

0 + 9λω2)N33 sin 3k + 6βωVg

]
.

Form the equations of (ε5/2, e5iθ), we get

V55 = N55(V11)5 in which N44 =
25ω2

D3

[
2α(N44 + N22N33)− 3β(N2

22 + N33)
]

where D3 = 25ω2(1 + 4λ cos2(5k/2))− 4u2
0 sin2(5k/2)− ω2

0.

Acknowledgements. The authors are grateful to Professor Moise Godfroy Njock Kwato for
his invaluable technical assistance. They also acknowledge the Cameroonian Government for
the financial support given to Dr F. B. Pelap through the “Program of mobility” of the Ministry
of Higher Education.

1. Trullinger S. E., Zakharov V. E., and Pokrovsky V. L. Solitons. — Amsterdam: North-Holland, 1986.

2. Eckhaus W. Studies in the nonlinear stability theory. — Berlin: Springer, 1965.

3. Kivshar Y. S., Salerno M. Modulational instability in the discrete deformable nonlinear Schrödinger equation
// Phys. Rev. E. — 1994. — 49. — P. 3543 – 3546.

4. Toda M. Theory of nonlinear lattice // J. Phys. Soc. Jap. — 1967. — 22. — P. 413.

5. Parkes J. The modulation of weakly nonlinear dispersive waves near the marginal state of instability // J. Phys.
A.: Math. and Gen. — 1987. — 20. — P. 2025 – 2036.

6. Pelap F. B., Kofané T. C., Flytzanis N., and Remoissenet M. Waves modulations in the biinductance transmi-
ssion line // J. Phys. Soc. Jap. — 2001. — 70. — P. 2568 – 2577.
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15. Ndohi R., Kofané T. C. Solitary waves in ferromagnetic chains near marginal state of instability // Phys. Lett.
A. — 1991. — 154. — P. 377 – 379.

16. Johnson R. S. Proc. Roy. Soc. A. — 1977. — 357. — P. 131.

17. Deissler R. J. J. Stat. Phys. — 1989. — 54. — P. 1459.

18. Pomeau Y. Front motion, metastability and structural bifurcations in hydrodynamics // Physica D. — 1986. —
23. — P. 3 – 11.

ISSN 1562-3076. Нелiнiйнi коливання, 2005, т . 8, N◦ 4



528 F. B. PELAP , M. M. FAYE

19. Benjamin T. B., Feir J. F. The disintegration of wave trains on deep water // J. Fluid Mech. — 1967. — 27. —
P. 417 – 430.

20. Stuart J. T., Di Prima R. C. The Eckhauss and Benjamin – Feir resonance mechanisms // Phys. Roy. Soc.
London. Ser. A. — 1978. — 362. — P. 27 – 41.

21. Dodd R. K., Eilbeck J. C., Gibbon J. D., and Morris H. C. Solitons and nonlinear wave equations. — London:
Academic, 1987.
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