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In this paper, by using the new fixed point theorem of O’Regan and Precup and noncompact measure,
the existence of solutions of second order multivalued boundary-value problem in Banach spaces and
the existence of a mild solution for impulsive neutral functional differential inclusions in Banach spaces
are studied. The compactuess conditions and the upper semicontinuity conditions of multivalued integral
operators are weaken in this paper.

3 suxopucmanuam Hosoi meopemu O’Peeana ma [lpexyna, a maxox HeKOMRAKMHOL mipu 008ede-
HO ICHYBAHHA PO38’A3KI6 0a2aMO3HAYHOI 2paHUUHOL 3a0ayl Opy2020 NOPAOKY 8 OAHAX0B8UX NPOCMO-
pax. Busuaemwvcs icHy8aHHA NOMIPHO20 P0O36°A3KY OUepeHUiaNbHUX BKAIOHUEHb 3 IMRYALCHOI Oi€l0
ma HelimpanbHum QyHKYIOHAAOM Y 6aHaxo8ux npocmopax. Y po6omi nocaabaeHo ymo8u KOMRAKIMHO-
cmi ma 8epxXHboi HanieHenepepeHOCMi Ha 6a2aMO3HA1HI IHME2PAAbHI ONePamopu.

1. Introduction. Differential inclusions is an important branch of the general theory of di-
fferential equations and has numerous applications. The problem of existence of solutions of
differential inclusions has been studied by many authors, see [1-8]. The main tool used by
these authors is the Leray — Schauder alternative theorem for set-valued mapping. However, in
the Leray —Schauder alternative theorem, the multivalued operator must be upper semiconti-
nuous and compact. In this paper, we will use the new fixed point theorem obtained by O’Regan
and Precup [9] and a noncompact measure to study the existence of solutions of a second order
multivalued boundary-value problem in Banach spaces and the existence of a mild solution for
impulsive neutral functional differential inclusions in Banach spaces. The compactness conditi-
ons and upper semicontinuity conditions on multivalued integral operators are weaken in this
paper.

In this paper, we denote by E a real Banach space, || - || is the norm in E. In the following,
we denote

K(E)={A C E: A isnonempty and compact},
P(E) ={A C E: A isnonempty and closed},

C(E) ={A C E: A isnonempty and convex},
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|A|| = sup{|jz|] : € A}. Let F : D ¢ E — 2F\@ be a set-value mapping; VA C E
FYA) ={z € D: Fx)A # o}, graph (F) = {(z,y) : * € E,y € F(x)} is said to the
graph of F.

Definition 1.1 [5]. Let X, Y be metric spaces. F : D C X — 2Y\@ is said to be upper
semicontinuous (short as w.s.c.) if F~1(A) is closed in X wherever A C Y is closed.

Definition 1.2 [S]. Let (2, A) be a measurable space, F : Q — 2%\ @ is said to be measurable
if F~Y(B) € A for every open subset B C E.

Lemma 1.1[5]. Let J = [0,a] C Rand F : J x E — 2P\{@} be compact values. If F(t,-)
is u.s.c. and F (-, ) has a strongly measurable selection, then there exists w(-) € F(-,v(-)) for any
v e ClJ, E].

Lemma 1.2 [10]. Let C C L!([a,b], E) be separable. If there exists h € L'[a,b] such that
lu(t)|| < h(t) fora.e. t € [a,b] and every u € C, then

b b

o /u(t)dt rueC < 2/a(C(t))dt.

a a

Lemma 1.3 [S]. Assume that F : E — K(FE) is u.s.c, if A C E is compact, then F(A) is
compact.

Lemma 1.4 [11] (Ascoli— Arzela). H € C[T, E| is a relatively compact set if and only if H is
equicontinuous and for any t € T, H(t) is relatively compact in E.

Lemma 1.5 [11] (Mazur). Let (E,| - ||) be a normed space, {xp}nen C E, zo € E and

n—oo

w — lim z, = xo. Then for any ¢ > 0 there existn € N,o; > 0,1 = 1,2,...,n, Y o; = 1,
i=1
n
such that ||xo — Y axi]| < e.
i=1
Lemma 1.6 [9]. Let D be a closed, convex subset of a Banach space E and N : D — 2P,

Assume graph (N) is closed, and for any compact set A, N (A) is relatively compact. If there exists
xo such that

M C D,M = co({zo} UN(M)) and M = C with C C M countable = M is compact,

then N has a fixed point in D.

2. Boundary-value problem for differential inclusions. In this section, we prove the existence
of a C'-solution of the following second order multivalued boundary-value problem in Banach
spaces:

2"(t) € F(t,z(t),2'(t)) ae. te]0,1],

I
8
e

az(0) — bz'(0) (2.1)

cx(1) +da'(1) = z,
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A SECOND ORDER MULTIVALUED BOUNDARY-VALUE PROBLEM AND IMPULSIVE NEUTRAL FUNCTIONAL... 193
wherea > 0,b > 0,¢ > 0,d > 0,ad +bc > 0, zg,z1 € E. Let
Gr = {w € Ll([oa 1]’E) : w() S F(,l‘(),$/()),$ € Cl([oa 1]7E)}7

where w(+) is a strongly measurable selection of F'(-,z(-), z'(-)). Let
1
Jw(t) = h(t) + /g(t, s)w(s)ds, w e Gz, N =JoG,
0

where g is the Green function with respect to inclusions (2.1), and h(¢) is a solution of

Z'(t) =0 ae. te]0,1],
ax(0) — b2’ (0) = xo,
cx(l) +dz' (1) = 2.

Let ap = max{|g(t,s)|,|g:(t,s)| : t,s € [0,1]}, and forany R > 0, Ugp = {z € C![T,E] :
|zl < R}, where |[z]l; = max{]|=|, ||z’|}.

We first make some assumptions about the multivalued map F' : 7' x E — 2F

(C1) F(-,z,y) has a strongly measurable selection for any z,y € F;

(Co) F(t,-,-)isus.c., fora.e. t € [0,1];

(C3) for any r > 0 there exists [, € L'[T, R, ] such that ||F(t,z,y)|| < I.(t)if ||z| < r and
lyll <7

an 1

/ l,(t)dt < 1;

0

(Cs) for any R > 0 there exists w : T x [0,2R] — Ry such that for any bounded sets
A, B C Ug, the inequality a(F'(s, A, B)) < w(smax{a(A)),a(B)}) holds, and

(04) lim Supp—>oo

1
<2 / (lg(t, )| + lgr(t, 5) (s, o(s)) ds
0

has a unique nonnegative continuous zero solution.

Lemma 2.1. IfF : [0,1] x E x E — CK(FE) satisfies (C1), (C2) and (C3),then N : Ug —
— C(CYT, E)) has closed graph, and N(B) is relatively compact for any compact set B.

Proof. (a) We prove Nz # & for any € Ug. By Lemma 1.1 we know that F(-, z(-),2/(-))
has a strongly measurable selection. From (C3), F(-,z(-),2'(-)) has a Bochner selection, i.e.,
Nx # @.

(b) Since F has convex values, clearly N has convex values.

(¢c) Suppose z,, — x, v, — v,n — 00, and
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194 LEI WEI, JIANG ZHU

where
Up € N(l'n)y wn() € F(-,xn(-),x’ ())

It follows from Exercise 9.6 in [5] that {w,, : n > 1} has a weakly convergent subsequence in
LT, E]. Assume w,, — w, by Mazur Theorem we have

w € co( N U {wnk}> c co< N U {F(.,xnk(.),x;k(.))}) c F(,2(-),2'()).

m=1k=m m=1k=m

Since
we have

Thus N is a closed graph operator.

(d) We prove that N maps any compact set M C Up into a relatively compact set. For
this aim, it is enough to prove that {v,},>1 C N(M) has a convergent subsequence, that is,
{vn}n>1 C N(M) is relatively compact. Suppose

where
vn € N(zp),wn(-) € F(,2n(-),2,(), xn € M.

Since M is a compact subset of C[T, E], M is bounded, hence by (C3), there exists k €
€ L0, 1] such that ||w,(s)|| < k(s) for a.e. s € [0,1], and then {v,, : n > 1} is bounded. Then
we have

al{v,(t) : n>1}) =a | h(t)+ /g(t,s)wn(s)ds :n>1 =

1
< 2max{lg(t, s)| : 5 € [0, 1]}/a({wn(s) Cn > 1))ds.
0
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It follows from the compactness of M that M (t), M'(t) are compact for any ¢t € [0, 1]. Since
F(s,-,-)is u.s.c. and has compact values, we know that F'(s, M (s), M’'(s)) is relatively compact
by Lemma 1.3. Thus, for any s € [0, 1], a({wn(s) : n > 1}) = 0. This shows that a({v,(s) :
n > 1}) = 0. Similarly, from

1
a{u (@) n > 1)) = a | W)+ /gt(t, Swn(s)ds : n>1% | =
0

1
= /gt(t, s)wp(s)ds : n >1 <
0

IN

1
2/04({gt(t,s)wn(s) :n > 1})ds <
0

1
< 2max{|g:(t, s)| : s € [0, 1}}/04({11)71(5) :n > 1})ds,
0

we have that a({v},(s) : n > 1}) = 0. Thus for any ¢ € [0,1], {v,(¢)}n>1 and {v},(¢)}n>1 are
relatively compact. From

1 1
[ n(tr) — n(t2)]| < I7(t2) — B (E) | + / gu(t, 8)uwn(s) ds — / gi(ts, $Ywn(s) ds|| <
0 0
1
< () = Wt + [ lon(trs) itz )] uns) ] ds <
0

1
< [IF(t) = B () +/‘gt(t173) — gi(ta, s)|k(s)ds, (22)
0

we know that {v/,(-) },,>1 is equicontinuous. By Theorem 1.2.7 in [10], NV (M) is relatively compact.

Lemma 2.2. Assume that I : T x E x E — 2F satisfies (C3) and (Cs), then N satisfies

M C UM = co ({zo} UN(M)) and M = C with C C M countable = M is compact.

Proof. Suppose M C U, M = co({zo} UN(M))and M = C with C C M countable. Let
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z e Mandv € N(z),v = h+ [} g(-,s)w(s)ds, where w(-) € F(-,z(-),2/(-)). Thus

1 1
/g(tl,s)w(s) ds—/g(tg,s)w(s) ds
0 0

< [Ih(ty) = h(ta)] + / lg(t1, ) — glta, )] [w(s)llds <

[o(t1) = v(t2)|| < [[(t1) — h(E2) [l + <

< ||h(t1) — h(t2)|| +/Ig t1,8) — g(ta, s)|k(s)ds

This shows that N (M) is equicontinuous. Similarly, we can prove that N'(M) = {u/|u €

€ N(M)} is equicontinuous (see for example (2.2)). Since M = co ({zo} U N(M)), we have

that M, M’ are equicontinuous. Since M is bounded, from Theorem 1.2.2 in [10] we know

that a(M(t)) and a(M'(t)) are continuous. Since M = co ({0} |JN(M)) and C C M is

countable there ex1sts V = {v, : n > 1} € N(M) such that C C co({zo}JV), where
+f0 s)ds and wy,(-) € F(-,xn(-),2},(-)), xn € M. Therefore

a(M(t)) = a(C(t)) = a(C(t)) < a(co ({z}UV) (1) =

1
=a(V(t) = « ({/g(t, S)wp(s)ds : n > 1}) <
0

1
< 2/a({g(t, Swn(s) : n > 1})ds
0

From

a({g(t, s)wn(s) = n = 1}) < |g(t, s)|a(F (s, M(s), M'(s)) <
< lg(t, s)|w(s, max{a(M(s)),a(M'(s))}),

we know
1

a(M(1) < 2 / 9(t, 5)|w(s, max{a(M(s)), a(M'(s))})ds.

0

Similarly, we have

a(M'(t) / lgu(t, )| (s, max{a(M(s)), a(M'(s))})ds.
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Hence
1
max{a(M(t)), o / |g(t, 8)] + g4 (¢, s))w(s, max{a(M(s)), a(M'(s))})ds.
0

By (C5s), we know that for any ¢ € [0, 1],
a(M(t)) =0, «o(M'(t) =0.
From Theorem 1.2.4 and Theorem 1.2.6 in [10], we have
ag(M) =0, ap(M') =0, ie, ai(M)=0,

where o denotes the noncompact measure in C([0, 1], F) and «; denotes the noncompact
measure in C1([0, 1], E). Hence M is relatively compact, i.e., M is compact.

Lemma 2.3. Assume that ' : T x E x E — 2F satisfies (C3) and (Cy). Then there exists
Ur C CY([0,1], E) such that N : Up — 2UR.

Proof. For any x € CY[T, E], let

We know

IN(z)llo < [|A]l1 + ao sup

lw(s)llds = w(-) € F(a(),2'()) ¢,

o —

1
IN(2)'llo < [[Plx + ao sup /\w Mds = w(-) € F(,2(),2'() p
0

where || - ||o denotes the norm in C([0, 1], E) and || -||; denotes the norm in C*([0, 1], F). Denote
Ilh|l1 = r, we have

1
IN(z)]l1 < 7+ agsup /Hw(S)HdS Pw() € F(a(),2'(4)

Assume ||z||; < p, from (Cy) we know that for p enough large, we have

IN@) 7 N aosup{fol Jw(z)[|ds = w(-) € F(-,x(-),x’(.))} _
P p

R
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1
LT, ® Jo Lo(t)dt

p p
This implies that there exists R > 0 such that N(z) C Bgif ||z]|; < R.
From Lemmas 2.1, 2.2, 2.3, and 1.6, we have the following theorem.

Theorem 2.1. Assumethat F : T x E x E — CK(FE) satisfies (C1)—(Cs). Then inclusions
(2.1.) has at least a C'-solution.

< 1.

3. Impulsive neutral functional differential inclusion. We first recall that a family {C(¢) : t €
€ R} of bounded linear operators in the Banach space FE is called a strongly continuous cosine
family iff

(i) C(0) = I ({ is the identity operator in E);

(i) C(t+s)+ C(t—s) = 2C(t)C(s), s,t € R;

(iii) C(t)y is continuous in ¢ on R for each fixed y € E.

IfC(t),t € R,is astrongly continuous cosine family in £, then the strongly continuous sine
family S(t),t € R, is the one parameter family of operators in E defined by

t
Sty = /C(s)yds, ye E, teR.
0

The infinitesimal generator of a strongly continuous cosine family {C(¢) : ¢ € R} is the
operator A : £ — F defined by

Ay = —

t=0
In this section, we study the following initial value problem by using the theory of strongly
continuous cosine and sine families:

%[y’(t) — f(t,y)] € Ay(t) + F(t,y),
teJ=1[0,b, t#t,
Ay Je=t,= Te(y(ty,), (3.1
Ay == Tk(y(ty)), k=1,2,...,m,
yo =6, ¥ (0)=mn,

where A is an infinitesimal generator of a strongly continuous cosine family {C(t) : t € R},
F:JxE -2 0=tg<t;j <ty < - <ty <tmr1=0bf:JIJxE — E ¢ C(-r0],E),
I, I, € C[E,E),k = 0,1,...,m.

In order to define the concept of a mild solution of the problem, we consider the space
Q={y:[-nb — Ely, € C(Jy,E), k = 0,1,...,m and there exist y(¢, ) and y(t}), with
y(ty) = y(tr), k = 1,2,...,m, y(t) = ¢(t) Vt € [-r,0]}, which is a Banach space with the
norm

Iylle = sup{llylls, = k= 0,1,...,m},
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1yl 5, = sup{lly(®)]t € Jil,

where yy, is the restriction of y to Ji = (tg,tx41], & = 1,...,m, and Jy = [0, t1]. Define y; as
yi(s) = y(t+s),s € [-r,0],forany y € Qand forany ¢ € J. Let Ayli—, = y(t;) —y(t; ) and
Nyli—y, = v/ (t) =y (t;)-

Definition 3.1. y € C([—r,b]\{t1,12, ...

tm
Ay Je=y,= In(y(ty)) and Ay’ == I (y(t)),
such that v(t) € F(t,y;) a.e. on J, and

} E) is sazd to be a mild solution of (3.1.), if
k= .,m, and there exists av € L'[J, E|

0<tp<t
Define
Spy ={ve LNT,E): v(t) € F(t,y) ae. tec J},
o(t), if ¢ e [-r,0],
Ct)p(0) + S(t)[n — f(0,9)]+
Ny =qhe: )= / C(t—s)f(s,ys)ds + tS(t—s)v(s)ds—i—
0
0<t <tUk( y(tp )+t —te) Ik (y(t,))], if teJ

For the proof of our next main result, we will use the following assumptions:

(Hy) A is the infinitesimal generator of a strongly continuous cosine family {C(¢) : t € R}
which is bounded (i.e., there exists My > 0 such that [|C(t)|| < My Vt € R).

(Hy) F : Jx E — CP(FE)is a Caratheodory map, that is, F'(-, z) has a strongly measurable
selection for any x € FE, F(t,-) is u.s.c., for a.e. t € [0,1], and for any a bounded set X C (2,
there exists k; € L'[J, R, ] such that a(F (s, Xs)) < k1(s)a(Xs).

(H3) f(t,u) is continuous in the second variable, and there exist p1,po € L![J, R.] such
that ||f(¢,uw)| < p1(¢t)ps(||ullq) + p2(t), with p3 : J — R, being nondecreasing, and there
exists ko € L([0,b], Ry ) such that a(f(s, A)) < kao(s)a(A).

(Hy) Let Iy, I}, € C(E, E) and there exist d, d, such that || I(z)|| < dy, ||[Ir(2)| < dy for
eachz € E.

b
M, t) + Mobl,(t
(Hs) limsuppﬂoo/ 0p3(p)p1(t) + Mobl( )dt < L
0 p

Lemma 3.1 [4]. Let I be a real compact interval and E be a real Banach space, for all u €
€ C[I,E], F(-,u) be measurable, F(t,-) upper semicontinuous fora.e.t € I. If T : L'[I,E] —
— C|I, E|] is a linear mapping, then

I'oSp: C[I,E] - BPC(C[I,E)]), ae y— (I'oSp)(y) =T(Sky)

has closed graph.
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Theorem 3.1. Ifthe hypotheses (H), (H2), (Hs), (Ha), (Hs) are satisfied, then (3.1.) at least
has a mild solution.

Proof. Clearly the fixed point of the operator N is a mild solution of (3.1.). Since F' has
closed values, (H;) and Lemma 1.1 in [12] imply S, # @.

Step 1. We prove that Ny is convex for any y € C([—r,b], E). Indeed, for any hy, hy € Ny,
there exist v1,v2 € Spy such that

( ¢(t), if ¢ € Ty,

C)¢(0) + S(t)[n — f(0,9)]+

hl(t) — t t
+l;0@_gf@yg%+:45ﬁ—swﬂ@%+
+O<;<t[fk(y(t;§)) + (t = ) Iy ()], if t e
(b(t)v if t e T,
C(t)¢(0) + S(t)[n — f(0, )]+

ha(t) = —I—/Ot C(t—s)f(s,ys)ds—l-/otS(t—s)vg(s)d8+
+O<t2<t[fk(y(t;:>) + (t = ti) I (y ()], if teJ

For any A\ € [0,1], then

(A1 + (1= ANho)(t) =
o(t), if te Ty,

C(t)p(0) + S(t)[n — f(0, @)1+
+/U C(t—s)f(s,ys)ds—i—/o S(t—s)(Avi(s) + (1 — Nva(s))ds+

+O<tZ<t[Ik(y(t;§)) + (t — tr) T (y ()], if telJ

Since F has convex values, Sr,, also has convex values, so Ahq + (1 — A)ha € Ny.

Step 2. We prove that N is a bounded operator. For each bounded set U C €, let R =
= sup{|lullq : w € U}. Next, we show that N(U) is bounded in 2. By the definition of N,
we only need to show that N(U) is bounded on [0, b]. For any h € N(U), there exist y € U,
v € Sg, such that

h(t) = C(t)(0) + S(t)[n +/C’t—s sysds—l—/Sts v(s)ds+
0

+ 37 ) + (- t)Te(y(y))), if te .
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Hence

[R@I < IO O+ IS@IHIn = 0, o)l + / 1O = 5)f (s, ys)llds+
0

t/ﬁus (t—syods+1 S Telwltp)) + (¢ — ) Tl <

0<tp<t

t

< Mol ¢llo + Moblln — f(0, )| + Mo /(P3(R)p1(3) + p2(s))ds+
0

_|_

> Tely(t) + (= ) Te(y(t)]|| =

O<trp<t

= Mo||o|l + Mob|n — £(0,8)|| + Mops(R)|[p1l 1 + Mol|p2|| 1+

201

Step 3. We prove that N maps a bounded set into an equicontinuous set of {2. Assume that
U C Qis a bounded set and there exists M; > 0 such that ||y|| < M; for any y € U. By step 2
we know that there exists My > 0 such that ||v]| < My foranyy € U and any v € N(U). Let

y € U, h € Ny, so there exists v € Sg,, such that

>
=
Il
Q
—~
by
—~
=
—+
0
—~
=)
=
&

Ify1 < 2, and v1,7v2 € Ji, we have

17(v2) = h(v)Il < IC(v2) = CO)IHI@O) + 1S (v2) = Sy I = (0, )]l +

/Wm$ﬂwﬂﬂmmﬁ

0

+ +
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Y2

+ / Clm — 8)f(s,ya)ds|| + / (S(y2— ) — S(n — 5))o(s)ds| +

0

+ /S y1 — s)v(s)ds|| + Z (’72—’71)Y(y(tz_)) .

0<t; <71

This implies that

17(72) = h()Il < IC(v2) = CO)IHI@(O) |+ 115 (v2) = S(y)IHII = (0, d)][1+

" / [Clya — ) — Clon — )][pa (5)ps (M) + pa(s))ds || +

Y2

+ / Cl — )[pr(s)pa(M) + pa(s))ds| +

Y1

Y2

+ /(S(’Yz —5) — S(y1 — s))Mads|| +
0

72

+ Z (v2 = m)di + /5(71 — s)Moads|| . (32)

0<t; <7 ’Yl

As v9 —v1 — 0, the right-hand side of (3.2.) tends to zero. Equicontinuity for the cases v; <
< 2 < 0isy; < 0 < 9 is obvious. Thus N(U) is equicontinuous.

Step 4. We prove that N (D) is relatively compact for each compact set D C . We only
need to show that for any {h,, : n > 1} C N(D), which has a convergent subsequence, i.e.,
{hn, : n > 1} C N(D) is relatively compact. Assume

t t
ha(t) = C()6(0) + S(H)[n +/Ct—s synsds—l—/St—svn s+
0 0

0<tp<t

+ /S(t —s)on(s)ds+ D [Telyn(ty)) + (€ = t) Te(yn(t;))]
0

where h, € N(yn), Yyn € D, v, € Spy,. From the conclusion in step 3 and Ascoli—Arzela
Theorem, we only need to prove that {h,(t) : n > 1} is relatively compact for any ¢t € J. By
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Lemma 1.2, (H2) and (Hy), we know

a({ha(t) : n > 1}) < a(C(1) S(t)[n—£(0,9))+

+ «

< 2/&({C’(t —8)f(s,yns) : n > 1})ds+
0

a({S(t—s)vn(s) :n > 1})ds =

_l_
o
o .

Step 5. We prove that N has closed graph. Assume y, € Q,y, — y,hn, € Ny, hyp, — h,
we will show h € Ny, i.e., we only need to prove that there exists v € Sg, such that

W(t) = C()6(0) + St)n — £(0,6)] + / Ot — ) f (s, yo)ds+
0

4 [S=sp)ds+ 3 Hul(t) + (¢~ ) Tey(6). (33)
0

O<tp<t
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Assume v,, € Sg, is such that

hn(t) = C(£)$(0) + S(t)[n — f(0, )] + / C(t = 5) (s, yns)ds+
0

+/S (t—s)on(s)ds+ > [Tulyn(ty)) + (¢t — o) Ti(yn(ty)))-
0

0<tp<t

Define ' : L[], E] — C[J, E] by

¢
/St—s
0

Then I' is a linear bounded operator and hence I' o Sp : © — € has closed graph from
Lemma 3.1. Hence

hn(t) — C(£)6(0) — S — £(0,6)] — / Ot — )F (5, yns)ds
0

- Z T (yn(ty, ) + (t = ti) Ir(yn(ty )] —
0<tr<t

t
— h(t) = C(t)$(0) = S(t)[n — f(0,9)] — /C(t —5)f(s,ys)ds—
0

Therefore, there exists v € Sg, such that

t
h(t) — C(H)p(0) — / Ct — ) (5, ys)ds—
0
t
— 3 y(t)) + (t — ) Taly /s (t— s\
0<tp <t 0
That is (3.3) holds.
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Step 6. We prove that there exists U = {u € Q : |Jul]lq < R} suchthat N(U) C U. Indeed,
foranyy € Qand h € N(y), let

>
)

~
N2

Il

C(t)¢(0)+s(t)[7l—f(0a¢)]+/C(t—8)f(s,ys ds+/S (t — s)v(s)ds+
0 0

here v € Sg,. We know

IR < 1C@)o ) + [1SE)[n = f(0, D)l + /C(t—S)f(Svys)dSJr

0

O<tp<t

+/@t_s S)ds{| + || S Fuly(t) + (¢ — ) T(u(t;))]
0

Therefore, for any ||y||o < p,

INW)lla < Mollll + Mobllln — f(0,9)]l| + Mo / 1f (s, ys)llds+

+Mo/| \ds+zdk+ b—ty)di] <

k=1

b

b
< Ny + Mg/pg(p)pl(s)dS + Mob/lp(s)ds,
0 0

m i b
where No = Myl|¢(0)|| + Mob||n — (0, d|| + S [dr + (b — tr)de] + M()/ p2(s)ds. Thus, for any
k=1 0

lylla < p, we know

ds.

ING) o %+j%MW$HM%®
p p p

From the condition (Hs), there exists a large p such that

INGle _ No [ Mops(plpas) + Mobiy(s)

p p p
0

ds < 1.
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This implies that there exists R > 0 such that N(U) C U.

Step 7 For the U defined in step 6,if M C U, M C co ({0} JN(M)),M = Cand C C M
is countable, then clearly there exists H = {h,, : n > 1} C N(M)

¢ ¢
hn(t) = C(t)e(0) + S(t)[n +/Ct—s synsds+/5t—svn )ds+
0 0

+ 3 [Ilyn(t;)) + (t — 1) Ti(ya(t;)]

0<tp <t

where v, € Sg,, and y, € M are such that C' C co ({0} |J H). Thus

o(M(1)) = a(C(t)) = a(C(t)) < alco ({0} JH)(1) = a(H(1)).

Ift € [-r,0], clearly a(M(t)) = 0.
When t € Jy, we have

< QMO/k:Q(s)a(M(S))ds+2M0b/k(s)a(M(s))ds <
0

t
(Mo + aMob) / §) + ka1 (s))a( M (s))ds. (3.4)
0

From step 3, we know that N (U) is equicontinuous. From M C co ({0} U N(M)), M is equi-
continuous. Theorem 1.2.2 in [10] implies that «(M (¢)) is continuous. By Gronwall Lemma in
[13], (3.4) implies a(M (t)) = 0 for t € Jy. Thus we know «(y,(t)) = 0 for any ¢t € Jp,
moreover o (I (yn(t1))) = 0, a(I1(yn(t1))) = 0. When t € Jy,

a(M(t)) = a(M(t)) < a(H(t)) <

IN

2M0/k‘2 dS—i—QMob/k’ (S))d5+

a({[Ii(yn(t)) + (t = te) I (yn(t1 1)) 1 0 > 1}) <

M0+aMob/ §) + k1 (s))a(M(3))ds + a({T1 (yn(t)) : > 11+
0

ISSN 1562-3076. Heainitini koausarnnsa, 2008, m. 11, N2 2



A SECOND ORDER MULTIVALUED BOUNDARY-VALUE PROBLEM AND IMPULSIVE NEUTRAL FUNCTIONAL... 207

+ba({T1(yn(t1)) : n > 1}) =
— 2(Mo + aMob) / (ka(s) + ki (5))a(M(s)) ds.
0

Again using Gronwall Lemma, we know «(M (t)) = 0 for any ¢t € Jp, thus a(l2(yn(t2))) = 0,
a(I3(yn(t2))) = 0. Similarly, from the continuouty property of Iy, I, and Gronwall Lemma,
we have a(M(t)) = Oforanyt € Ji : k = 1,2,3,...,m. Clearly a(M(t)) = 0 holds for any
t € [-r,b]. Soa(M) = 0 by Theorem 1.2.4 in [10]. Hence M is compact in §2. As a consequence
of Lemma 1.6 we deduce that NV has a fixed point which is a mild solution of problem (3.1).
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