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Nonimprovable sufficient conditions are established for unique solvability of the boundary-value problem

u′(t) = `(u)(t) + q(t), u(a) = λu(b) + c,

as well as for nonnegativeness of its solution, where ` : C([a, b];R) → L([a, b];R) is a linear bounded
operator, q ∈ L([a, b];R), λ ∈ R+, and c ∈ R.

Знайдено достатнi умови, що не можуть бути полiпшенi, для однозначної розв’язностi гра-
ничної задачi u′(t) = `(u)(t) + q(t), u(a) = λu(b) + c, та невiд’ємностi її розв’язку, де ` :
C([a, b];R) → L([a, b];R) — неперервний лiнiйний оператор, q ∈ L([a, b];R), λ ∈ R+ та c ∈ R.

Introduction. The following notation is used throughout the paper.
R is the set of all real numbers, R+ = [0,+∞[, R− =]−∞, 0].
C([a, b];R) is the Banach space of continuous functions u : [a, b] → R with the norm

‖u‖C = max{|u(t)| : a ≤ t ≤ b}.
C([a, b];R+) = {u ∈ C([a, b];R) : u(t) ≥ 0 for t ∈ [a, b]}.
C̃([a, b];R) is the set of absolutely continuous functions u : [a, b] → R.
L([a, b];R) is the Banach space of Lebesgue integrable functions p : [a, b] → R with the

norm ‖p‖L =

b∫
a

|p(s)|ds.
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L([a, b];D) = {p ∈ L([a, b];R) : p : [a, b] → D}, where D ⊆ R.
Mab is the set of measurable functions τ : [a, b] → [a, b].
Lab is the set of linear bounded operators ` : C([a, b];R) → L([a, b];R).
Pab is the set of linear operators ` ∈ Lab transforming the set C([a, b];R+) into the set

L([a, b];R+).

[x]+ =
1

2
(|x|+ x), [x]− =

1

2
(|x| − x).

By a solution of the equation

u′(t) = `(u)(t) + q(t), (0.1)

where ` ∈ Lab and q ∈ L([a, b];R), we understand a function u ∈ C̃([a, b];R) satisfying the
equation (0.1) almost everywhere in [a, b].

Consider the problem on the existence and uniqueness of a solution of (0.1) satisfying the
boundary condition

u(a) = λu(b) + c, (0.2)

where λ ∈ R+, c ∈ R.
The general boundary-value problems for functional differential equations have been studi-

ed very intensively. There are a lot of general results (see, e.g., [1 – 27]), but still only a few
effective criteria for the solvability of special boundary-value problems for functional differenti-
al equations are known even in the linear case. In the present paper, we try to fill to some extent
the existing gap in a certain way. More precisely, in Section 1 we give nonimprovable effecti-
ve sufficient conditions for the unique solvability of the problem (0.1), (0.2) as well as for the
nonnegativeness of a solution of that problem. Sections 2 and 3 are devoted respectively to the
proofs of the main results and the examples verifying their optimality.

All results will be concretized for the differential equation with deviating arguments, i.e.,
for the case where the equation (0.1) has the form

u′(t) = p(t)u(τ(t))− g(t)u(µ(t)) + q(t), (0.3)

where p, g ∈ L([a, b];R+), q ∈ L([a, b];R), and τ, µ ∈ Mab.
The special cases of the discussed boundary-value problem are the Cauchy problem (for λ =

= 0) and the periodic boundary-value problem (for λ = 1). In these cases, the below theorems
coincide with the results obtained in [4] and [10].

Along with the problem (0.1), (0.2) we consider the corresponding homogeneous problem

u′(t) = `(u)(t), (0.10)

u(a) = λu(b). (0.20)

From the general theory of linear boundary-value problem for functional differential equati-
ons, the following result is known (see, e.g., [3, 19, 27]).

Theorem 0.1. The problem (0.1), (0.2) is uniquely solvable if and only if the corresponding
homogeneous problem (0.10), (0.20) has only the trivial solution.
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418 R. HAKL, A. LOMTATIDZE, J. ŠREMR

1. Main results.

Theorem 1.1. Let λ ∈]0, 1], the operator ` admit the representation ` = `0 − `1, where

`0, `1 ∈ Pab, (1.1)

and let either
‖`0(1)‖L < 1, (1.2)

‖`0(1)‖L
1− ‖`0(1)‖L

− 1− λ
λ

< ‖`1(1)‖L < 1 + λ+ 2
√
1− ‖`0(1)‖L, (1.3)

or
‖`1(1)‖L < λ, (1.4)

1

λ− ‖`1(1)‖L
− 1 < ‖`0(1)‖L < 2 + 2

√
λ− ‖`1(1)‖L. (1.5)

Then the problem (0.1), (0.2) has a unique solution.

Remark 1.1. For λ = 0, the first inequality in (1.3) becomes unimportant. Consequently,
Theorem 1.3 in [3] can be understoond as a limit case of Theorem 1.3 as λ tends to zero.

Remark 1.2. Let λ ∈ [1,+∞[ and ` = `0 − `1, where `0, `1 ∈ Pab. Define an operator
ψ : L([a, b];R) → L([a, b];R) by

ψ(w)(t)
df
= w(a+ b− t) for t ∈ [a, b].

Let ϕ be a restriction of ψ to the space C([a, b];R). Put µ =
1

λ
, and

̂̀
0(w)(t)

df
= ψ(`0(ϕ(w)))(t), ̂̀

1(w)(t)
df
= ψ(`1(ϕ(w)))(t) for t ∈ [a, b].

It is clear that if u is a solution of the problem (0.10), (0.20), then the function v df
= ϕ(u) is a

solution of the problem

v′(t) = ̂̀
1(v)(t)− ̂̀0(v)(t), v(a) = µv(b), (1.6)

and vice versa, if v is a solution of the problem (1.6), then the function u df
= ϕ(v) is a solution of

the problem (0.10), (0.20),.
It is evident also that

‖̂̀0(1)‖L = ‖`0(1)‖L, ‖̂̀1(1)‖L = ‖`1(1)‖L.

Therefore, Theorem 1.1 immediately yields the following theorem.

Theorem 1.2. Let λ ∈ [1,+∞[, the operator ` admit the representation ` = `0 − `1, where `0
and `1 satisfy the condition (1.1), and let either

‖`1(1)‖L < 1,
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‖`1(1)‖L
1− ‖`1(1)‖L

+ 1− λ < ‖`0(1)‖L < 1 +
1

λ
+ 2
√
1− ‖`1(1)‖L,

or

‖`0(1)‖L <
1

λ
,

1
1

λ
− ‖`0(1)‖L

− 1 < ‖`1(1)‖L < 2 + 2

√
1

λ
− ‖`0(1)‖L.

Then the problem (0.1), (0.2) has a unique solution.

Remark 1.3. In Section 3 we give examples (see Examples 3.1 – 3.6) showing that neither
one of the strict inequalities (1.2) – (1.5) can be replaced by the nonstrict ones. According to
Remark 1.2 and the above-said, the conditions of Theorem 1.2 are also nonimprovable.

Theorem 1.3. Let λ ∈]0, 1], q ∈ L([a, b];R+), c ∈ R+, ‖q‖L + c 6= 0, and the operator `
admit the representation ` = `0 − `1, where `0 and `1 satisfy the condition (1.1). Let, moreover,

‖`0(1)‖L < 1, ‖`1(1)‖L < λ (resp. ‖`1(1)‖L ≤ λ) (1.7)

and
‖`0(1)‖L

1− ‖`0(1)‖L
− 1− λ

λ
< ‖`1(1)‖L. (1.8)

Then the problem (0.1), (0.2) has a unique solution, and this solution is positive (resp. nonnega-
tive).

Theorem 1.4. Let λ ∈]0, 1], q ∈ L([a, b];R+), c ∈ R+, ‖q‖L + c 6= 0, and the operator `
admit the representation ` = `0 − `1, where `0 and `1 satisfy the condition (1.1). Let, moreover,

‖`0(1)‖L < 1 (resp. ‖`0(1)‖L ≤ 1), ‖`1(1)‖L < λ (1.9)

and
1

λ− ‖`1(1)‖L
− 1 < ‖`0(1)‖L. (1.10)

Then the problem (0.1), (0.2) has a unique solution, and this solution is negative (resp. nonposi-
tive).

According to Remark 1.2, from Theorems 1.3 and 1.4 we have the following.

Theorem 1.5. Let λ ∈ [1,+∞[, q ∈ L([a, b];R+), c ∈ R+, ‖q‖L + c 6= 0, and the operator `
admit the representation ` = `0 − `1, where `0 and `1 satisfy the condition (1.1). If, moreover,

‖`1(1)‖L < 1, ‖`0(1)‖L <
1

λ

(
resp. ‖`0(1)‖L ≤

1

λ

)
and

‖`1(1)‖L
1− ‖`1(1)‖L

+ 1− λ < ‖`0(1)‖L,
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then the problem (0.1), (0.2) has a unique solution, and this solution is negative (resp. nonposi-
tive).

Theorem 1.6. Let λ ∈ [1,+∞[, q ∈ L([a, b];R+), c ∈ R+, ‖q‖L + c 6= 0, and the operator `
admit the representation ` = `0 − `1, where `0 and `1 satisfy the condition (1.1). If, moreover,

‖`1(1)‖L < 1 (resp. ‖`1(1)‖L ≤ 1), ‖`0(1)‖L <
1

λ

and
1

1

λ
− ‖`0(1)‖L

− 1 < ‖`1(1)‖L,

then the problem (0.1), (0.2) has a unique solution, and this solution is positive (resp. nonnega-
tive).

Remark 1.4. In Section 3 we give examples (see Examples 3.7 and 3.8) showing that neither
one of the inequalities (1.7) – (1.10) can be weakened. According to Remark 1.2 and the above-
said, the conditions of Theorems 1.5 and 1.6 are also nonimprovable.

For an equation of the type (0.3), from Theorems 1.1 – 1.6 we get the following assertions.

Corollary 1.1. Let λ ∈]0, 1], p, g ∈ L([a, b];R+), and let either

b∫
a

p(s)ds < 1,

b∫
a
p(s)ds

1−
b∫
a
p(s)ds

− 1− λ
λ

<

b∫
a

g(s)ds < 1 + λ+ 2

√√√√√1−
b∫

a

p(s)ds,

or
b∫

a

g(s)ds < λ,
1

λ−
b∫
a
g(s)ds

− 1 <

b∫
a

p(s)ds < 2 + 2

√√√√√λ−
b∫

a

g(s)ds.

Then the problem (0.3), (0.2) has a unique solution.

Corollary 1.2. Let λ ∈ [1,+∞[, p, g ∈ L([a, b];R+), and let either

b∫
a

g(s)ds < 1,

b∫
a
g(s)ds

1−
b∫
a
g(s)ds

+ 1− λ <
b∫

a

p(s)ds < 1 +
1

λ
+ 2

√√√√√1−
b∫

a

g(s)ds,

or
b∫

a

p(s)ds <
1

λ
,

1

1

λ
−

b∫
a

p(s)ds

− 1 <

b∫
a

g(s)ds < 2 + 2

√√√√√ 1

λ
−

b∫
a

p(s)ds.
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Then the problem (0.3), (0.2) has a unique solution.

Corollary 1.3. Let λ ∈]0, 1], p, g, q ∈ L([a, b];R+), c ∈ R+, ‖q‖L + c 6= 0,

b∫
a

p(s)ds < 1,

b∫
a

g(s)ds < λ

resp. b∫
a

g(s)ds ≤ λ

 ,

and
b∫
a
p(s)ds

1−
b∫
a
p(s)ds

− 1− λ
λ

<

b∫
a

g(s)ds.

Then the problem (0.3), (0.2) has a unique solution, and this solution is positive (resp. nonnega-
tive).

Corollary 1.4. Let λ ∈]0, 1], p, g, q ∈ L([a, b];R+), c ∈ R+, ‖q‖L + c 6= 0,

b∫
a

p(s)ds < 1

resp. b∫
a

p(s)ds ≤ 1

 ,

b∫
a

g(s)ds < λ,

and

1

λ−
b∫
a
g(s)ds

− 1 <

b∫
a

p(s)ds.

Then the problem (0.3), (0.2) has a unique solution, and this solution is negative (resp. nonposi-
tive).

Corollary 1.5. Let λ ∈ [1,+∞[, p, g, q ∈ L([a, b];R+), c ∈ R+, ‖q‖L + c 6= 0,

b∫
a

p(s)ds <
1

λ

resp. b∫
a

p(s)ds ≤ 1

λ

 ,

b∫
a

g(s)ds < 1,

and
b∫
a
g(s)ds

1−
b∫
a
g(s)ds

+ 1− λ <
b∫

a

p(s)ds.

Then the problem (0.3), (0.2) has a unique solution, and this solution is negative (resp. nonposi-
tive).

Corollary 1.6. Let λ ∈ [1,+∞[, p, g, q ∈ L([a, b];R+), c ∈ R+, ‖q‖L + c 6= 0,

b∫
a

p(s)ds <
1

λ
,

b∫
a

g(s)ds < 1

resp. b∫
a

g(s)ds ≤ 1

 ,
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and

1

1

λ
−

b∫
a

p(s)ds

− 1 <

b∫
a

g(s)ds.

Then the problem (0.3), (0.2) has a unique solution, and this solution is positive (resp. nonnega-
tive).

2. Proofs.
To prove Theorems 1.1, 1.3, and 1.4, we need the following lemmas.

Lemma 2.1. Let λ ∈]0, 1], q ∈ L([a, b];R−), c ∈ R−, the operator ` admit the representation
` = `0 − `1, where `0 and `1 satisfy the condition (1.1), and let

‖`0(1)‖L < 1,
‖`0(1)‖L

1− ‖`0(1)‖L
− 1− λ

λ
< ‖`1(1)‖L. (2.1)

Then the problem (0.1), (0.2) has no nontrivial solution u satisfying the inequality

u(t) ≥ 0 for t ∈ [a, b]. (2.2)

Proof. Assume the contrary that the problem (0.1), (0.2) has a nontrivial solution u satisfy-
ing the condition (2.2). Put

M = max{u(t) : t ∈ [a, b]}, m = min{u(t) : t ∈ [a, b]} (2.3)

and choose tM , tm ∈ [a, b] such that

u(tM ) = M, u(tm) = m. (2.4)

Obviously, M > 0, m ≥ 0 and either
tM > tm, (2.5)

or
tM < tm. (2.6)

First suppose that (2.5) holds. The integration of (0.1) from tm to tM , on account of (1.1), (2.3),
(2.4), and the assumption q ∈ L([a, b];R−), results in

M −m =

tM∫
tm

[`0(u)(s)− `1(u)(s) + q(s)]ds ≤ M

tM∫
tm

`0(1)(s)ds ≤ M‖`0(1)‖L.

Now suppose that (2.6) is fulfilled. The integration of (0.1) from a to tM and from tm to b, in
view of (1.1), (2.3), (2.4) and the assumption q ∈ L([a, b];R−), yields

M − u(a) ≤ M

tM∫
a

`0(1)(s)ds, u(b)−m ≤ M

b∫
tm

`0(1)(s)ds.
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Summing the last two inequalities and taking into account the condition

u(b)− u(a) ≥ λu(b)− u(a) = −c ≥ 0,

we obtain
M(1− ‖`0(1)‖L) ≤ m. (2.7)

Therefore, in both cases (2.5) and (2.6), the inequality (2.7) is valid.
On the other hand, the integration of (0.1) from a to b, in view of (1.1), (2.3), and the

assumption q ∈ L([a, b];R−), implies

u(b)− u(a) =
b∫

a

[`0(u)(s)− `1(u)(s) + q(s)]ds ≤ M‖`0(1)‖L −m‖`1(1)‖L.

Hence, by (2.3), (0.2) and the assumptions λ ∈]0, 1], c ∈ R−, we have

m‖`1(1)‖L ≤ M‖`0(1)‖L + u(a)

(
1− 1

λ

)
+

1

λ
c ≤ M‖`0(1)‖L +m

(
1− 1

λ

)
.

Thus

m

(
‖`1(1)‖L +

1− λ
λ

)
≤ M‖`0(1)‖L.

This inequality together with (2.7) results in

‖`1(1)‖L ≤
‖`0(1)‖L

1− ‖`0(1)‖L
− 1− λ

λ
,

which contradicts the second inequality in (2.1).

Lemma 2.2. Let λ ∈]0, 1], q ∈ L([a, b];R+), c ∈ R+, the operator ` admit the representation
` = `0 − `1, where `0 and `1 satisfy the condition (1.1), and let

‖`1(1)‖L < λ,
1

λ− ‖`1(1)‖L
− 1 < ‖`0(1)‖L. (2.8)

Then the problem (0.1), (0.2) has no nontrivial solution u satisfying the inequality (2.2).

Proof. Assume the contrary that the problem (0.1), (0.2) has a nontrivial solution u satisfy-
ing the condition (2.2). Define the numbers M and m by (2.3) and choose tM , tm ∈ [a, b] such
that (2.4) is fulfilled. Obviously, M > 0, m ≥ 0 and either (2.5) or (2.6) is valid.

First suppose that (2.6) holds. The integration of (0.1) from tM to tm, on account of (1.1),
(2.3), (2.4) and the assumptions λ ∈]0, 1] and q ∈ L([a, b];R+), results in

λM −m ≤ M −m =

tm∫
tM

[`1(u)(s)− `0(u)(s)− q(s)]ds ≤

≤M
tm∫

tM

`1(1)(s)ds ≤ M‖`1(1)‖L.
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Now suppose that (2.5) is fulfilled. The integration of (0.1) from a to tm and from tM to b, in
view of (1.1), (2.3), (2.4) and the assumptions λ ∈]0, 1], q ∈ L([a, b];R+), yields

u(a)−m ≤ M

tm∫
a

`1(1)(s)ds, λ(M − u(b)) ≤ M − u(b) ≤ M

b∫
tM

`1(1)(s)ds.

Summing the last two inequalities and taking into account the condition

u(a)− λu(b) = c ≥ 0,

we obtain

M(λ− ‖`1(1)‖L) ≤ m. (2.9)

Therefore, in both cases (2.5) and (2.6), the inequality (2.9) is valid.
On the other hand, the integration of (0.1) from a to b, in view of (1.1), (2.3), and the

assumption q ∈ L([a, b];R+), results in

u(a)− u(b) =
b∫

a

[`1(u)(s)− `0(u)(s)− q(s)]ds ≤ M‖`1(1)‖L −m‖`0(1)‖L.

Hence, by (2.3), (0.2) and the assumptions λ ∈]0, 1], c ∈ R+, we have

m‖`0(1)‖L ≤ M‖`1(1)‖L + u(b) (1− λ)− c ≤ M‖`1(1)‖L +M (1− λ) .

Thus

m‖`0(1)‖L ≤ M (‖`1(1)‖L − λ+ 1) .

This inequality together with (2.9) yields

‖`0(1)‖L ≤
1

λ− ‖`1(1)‖L
− 1,

which contradicts the second inequality in (2.8).

Proof of Theorem 1.1. According to Theorem 0.1, it is sufficient to show that the homogeneous
problem (0.10), (0.20) has no nontrivial solution.

First suppose that (1.2) and (1.3) hold. Assume the contrary that the problem (0.10), (0.20)
has a nontrivial solution u. According to Lemma 2.1, u has to change its sign. Put

M = max{u(t) : t ∈ [a, b]}, m = −min{u(t) : t ∈ [a, b]} (2.10)

and choose tM , tm ∈ [a, b] such that

u(tM ) = M, u(tm) = −m. (2.11)
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Obviously, M > 0, m > 0. Without loss of generality we can assume that tm < tM . The
integration of (0.10) from a to tm, from tm to tM and from tM to b, by (2.10), (2.11) and (1.1),
results in

u(a) +m =

tm∫
a

[`1(u)(s)− `0(u)(s)]ds ≤ M

tm∫
a

`1(1)(s)ds+m

tm∫
a

`0(1)(s)ds, (2.12)

M +m =

tM∫
tm

[`0(u)(s)− `1(u)(s)]ds ≤ M

tM∫
tm

`0(1)(s)ds+m

tM∫
tm

`1(1)(s)ds, (2.13)

M − u(b) =
b∫

tM

[`1(u)(s)− `0(u)(s)]ds ≤ M

b∫
tM

`1(1)(s)ds+m

b∫
tM

`0(1)(s)ds. (2.14)

Multiplying the both sides of (2.14) by λ and taking into account (2.10) and the assumption
λ ∈]0, 1], we get

λM − λu(b) ≤ M

b∫
tM

`1(1)(s)ds+m

b∫
tM

`0(1)(s)ds.

Summing the last inequality and (2.13), by (0.20) we obtain

λM +m ≤ M

∫
J

`1(1)(s)ds+m

∫
J

`0(1)(s)ds, (2.15)

where J = [a, tm] ∪ [tM , b]. From (2.13) and (2.15) it follows that

M(1−D) ≤ m(B − 1), m(1− C) ≤ M(A− λ), (2.16)

where

A =

∫
J

`1(1)(s)ds, B =

tM∫
tm

`1(1)(s)ds,

C =

∫
J

`0(1)(s)ds, D =

tM∫
tm

`0(1)(s)ds.

(2.17)

Due to (1.2), C < 1 and D < 1. Consequently, (2.16) implies A > λ, B > 1, and

0 < (1− C)(1−D) ≤ (A− λ)(B − 1). (2.18)
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Obviously,

(1− C)(1−D) ≥ 1− (C +D) = 1− ‖`0(1)‖L > 0,

4(A− λ)(B − 1) ≤ [A+B − (1 + λ)]2 = [‖`1(1)‖L − (1 + λ)]2.

By the last inequalities, (2.18) results in

0 < 4(1− ‖`0(1)‖L) ≤ [‖`1(1)‖L − (1 + λ)]2,

which contradicts the second inequality in (1.3).
Now suppose that (1.4) and (1.5) are fulfilled. Assume the contrary that the problem (0.10),

(0.20) has a nontrivial solution u. According to Lemma 2.2, u has to change its sign. Define M
andm by (2.10) and choose tM , tm ∈ [a, b] such that (2.11) is fulfilled. Without loss of generality
we can assume that tm < tM . Analogously to the above, one can show that the inequalities
(2.12) – (2.15) hold, where J = [a, tm] ∪ [tM , b]. From (2.13) and (2.15) it follows that

m(1−B) ≤ M(D − 1), M(λ−A) ≤ m(C − 1), (2.19)

whereA,B,C,D are defined by (2.17). According to (1.4),A < λ andB < λ ≤ 1. Consequently,
(2.19) implies C > 1, D > 1 and

0 < (λ−A)(1−B) ≤ (C − 1)(D − 1). (2.20)

Obviously,

(λ−A)(1−B) ≥ λ− (A+B) = λ− ‖`1(1)‖L > 0,

4(C − 1)(D − 1) ≤ (C +D − 2)2 = (‖`0(1)‖L − 2)2.

By the last inequalities, from (2.20) we get

0 < 4(λ− ‖`1(1)‖L) ≤ (‖`0(1)‖L − 2)2,

which contradicts the second inequality in (1.5).

Proof of Theorem 1.3. According to Theorem 1.1 and the conditions (1.7), (1.8), the problem
(0.1), (0.2) has a unique solution u.

Show that u has no zero (resp. does not change its sign). Assume the contrary that there
exists t1 ∈ [a, b] (resp. t2, t3 ∈ [a, b]) such that

u(t1) = 0 (resp. u(t2)u(t3) < 0). (2.21)

Define numbers M and m by (2.10) and choose tM , tm ∈ [a, b] such that (2.11) is fulfilled.
Obviously,

M ≥ 0, m ≥ 0, M +m > 0 (2.22)
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resp. M > 0, m > 0

)
, (2.23)

and either (2.5) or (2.6) is valid.
First suppose that (2.5) holds. The integration of (0.1) from a to tm and from tM to b, on

account of (1.1), (2.10), (2.11) and the assumptions λ ∈]0, 1] and q ∈ L([a, b];R+), results in

m+ u(a) ≤M
tm∫
a

`1(1)(s)ds+m

tm∫
a

`0(1)(s)ds, (2.24)

λ(M − u(b)) ≤ M − u(b) ≤M
b∫

tM

`1(1)(s)ds+m

b∫
tM

`0(1)(s)ds. (2.25)

Summing the last two inequalities and taking into account the condition

u(a)− λu(b) = c ≥ 0,

we obtain
λM +m ≤ M‖`1(1)‖L +m‖`0(1)‖L, (2.26)

which by (1.7) yields the contradiction λM +m < λM +m (resp. m < m).
Now suppose that (2.6) is fulfilled. The integration of (0.1) from tM to tm, on account of

(1.1), (2.10), (2.11) and the assumption q ∈ L([a, b];R+), results in

M +m =

tm∫
tM

[`1(u)(s)− `0(u)(s)− q(s)]ds ≤ M‖`1(1)‖L +m‖`0(1)‖L. (2.27)

Hence, by (1.7) and the assumption λ ∈]0, 1], we get the contradictionM+m < M+m. Thus u
has no zero (resp. does not change its sign), and so according to Lemma 2.1, u is positive (resp.
nonnegative).

Proof of Theorem 1.4. According to Theorem 1.1 and the conditions (1.9), (1.10), the problem
(0.1), (0.2) has a unique solution u.

Show that u has no zero (resp. does not change its sign). Assume the contrary that there
exists t1 ∈ [a, b] (resp. t2, t3 ∈ [a, b]) such that (2.21) is fulfilled. Define numbers M and m by
(2.10) and choose tM , tm ∈ [a, b] such that (2.11) is fulfilled. Obviously, (2.22) (resp. (2.23)) is
satisfied, and either (2.5) or (2.6) is valid.

By the same arguments as in the proof of Theorem 1.3 one can show that the assumption
(2.5) yields the contradiction λM +m < λM +m (resp. M < M), and the assumption (2.6)
yields the contradiction M +m < M +m. Thus u has no zero (resp. does not change its sign),
and so according to Lemma 2.2, u is negative (resp. nonpositive).

3. On Remarks 1.3 and 1.4. On Remark 1.3. Let λ ∈]0, 1[ (the case λ = 0, resp. λ = 1,
is studied in [4], resp. [10], where the examples are also given verifying the optimality of the
obtained results). Denote by H+, resp. H−, the set of pairs (x, y) ∈ R+ ×R+ such that

x < 1,
x

1− x
− 1− λ

λ
< y < 1 + λ+ 2

√
1− x,
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resp.

y < λ,
1

λ− y
− 1 < x < 2 + 2

√
λ− y.

By Theorem 1.1, if (‖`0(1)‖L, ‖`1(1)‖L) ∈ H+ ∪H−, then the problem (0.1), (0.2) has a unique

solution. (Note also that for λ ≤ 1

4
, H− = ∅.)

Below we give the examples which show that for any pair (x0, y0) 6∈ H+ ∪ H−, x0 ≥ 0,
y0 ≥ 0 there exist functions h ∈ L([a, b];R) and τ ∈ Mab such that

b∫
a

[h(s)]+ds = x0,

b∫
a

[h(s)]−ds = y0, (3.1)

and the problem

u′(t) = h(t)u(τ(t)), u(a) = λu(b) (3.2)

has a nontrivial solution. Then by Theorem 0.1, there exist q ∈ L([a, b];R) and c ∈ R such that
the problem (0.1), (0.2), where ` = `0 − `1,

`0(w)(t)
df
= [h(t)]+w(τ(t)), `1(w)(t)

df
= [h(t)]−w(τ(t)), (3.3)

either has no solution or has an infinite set of solutions.
It is clear that if x0, y0 ∈ R+ and (x0, y0) 6∈ H+ ∪H−, then (x0, y0) belongs at least to one

of the following sets:

H1 = {(x, y) ∈ R×R : 1 ≤ x, λ ≤ y} ,

H2 =
{
(x, y) ∈ R×R : 0 ≤ x < 1, 1 + λ+ 2

√
1− x ≤ y

}
,

H3 =
{
(x, y) ∈ R×R : 0 ≤ y < λ, 2 + 2

√
λ− y ≤ x

}
,

H4 =

{
(x, y) ∈ R×R : 0 ≤ y < λ, y + 1− λ ≤ x ≤ y + 1− λ

λ− y

}
,

H5 =

{
(x, y) ∈ R×R : 1− λ < x < 1,

x

λ
+ 1− 1

λ
≤ y ≤ x+ λ− 1

λ(1− x)

}
,

H6 =

{
(x, y) ∈ R×R : 1− λ < x < 1, x− 1 + λ ≤ y ≤ x

λ
+ 1− 1

λ

}
.
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Example 3.1. Let (x0, y0) ∈ H1. Put a = 0, b = 4,

h(t) =


−λ for t ∈ [0, 1[;

x0 − 1 for t ∈ [1, 2[;

λ− y0 for t ∈ [2, 3[;

1 for t ∈ [3, 4],

τ(t) =

{
4 for t ∈ [0, 1[∪[3, 4];
1 for t ∈ [1, 3[.

Then (3.1) holds, and the problem (3.2) has the nontrivial solution

u(t) =


λ(1− t) for t ∈ [0, 1[;

0 for t ∈ [1, 3[;

t− 3 for t ∈ [3, 4].

Example 3.2. Let (x0, y0) ∈ H2. Put a = 0, b = 6, α =
√
1− x0, β = y0 − 1− λ− 2α,

h(t) =



−λ for t ∈ [0, 1[;

−β for t ∈ [1, 2[;

−α for t ∈ [2, 4[;

−1 for t ∈ [4, 5[;

x0 for t ∈ [5, 6],

τ(t) =


6 for t ∈ [0, 1[∪[2, 3[∪[5, 6];
1 for t ∈ [1, 2[;

3 for t ∈ [3, 5[.

Then (3.1) holds, and the problem (3.2) has the nontrivial solution

u(t) =



λ(1− t) for t ∈ [0, 1[;

0 for t ∈ [1, 2[;

α(2− t) for t ∈ [2, 3[;

α2(t− 3)− α for t ∈ [3, 4[;

α(t− 5) + α2 for t ∈ [4, 5[;

x0(t− 6) + 1 for t ∈ [5, 6].

Example 3.3. Let (x0, y0) ∈ H3. Put a = 0, b = 6, α =
√
λ− y0, β = x0 − 2− 2α,

h(t) =



α for t ∈ [0, 1[;

−y0 for t ∈ [1, 2[;

β for t ∈ [2, 3[;

1 for t ∈ [3, 4[;

α for t ∈ [4, 5[;

1 for t ∈ [5, 6],

τ(t) =


4 for t ∈ [0, 1[∪[3, 4[;
6 for t ∈ [1, 2[∪[4, 6];
2 for t ∈ [2, 3[.
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Then (3.1) holds, and the problem (3.2) has the nontrivial solution

u(t) =



−α2t+ λ for t ∈ [0, 1[;

y0(2− t) for t ∈ [1, 2[;

0 for t ∈ [2, 3[;

α(3− t) for t ∈ [3, 4[;

α(t− 5) for t ∈ [4, 5[;

t− 5 for t ∈ [5, 6].

Example 3.4. Let (x0, y0) ∈ H4. Put a = 0, b = 2, α = 1− λ+ y0, t0 =
1

x0
− 1

α
+ 2,

h(t) =

{
−y0 for t ∈ [0, 1[;

x0 for t ∈ [1, 2],
τ(t) =

{
2 for t ∈ [0, 1[;

t0 for t ∈ [1, 2].

Then (3.1) holds, and the problem (3.2) has the nontrivial solution

u(t) =

{
−y0t+ λ for t ∈ [0, 1[;

α(t− 2) + 1 for t ∈ [1, 2].

Example 3.5. Let (x0, y0) ∈ H5. Put a = 0, b = 2, α =
λ+ x0 − 1

1− x0
, β =

λx0
1− x0

, t0 =

=

(
α

y0
− λ
)

1

β
,

h(t) =

{
x0 for t ∈ [0, 1[;

−y0 for t ∈ [1, 2],
τ(t) =

{
1 for t ∈ [0, 1[;

t0 for t ∈ [1, 2].

Then (3.1) holds, and the problem (3.2) has the nontrivial solution

u(t) =

{
βt+ λ for t ∈ [0, 1[;

α(2− t) + 1 for t ∈ [1, 2].

Example 3.6. Let (x0, y0) ∈ H6. Put a = 0, b = 2, α = λ+ x0 − 1, t0 =
α− y0
x0y0

+ 2,

h(t) =

{
−y0 for t ∈ [0, 1[;

x0 for t ∈ [1, 2],
τ(t) =

{
t0 for t ∈ [0, 1[;

2 for t ∈ [1, 2].

Then (3.1) holds, and the problem (3.2) has the nontrivial solution

u(t) =

{
−αt+ λ for t ∈ [0, 1[;

x0(t− 2) + 1 for t ∈ [1, 2].

ISSN 1562-3076. Нелiнiйнi коливання, 2002, т . 5, N◦ 3



ON A PERIODIC TYPE BOUNDARY-VALUE PROBLEM FOR FIRST ORDER LINEAR . . . 431

On Remark 1.4. Let λ ∈]0, 1] (the case λ = 0 is studied in [4]). Denote by G+, resp. G−, the
set of pairs (x, y) ∈ R+ ×R+ such that

x < 1,
x

1− x
− 1− λ

λ
< y < λ,

resp.

y < λ,
1

λ− y
− 1 < x < 1.

It is clear that G+ ⊂ H+ and G− ⊂ H−. (Note also that for λ ≤ 1

2
, G− = ∅.)

By Theorem 1.3, resp. Theorem 1.4, if

(‖`0(1)‖L, ‖`1(1)‖L) ∈ G+, resp. (‖`0(1)‖L, ‖`1(1)‖L) ∈ G−,

then the problem (0.1), (0.2) with q ∈ L([a, b];R+), c ∈ R+, ‖q‖L+ c 6= 0 has a unique solution
and this solution is positive, resp. negative.

Below we give the examples which show that for any pair (x0, y0) ∈ H+ \ G+, resp.
(x0, y0) ∈ H− \ G−, there exist functions h ∈ L([a, b];R), q ∈ L([a, b];R+) and τ ∈ Mab

such that q 6≡ 0, (3.1) is fulfilled, and the problem

u′(t) = h(t)u(τ(t)) + q(t), u(a) = λu(b), (3.4)

or equivalently, the problem (0.1), (0.20) where ` = `0 − `1, and `0, `1 are defined by (3.3), has
a solution which is not positive, resp. negative.

From Example 3.7, resp. Example 3.8, it also follows that in Theorem 1.3, resp. Theorem 1.4,
the inequality ‖`1(1)‖L ≤ λ, resp. ‖`0(1)‖L ≤ 1, in the condition (1.7), resp. (1.9), cannot be
replaced by the inequality ‖`1(1)‖L ≤ λ+ ε, resp. ‖`0(1)‖L ≤ 1+ ε, no matter how small ε > 0
would be.

Example 3.7. Let (x0, y0) ∈ H+ \G+. Put a = 0, b = 2, α = y0−x0−λ+1, β = 1+y0−λ,
τ ≡ 2,

h(t) =

{
−y0 for t ∈ [0, 1[;

x0 for t ∈ [1, 2],
q(t) =

{
0 for t ∈ [0, 1[;

α for t ∈ [1, 2].

Then (3.1) holds, and the problem (3.4) has the solution

u(t) =

{
−y0t+ λ for t ∈ [0, 1[;

β(t− 2) + 1 for t ∈ [1, 2]

with u(1) = λ− y0 ≤ 0.

Example 3.8. Let (x0, y0) ∈ H− \G−. Put a = 0, b = 2, α = x0−y0+λ−1, β = x0+λ−1,
τ ≡ 2,

h(t) =

{
−y0 for t ∈ [0, 1[;

x0 for t ∈ [1, 2],
q(t) =

{
α for t ∈ [0, 1[;

0 for t ∈ [1, 2].
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Then (3.1) holds, and the problem (3.4) has the solution

u(t) =

{
βt− λ for t ∈ [0, 1[;

x0(2− t)− 1 for t ∈ [1, 2]

with u(1) = x0 − 1 ≥ 0.
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uža B. On periodic solutions of first order linear functional differential equations

// Nonlinear Anal.: Theory, Meth. and Appl. (to appear).

12. Hakl R., Lomtatidze A., P
◦
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