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Nonimprovable sufficient conditions are established for unique solvability of the boundary-value problem
u'(t) = Lu)(t) +q(t),  ula) = Au(b) +c,

as well as for nonnegativeness of its solution, where { : C([a,b]; R) — L([a,bl]; R) is a linear bounded
operator, ¢ € L([a,b]; R), A\ € Ry, and ¢ € R.

3Hati0eHo 0oCcmamui yMo8U, U0 He MOXCYmb Oymu noainuieri, 0aa 0OHO3HAUHOI po38’A3HOCMI 2pa-
Huunot 3adaqi v'(t) = L(u)(t) + q(t), u(a) = Au(b) + ¢, ma Hesid emHocmi ii po3s’asky, Oe L :
C([a,b]; R) — L([a,b]; R) — HenepepsHuil ainitinuil onepamop, q € L([a,b]; R), A € Ry mac € R.

Introduction. The following notation is used throughout the paper.

R is the set of all real numbers, R, = [0, 4o00[, R— =] — 00, 0].

C([a,b]; R) is the Banach space of continuous functions v : [a,b] — R with the norm
lullc = max{|u(t)| : a <t < b}.

C(la,b); Ry) = {u € C([a,b];R) : u(t) > 0fort € [a,b]}.

C([a, b]; R) is the set of absolutely continuous functions u : [a,b] — R.

L([a,b]; R) is the Banach space of Lebesgue integrable functions p : [a,b] — R with the

b
norm [ = [ [p()]ds.
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ON A PERIODIC TYPE BOUNDARY-VALUE PROBLEM FOR FIRST ORDER LINEAR... 417

L([a,b]; D) = {p € L([a,b];R) : p : [a,b] = D}, where D C R.

My is the set of measurable functions 7 : [a,b] — [a, b].

Ly is the set of linear bounded operators ¢ : C([a, b]; R) — L([a,b]; R).

Pay is the set of linear operators ¢ € L, transforming the set C'([a, b]; R4) into the set
L([a,b]; Ry).

1 1
2l = 5l +2), [1]- = 5(lal - )
By a solution of the equation

u'(t) = Lu)(t) + q(t), (0.1)

where ¢ € Ly, and ¢ € L([a,b]; R), we understand a function v € C([a,b]; R) satisfying the
equation (0.1) almost everywhere in [a, b].

Consider the problem on the existence and uniqueness of a solution of (0.1) satisfying the
boundary condition

u(a) = Au(b) + ¢, (0.2)

where A € R.,c € R.

The general boundary-value problems for functional differential equations have been studi-
ed very intensively. There are a lot of general results (see, e.g., [1-27]), but still only a few
effective criteria for the solvability of special boundary-value problems for functional differenti-
al equations are known even in the linear case. In the present paper, we try to fill to some extent
the existing gap in a certain way. More precisely, in Section 1 we give nonimprovable effecti-
ve sufficient conditions for the unique solvability of the problem (0.1), (0.2) as well as for the
nonnegativeness of a solution of that problem. Sections 2 and 3 are devoted respectively to the
proofs of the main results and the examples verifying their optimality.

All results will be concretized for the differential equation with deviating arguments, i.e.,
for the case where the equation (0.1) has the form

u'(t) = p(Hu(r(t)) — g(t)u(u(t) + q(t), (0.3)

where p, g € L([a,b]; Ry), q € L([a,b]; R), and 7, u € M.

The special cases of the discussed boundary-value problem are the Cauchy problem (for A =
= 0) and the periodic boundary-value problem (for A = 1). In these cases, the below theorems
coincide with the results obtained in [4] and [10].

Along with the problem (0.1), (0.2) we consider the corresponding homogeneous problem

u'(t) = L(u)(t), (0.10)
u(a) = Au(b). (0.20)

From the general theory of linear boundary-value problem for functional differential equati-
ons, the following result is known (see, e.g., [3, 19, 27]).

Theorem 0.1. The problem (0.1), (0.2) is uniquely solvable if and only if the corresponding
homogeneous problem (0.1), (0.2¢) has only the trivial solution.
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418 R.HAKL, A. LOMTATIDZE, J. SREMR

1. Main results.

Theorem 1.1. Let \ €]0, 1), the operator { admit the representation { = {y — {1, where

EOygl € paba (11)
and let either
[1€0(1)] 1—)
- <ML < T+ A+2y/1 = bz, 3
T T P S 1o (D)l (13)
or
[IGIPEY »
1
— 1< [l < 2+ 2= (D] 2. 15
RS (il ROIE (15)

Then the problem (0.1), (0.2) has a unique solution.

Remark 1.1. For A = 0, the first inequality in (1.3) becomes unimportant. Consequently,
Theorem 1.3 in [3] can be understoond as a limit case of Theorem 1.3 as A tends to zero.

Remark 1.2. Let A\ € [1,+oo[ and ¢ = ¢y — {1, where {y,{; € P,p. Define an operator
¥ 2 L([a,b); R) — L([a, b]; R) by

Y(w)(t) d w(a+b—1t) fort € [a,b).

1
Let ¢ be a restriction of ) to the space C([a, b]; R). Put p = v and

~ ~

lo(w)(t) E Y(lo(p(w))(®),  G(w)(t) T e(li(pw))(t)  fort € [a,b].

It is clear that if u is a solution of the problem (0.1p), (0.2p), then the function v d e(u) is a
solution of the problem

~

V() = h()(t) = l@)(E),  v(a) = m(b), (1.6)

and vice versa, if v is a solution of the problem (1.6), then the function « dt ©(v) is a solution of
the problem (0.1¢), (0.29),.
It is evident also that

oMl = oMz, 16l = 16Dz

Therefore, Theorem 1.1 immediately yields the following theorem.

Theorem 1.2. Let A\ € [1,+00], the operator ¢ admit the representation { = {y — {1, where {;
and {1 satisfy the condition (1.1), and let either

[l <1,
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0(1 1
6@l 3y el < L+ £+ 21— (16 M),

1— 6z
or
oIz < =
0 L )\7
1 1
T 1< lla@lle <2+2y/ 1 = [llo(@)llL.
LT

Then the problem (0.1), (0.2) has a unique solution.

Remark 1.3. In Section 3 we give examples (see Examples 3.1-3.6) showing that neither
one of the strict inequalities (1.2)—(1.5) can be replaced by the nonstrict ones. According to
Remark 1.2 and the above-said, the conditions of Theorem 1.2 are also nonimprovable.

Theorem 1.3. Let \ €]0,1], ¢ € L([a,b]; Ry), ¢ € Ry, ||lq|lz + ¢ # 0, and the operator {
admit the representation { = {y — {1, where {y and 0 satisfy the condition (1.1). Let, moreover,

oMz <1, faMlr <A (resp. [6(1)][z < A) (1.7)

and
1€0(1)]| 1—X

L=l A

< [l (1.8)

Then the problem (0.1), (0.2) has a unique solution, and this solution is positive (resp. nonnega-
tive).

Theorem 1.4. Let \ €]0,1], ¢ € L([a,b];Ry), ¢ € Ry, ||lq|lz + ¢ # 0, and the operator {
admit the representation { = {y — {1, where ¥y and {; satisfy the condition (1.1). Let, moreover,

W)L <1 (resp. [l < 1),  [Ja@)c <A (1.9)
and
1
TG L < [[lo(D)] - (1.10)

Then the problem (0.1), (0.2) has a unique solution, and this solution is negative (resp. nonposi-
tive).

According to Remark 1.2, from Theorems 1.3 and 1.4 we have the following.

Theorem 1.5. Let A € [1,400[, ¢ € L([a,b]; Ry), ¢ € Ry, ||q|lL + ¢ # 0, and the operator ¢
admit the representation ¢ = (g — {1, where £y and {1 satisfy the condition (1.1). If, moreover,

1 1
6l <1 Tl <5 (resn ol < §)

and
141(1)]|

G R TN T
1_||€1(1)||L || 0( )HL
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420 R.HAKL, A. LOMTATIDZE, J. SREMR

then the problem (0.1), (0.2) has a unique solution, and this solution is negative (resp. nonposi-
tive).

Theorem 1.6. Let A € [1,4+00|, ¢ € L([a,b]; R+), ¢ € Ry, |lq||L + ¢ # 0, and the operator ¢
admit the representation ¢ = (g — {1, where {y and (1 satisfy the condition (1.1). If, moreover,

1
(Dl <1 (resp. [(D)[lL < 1), oMz <
and
1
1< A,
N 16o(1) ]|

then the problem (0.1), (0.2) has a unique solution, and this solution is positive (resp. nonnega-
tive).

Remark 1.4. In Section 3 we give examples (see Examples 3.7 and 3.8) showing that neither
one of the inequalities (1.7) - (1.10) can be weakened. According to Remark 1.2 and the above-
said, the conditions of Theorems 1.5 and 1.6 are also nonimprovable.

For an equation of the type (0.3), from Theorems 1.1-1.6 we get the following assertions.

Corollary 1.1. Let \ €)0,1], p,g € L([a,b]; Ry), and let either

b [ p(s)ds 1 b
/p(s)ds <1, . - < /g(s)ds <1+A+2
a 1— [p(s)ds a
or
b b
/g(s)d8</\, bl —1</p(5)ds<2+2 A—
a A— [g(s)ds a

Then the problem (0.3), (0.2) has a unique solution.
Corollary 1.2. Let \ € [1,+00[, p,g € L([a,b]; R+), and let either

1
p(s)ds < 1+X+2

_l_
—
|
>
N
Q\O_

or

g(s)ds < 2+2
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Then the problem (0.3), (0.2) has a unique solution.
Corollary 1.3. Let \ €]0,1], p,g,q € L([a,b]; Ry), ¢ € Ry, ||lql|z + ¢ # 0,

b b b
/p(s)ds <1, /g(s)ds <A resp. /g(s)ds <A,

and

Then the problem (0.3), (0.2) has a unique solution, and this solution is positive (resp. nonnega-

tive).
Corollary 1.4. Let X €)0,1], p,g,q € L([a,b]; Ry), ¢ € Ry, ||¢ll + ¢ # 0,

b

b b
/p(s)ds <1 resp. /p(s)ds <1], /g(s)ds < A,

and
b

Then the problem (0.3), (0.2) has a unique solution, and this solution is negative (resp. nonposi-

tive).
Corollary 1.5. Let \ € [1,+00[, p,g,9 € L([a,b]; Ry), ¢ € Ry, |lqllL +¢ # 0,
b . b | b
/p(s)ds <5 resp. /p(s)ds < N /g(s)ds < 1,
and

Then the problem (0.3), (0.2) has a unique solution, and this solution is negative (resp. nonposi-

tive).
Corollary 1.6. Let \ € [1,+0|, p,g,q € L([a,b]; R1), ¢ € Ry, |lq||l + ¢ # 0,

b b b
1
/p(s)ds <71 /g(s)ds <1 resp. /g(s)ds <1},

a a
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422 R.HAKL, A. LOMTATIDZE, J. SREMR

and

Then the problem (0.3), (0.2) has a unique solution, and this solution is positive (resp. nonnega-
tive).

2. Proofs.

To prove Theorems 1.1, 1.3, and 1.4, we need the following lemmas.

Lemma 2.1. Let A €]0,1], ¢ € L([a,b]; R_), ¢ € R_, the operator { admit the representation
¢ = by — {1, where Ly and {1 satisfy the condition (1.1), and let

oMl 1T=A
L=[loMllz A

oMWz <1, < e (W)lz- 2.1

Then the problem (0.1), (0.2) has no nontrivial solution w satisfying the inequality

u(t) >0 fort € [a,b]. (2.2)

Proof. Assume the contrary that the problem (0.1), (0.2) has a nontrivial solution u satisfy-
ing the condition (2.2). Put

M = max{u(t) : t € [a,b]}, m = min{u(t) : t € [a,b]} (2.3)

and choose ty/, t,, € |a,b] such that

u(ty) = M, u(ty,) = m. (2.4)
Obviously, M > 0, m > 0 and either
tar > tm, (2.5)
or
ta < ti. (26)

First suppose that (2.5) holds. The integration of (0.1) from ¢,, to ¢,;, on account of (1.1), (2.3),
(2.4), and the assumption g € L([a, b]; R—), results in

M—m = / (Co(u)(s) — 1(u)(5) + q(s)]ds < M / to(1)(s)ds < Mlto(1)]|z.

Now suppose that (2.6) is fulfilled. The integration of (0.1) from « to ¢;; and from ¢, to b, in
view of (1.1), (2.3), (2.4) and the assumption ¢ € L([a, b]; R_), yields

ty b
M —u(a) < M/Kg(l)(s)ds, u(b) —m < M/Eo(l)(s)ds.

a
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Summing the last two inequalities and taking into account the condition
u(b) —u(a) > Au(b) —u(a) = —c > 0,
we obtain
M@ = [lto(D)]lz) < m. 2.7)

Therefore, in both cases (2.5) and (2.6), the inequality (2.7) is valid.
On the other hand, the integration of (0.1) from a to b, in view of (1.1), (2.3), and the
assumption ¢ € L([a, b]; R_), implies

b
u(b) —u(a) = /[50(@(8) — l(u)(s) + q(s))ds < M|[bo(D)l|z — mllex(D)]|z-

a

Hence, by (2.3), (0.2) and the assumptions A €]0, 1], ¢ € R_, we have

mlle ()]l < M)z + ula) (1 - i) Lo < MG+ m <1 _ i) |

Thus

w (10 + 152 < Ml

This inequality together with (2.7) results in

[lo(Mllr  1-A
—loMlz A7

which contradicts the second inequality in (2.1).

Iz < 5

Lemma 2.2. Let A €]0,1], ¢ € L([a,b]; R+), ¢ € R, the operator { admit the representation
= by — {1, where Ly and {1 satisfy the condition (1.1), and let

-
A= [l (D)]le
Then the problem (0.1), (0.2) has no nontrivial solution u satisfying the inequality (2.2).

Wz < A, —1 <[]z (2.8)

Proof. Assume the contrary that the problem (0.1), (0.2) has a nontrivial solution  satisfy-
ing the condition (2.2). Define the numbers M and m by (2.3) and choose ¢y, t,, € [a,b] such
that (2.4) is fulfilled. Obviously, M > 0, m > 0 and either (2.5) or (2.6) is valid.

First suppose that (2.6) holds. The integration of (0.1) from ¢,; to t,,, on account of (1.1),
(2.3), (2.4) and the assumptions A €]0,1] and g € L([a, b]; R4 ), results in

AM —m < M —m :/[ﬁl(u)(s) —lo(u)(s) —q(s)]ds <

ty

<M / ((1)(s)ds < Mt (D).

tar
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Now suppose that (2.5) is fulfilled. The integration of (0.1) from a to ¢,, and from ¢y, to b, in
view of (1.1), (2.3), (2.4) and the assumptions A\ €]0,1],q € L([a,b]; R}), yields

tm b
u(a) —m < M/ﬁl(l)(s)ds, AM —u(d) < M —u(b) < M/El(l)(s)ds.

tm
Summing the last two inequalities and taking into account the condition
u(a) — Au(b) = ¢ > 0,
we obtain
M= [[6(W)z) < m. (2.9)

Therefore, in both cases (2.5) and (2.6), the inequality (2.9) is valid.
On the other hand, the integration of (0.1) from a to b, in view of (1.1), (2.3), and the
assumption ¢ € L([a, b]; R4 ), results in

b
u(a) —u(b) = /[MU)(S) — Lo(u)(s) — q(s)lds < M[ex(1)]|L — m|[lo(1)] -

a

Hence, by (2.3), (0.2) and the assumptions A €]0, 1], ¢ € R, we have
mlllo(V]z < MGz +ud) (1 =A) —c < M[G1)[[L+ M (1= A).

Thus
mllbo(| < M (J6(W)flc —A+1).

This inequality together with (2.9) yields

1

lolle = =i~

L

which contradicts the second inequality in (2.8).
Proof of Theorem 1.1. According to Theorem 0.1, it is sufficient to show that the homogeneous
problem (0.1p), (0.2p) has no nontrivial solution.
First suppose that (1.2) and (1.3) hold. Assume the contrary that the problem (0.1p), (0.29)
has a nontrivial solution u. According to Lemma 2.1, u has to change its sign. Put
M = max{u(t) : t € [a,b]}, m = —min{u(t) : ¢t € [a,b]} (2.10)
and choose ty7, t,, € |a,b] such that

u(ty) = M, u(ty,) = —m. (2.11)
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Obviously, M > 0, m > 0. Without loss of generality we can assume that ¢, < tj;. The
integration of (0.1y) from a to t,,, from ¢, to ¢ty; and from ¢, to b, by (2.10), (2.11) and (1.1),
results in

tm

M@+m—/m(xywmmm@gM/a %+m/% 2.12)

A4+m=—/wdm@)—amx@usgAf/axm@ms+m/lﬂm@M& 2.13)
b

M—u@%z/@ﬂ)(%%d 5<A4/a <m+m/io 2w

tyv

Multiplying the both sides of (2.14) by A and taking into account (2.10) and the assumption
A €]0, 1], we get

AM — Au(b) <M/£1 ds—i—m/&)
Summing the last inequality and (2.13), by (0.2y) we obtain

)\M+m<M/€1 d5+m/£0 (2.15)

where J = [a, ty,] U [tar, b]. From (2.13) and (2.15) it follows that
M1 —-D) <m(B-1), m(l—C) < M(A-N), (2.16)

where

A:/&@@@, B:/am@@

J
(2.17)
tar
0:/%m@@, D:/%m@@
J tm
Due to (1.2),C < 1and D < 1. Consequently, (2.16) implies A > A\, B > 1, and
0<(1-C)(1—-D) < (A=X)(B-1). (2.18)
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426 R.HAKL, A. LOMTATIDZE, J. SREMR

Obviously,

(1-C)(1-D)>1—(C+D)=1—|t(1)| >0,

4A-N(B-1) < [A+B- 1+ N = [l - @+ 0
By the last inequalities, (2.18) results in
0 <4(1—L@)llz) < [l — @+ X
which contradicts the second inequality in (1.3).
Now suppose that (1.4) and (1.5) are fulfilled. Assume the contrary that the problem (0.1¢),
(0.29) has a nontrivial solution u. According to Lemma 2.2, u has to change its sign. Define M
and m by (2.10) and choose ¢y, t,,, € [a,b] such that (2.11) is fulfilled. Without loss of generality

we can assume that ¢, < t;;. Analogously to the above, one can show that the inequalities
(2.12) - (2.15) hold, where J = [a, t,,] U [tar, b]. From (2.13) and (2.15) it follows that

m(l—B) < M(D-1), MO\-A) <m(C-1), (2.19)

where A, B, C, D are defined by (2.17). According to (1.4), A < Aand B < A < 1. Consequently,
(2.19) implies C > 1, D > 1 and

0<A-A)(1-B) < (C-1)(D-1). (2.20)
Obviously,

A=A)(1=B)>X—(A+B) = X—|lt;(1)|| > 0,

AC—-1)(D~1) <(C+D -2 = ([bo(1)]r —2)*
By the last inequalities, from (2.20) we get
0 <4 = [laMlr) < (o)l —2)*

which contradicts the second inequality in (1.5).

Proof of Theorem 1.3. According to Theorem 1.1 and the conditions (1.7), (1.8), the problem
(0.1), (0.2) has a unique solution w.

Show that u has no zero (resp. does not change its sign). Assume the contrary that there
exists t1 € [a,b] (resp. t2,t3 € [a,b]) such that

u(t1) =0 (resp.  u(t2)u(ts) < 0). (2.21)

Define numbers M and m by (2.10) and choose tys,t,, € [a,b] such that (2.11) is fulfilled.
Obviously,

M>0, m>0, M+m>0 (2.22)
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(resp. M >0, m > 0), (2.23)

and either (2.5) or (2.6) is valid.
First suppose that (2.5) holds. The integration of (0.1) from a to ¢,, and from ¢, to b, on
account of (1.1), (2.10), (2.11) and the assumptions A €]0,1] and ¢ € L([a, b]; R ), results in

m+ u(a) <M/€1 ds+m/€0 (2.24)

AM —u(b) < M —u(b) < M/Zl ds+m/€0 . (2.25)

Summing the last two inequalities and taking into account the condition
u(a) — Au(b) = ¢ > 0,

we obtain
AM +m < M|[er(1)||l +m|lo(1)] L, (2.26)

which by (1.7) yields the contradiction AM +m < AM + m (resp. m < m).
Now suppose that (2.6) is fulfilled. The integration of (0.1) from ¢y, to t,,, on account of
(1.1), (2.10), (2.11) and the assumption g € L([a,b]; R4 ), results in

tm

Mm = [aw(s) - fw)(s) - als)lds < MGO]L+mlbO]  @27)

tyv

Hence, by (1.7) and the assumption A €]0, 1], we get the contradiction M +m < M +m. Thus u
has no zero (resp. does not change its sign), and so according to Lemma 2.1, u is positive (resp.
nonnegative).

Proof of Theorem 1.4. According to Theorem 1.1 and the conditions (1.9), (1.10), the problem
(0.1), (0.2) has a unique solution w.

Show that u has no zero (resp. does not change its sign). Assume the contrary that there
exists t1 € [a, b] (resp. ta,t3 € [a,b]) such that (2.21) is fulfilled. Define numbers M and m by
(2.10) and choose tys,t,, € [a,b] such that (2.11) is fulfilled. Obviously, (2.22) (resp. (2.23)) is
satisfied, and either (2.5) or (2.6) is valid.

By the same arguments as in the proof of Theorem 1.3 one can show that the assumption
(2.5) yields the contradiction AM + m < AM + m (resp. M < M), and the assumption (2.6)
yields the contradiction M + m < M + m. Thus u has no zero (resp. does not change its sign),
and so according to Lemma 2.2, u is negative (resp. nonpositive).

3. On Remarks 1.3 and 1.4. On Remark 1.3. Let A\ €]0, 1] (the case A = 0, resp. A =
is studied in [4], resp. [10], where the examples are also given verifying the optimality of the
obtained results). Denote by H", resp. H ™, the set of pairs (x,y) € Ry x Ry such that
x 1—A

—— <y <14+A4+2vV1—ux,

<1
. ’ 11—z A
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resp.
1

y<)\, fy—1<x<2+2\/)\—y

By Theorem 1.1, if (|[¢o(1)||, [|¢1(1)]|z) € HT U H~, then the problem (0.1), (0.2) has a unique
1
solution. (Note also that for A < T H- =10.)

Below we give the examples which show that for any pair (xg,y0) € HT UH ™, 9 > 0,
yo > 0 there exist functions A € L([a,b]; R) and 7 € M, such that

b b
/[h(s)hds = 1y, /[h(s)}ds = %0, (3.1)
and the problem
u'(t) = h(t)u(r(t)), u(a) = Au(b) (32)

has a nontrivial solution. Then by Theorem 0.1, there exist ¢ € L([a, b]; R) and ¢ € R such that
the problem (0.1), (0.2), where ¢ = ¢y — ¢4,

L)) L h@)]swr®), ) ) L ho)l-w(r(@), (33)

either has no solution or has an infinite set of solutions.

It is clear that if 2,99 € R4 and (xg,y0) € HT U H—, then (o, yo) belongs at least to one
of the following sets:

Hy ={(z,y) e RxR : 1 <2 A<y},
Hz:{(aj,y)ERxR : 0§$<171+>\+QMS?J},

ng{(x,y)ERxR : O§y<)\,2+2\/)\—y§:r},

1—X
H4:{(a:,y)€R><R:O§y<)\,y+1_)\§x§y—;_y}7
T 1 r+A-1
Hs = RxR :1-\ L, 241-<gy<=— " —
o e PR e )
1
HG—{((E,y)ERXR:1—)\<x<1,w—1+)\§y§§+1_)\}.
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Example 3.1. Let (xo,yo) € Hi.Puta = 0,b =4,

-A fort € [0,1];
—1 fort e [1,2]; 4  fort e [0,1[U[3,4];
h(t) _ Zo or [7 [7 T(t): or [7 [ [7 ]7
A—yo forte [2,3]; 1 fort e [1,3].
1 fort € [3,4]

Then (3.1) holds, and the problem (3.2) has the nontrivial solution
A1—t) fort e [0,1];

u(t) =<0 fort € [1,3];
t—3 fort e [3,4].

Example 3.2. Let (z9,yo) € He. Puta = 0,0 =6, = V1 —20,8 =yo— 1 — X —2q,

-\ fort e [0,1];

-8 fort € [1,2]; 6 fort € [0,1[U[2,3[U[5,6];
h(t) =< —a fort e [2,4]; 71(t) =41 forte [1,2[;

-1 fort e [4,5]; 3 fort e [3,5]

xo  fort € [5,6],

Then (3.1) holds, and the problem (3.2) has the nontrivial solution

A1 —1) fort € [0,1];
0 fort € [1,2[;
ult) a2 —t) fort € [2,3[;
Q?(t—3)—a fort € [3,4];
a(t —5)+a? fort e [4,5[;
(zo(t—6)+1 fort € [5,6].

a fort € [0,1];
— fort € [1,2];

Yo 11,2 4 fort e [0,1[U[3,4];
I6] fort € [2,3;

h(t) = T(t) =<6 fort € [1,2[U[4,6];
1 fort € [3,4[;

2 fort e [2,3[

o fort € [4,5[;
1 fort € [5,6],
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Then (3.1) holds, and the problem (3.2) has the nontrivial solution

—a?t+ X fort e€0,1
yo(2—t) fort € [1,2
0 fort € [2,3
a(3—t) fort e [3,4
4,5
[5,6

u(t) = ’
a(t —5) fort € [4,5];
t—5 fort € [5,6].
1 1
Example 3.4. Let (xg,y0) € Hy.Puta =0,b=2,a=1—-A+yp, to = — — —+2,
i) (0%
— fort € [0,1]; 2  fort e [0,1];
woy [ dorte L f2 forte 0.1
T fort € [1,2], to fort € [1,2].
Then (3.1) holds, and the problem (3.2) has the nontrivial solution
—yot + A fort € [0,1;
at—2)+1 fort e [1,2].
—1
Example 3.5. Let (xo,y0) € Hs. Puta = 0,0 = 2, 0 = m, 8 = AZo ,to =
1-— o 1-— o
« 1
— (=)=,
(yo > g
fort € |0,1]; 1 fort e [0,1];
—yo fort e [1,2], to fort e [1,2].
Then (3.1) holds, and the problem (3.2) has the nontrivial solution
Bt + A fort € [0, 1];
u(t) =
a(2—t)+1 fort e [1,2].
Example 3.6. Let (xg,yo) € Hg.Puta = 0,b =2, = A+ x9—1,tg = Oéx—yyo +2,
0Yo

— fort 1[; t fort 1(;
ht) = yo fort € [0,1]; (1) = o forte0,1];
xo fort € [1,2], 2 fort e [1,2].

Then (3.1) holds, and the problem (3.2) has the nontrivial solution

" —at + A fort € [0, 1];
u =
xo(t—2)+1 fort e [1,2].
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On Remark 1.4. Let \ €]0, 1] (the case A = 0 is studied in [4]). Denote by G, resp. G, the
set of pairs (z,y) € R4 x Ry such that

resp.

1
It is clear that G C H* and G~ C H~. (Note also that for A < 3 G- =10)
By Theorem 1.3, resp. Theorem 1.4, if

(Ieo)llz, 1(W)llz) € G, resp. ([[lo(D)llz, [[E1(D)]|2) € G,

then the problem (0.1), (0.2) with ¢ € L([a,b]; R+),c € R4, ||¢||lz + ¢ # 0 has a unique solution
and this solution is positive, resp. negative.

Below we give the examples which show that for any pair (zg,y0) € H*' \ G, resp.
(xo,y0) € H™ \ G, there exist functions h € L([a,b]; R), ¢ € L([a,b]; Ry) and 7 € My,
such that ¢ # 0, (3.1) is fulfilled, and the problem

u'(t) = h(t)u(r(t)) + q(t), u(a) = Au(b), (3.4)

or equivalently, the problem (0.1), (0.29) where ¢ = ¢y — ¢1, and ¢y, ¢; are defined by (3.3), has
a solution which is not positive, resp. negative.

From Example 3.7 resp. Example 3.8, it also follows that in Theorem 1.3, resp. Theorem 1.4,
the inequality ||¢1(1)||z < A, resp. |[€o(1)||z < 1, in the condition (1.7), resp. (1.9), cannot be
replaced by the inequality ||¢1(1)]| < A+e, resp. ||[€o(1)]|z < 1+ &, no matter how small e > 0
would be.

Example 3.7. Let (zg,y0) € HT\GT.Puta = 0,b =2, a0 = yo—z0—A+1,8 = 1+y— A\,

T =2,
— fort € [0,1]; 0 fort e |0,1];
x0 fort € [1,2], a fort e [1,2].

Then (3.1) holds, and the problem (3.4) has the solution

{—ygt—i-)\ for¢ € [0,1[;
u(t) =
B(t—2)+1 fort e [1,2]

with u(l) = A —yo < 0.
Example 3.8. Let (xg,y0) € H-\G™.Puta =0,b =2, = x0—yo+A—1,8 =z0+A—1,

T =2,
—yo fort € |0,1]; a fort e [0,1];
xo fort € [1,2], 0 forte[l,2].
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Then (3.1) holds, and the problem (3.4) has the solution

Bt — A\ fort € [0,1];

u(t) =
zo(2—1t)—1 fort e [1,2]

with u(l) = 29 —1 > 0.
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