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For a system of ordinary differential equations depending on a small parameter, defined on the direct
product of a torus and aEuclidean space, and subjected to impulsive action on a submanifold of codi-
mension 1 of the torus, we study the problem of existence of a piecewise smooth invariant set.

Busuaemuca sadaua icHy8anHA KYCK080-24A0KOT iIH8APIAHIMHOL MHONUHU CUCHeMU OUep eHUIANbHUX
PIBHAHD, 3ANEHCHUX 8I0 MAN020 NAPAMEMPA MA 3A0AHUX HA NPAMOMY 00OYMKY MOpa ma e8KAi008020
nPOCMOpPY 3 IMNYALCHOIO OLEI0 HA NIOMHO208UOL MOpa KOpO3ImipHocmi 1.

1. Introduction. We consider an impulsive system of the form

Cfi_(f = a(cp,;v,s), (1)

dx

7 = Aozt flpwe), peTm\T, 2)

Az| = B(p.e)z +g(p,z,¢€), 3)
pel’

where z € R", ¢ € T,,, T,, is an m-dimensional torus, I" is a smooth compact submanifold of
T,, of codimension 1, and € € R is a small parameter. Az stands for the jump of the function x
at the point ¢ obtained during the motion along the trajectory of equation (1).

We suppose that f = O(||z]|?), g = O(||z||?) as e = 0. Therefore, system (1) — (3) has the
trivial invariant set Sy = {(0,¢) € R" x T,,} for ¢ = 0. We are interested in the existence of
piecewise continuous (piecewise smooth) invariant set of system (1) — (3) for small € # 0. Partial
results of this paper were communicated in [1]. This problem for systems without impulses was
studied by many authors [2 — 6]. The invariant sets in particular cases of the impulsive system
were considered in [7 — 13].

* Partially supported by INTAS (Grant No. 96-0915) and the Ukrainian Ministry on Science and Technology
(Grant No. 1.4/269).
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The article is organized as follows: In section 2, we introduce the concept of exponential
dichotomy for the linearized system

do _

12— (o) )

= Aofe)r, pET\T, )

Az = By(p)z, (6)
pel

where ap(p) = a(p,0,0), Ag(¢) = A(p,0), and By(p) = B(p,0). The properties of separatrix
subspaces of the linearized system are studied. In section 3, we prove that the exponential
dichotomy for system (4) — (6) is not destroyed by small perturbations of the right-hand sides
of the system. In section 4, conditions for the existence of an invariant set of system (1) — (3)
for small € # 0 are obtained.

2. Linear system. Let us consider system (4) — (6). We assume that ay(¢) is a Lipschitz function
in ¢ € T,, and the functions Ay(y¢), Bo(p) are continuous. Equation (4) has solutions ¢ - t =
= o(t,¢),0(0,¢) = . Suppose that solutions o (¢, ) intersect the manifold I" transversally.
The set I(y) of points ¢ where the solution o (¢, ) intersects the compact manifold I" is at most
countable. Note that it can be finite or empty. We denote by ¢;(¢),j € I(¢) C Z the ascending
sequence of points ¢ where o(¢, ) intersects the manifold I', to(p) = max{t < 0 : ¢ -t €
€T}, ti(p) =min{t > 0: ¢ -t € I'}. There exists # > 0 such that

tj(p) —tj—1(p) >0 ™)

forall p € Ty, 5 € I(p).
For fixed ¢, system (4) — (6) has the following form:

= Aot e, 1 6() ®)
Az = Bo(oi(p)), ©)

t=t; ()

where o;(¢) = o(t;(v), p). Let z(t, p, xo) be a solution of the initial-value problem for (8), (9)
with the initial value z(0, ¢, x9) = zo. Denote by X (¢, ¢), t > 0 the fundamental solution for
system (8), (9), X(t,p)zg = z(0,p,x0), X(0,) = I, I is the identity matrix. The solution
x(t, p, zp) is piecewise continuous and we assume that it is left-side continuous. It has disconti-
nuities in ¢ = ¢;(¢y). It is supposed that det(I + B(y)) = 0 for some or all ¢ € I'. Therefore, the
solutions z(¢, ¢, x() cannot be continued on the negative semi-axis ¢ < 0 or can be ambiguously
continued.

Using the uniqueness of solutions for equation (4) and transversality of intersections o (¢, )
with T', we conclude that the theorem on continuous dependence on initial conditions and
parameters [8, 14] is valid for impulsive system (4) — (6): for a solution z(¢, g, z¢) of system
(4) — (6) and for an arbitrary ¢ > 0 and 7" > 0, there exists 6 = d(¢,7") > 0 such that,
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for any other solution z(t, ¢1,x1) of (4) — (6) with initial conditions (¢1, 1), the inequalities
lzo — x1|| < 0, p(po,p1) < 0 imply that ||z(t, po, xo) — x(t, ¢1,21)|| < € for 0 < ¢ < T satisfying
|t —t;| > €, where t; are the moments in which o (¢, ¢) intersects the manifold I', and p(.,.) is a
metric on the torus T,,.

We distinguish the the left-hand and right-hand sides of manifold I". We call a sequence
vn — @ € I' negative if there exists a sequence of positive numbers 9,, — 0,n — oo such that
¢n -0y, € I'. Analogously, a sequence ¢,, — ¢ € I'is said to be positive if there exists a sequence
of negative numbers é,, — 0,n — oo such that ¢, - §,, € T.

Denote by C*(T,,) the space of s times continuously differentiable functions or matrices on
T,,. By C{(T,,) we denote the space of functions or matrices a(y) with the following properties:

i) a(y) has continuous partial derivatives up to the order s inclusively for ¢ € T, \ T’;

ii) all partial derivatives of a(y) have continuous continuations to the left-hand and right-
hand sides of manifold I'.

For f(¢) € C3(Ty,), we denote the norm

0 ()
0pI

1f(@)lls = max sup
T o<lil<s peT\r

)

where j = (j1, ..., jm), ¢’ = (gp{l...gp%"), |7l = j1 + ... + jm, and ||| is the norm in R” or in the
space of matrices.

Definition 1. System (4), (6) is said to be exponentially dichotomous if, for all p € T,,, the
space R™ can be represented in the form of the direct sum of the subspaces U(y) and S(p) of
dimensions r and n — r, respectively, so that:

1) any solution of system (8), (9) with xo € S(p) satisfies the inequality

l2(t, @, xo) | < K exp(—a(t —7))|x(r, ¢, z0)ll, =7 =0; (10)
2) any solution with xo € U () satisfies the inequality
[z(t, 0, o) | = Ky exp(a(t — 7))llx(7, 0, z0)ll, t=7 =0, (11)
where positive constants o, K, K1 are independent of p, xo,
3) X(t,9)S(p) € S(p-1), X(t,)U(p) CU(p-1), t=0;

4) the projectors P(p) and Q(p) = I — P(y) corresponding to S(p) and U () are uniformly
bounded

sup ||[P(@)[| + sup [[Q(p)]| < oo.
PETm P€Tm

Analogously to the proof of Theorem 1 [15], we prove the following statement:

Theorem 1. Assume that system (4) — (6) is exponentially dichotomous. Then the projector
P(yp) is continuous on the set Ty, \ T and has discontinuities of the first kind on the set T.

It follows from Definition 1 that the subspace U () has a unique negative continuation such
that

[2(t, ¢, 20)|| < Kaexp(at)[lzoll, ¢ <0, ¢&Tm, zo € U(p).
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Hence, X (t,0)Q(p) is well defined for all ¢ < 0, and we can define the Green function for
system (4) — (6)
X(t—mp-1)P(p-7), t=T;
G(t,1,p) = (12)
—X({t—70-1)Qp-7), T2

For t # 7, the Green function G(t, 7, o) satisfies equations (8), (9). If system (4) — (6) has
exponential dichotomy, then the Green function G(t, 7, ¢) is bounded by an exponent:

|G(t, T, 0)|| < Kzexp(—a|t —7|), t,7€R, Kz a>0. (13)

The linear inhomogeneous system

CCZZ—:; = Ao(gp . t)a: + f(t)7 t+ tz’(sO),
Aaj‘titi(‘ﬂ): Bo(oi(p))z + gi

has the following unique bounded solution:

ult, ) = / G(t,m, @) f()dr+ 3 Gt t:(9), 0)g: (14)

i€l(p)

Theorem 2. Suppose that:

1) T is a smooth manifold of the class C*®,s > 1;

2) ao(), Ao(p) € C3(Twm), Bo(w) € C*(D);

3) solutions of equation (4) intersect the manifold " transversally,

4) system (4) — (6) is exponentially dichotomous with constants o, K, K.

Then the projector P(y) and the Green function G(t, s, @) have continuous partial derivatives
of order s with respect to  on the set T,,, \ I and, moreover,

IG(t, T, 0)

2 < K exp(—(on i)t = 7). (15)

Jm

where j = (j1, .., m), 7| = ji+--+jm, 7] < s, ol = w{l, e O, 1 = a—e, e is an arbitrarily
small positive value, K; = Kj(e) is a constant independent of ¢ € Ty, and w = ||0a(p)/0¢||o-

Proof. Let §p; be an increment of the i-th coordinate of ¢ and ¢ + dp; = (¢1,..., i +
+d¢i, ..., pn). Let us consider the difference R = G(t, 7, ¢ + dp;) — G(t, T, p), where the points
 and p+dy; are located at the same side of I" and do not belong to I'. The difference R satisfies
the following system:

dR
= Aolo(t,9)) R+ (Ao(a(t, o+ 09i)) — Ao(a(t, 9)))G(L 7, 0 + 0pi),
AR|_ = Bo(o})R ~ Bo(o})C(t}, 7,0 + 60,
J
AR| = Bo(a)G(E, 7,0+ b1,
=g
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where t} = t;(¢), 17 = t;(p + 0pi), 05 = a(tj(p), ), 05 = o(tj(v + i), ¢ + d;). By (14), one
has

G(Oa T, + 5@@) - G(Oa T, 30) =

= / G(Oa S, @)(AO(O-(Sv ©+ 5901)) - AU(O-(Sa @)))G(Sa T, P+ 590i)d5+

+ Y G0,8,9)B(0})(G(t), T, 0+ 6pi) — G(t3, 7,0 + 5pi))+
JEI(p+dp;)

+ ) (G0,8,9) — G(0,t],9))Bo(07)G(t], T, o + i)+
JEL(P)UI(p+dp;)

+ ) G(0,t],9)(Bo(03) = Bo(o})))G(t], 7,0 + 505). (16)
JEI(p)

Since ag(¢) € C*(p), s > 1, we have [lag(¢1)—ao(p2) || < wllp1—p2||, where w = [[dao(¢) /0o
Hence,

lo(t, 1) — a(t, @2)|| < e M1 — o), (17)
‘ do(t, ) < el (18)
Oy

Let the manifold I" be defined by F(¢) = 0 with some smooth function F. By definition,
o(tj(e),p) €T or F(o(tj(e),p)) =0, j€I(p), ¢ €Ty. Therefore,

OF (o(t;(0). ) OF 90;(p) 0t;(0)  0oi(9))
P [V PR T PR P

where 0; = 0j(p) = o(tj(v),¢), j € I(p),i = 1,...,m; (.,.) is a scalar product in R". Let us
make the transformation

(2520 1+ (252,542

The intersections of the solution o (¢, ¢) with the compact manifold I" are transversal, and,
therefore,

(%mo(aﬂ) >C1>0, Ci#Cilp).

By (18) and (19), we see that

Oti ()

Cy _ _
< = wlti (o)l — wlt; (@)l 2
a0 e Cse , (20)

e

where Cy > [|[0F /00 ||.

544 ISSN 1562-3076. Heainitini koausauusa, 1999, m. 2, Ne 4



The second derivative 620 (t, ¢)/0¢i0p;, i, = 1,...,m, satisfies the following equation:
4 Poltp) _ Duololt,g)) Polt,¢)

dt 0p;0p; do 0p;0p;
Pao(a(t,¢)) Dok(t, ¢) Dou(t, o)
+ 3;1 80k801 0p; 84,0] 1)

Here, oy(t, ) is the k-component of the vector o(¢, ). Taking into account (18) and (21), we
obtain

&a(t, )

< Ml(a; + age?ltl) < gge@o+olil
8901890] ( )

where ¢ is an arbitrarily small positive value and a4, az, a3 are positive constants, ag = a3(e).
The higher derivatives are estimated similarly:

!
o (t, p) < agelllotolt (22)
At
where [ is a multiindex, | = (I1, ..., ln), >_;1; = [l o = gplf...@f;y? ¢ is an arbitrarily small

positive value, and a; = a;(g) > 0.
Differentiating (19) and taking (22) into account, we estimate the higher derivatives of
tj(p)

l

where C; = Cj(¢) > 0 is a constant, and [ is multiindex as before.
Analogously to [1], we compute limits

74 .
9 at:p(l%@) < Cpellle+olt; ()] (23)

lim <G(tj(so +0pi), T, 0 + 0pi) — (G(t;(0), T + 5%)) =

50 —0 0
— 40(03)Glt5 (). ) T ey
and
s 5o <G(0, ti(p +09i), 0) — G(0,t5(), s0)> =
— _G(0.45(). ) Ao () 222, (5)

Op;

Let tj(p) — oo as ¢ — . This means that j ¢ I(p) for sufficiently large j and G(0,t;(¢),¢) —
— 0 as ¢ — @. By (18) and (25), one has

. . 1
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1 _ o
G(0,ti(¢+0@),¢) =

N h}p? e
ati(p) _
- lim G(0.,(¢). ) ol () 2L =0, (26)
Taking (24), (25) and (26) into account, we get
el o IG(0,7, ) 8Ao (o(s,)) 0o (s, )
/ G(0 e 90 G(s,T,p)ds+
+ ) G0, t(), ) 0B0(0;(¢)) 005 () G(tj(p), 7, 0)+
i€l(e) oo O
. . NGt ati(e)
+ Z G(0,t5(), p)Ao(aj) Bo(o)G(ti(0), T, ¢) Bp;
J€l(p) '
_ Z G(O t'( . . . 8tj(90)
s Uj 90)790)B0(GJ)A0(0-])G(t] (90)77—7 SO) 8@ . (27)
Jel(p) ‘

The matrix 0A(c(t, ¢))/00) (0o (s, p)/0p;) has the elements

i day (0 (s, ) Doj(s, ¥)
80']' 8(,01'

j=1
where A(p) = {aw}, and o = (01, ..., 0m).
The derivative 0G(0, T, ¢) /Op; exists if the integral and series in (27) are convergent. Using
(13) and (18), we estimate

o0

/

—0o0

0.5, )00 (5, 9)) D0(5.9)

<
ao_ a% (877-7§0) ClS_

2 4] e el
_w ’

where ||Ao(¢)|ls < M, ||Bo(p)|ls < M, and ||ag(p)|ls < M. The integral converges if 2a—w > 0.
By (7), (13), (18) and (20), we get

Z G(Oﬂfj((ﬁ), gp) 830(285]'7 90)) aO’(té(S:)v 90) G(tj(gﬁ),T, (P) <

< /KgMe_(a—w”S'_""T—S'ds§K§M<2
a

2 T
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The last sums in (27) are estimated similarly. Therefore,

9G(0,7,¢)

P < (K4 =+ K5|7—|)e_(a_w)‘7—| < Kﬁe_(al_w)l'r‘, (28)
Pi

where oy = a — ¢, ¢ is an arbitrarily small positive value, and K4, K5, K = Kg(¢) are positive
constants independent of p € T,,.
Differentiating (12) with respect to 7 and taking (13) and (28) into account, we get

M =—A(p-t)G(t,T,¢) + MG(‘P "7,
or dp
and
0GO.T.9) || g (el 29)
or

where t,7 # t;(p), j € I(¢), and K¢ = Kg(e) is a positive constants independent of ¢ € Ty,.

To estimate higher-order derivatives of G(0,7,¢) and P(¢) (up to the s-th order), we
continue the above approach. Successively differentiating (27) and estimating the i-th deri-
vative of the integrant by exp(—(a; — iw)|s| — a|7 — s|) and the j-th terms in all series by
exp(—(aq — iw)[tj| — a|T — t;]), we conclude that the integral and all series are convergent.
Thus, we prove the existence of derivatives (up to the s-th order) of the projector P(y) and the
Green function G(¢, 7, ¢) and estimate (15). The theorem is proved.

Remark. Differentiating (12) with respect to 7 and using estimate (15), we get

2*G(0,7,¢))

o || Krem sl (30)

where t,7 # t;(),j € I(p), and K7 = K7(e) is a positive constant independent of ¢ € T,,.
3. Perturbation theorem. Denote by £(4) the set of Lipschitz vectors or matrices a(p) on T,
such that [|a(p)| < d and Lipa < 6, where Lipa = inf{\ > 0: ||a(¢1) — a(p2)|| < A\p(p1, ¢2)}-
We consider a perturbed system

% — (o) + ), (1)

X = (Ao(e) + ANz, pETn\T, (32)

Az| = (Boly) + Blo))r, (33)
pel’

where a(y), A(p), B(¢) € Crip(Ty,). Using the properties of system (1) — (3), one can show
that, for sufficiently small ¢ such that a(yp) € £(0), solutions (¢, ¢, @) of equation (31) intersect
manifold IT" transversally. Let ¢;(p,a),j € I(p,a), be the sequence of points where o (¢, ¢, a)
intersects I". Using the compactness of I' and transversality of intersections of o(t,) =

ISSN 1562-3076. Heainitini xoausaunsa, 1999, m. 2, Ne 4 547



= o(t,p,0) with ', we get the estimate tj(p,a) — tj-1(p,a) > 6 >0, j € I(p,a), with some
positive 6. Denote

A(0) = {(b1(#), b2(), b3()) = bi(w) € L(5),i=1,2,3}. (34)

Theorem 3. Let system (4) — (6) be exponentially dichotomous. Then there exists a suffici-

ently small 6 > 0 such that system (31) — (33) with (a(¢), A(p), B(¢)) € A(6) has exponential
dichotomy.

To prove the theorem, we use ideas of [16, 17].
Denote M = M(0) = T,, x A(5). We define a flow on the set M(9) :

p-t=(o(t,p),a), t R,

where p = (p,a) € M(9), a = (a, 4, B) € A(9), and o(t,p) is a solution of equation (31).
Let z(¢,z0,p) be a solution and let ®(¢,p) be the fundamental solution of system (31) — (33).
The function ®(¢, p) has discontinuities of the first kind for ¢ = ¢ such that ¢ = ¢ -t € T, and,
MOoreover,

(I +0,p) — DL, p) = B@)D(,p).
We assume that ®(¢, p) and x(¢, zo, p) are left-continuous with respect to ¢.
We define the following piecewise continuous linear skew-product semiflow on R™ x M(9) :

7(t,z,p) = (®(t,p)z,p-t), z€R™ pe M(),t>0.

A point (z,p) is said to have a negative continuation with respect to = if there exists a
piecewise continuous function ¢ : (—oo, 0] — R™ x M that possesses the following properties:

1) 6(t) = (7(¢),p - £), where ¢7 : (—o0, 0] — R™;

2) $(0) = (z,p):

3)w(t,p(s)) = p(s+t) foreach s < 0and 0 < ¢t < —s;

4 7(t,p(s)) =7m(t+s,x,p) foreach 0 < —s < t.

We define the following sets:

Q(x, p) is the set of w-limit points of the trajectory = (¢, z, p),

A(z, p, ¢) is the set of a-limit points of the negative continuation ¢ of the point (z, p),

M = {(z,p) : (z,p) has a negative continuation},

U = {(x,p) € M : there is a negative continuation ¢(¢, z, p) of (z, p) such that ||¢ (¢, z, p)|| —
— 0, t —» —o0},

B~ = {(x,¢) : there is a bounded negative continuation ¢(¢,z,p) of (z,p), i.e.,
sup [¢(t, 2, p)|| < oo},

B, = {(z,p) : (x,p) has a unique bounded negative continuation},
BT ={(z.p):  sup||@(t, p)al| < oo}

S=A{(z,p): |2t p)z|| — 0, t — +oo}.

S(p)={x: (z,p) €S}, Ulp) ={x: (z,p) €U},
B = BT N B~ is the bounded set of the semiflow .

Lemma 1. Let a point (z,p) have a bounded negative continuation ¢(t,x,p) and (z,p) €
€ A(z,p,¢), p¢ L. Then x(t,2,p) € B.
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Proof. Denote Ap(z,p,¢) ={Z : (z,p) € A(x, p,¢)}. We prove that

W(t’ Ap(l’,p, Cb),ﬁ) = (Aﬁ-t(x7pa (b)»ﬁ ' t) (35)

forp g T, p-t ¢ ', t > 0. As(z,p, ¢) can be characterized as the collection of all points
(z,p) such that there exist sequences (x,,p,) and t,, — —oc such that p, = p-t, — p, x, =
= §(tn, 2,p) — .

Let us fix t > 0 and set ,, = (¢, p, )z, and p,, = p, - t. The sequence (Z,, p,,) is bounded.
Choose a convergent subsequence so that (Z,,,p,) — (Z,p) = (®(¢,p)Z,p - t). On the other
hand, (Z,,pn) = 7(t, zp, pn) = ¢(t, +t,z,p). Hence, (Z,p) € Api(x,p, d).

To prove the inverse inclusion in (35), we consider & € Ap..(z, p, ¢) and sequences (T, pp)
and #,, — —oo such that

The bounded sequence ¢(f,, — t,z, p) has a convergent subsequence such that ¢(,, — ¢, z,p) —
— &, p- (t, —t) — p. Hence, & € Ap(z,p, ¢). We have proved (35), i.e., # maps Az(x, p, ) onto
Ap.+(z,p, ¢) and every (z,p) € As(z,p, ¢),p ¢ I has a negative continuation. Clearly, (z, p) € B.

Lemma 2. Suppose that x(t,z,p) € BY and (z,p) € Q(x,p), p € T; then x(t,z,p) € B.
Proof. Denote Q5(x,p) = {Z : (z,p) € Q(x,p)}. By analogy with the proof of Lemma 1, we
prove that

m(t, (2, p), p) = (Qpt(z,p,¢),D - 1) (36)

forpgT, p-t ¢ T, t > 0. Then every point (Z,p) € Q(x,p), p € I, has a negative continuation
and (z,p) € B.
Assumption. In the next lemmas, we assume that B = {0} x M.

Lemma 3. Let t;, — —oo and let there exist continuations of points (xy, px) on [ty, 0] such that

16t . pi)l| < M for t€ [ty 0].

Assume that (Z,p) = klETolo(xk’pk)’ p & T; then (z,p) has a negative continuation and (z, p) € U,

ie. ||¢(t,z,p)|| — 0, t — —o0.
Proof. The sequence (¢(t1, xk, pr), Pk - t1), k= 1,2, ..., is bounded. Assume that there exist
limits (otherwise, we consider subsequences)

folg = ¢(t1, zx, pp) — T1, p}C =pi-t1 — p1, k— 00.

If p; € T, we consider the sequence ¢; + ¢ with sufficiently small ¢ > 0.
By the theorem on continuous dependence of solutions of impulsive system on parameters,
we get

w(—t1,Z1,p1) = (D(—t1,01)Z1,p1 - (—t1)) = klirglo w(—t1, ¢(t1, z, pr)) =

= Jim (D (=1, ph)ak,p} - (—t1)) = lim (a, 1) = (2,).

k—o0

Hence, the point (z, p) has a continuation on [t1, 0], which is bounded by a constant M.
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Next, we consider the sequence ¢(ty — t1, 25, pL), pi - (t2 — 1)), k = 2,3, ..., and show
analogously a continuability of the point (z,p) on [t2,0], and so on. Hence, a continuation of
the point (z, p) exists for ¢ < 0 and is bounded.

By Lemma 1, the a-limit set of the point (Z,p) belongs to B. Since B is trivial, we get
x(t,z,p) — 0, t — —o0, i.e., (T,p) € U.

Lemma 4. S = BT. The set S is closed and there exist constants K > 1 and 3 > 0 such that,
forall (z,p) € S, one has

e (t, p)z|| < Ke™¥||z]|, t=>o0. (37)

If p € T, then S(p) is closed in p — 0 and p + 0.

Proof. Let (z,p;,) € S and let (zg,pr) — (z,p), K — oo, p € . If z = 0, then (z,p) € S.
If z # 0, we consider the solution z(¢, x, p). It is bounded. By Lemma 3, Q(z, p) € B. Using the
triviality of B, we have z(t, z,p) — 0, t — o0, i.e., z(t,x,p) € S.

If p € T, we consider positive and negative sequences py — p and prove analogously that
S(p) is closed in p — 0 and p + 0.

There exists 7' > 0 such that, for all (z,p) € S, one has

1
12, p)zll < Sllzll for t=>T. (38)

If this were not true, then there would exist (zy, pi) € S and t;, — oo such that || D (¢, pr)zi|| >
1 1 N .
> EH'Z"CH Let kaH = 1. Then H‘I’(tk,pk)xku > § Denote T = @(tk,pk)ack, Pk = Pk * Lk These
sequences are bounded. Therefore, there exists a convergent subsequence (Zx,px) — (Z,D).
Letp ¢ I'. Then, by Lemma 4, (z,p) € S. On the other hand, by Lemma 1, (z,p) € U. Hence,
1
||Z|| = 0. This contradicts ||z|| > 3

Let now p € I'. Assume that there exists an infinite subsequence tx; of the sequence ¢, such
that points py; - i, are located on the positive side of I obtained during the motion along the
trajectories p - t. We consider the subsequence ¢y, + ¢ with sufficiently small ¢ > 0. Using the

piecewise continuity of ®(¢,p), one has ||®(e, px; - ty, )z > ”2”, hence
1 1
H(I)(5 + tkj7pkj)xkj” > ||(I)(67pkj : tkj)@(tkj7pkj)xij > Z”‘TICJH = 1

Taking boundedness into account, we conclude that, there exists a convergent subsequence
D(ettn;, pr;)Tr; — =, pr;-(e+ty;) — p*, k — oo, and p* ¢ T'. By construction, (z*, p*) € S;on
the other hand, Lemma 1 implies that (z*,p*) € U. Then z* = 0, which contradicts ||z*|| > %
If a positive subsequence tx; does not exist, we choose another subsequence ¢, such that
points py, - t, are located on the negative side of I'. In this case, we consider the subsequence

ty, — € with sufficiently small € > 0 and arrive at a contradiction as before.
Define 8 and K as follows:

In2
f=, K =2su{|8(t 0l s (o) €S, o] =1, 0< e < T},

where T is given in (38). (37) is proved by induction analogously to [16, p. 51].
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Lemma 5. U = B;,. If (z,p) € U, the function ®(t,p)x is well defined for all t < 0. The set U
is closed and there exist constants K > 1 and 3 > 0 such that, for all (x,p) € U, one has

|@(t,p)z|| < Ke'|z||, t<o0. (39)

If p € T, then U(p) is closed in p — 0 and p + 0.

Proof. Let (v, pr) € U and (zg,pr) — (2,p), p € [. If 2 = 0, then (z,p) € U. Let z # 0.
By Lemma 3, (x, p) has a negative continuation ¢(¢, z, p) such that ¢(¢, z,p) — 0, t — —o0, i.e.,
(x,p) € U.

There exists 7' < 0 such that, for all (x, p) € U, one has

@ (t,p)all < gllal, € (o0, T) (40)

If this were not true, then there would exist (xg, px) and ¢ — —oo such that ||®(tx, pg)xk| >
> @ Choose ||| = 1; then ||®(tg, pr)xk| > 1/2. The sequence (&g, pr) = (P(tk, Pk)Tk, Pk

tr) is bounded. Therefore, there exists a convergent subsequence (Zx,pr) — (&,p). Let p &
L. Since U is closed, we have (2,p) € U. On the other hand, the solutions x(—t, &%, px) are
uniformly bounded and —t;, — +oc as k — oo; therefore, z(t,z,p) € S. Then ||z|| = 0, which
contradicts ||| > 1/2. If p € T, we consider the sequence t;, + ¢ analogously to the proof of
Lemma 4.

Define 8 = —(In2)/T and

K = %Sup{!@(t,p)xll D (zp) €U, ol <1, ¢ € [T,0]3,
where T is given in (40). (39) is proved analogously to [16, p. 52].
Lemma 6. For p € M, one has
dimU(n) > n — dim S(p),

where 1 € w(p) (w(p) is an w-limit set of the trajectory p - t).
Proof. Let KC(p) be a subspace of R™ such that

K(p)nS(p) ={0}, K(p) & S(p) =R". (41)
Let {t;} be a sequence of positive numbers such that ¢; — +oo. Denote
p = min{{[z(tg, z,p)|| - @ € K(p), [[z] =1}

Clearly, up, — 400 as ty — +oo. Let p -t = pr — n € w(p). Denote Kj(p) = @(tx, p)L(p).
®(ty,p) is a one-to-one mapping of K(p) onto the linear subspace Ky (p). For any z € Kj(p)
with ||| < 1, one has || ®(—tx, pr)z|| < .t

By definition, one has

dim K (p) = dim K(p) = n — dim S(p), k > 0.

There exists a subsequence of ¢ such that K;(p) — K, k — o0, and dim K = dim K(p). To
prove that

K cU(n), (42)
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we consider a sequence (zx, pr), ||zkl| < 1, 21 € K, pr = p-tx. Suppose that z;, — 2/, k — oo.
It suffices to prove that (z/,n) € U(n).

For x € Ky,t € [—tg,0], the trajectory z(¢, x, p) is well defined. There exists M > 0 such
that

sup [alt,z.pp)] < M )
—1,.<t<0

forz € Ky, ||z|| < 1, k = 1,2,.... If this were not true, then there would exist sequences
Tk, |lzell = 1, 7% € Ky, and B — oo such that By = sup_;, <i<q [|#(t, 2k, px)||. Denote
T € [0,tx] such that G;/2 < x(—7x,x,pr) < Pr. Let us consider the sequence (&, nx) =
= (B " (=7k, Tk, pr), Pi - (—Tk)). Obviously,

1/2 < [|&l]l < 1, (44)
and

2 (ke &) || = By, k]| — 0, k — o,

(=t + oo & )| = By 12 (—th, pr) k|l < By 'iy 't — 0, k — oo

If (&, %) — (€,7), then (€,7) € B, hence € = 0. This contradicts (44). Therefore, (43) is valid.
Using (43) and Lemma 1, one has (2/,n) € U. Hence, dimU(n) > dim Kx(p) = n — dim S(p),
which completes the proof of the lemma.

Lemma 7. Let p € M. Then the semiflow w admits exponential dichotomy over the w-limit set
w(p). The semiflow 7 admits exponential dichotomy over minimal sets of the flow ¢ - t.

Proof. Analogously to the proof of Lemma 1 in [18], we prove that, for each p € M, the
function dim S(p - t) is a nonincreasing function of ¢ :

dimS(p-t) <dimS(p-7) for t > 7. (45)
Inequality (45) implies that there exist limits
tEr_noodimS(p -t) = ki, tlirglodimS(p -t) = ka.
Taking into account the last limits and the fact that the space R" is finite-dimensional, we

get dim S(n) = ko for all n € w(p). By Lemma 6, dim U (1) = n — k. Therefore, the semiflow 7
admits exponential dichotomy over w(p).

Proof of Theorem 3. The semiflow m admits exponential dichotomy over M(0); therefore,
7 has no nontrivial bounded solutions, i.e.,

B() = {O} X M(O)

We shall show that there exists 6 > 0 such that the semiflow 7 does not have nontrivi-
al bounded solutions over M(J). If this were not true, then there would exist a sequence
{on}, 0p > 0, 6, — 0, n — +oo and a sequence a,(p) € .A(dn), such that system
(31) — (33) with a(p) = an(¢) = (a,A,B) would have a nontrivial bounded solution
T (t, 20,00 ), 2,(0,22, 00 a,) = 2¥. Denote

ﬂn = sup{Hxn(t, .T?L, 9027 &H)H}
teR
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Choose t,, € R such that |z, (t,, 20, %, a,)|| > ﬁ—; Let

(§nymn) = (ﬂglxn(tn,xg, ‘Pg’&n)v U(tnvSOQLa&n))-

1
Then ||&, > 3 and ||z, (t,€9,1%, a,)|| < 1 for all t € R. The sequence (&,,7,) is bounded.
We choose a convergent subsequence so that (&,,7,) — (&,n). Without loss of generality, we

_ 1
may assume that ¢ I'. The point (£, ) has the following properties: n € M(0), ||£]| > 5 By

Lemma 3, the solution z(t,£,n,0) has a negative continuation and ||z(¢,£,7n,0)|| < 1, t € R.
This contradicts the triviality of By. Hence, there exists dp > 0 such that the semiflow 7 does
not have nontrivial solutions over M (dp).

Let us consider the set

Or ={p=(p,a) € M(dy) : dim S(p) =k, dimU(p) = n — k}.

The set Oy, is closed for p € T and closed in p — 0 and p + 0 if p € T'. Therefore, for p € M (&),
there exists a compact neighborhood of ©(p) = {z : (z,p) € (O) that is disjoint with the
other sets ©;, j # k. Since the compact set M(0) belongs to ©y, one can see that, for some
91 < do, the set M (6;) is disjoint with the other sets ©;, j # k.

We show that dim S(p) = k for all p € M(d1). Let py be a point such that dim S(pg) < k
(sign "<"is chosen for definiteness). The function dim S(p - ¢) is nonincreasing; therefore, one
has dim S(n) = k1 < k for all n € a(p) (a(p) is the set of a-limit points of the trajectory p - t.)
By Lemma 7, the semiflow 7 is exponentially dichotomous over the minimal set Ay contained
in a(p). Moreover, dim S(§) = k1, £ € Ap. Hence, Ay C Oy, contrary to the fact that M (6;)
contains only the set ©. We have proved that the semiflow 7 is exponentially dichotomous
over the set M(d1), and, correspondingly, system (31) — (33) is exponentially dichotomous for
(a, A, B) € A(6,). The theorem is proved.

Now we consider a linearized system with small parameter

% = a(e) +car(,), (46)
‘é—f = (Ao(p) +Ai(p,€))z, @ €Ty \T, (47)
Az = (Bolp) +eBi(g,e))z, (48)

where ¢ € (—¢g,€9), €90 > 0.

Theorem 4. Suppose that the following conditions are satisfied:

1) for e = 0, system (46) — (48) satisfies the conditions of Theorem 2;

2) functions a1, A1, and By have continuous partial derivatives with respect to , € up to the
order s inclusively for ¢ € T,, \ T and ¢ € (—ep,e0), and all their partial derivatives have
continuous continuations to the left-hand and right-hand sides of the manifold T" and have di-
scontinuities of the first kind for p € T.

Then there exists £1 € (0,20) such that, for e € (—¢e1,e1), system (46) — (48) is exponenti-
ally dichotomous with the projector P(p,e) and the Green function G(t,T,p,c) which have
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continuous partial derivatives with respect to p,e up to the s-th order inclusively on the set
0 €Ty, \T, € € (—e1,e1), and, moreover,

Gt 7, ¢,¢)

9 B < Kjexp(—(ar — |jlw)|t — 7)), (49)

Wherej = (57jm+1) = (jla"'ujm7jm+1)a |.]| = .7;1 + "'7+jm+17 ‘j‘ < S, 80] = 90{15"'>§0¥;Ln7 a1 =
= a—v, visan arbitrarily small positive value, K; = K;(v) is a constant independent of ¢ € Ty,
and w = |[0a()/d¢lfo-

Proof. By Theorem 3, there exists ¢; > 0 such that system (46) — (48) has exponential
dichotomy for € € (—¢1,¢1). Instead of equation (46) we consider the equations

dp de
dat dt
defined on the product T,, x (—¢1,e1). The impulsive system (50), (47), (48) is defined on
the direct product of the manifold T,, x (—e1,¢1) and Euclidean space R™ and subjected to
the impulsive action on the submanifold I' = T' x (—¢y,¢1) of codimension 1 of the manifold
T,, x (—€1,€1). System (50), (47), (48) satisfies conditions of Theorem 2. Hence, the projector
P(¢,¢) and the Green function G(¢, 7, ¢, £) have continuous partial derivatives with respect to
©, € up to the s-th order inclusively on the set ¢ € T,,,\I', € € (—¢1,¢1). The theorem is proved.
4. Integral set. In this section, by C{ (T, x (—¢€o,€0)) we denote the space of functions or
matrices a(y, ) with the following properties:
i) a(¢p, €) has continuous partial derivatives with respect to ¢, € up to the order s inclusively
forp € T, \ I, € € (—¢0,€0),
ii) all partial derivatives of a(¢p, ) have continuous continuations to the left-hand and right-
hand sides of the manifold I" x (—¢g, &p).
For f(p,e) € C3 (T x (—€0,€0), we denote

ao(p) +eai(ep; ), 0 (50)

9l f(p,¢)

50,0l = max s swp | o B

0<|j|<8 eT m\T e€(—€0,20)

Jm

Wherej = (ivjm-‘rl) = (j17 "'7j’m7jm+1)7 QOJ = (Sojllgpm )7 ’]’ = jl + ... +jm+1'
Theorem 5. Assume that system (4) — (6) is exponentially dichotomous and the right-hand

sides of system (1) — (3) have continuous partial derivatives with respect to x, p, e up to the s-th
(s > 1) order inclusively, where

(x,0,6) € O ={]||z|| <d, p € Ty, € € (—¢€0,€0)}- (51)

Then there exists €' € (0,eq| such that, for each e € (—¢', '), system (1) — (3) has a unique integral
manifold v = u(p,e),p € Ty, where u(p, €) have continuous partial derivatives with respect to
@, € up to the (s — 1)-th (s > 1) order inclusively for ¢ € T,, \ T, ¢ € (—¢',¢) and has the
discontinuities of the first kind for p € T'.

Proof. We rewrite system (1) — (3) in the form

Cfi—f = ap(p) + b(p, x,¢€), (52)
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dx

E = (AO(QO) + Al(sp’xag))x + f(90’€)7 p e Tm \ F’ (53)

Az @EF: (Bo(¢) + Bi(p, z,€))z + g(p, €), (54)

where f((P70) = 9(9070) =0, b(907x70) = O(HSEH), Al(cp,:c,O) = O(deu)v and Bl(@)x70) =
= O(]|x||). We construct the sequence of sets

{z =ur(p,e) : Ty X (—e0,80) = R"}, k=0,1,...

where ug(p, ) = 0 and ug1(p, €) is an invariant set of the system

C;—f = ap(p) + b, uk(p, ), ), (55)
Cji_f = (Ao(¢) + A1(p, ur(p,€),e))x + f(p,e), ¢ e Ty \T, (56)
Az| = (Bule) + Bl i), ) + gl.c). (57)

There exists ¢; > 0 such that ||b(p,0,¢)||s < d,[A1(p,0,¢)||s < 0,]Bi(p,0,¢)|ls < ¢ for
e € (—ep,ep) and the constant 6 > 0 defined in Theorem 3. By Theorem 4, the linearized
system

Cji_f = ap(p) + b(p,0,¢), (58)
X — (Ao(0) + A0, )7, pET\T, (59)
Az sOEF: (BO(SO) + B (807 0, 5))337 (60)

is exponentially dichotomous with a piecewise smooth projector P; (¢, ¢) and the Green functi-
on G1(t, T, ¢, e) satisfying estimate (49).
The function u; (¢, €) is defined by the formula

ur () = / G1(0,7,0,2) f(01(7y 0,2), )+

+ Z Gl(O,t}(cp,e),@,5)9(0}(@,5),5), (61)

Jjeh (9078)

where 01 (t, p, €) is the solution of equation (58), tjl- (p,€),J € Ii(p,c) are points where o (¢, ¢, €)
intersects the manifold T, and (¢, €) = o (t (¢, €), ¢, €)-

In view of the smoothness of the functions t}(ap, ¢) and the piecewise smoothness of the
Green function G1(0,7,¢,¢), the function wu;(p,c) has continuous partial derivatives with
respect to ¢, £ up to the order s inclusively for ¢ € T,,, \ T and € € (—e1,¢1) and the functions
OVlu(p,e)/0pIdeim+1 | § = (§, jms1) = (J1, - jme1), 1 < |§| < s, have discontinuities of the
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first kind for ¢ € I'. Differentiating formula (61) s times and taking into account (23) and (49),
we get

lur(p,€)lls < CrLlll (@, e)lls + lg(e, €)ls), (62)

where ('} is some positive constant.
Choose €2 > 0 such that, for ¢ € (—e2,e2) and u(p, e) € C3(Ty, x (—e2,€2) satisfying (62),
the following inequalities are valid:

Hb(tp,u(cp,e),g)ﬂs S 5? HAI(%U(%ff),ff)Hs S (57 ||B1(907u(9075)75>||8 S 57

where the constant § > 0 is defined in Theorem 3.

Let a piecewise smooth function u,(p,¢), ¢ € Ty,,e € (—e2,e2), be an invariant set of
system (55) — (57) for k = p. We assume that u,(yp, ) belongs to C3(T,,) x (—e2,2) and sati-
sfies inequality (62). Then the linearized system (55) — (57) (if f = g = 0) is exponentially
dichotomous with the projector P,(y,¢) and the Green function G (¢, 7, ¢, ) satisfying esti-
mate (15). We define the invariant set u,1(p, €) by the formula

wps (9, €) = / G0, 7, 0.6) [ (0p(7. 01€), ), €)dr+

+ Y G0,8(p,e),0,2)9(0F (0, ), 2), ), (63)
je[p(%f)

where 0,(7, ¢, ) is the solution of (55), t%(p,¢),j € I,(p,¢), are the points of intersections of
p(T, , €) with the manifold I', and o% (p, e) = o, (t} (9, €), ¢, €).
Differentiating (63) and and taking into account (23) and (49), we get

[upr1(,€)lls < Crlllf (@, €)lls + [lg(e, €)ls)- (64)

Hence, we obtain the uniform boundedness of the sequence {u,(p,c)} for ¢ € T, e €
€ (—62, 62).

Define wi1+1(p,€) = urt1(p, &) — uk(p, ). Since the functions ug (¢, €) are smooth for ¢ €
€ T,, \I',e € (—e2,e2) and have discontinuities of the first kind for ¢ € I', the function
w1 (i, €) satisfies the following equation:

Owy 41

5o ) + B 10, )) + G by, €) = by 1a1,9)) =

Dy
= (Ao(p) + A1 (e, uk, €))wrt1 + (A1(p, ug, €)—
—Ai(p,ug—1,¢))ux, ¢ € Ty \ T,
Awy e (Bo(p) + Bi(p, ug, €))wpt1+
+(B1(p, uk, €) — B1(p, ug—1,€))uk.
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Hence, wyy1(p,c) determines an invariant set of system (55) — (57) with f(y,¢)

= (Al((paulﬁg) - Al(gp, ukflvg))uk - (87”43/6()0)(1)(907“1675) - b(gpa uk*lvg))mg(g)?g) =
= (Bi(p, ug, ) — Bi(p, ug—1,¢))ur. We can express wi.1(p, ) in the form

wi11(p,€) = /Gk(O,T,gp,s) (Al(ak(T,@,5),uk(ak(7,cp,5),6),5)—

— A1 (og (1,0, 8), up—1(ok (T, @, €), €), 5)) ug(ok(T, p,€),e)—

- %;’6)’6) (b(ak(7—7 9075)7uk(0-k(7-) ¥, 5)>5))5)_
— b(ow(T, 8075),1%—1(%(7',@,8),5),8)) dr+
+ > Gr0,F,0,8)(Bi(of, up(of,€),e) — Bi(oF, we_1(0}, €),€)). (65)

jEIk(%a)
By (65), we have

[wkr1(p;€)llo < Cole)[wr (e, €)llo,

where Cy(g) — 0, ¢ — 0. There exists &’ € [0, 3] such that Cy(g) < pg < 1fore € (—¢',&').
Then

lwri(e,)llo < p§~Hllus(p,e)llo < p5 ' Crlllf (@, €)llo + llg(, €)llo)- (66)

Inequality (66) proves the convergence of the sequence {u,(p,c),p = 0,1,...} in the space

Cr(Ty, x (—€',¢')). To show that u(p,e) € C (T, x (—¢,¢)), we use the uniform

boundedness and equicontinuity of the sequence D"ug(p,¢),k = 0,1,...,7 < s, which follow

from estimate (64). By the Arzela lemma, any infinite subsequence of D"uy(p,¢),k = 0,1, ...,

uniformly converges to some function v(") (¢, €). This, with the use of the limit klim up(p,€) =
—0Q0

u(p, €), proves that D™u(p, &) = v(") (¢, ¢) and u(p,e) € C& (T, x (—¢',€')). The theorem is
proved.
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