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ON INVARIANT SETS OF DIFFERENTIAL
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For a system of ordinary differential equations depending on a small parameter, defined on the direct
product of a torus and aEuclidean space, and subjected to impulsive action on a submanifold of codi-
mension 1 of the torus, we study the problem of existence of a piecewise smooth invariant set.

Вивчається задача iснування кусково-гладкої iнварiантної множини системи диференцiальних
рiвнянь, залежних вiд малого параметра та заданих на прямому добутку тора та евклiдового
простору з iмпульсною дiєю на пiдмноговидi тора корозмiрностi 1.

1. Introduction. We consider an impulsive system of the form

dϕ

dt
= a(ϕ, x, ε), (1)

dx

dt
= A(ϕ, ε)x+ f(ϕ, x, ε), ϕ ∈ Tm \ Γ, (2)

∆x

∣∣∣∣∣
ϕ∈Γ

= B(ϕ, ε)x+ g(ϕ, x, ε), (3)

where x ∈ Rn, ϕ ∈ Tm, Tm is an m-dimensional torus, Γ is a smooth compact submanifold of
Tm of codimension 1, and ε ∈ R is a small parameter. ∆x stands for the jump of the function x
at the point ϕ obtained during the motion along the trajectory of equation (1).

We suppose that f = O(‖x‖2), g = O(‖x‖2) as ε = 0. Therefore, system (1) – (3) has the
trivial invariant set S0 = {(0, ϕ) ∈ Rn × Tm} for ε = 0. We are interested in the existence of
piecewise continuous (piecewise smooth) invariant set of system (1) – (3) for small ε 6= 0. Partial
results of this paper were communicated in [1]. This problem for systems without impulses was
studied by many authors [2 – 6]. The invariant sets in particular cases of the impulsive system
were considered in [7 – 13].
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The article is organized as follows: In section 2, we introduce the concept of exponential
dichotomy for the linearized system

dϕ

dt
= a0(ϕ), (4)

dx

dt
= A0(ϕ)x, ϕ ∈ Tm \ Γ, (5)

∆x

∣∣∣∣∣
ϕ∈Γ

= B0(ϕ)x, (6)

where a0(ϕ) = a(ϕ, 0, 0), A0(ϕ) = A(ϕ, 0), and B0(ϕ) = B(ϕ, 0). The properties of separatrix
subspaces of the linearized system are studied. In section 3, we prove that the exponential
dichotomy for system (4) – (6) is not destroyed by small perturbations of the right-hand sides
of the system. In section 4, conditions for the existence of an invariant set of system (1) – (3)
for small ε 6= 0 are obtained.

2. Linear system. Let us consider system (4) – (6). We assume that a0(ϕ) is a Lipschitz function
in ϕ ∈ Tm and the functions A0(ϕ), B0(ϕ) are continuous. Equation (4) has solutions ϕ · t =
= σ(t, ϕ), σ(0, ϕ) = ϕ. Suppose that solutions σ(t, ϕ) intersect the manifold Γ transversally.
The set I(ϕ) of points t where the solution σ(t, ϕ) intersects the compact manifold Γ is at most
countable. Note that it can be finite or empty. We denote by tj(ϕ), j ∈ I(ϕ) ⊆ Z the ascending
sequence of points t where σ(t, ϕ) intersects the manifold Γ, t0(ϕ) = max{t < 0 : ϕ · t ∈
∈ Γ}, t1(ϕ) = min{t ≥ 0 : ϕ · t ∈ Γ}. There exists θ > 0 such that

tj(ϕ)− tj−1(ϕ) ≥ θ (7)

for all ϕ ∈ Tm, j ∈ I(ϕ).
For fixed ϕ, system (4) – (6) has the following form:

dx

dt
= A0(σ(t, ϕ))x, t 6= ti(ϕ), (8)

∆x

∣∣∣∣∣
t=ti(ϕ)

= B0(σi(ϕ))x, (9)

where σi(ϕ) = σ(ti(ϕ), ϕ). Let x(t, ϕ, x0) be a solution of the initial-value problem for (8), (9)
with the initial value x(0, ϕ, x0) = x0. Denote by X(t, ϕ), t ≥ 0 the fundamental solution for
system (8), (9), X(t, ϕ)x0 = x(0, ϕ, x0), X(0, ϕ) = I, I is the identity matrix. The solution
x(t, ϕ, x0) is piecewise continuous and we assume that it is left-side continuous. It has disconti-
nuities in t = ti(ϕ). It is supposed that det(I +B(ϕ)) = 0 for some or all ϕ ∈ Γ. Therefore, the
solutions x(t, ϕ, x0) cannot be continued on the negative semi-axis t < 0 or can be ambiguously
continued.

Using the uniqueness of solutions for equation (4) and transversality of intersections σ(t, ϕ)
with Γ, we conclude that the theorem on continuous dependence on initial conditions and
parameters [8, 14] is valid for impulsive system (4) – (6): for a solution x(t, ϕ0, x0) of system
(4) – (6) and for an arbitrary ε > 0 and T > 0, there exists δ = δ(ε, T ) > 0 such that,
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for any other solution x(t, ϕ1, x1) of (4) – (6) with initial conditions (ϕ1, x1), the inequalities
‖x0− x1‖ < δ, ρ(ϕ0, ϕ1) < δ imply that ‖x(t, ϕ0, x0)− x(t, ϕ1, x1)‖ < ε for 0 ≤ t ≤ T satisfying
|t− ti| > ε, where ti are the moments in which σ(t, ϕ0) intersects the manifold Γ, and ρ(., .) is a
metric on the torus Tm.

We distinguish the the left-hand and right-hand sides of manifold Γ. We call a sequence
ϕn → ϕ ∈ Γ negative if there exists a sequence of positive numbers δn → 0, n → ∞ such that
ϕn ·δn ∈ Γ. Analogously, a sequence ϕn → ϕ ∈ Γ is said to be positive if there exists a sequence
of negative numbers δn → 0, n→∞ such that ϕn · δn ∈ Γ.

Denote by Cs(Tm) the space of s times continuously differentiable functions or matrices on
Tm.ByCsΓ(Tm) we denote the space of functions or matrices a(ϕ) with the following properties:

i) a(ϕ) has continuous partial derivatives up to the order s inclusively for ϕ ∈ Tm \ Γ;
ii) all partial derivatives of a(ϕ) have continuous continuations to the left-hand and right-

hand sides of manifold Γ.
For f(ϕ) ∈ CsΓ(Tm), we denote the norm

‖f(ϕ)‖s = max
0≤|j|≤s

sup
ϕ∈Tm\Γ

∥∥∥∥∥∂|j|f(ϕ)
∂ϕj

∥∥∥∥∥ ,
where j = (j1, ..., jm), ϕj = (ϕj11 ...ϕ

jm
m ), |j| = j1 + ...+ jm, and ‖.‖ is the norm in Rn or in the

space of matrices.
Definition 1. System (4), (6) is said to be exponentially dichotomous if, for all ϕ ∈ Tm, the

space Rn can be represented in the form of the direct sum of the subspaces U(ϕ) and S(ϕ) of
dimensions r and n− r, respectively, so that:

1) any solution of system (8), (9) with x0 ∈ S(ϕ) satisfies the inequality

‖x(t, ϕ, x0)‖ ≤ K exp(−α(t− τ))‖x(τ, ϕ, x0)‖, t ≥ τ ≥ 0; (10)

2) any solution with x0 ∈ U(ϕ) satisfies the inequality

‖x(t, ϕ, x0)‖ ≥ K1 exp(α(t− τ))‖x(τ, ϕ, x0)‖, t ≥ τ ≥ 0, (11)

where positive constants α,K,K1 are independent of ϕ, x0;

3) X(t, ϕ)S(ϕ) ⊆ S(ϕ · t), X(t, ϕ)U(ϕ) ⊆ U(ϕ · t), t ≥ 0;

4) the projectors P (ϕ) and Q(ϕ) = I − P (ϕ) corresponding to S(ϕ) and U(ϕ) are uniformly
bounded

sup
ϕ∈Tm

‖P (ϕ)‖+ sup
ϕ∈Tm

‖Q(ϕ)‖ <∞.

Analogously to the proof of Theorem 1 [15], we prove the following statement:

Theorem 1. Assume that system (4) – (6) is exponentially dichotomous. Then the projector
P (ϕ) is continuous on the set Tm \ Γ and has discontinuities of the first kind on the set Γ.

It follows from Definition 1 that the subspace U(ϕ) has a unique negative continuation such
that

‖x(t, ϕ, x0)‖ ≤ K2 exp(αt)‖x0‖, t ≤ 0, ϕ ∈ Tm, x0 ∈ U(ϕ).
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Hence, X(t, ϕ)Q(ϕ) is well defined for all t ≤ 0, and we can define the Green function for
system (4) – (6)

G(t, τ, ϕ) =

{
X(t− τ, ϕ · τ)P (ϕ · τ), t ≥ τ ;

−X(t− τ, ϕ · τ)Q(ϕ · τ), τ ≥ t.
(12)

For t 6= τ, the Green function G(t, τ, ϕ) satisfies equations (8), (9). If system (4) – (6) has
exponential dichotomy, then the Green function G(t, τ, ϕ) is bounded by an exponent:

‖G(t, τ, ϕ)‖ ≤ K3 exp(−α|t− τ |), t, τ ∈ R, K3, α > 0. (13)

The linear inhomogeneous system

dx

dt
= A0(ϕ · t)x+ f(t), t 6= ti(ϕ),

∆x
∣∣∣
t=ti(ϕ)

= B0(σi(ϕ))x+ gi

has the following unique bounded solution:

u(t, ϕ) =

∞∫
−∞

G(t, τ, ϕ)f(τ)dτ +
∑
i∈I(ϕ)

G(t, ti(ϕ), ϕ)gi. (14)

Theorem 2. Suppose that:
1) Γ is a smooth manifold of the class Cs, s ≥ 1;
2) a0(ϕ), A0(ϕ) ∈ CsΓ(Tm), B0(ϕ) ∈ Cs(Γ);
3) solutions of equation (4) intersect the manifold Γ transversally;
4) system (4) – (6) is exponentially dichotomous with constants α,K,K1.
Then the projector P (ϕ) and the Green functionG(t, s, ϕ) have continuous partial derivatives

of order s with respect to ϕ on the set Tm \ Γ and, moreover,∥∥∥∥∥∂|j|G(t, τ, ϕ)
∂ϕj

∥∥∥∥∥≤ K̃j exp(−(α1 − |j|ω)|t− τ |), (15)

where j = (j1, ..., jm), |j| = j1+...+jm, |j| ≤ s, ϕj = ϕj11 , ..., ϕ
jm
m , α1 = α−ε, ε is an arbitrarily

small positive value, K̃j = K̃j(ε) is a constant independent of ϕ ∈ Tm, and ω = ‖∂a(ϕ)/∂ϕ‖0.
Proof. Let δϕi be an increment of the i-th coordinate of ϕ and ϕ + δϕi = (ϕ1, ..., ϕi +

+δϕi, ..., ϕn). Let us consider the difference R = G(t, τ, ϕ+ δϕi)−G(t, τ, ϕ), where the points
ϕ and ϕ+δϕi are located at the same side of Γ and do not belong to Γ. The differenceR satisfies
the following system:

dR

dt
= A0(σ(t, ϕ))R+ (A0(σ(t, ϕ+ δϕi))−A0(σ(t, ϕ)))G(t, τ, ϕ+ δϕi),

∆R
∣∣∣
t=t1j

= B0(σ1
j )R−B0(σ1

j )G(t1j , τ, ϕ+ δϕi),

∆R
∣∣∣
t=t2j

= B0(σ2
j )G(t2j , τ, ϕ+ δϕi),
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where t1j = tj(ϕ), t2j = tj(ϕ+ δϕi), σ1
j = σ(tj(ϕ), ϕ), σ2

j = σ(tj(ϕ+ δϕi), ϕ+ δϕi). By (14), one
has

G(0, τ, ϕ+ δϕi)−G(0, τ, ϕ) =

=

∞∫
−∞

G(0, s, ϕ)(A0(σ(s, ϕ+ δϕi))−A0(σ(s, ϕ)))G(s, τ, ϕ+ δϕi)ds+

+
∑

j∈I(ϕ+δϕi)

G(0, t2j , ϕ)B(σ2
j )(G(t1j , τ, ϕ+ δϕi)−G(t2j , τ, ϕ+ δϕi))+

+
∑

j∈I(ϕ)∪I(ϕ+δϕi)

(G(0, t2j , ϕ)−G(0, t1j , ϕ))B0(σ2
j ))G(t1j , τ, ϕ+ δϕi)+

+
∑
j∈I(ϕ)

G(0, t1j , ϕ)(B0(σ2
j )−B0(σ1

j ))G(t1j , τ, ϕ+ δϕi). (16)

Since a0(ϕ) ∈ Cs(ϕ), s ≥ 1,we have ‖a0(ϕ1)−a0(ϕ2)‖ ≤ ω‖ϕ1−ϕ2‖,where ω = ‖∂a0(ϕ)/∂ϕ‖0.
Hence,

‖σ(t, ϕ1)− σ(t, ϕ2)‖ ≤ eω|t|‖ϕ1 − ϕ2‖, (17)∥∥∥∥∥∂σ(t, ϕ)
∂ϕ

∥∥∥∥∥≤ eω|t|. (18)

Let the manifold Γ be defined by F (ϕ) = 0 with some smooth function F. By definition,
σ(tj(ϕ), ϕ) ∈ Γ or F (σ(tj(ϕ), ϕ)) = 0, j ∈ I(ϕ), ϕ ∈ Tm. Therefore,

∂F (σ(tj(ϕ), ϕ))
∂ϕi

= 0, and

(
∂F

∂σ
,
∂σj(ϕ)
∂t

∂tj(ϕ)
∂ϕi

+
∂σj(ϕ)
∂ϕi

)
= 0,

where σj = σj(ϕ) = σ(tj(ϕ), ϕ), j ∈ I(ϕ), i = 1, ...,m; (., .) is a scalar product in Rn. Let us
make the transformation(

∂F (σj)
∂σ

, a0(σj)

)
∂tj(ϕ)
∂ϕi

+

(
∂F (σj)
∂σ

,
∂σj(ϕ)
∂ϕi

)
= 0. (19)

The intersections of the solution σ(t, ϕ) with the compact manifold Γ are transversal, and,
therefore,(

∂F (σj)
∂σ

, a0(σj)

)
≥ C1 > 0, C1 6= C1(ϕ).

By (18) and (19), we see that∣∣∣∣∣∂tj(ϕ)
∂ϕ

∣∣∣∣∣≤ C2

C1
eω|tj(ϕ)| = C3e

ω|tj(ϕ)|, (20)

where C2 ≥ ‖∂F/∂σ‖.
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The second derivative ∂2σ(t, ϕ)/∂ϕi∂ϕj , i, j = 1, ...,m, satisfies the following equation:

d

dt

∂2σ(t, ϕ)
∂ϕi∂ϕj

=
∂a0(σ(t, ϕ))

∂σ

∂2σ(t, ϕ)
∂ϕi∂ϕj

+

+
m∑

j,k=1

∂2a0(σ(t, ϕ))
∂σk∂σl

∂σk(t, ϕ)
∂ϕi

∂σl(t, ϕ0)
∂ϕj

. (21)

Here, σk(t, ϕ) is the k-component of the vector σ(t, ϕ). Taking into account (18) and (21), we
obtain∥∥∥∥∥∂2σ(t, ϕ)

∂ϕi∂ϕj

∥∥∥∥∥≤ eω|t|(a1 + a2e
ω|t|) ≤ a3e

(2ω+ε)|t|,

where ε is an arbitrarily small positive value and a1, a2, a3 are positive constants, a3 = a3(ε).
The higher derivatives are estimated similarly:∥∥∥∥∥∂|l|σ(t, ϕ)

∂ϕl

∥∥∥∥∥≤ ale(|l|ω+ε)|t|, (22)

where l is a multiindex, l = (l1, ..., lm),
∑

j lj = |l|, ϕl = ϕl11 ...ϕ
lm
m , ε is an arbitrarily small

positive value, and al = al(ε) > 0.
Differentiating (19) and taking (22) into account, we estimate the higher derivatives of

tj(ϕ) :∥∥∥∥∥∂|l|tj(ϕ)
∂ϕl

∥∥∥∥∥≤ Cle(|l|ω+ε)|tj(ϕ)|, (23)

where Cl = Cl(ε) > 0 is a constant, and l is multiindex as before.
Analogously to [1], we compute limits

lim
δϕi→0

1
δϕi

(
G(tj(ϕ+ δϕi), τ, ϕ+ δϕi)− (G(tj(ϕ), τ, ϕ+ δϕi)

)
=

= A0(σj)G(tj(ϕ), τ, ϕ))
∂tj(ϕ)
∂ϕi

(24)

and

lim
δϕi→0

1
δϕi

(
G(0, tj(ϕ+ δϕi), ϕ)−G(0, tj(ϕ), ϕ)

)
=

= −G(0, tj(ϕ), ϕ)A0(σj(ϕ))
∂tj(ϕ)
∂ϕi

. (25)

Let tj(ϕ)→∞ as ϕ→ ϕ̄. This means that j 6∈ I(ϕ̄) for sufficiently large j and G(0, tj(ϕ), ϕ)→
→ 0 as ϕ→ ϕ̄. By (18) and (25), one has

lim
ϕ→ϕ̄

lim
δϕi→0

1
δϕi

(
G(0, tj(ϕ+ δϕi), ϕ)−G(0, tj(ϕ), ϕ)

)
=
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= lim
δϕi

1
δϕi

G(0, tj(ϕ̄+ δϕ̄), ϕ̄) =

− lim
ϕ→ϕ̄

G(0, tj(ϕ), ϕ)A0(σj(ϕ))
∂tj(ϕ)
∂ϕi

= 0. (26)

Taking (24), (25) and (26) into account, we get

∂G(0, τ, ϕ)
∂ϕi

=

∞∫
−∞

G(0, s, ϕ)
∂A0(σ(s, ϕ))

∂σ

∂σ(s, ϕ)
∂ϕi

G(s, τ, ϕ)ds+

+
∑
j∈I(ϕ)

G(0, tj(ϕ), ϕ)
∂B0(σj(ϕ))

∂σ

∂σj(ϕ)
∂ϕi

G(tj(ϕ), τ, ϕ)+

+
∑
j∈I(ϕ)

G(0, tj(ϕ), ϕ)A0(σj)B0(σj)G(tj(ϕ), τ, ϕ)
∂tj(ϕ)
∂ϕi

−

−
∑
j∈I(ϕ)

G(0, tj(ϕ), ϕ)B0(σj)A0(σj)G(tj(ϕ), τ, ϕ)
∂tj(ϕ)
∂ϕi

. (27)

The matrix ∂A(σ(t, ϕ))/∂σ)(∂σ(s, ϕ)/∂ϕi) has the elements

m∑
j=1

∂akl(σ(s, ϕ))
∂σj

∂σj(s, ϕ)
∂ϕi

,

where A(ϕ) = {akl}, and σ = (σ1, ..., σm).
The derivative ∂G(0, τ, ϕ)/∂ϕi exists if the integral and series in (27) are convergent. Using

(13) and (18), we estimate

∞∫
−∞

∥∥∥∥∥G(0, s, ϕ)
∂A0(σ(s, ϕ))

∂σ

∂σ(s, ϕ)
∂ϕi

G(s, τ, ϕ)

∥∥∥∥∥ds ≤

≤
∞∫
−∞

K2
3Me−(α−ω)|s|−α|τ−s|ds ≤ K2

3M

(
2

2α− ω
+ |τ |

)
e−(α−ω)|τ |,

where ‖A0(ϕ)‖s ≤M, ‖B0(ϕ)‖s ≤M, and ‖a0(ϕ)‖s ≤M. The integral converges if 2α−ω > 0.
By (7), (13), (18) and (20), we get

∑
j

∥∥∥∥∥G(0, tj(ϕ), ϕ)
∂B0(σ(tj , ϕ))

∂σ

∂σ(tj(ϕ), ϕ)
∂ϕi

G(tj(ϕ), τ, ϕ)

∥∥∥∥∥≤
≤ K2

3M(1 + C3M)

(
2

1− e−(2α−ω)θ
+
|τ |
θ

)
e−(α−ω)|τ |.
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The last sums in (27) are estimated similarly. Therefore,∥∥∥∥∥∂G(0, τ, ϕ)
∂ϕi

∥∥∥∥∥≤ (K4 +K5|τ |)e−(α−ω)|τ | ≤ K6e
−(α1−ω)|τ |, (28)

where α1 = α − ε, ε is an arbitrarily small positive value, and K4,K5,K6 = K6(ε) are positive
constants independent of ϕ ∈ Tm.

Differentiating (12) with respect to τ and taking (13) and (28) into account, we get

∂G(t, τ, ϕ)
∂τ

= −A(ϕ · t)G(t, τ, ϕ) +
∂G(t, τ, ϕ)

∂ϕ
a(ϕ · τ),

and ∥∥∥∥∥∂G(0, τ, ϕ))
∂τ

∥∥∥∥∥≤ K̄6e
−(α1−ω)|τ |, (29)

where t, τ 6= tj(ϕ), j ∈ I(ϕ), and K̄6 = K̄6(ε) is a positive constants independent of ϕ ∈ Tm.
To estimate higher-order derivatives of G(0, τ, ϕ) and P (ϕ) (up to the s-th order), we

continue the above approach. Successively differentiating (27) and estimating the i-th deri-
vative of the integrant by exp(−(α1 − iω)|s| − α|τ − s|) and the j-th terms in all series by
exp(−(α1 − iω)|tj | − α|τ − tj |), we conclude that the integral and all series are convergent.
Thus, we prove the existence of derivatives (up to the s-th order) of the projector P (ϕ) and the
Green function G(t, τ, ϕ) and estimate (15). The theorem is proved.

Remark. Differentiating (12) with respect to τ and using estimate (15), we get∥∥∥∥∥∂sG(0, τ, ϕ))
∂τ s

∥∥∥∥∥≤ K̄7e
−(α1−sω)|τ |, (30)

where t, τ 6= tj(ϕ), j ∈ I(ϕ), and K̄7 = K̄7(ε) is a positive constant independent of ϕ ∈ Tm.
3. Perturbation theorem. Denote byL(δ) the set of Lipschitz vectors or matrices a(ϕ) on Tm

such that ‖a(ϕ)‖ ≤ δ and Lip a ≤ δ, where Lip a = inf{λ > 0 : ‖a(ϕ1)− a(ϕ2)‖ ≤ λρ(ϕ1, ϕ2)}.
We consider a perturbed system

dϕ

dt
= a0(ϕ) + ã(ϕ), (31)

dx

dt
= (A0(ϕ) + Ã(ϕ))x, ϕ ∈ Tm \ Γ, (32)

∆x

∣∣∣∣∣
ϕ∈Γ

= (B0(ϕ) + B̃(ϕ))x, (33)

where ã(ϕ), Ã(ϕ), B̃(ϕ) ∈ CLip(Tm). Using the properties of system (1) – (3), one can show
that, for sufficiently small δ such that ã(ϕ) ∈ L(δ), solutions σ(t, ϕ, ã) of equation (31) intersect
manifold Γ transversally. Let tj(ϕ, ã), j ∈ I(ϕ, ã), be the sequence of points where σ(t, ϕ, ã)
intersects Γ. Using the compactness of Γ and transversality of intersections of σ(t, ϕ) =
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= σ(t, ϕ, 0) with Γ, we get the estimate tj(ϕ, ã) − tj−1(ϕ, ã) ≥ θ̃ > 0, j ∈ I(ϕ, ã), with some
positive θ̃. Denote

A(δ) = {(b1(ϕ), b2(ϕ), b3(ϕ)) : bi(ϕ) ∈ L(δ), i = 1, 2, 3}. (34)

Theorem 3. Let system (4) – (6) be exponentially dichotomous. Then there exists a suffici-
ently small δ > 0 such that system (31) – (33) with (ã(ϕ), Ã(ϕ), B̃(ϕ)) ∈ A(δ) has exponential
dichotomy.

To prove the theorem, we use ideas of [16, 17].
DenoteM =M(δ) = Tm ×A(δ). We define a flow on the setM(δ) :

p · t = (σ(t, p), â), t ∈ R,

where p = (ϕ, â) ∈ M(δ), â = (ã, Ã, B̃) ∈ A(δ), and σ(t, p) is a solution of equation (31).
Let x(t, x0, p) be a solution and let Φ(t, p) be the fundamental solution of system (31) – (33).
The function Φ(t, p) has discontinuities of the first kind for t = t̄ such that ϕ̄ = ϕ · t̄ ∈ Γ, and,
moreover,

Φ(t̄+ 0, p)− Φ(t̄, p) = B(ϕ̄)Φ(t̄, p).

We assume that Φ(t, p) and x(t, x0, p) are left-continuous with respect to t.
We define the following piecewise continuous linear skew-product semiflow on Rn×M(δ) :

π(t, x, p) = (Φ(t, p)x, p · t), x ∈ Rn, p ∈M(δ), t ≥ 0.

A point (x, p) is said to have a negative continuation with respect to π if there exists a
piecewise continuous function φ : (−∞, 0]→ R

n ×M that possesses the following properties:
1) φ(t) = (φx(t), p · t), where φx : (−∞, 0]→ R

n;
2) φ(0) = (x, p);
3) π(t, φ(s)) = φ(s+ t) for each s ≤ 0 and 0 ≤ t ≤ −s;
4) π(t, φ(s)) = π(t+ s, x, p) for each 0 ≤ −s ≤ t.

We define the following sets:
Ω(x, p) is the set of ω-limit points of the trajectory π(t, x, p),
A(x, p, φ) is the set of α-limit points of the negative continuation φ of the point (x, p),
M = {(x, p) : (x, p) has a negative continuation},
U = {(x, p) ∈M : there is a negative continuation φ(t, x, p) of (x, p) such that ‖φ(t, x, p)‖ →

→ 0, t→ −∞},
B− = {(x, ϕ) : there is a bounded negative continuation φ(t, x, p) of (x, p), i.e.,

sup
t≤0
‖φ(t, x, p)‖ <∞},

B−u = {(x, p) : (x, p) has a unique bounded negative continuation},
B+ = {(x, p) : sup

t≥0
‖Φ(t, p)x‖ ≤ ∞}.

S = {(x, p) : ‖Φ(t, p)x‖ → 0, t→ +∞}.
S(p) = {x : (x, p) ∈ S}, U(p) = {x : (x, p) ∈ U},
B = B+ ∩ B− is the bounded set of the semiflow π.

Lemma 1. Let a point (x, p) have a bounded negative continuation φ(t, x, p) and (x̄, p̄) ∈
∈ A(x, p, φ), p̄ 6∈ Γ̄. Then x(t, x̄, p̄) ∈ B.
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Proof. Denote Ap̄(x, p, φ) = {x̄ : (x̄, p̄) ∈ A(x, p, φ)}. We prove that

π(t, Ap̄(x, p, φ), p̄) = (Ap̄·t(x, p, φ), p̄ · t) (35)

for p̄ 6∈ Γ̄, p̄ · t 6∈ Γ̄, t ≥ 0. Ap̄(x, p, φ) can be characterized as the collection of all points
(x̄, p̄) such that there exist sequences (xn, pn) and tn → −∞ such that pn = p · tn → p̄, xn =
= φ(tn, x, p)→ x̄.

Let us fix t > 0 and set x̂n = Φ(t, pn)xn and p̂n = pn · t. The sequence (x̂n, p̂n) is bounded.
Choose a convergent subsequence so that (x̂n, p̂n) → (x̂, p̂) = (Φ(t, p̄)x̄, p̄ · t). On the other
hand, (x̂n, p̂n) = π(t, xn, pn) = φ(tn + t, x, p). Hence, (x̂, p̂) ∈ Ap̄·t(x, p, φ).

To prove the inverse inclusion in (35), we consider x̂ ∈ Ap̄·t(x, p, φ) and sequences (x̂n, p̂n)
and t̂n → −∞ such that

p̂n = p · t̂n → p̄ · t, x̂n = φ(t̂n, x, p)→ x̂, n→∞.

The bounded sequence φ(t̂n − t, x, p) has a convergent subsequence such that φ(t̂n − t, x, p)→
→ x̃, p · (t̂n− t)→ p̄. Hence, x̃ ∈ Ap̄(x, p, φ). We have proved (35), i.e., π maps Ap̄(x, p, φ) onto
Ap̄·t(x, p, φ) and every (x̄, p̄) ∈ Ap̄(x, p, φ), p̄ 6∈ Γ̄ has a negative continuation. Clearly, (x̄, p̄) ∈ B.

Lemma 2. Suppose that x(t, x, p) ∈ B+ and (x̄, p̄) ∈ Ω(x, p), p̄ 6∈ Γ̄; then x(t, x̄, p̄) ∈ B.

Proof. Denote Ωp̄(x, p) = {x̄ : (x̄, p̄) ∈ Ω(x, p)}. By analogy with the proof of Lemma 1, we
prove that

π(t,Ωp̄(x, p), p̄) = (Ωp̄·t(x, p, φ), p̄ · t) (36)

for p̄ 6∈ Γ̄, p̄ · t 6∈ Γ̄, t ≥ 0. Then every point (x̄, p̄) ∈ Ω(x, p), p̄ 6∈ Γ̄, has a negative continuation
and (x̄, p̄) ∈ B.

Assumption. In the next lemmas, we assume that B = {0} ×M.

Lemma 3. Let tk → −∞ and let there exist continuations of points (xk, pk) on [tk, 0] such that

‖φ(t, xk, pk)‖ ≤M for t ∈ [tk, 0].

Assume that (x̄, p̄) = lim
k→∞

(xk, pk), p̄ 6∈ Γ̄; then (x̄, p̄) has a negative continuation and (x̄, p̄) ∈ U,
i.e. ‖φ(t, x̄, p̄)‖ → 0, t→ −∞.

Proof. The sequence (φ(t1, xk, pk), pk · t1), k = 1, 2, ..., is bounded. Assume that there exist
limits (otherwise, we consider subsequences)

x1
k = φ(t1, xk, pk)→ x̄1, p

1
k = pk · t1 → p̄1, k →∞.

If p̄1 ∈ Γ̄, we consider the sequence t1 + ε with sufficiently small ε > 0.
By the theorem on continuous dependence of solutions of impulsive system on parameters,

we get

π(−t1, x̄1, p̄1) = (Φ(−t1, p̄1)x̄1, p̄1 · (−t1)) = lim
k→∞

π(−t1, φ(t1, xk, pk)) =

= lim
k→∞

(Φ(−t1, p1
k)x

1
k, p

1
k · (−t1)) = lim

k→∞
(xk, pk) = (x̄, p̄).

Hence, the point (x̄, p̄) has a continuation on [t1, 0], which is bounded by a constant M.
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Next, we consider the sequence φ(t2 − t1, x
1
k, p

1
k), p

1
k · (t2 − t1)), k = 2, 3, ..., and show

analogously a continuability of the point (x̄, p̄) on [t2, 0], and so on. Hence, a continuation of
the point (x̄, p̄) exists for t ≤ 0 and is bounded.

By Lemma 1, the α-limit set of the point (x̄, p̄) belongs to B. Since B̄ is trivial, we get
x(t, x̄, p̄)→ 0, t→ −∞, i.e., (x̄, p̄) ∈ U.

Lemma 4. S = B+. The set S is closed and there exist constants K ≥ 1 and β > 0 such that,
for all (x, p) ∈ S, one has

‖Φ(t, p)x‖ ≤ Ke−βt‖x‖, t ≥ 0. (37)

If p ∈ Γ̄, then S(p) is closed in p− 0 and p+ 0.

Proof. Let (xk, pk) ∈ S and let (xk, pk) → (x, p), k → ∞, p 6∈ Γ̄. If x = 0, then (x, p) ∈ S.
If x 6= 0, we consider the solution x(t, x, p). It is bounded. By Lemma 3, Ω(x, p) ∈ B. Using the
triviality of B, we have x(t, x, p)→ 0, t→∞, i.e., x(t, x, p) ∈ S.

If p ∈ Γ̄, we consider positive and negative sequences pk → p and prove analogously that
S(p) is closed in p− 0 and p+ 0.

There exists T > 0 such that, for all (x, p) ∈ S, one has

‖Φ(t, p)x‖ ≤ 1
2
‖x‖ for t ≥ T. (38)

If this were not true, then there would exist (xk, pk) ∈ S and tk →∞ such that ‖Φ(tk, pk)xk‖ ≥
≥ 1

2
‖xk‖. Let ‖xk‖ = 1. Then ‖Φ(tk, pk)xk‖ ≥

1
2
. Denote x̂k = Φ(tk, pk)xk, p̂k = pk · tk. These

sequences are bounded. Therefore, there exists a convergent subsequence (x̂k, p̂k) → (x̄, p̄).
Let p̄ 6∈ Γ̄. Then, by Lemma 4, (x̄, p̄) ∈ S. On the other hand, by Lemma 1, (x̄, p̄) ∈ U. Hence,

‖x̄‖ = 0. This contradicts ‖x̄‖ ≥ 1
2
.

Let now p̄ ∈ Γ̄. Assume that there exists an infinite subsequence tkj of the sequence tk such
that points pkj · tkj are located on the positive side of Γ̄ obtained during the motion along the
trajectories p · t. We consider the subsequence tkj + ε with sufficiently small ε > 0. Using the

piecewise continuity of Φ(t, p), one has ‖Φ(ε, pkj · tkj )x‖ ≥
‖x‖
2
, hence

‖Φ(ε+ tkj , pkj )xkj‖ ≥ ‖Φ(ε, pkj · tkj )Φ(tkj , pkj )xkj‖ ≥
1
4
‖xkj‖ =

1
4
.

Taking boundedness into account, we conclude that, there exists a convergent subsequence
Φ(ε+tkj , pkj )xkj → x∗, pkj ·(ε+tkj )→ p∗, k →∞, and p∗ 6∈ Γ̄.By construction, (x∗, p∗) ∈ S; on

the other hand, Lemma 1 implies that (x∗, p∗) ∈ U. Then x∗ = 0, which contradicts ‖x∗‖ ≥ ν

4
.

If a positive subsequence tkj does not exist, we choose another subsequence tkl such that
points pkl · tkl are located on the negative side of Γ̄. In this case, we consider the subsequence
tkl − ε with sufficiently small ε > 0 and arrive at a contradiction as before.

Define β and K as follows:

β =
ln 2
T
, K = 2 sup{‖Φ(t, ϕ)x‖ : (ϕ, x) ∈ S, ‖x‖ = 1, 0 ≤ t ≤ T},

where T is given in (38). (37) is proved by induction analogously to [16, p. 51].
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Lemma 5. U = B−u . If (x, p) ∈ U, the function Φ(t, p)x is well defined for all t ≤ 0. The set U
is closed and there exist constants K ≥ 1 and β > 0 such that, for all (x, p) ∈ U, one has

‖Φ(t, p)x‖ ≤ Keβt‖x‖, t ≤ 0. (39)

If p ∈ Γ̄, then U(p) is closed in p− 0 and p+ 0.

Proof. Let (xk, pk) ∈ U and (xk, pk) → (x, p), p 6∈ Γ̄. If x = 0, then (x, p) ∈ U. Let x 6= 0.
By Lemma 3, (x, p) has a negative continuation φ(t, x, p) such that φ(t, x, p)→ 0, t→ −∞, i.e.,
(x, p) ∈ U.

There exists T < 0 such that, for all (x, p) ∈ U, one has

‖Φ(t, p)x‖ ≤ 1
2
‖x‖, t ∈ (−∞, T ). (40)

If this were not true, then there would exist (xk, pk) and tk → −∞ such that ‖Φ(tk, pk)xk‖ ≥

≥ ‖xk‖
2

. Choose ‖xk‖ = 1; then ‖Φ(tk, pk)xk‖ ≥ 1/2. The sequence (x̂k, p̂k) = (Φ(tk, pk)xk, ϕk ·
tk) is bounded. Therefore, there exists a convergent subsequence (x̂k, p̂k) → (x̂, p̂). Let p̂ 6∈
Γ̄. Since U is closed, we have (x̂, p̂) ∈ U. On the other hand, the solutions x(−tk, x̂k, p̂k) are
uniformly bounded and −tk → +∞ as k → ∞; therefore, x(t, x̂, p̂) ∈ S. Then ‖x̂‖ = 0, which
contradicts ‖x̂‖ ≥ 1/2. If p̂ ∈ Γ̄, we consider the sequence tk + ε analogously to the proof of
Lemma 4.

Define β = −(ln 2)/T and

K =
1
2

sup{‖Φ(t, p)x‖ : (x, p) ∈ U, ‖x‖ ≤ 1, t ∈ [T, 0]},

where T is given in (40). (39) is proved analogously to [16, p. 52].

Lemma 6. For p ∈M, one has

dimU(η) ≥ n− dimS(p),

where η ∈ ω(p) (ω(p) is an ω-limit set of the trajectory p · t).

Proof. Let K(p) be a subspace of Rn such that

K(p) ∩ S(p) = {0}, K(p)⊕ S(p) = R
n. (41)

Let {tk} be a sequence of positive numbers such that tk → +∞. Denote

µk = min{‖x(tk, x, p)‖ : x ∈ K(p), ‖x‖ = 1}.

Clearly, µk → +∞ as tk → +∞. Let p · tk = pk → η ∈ ω(p). Denote Kk(p) = Φ(tk, p)K(p).
Φ(tk, p) is a one-to-one mapping of K(p) onto the linear subspace Kk(p). For any x ∈ Kk(p)
with ‖x‖ ≤ 1, one has ‖Φ(−tk, pk)x‖ ≤ µ−1

k .
By definition, one has

dimKk(p) = dimK(p) = n− dimS(p), k ≥ 0.

There exists a subsequence of tk such that Kk(p) → K, k → ∞, and dimK = dimK(p). To
prove that

K ⊂ U(η), (42)
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we consider a sequence (xk, pk), ‖xk‖ ≤ 1, xk ∈ Kk, pk = p ·tk. Suppose that xk → x′, k →∞.
It suffices to prove that (x′, η) ∈ U(η).

For x ∈ Kk, t ∈ [−tk, 0], the trajectory x(t, x, pk) is well defined. There exists M > 0 such
that

sup
−tk≤t≤0

‖x(t, x, pk)‖ ≤M (43)

for x ∈ Kk, ‖x‖ ≤ 1, k = 1, 2, .... If this were not true, then there would exist sequences
xk, ‖xk‖ = 1, xk ∈ Kk, and βk → ∞ such that βk = sup−tk≤t≤0 ‖x(t, xk, pk)‖. Denote
τk ∈ [0, tk] such that βk/2 ≤ x(−τk, x, pk) ≤ βk. Let us consider the sequence (ξk, ηk) =
= (β−1

k x(−τk, xk, pk), pk · (−τk)). Obviously,

1/2 ≤ ‖ξk‖ ≤ 1, (44)

and

‖x(τk, ξk, ηk)‖ = β−1
k ‖xk‖ → 0, k →∞,

‖x(−tk + τk, ξk, ηk)‖ = β−1
k ‖Φ(−tk, pk)xk‖ ≤ β−1

k µ−1
k → 0, k →∞.

If (ξk, ηk) → (ξ̄, η̄), then (ξ̄, η̄) ∈ B, hence ξ̄ = 0. This contradicts (44). Therefore, (43) is valid.
Using (43) and Lemma 1, one has (x′, η) ∈ U. Hence, dimU(η) ≥ dimKk(p) = n − dimS(p),
which completes the proof of the lemma.

Lemma 7. Let p ∈M. Then the semiflow π admits exponential dichotomy over the ω-limit set
ω(p). The semiflow π admits exponential dichotomy over minimal sets of the flow ϕ · t.

Proof. Analogously to the proof of Lemma 1 in [18], we prove that, for each p ∈ M, the
function dimS(p · t) is a nonincreasing function of t :

dimS(p · t) ≤ dimS(p · τ) for t ≥ τ. (45)

Inequality (45) implies that there exist limits

lim
t→−∞

dimS(p · t) = k1, lim
t→∞

dimS(p · t) = k2.

Taking into account the last limits and the fact that the space Rn is finite-dimensional, we
get dimS(η) = k2 for all η ∈ ω(p). By Lemma 6, dimU(η) = n− k2. Therefore, the semiflow π
admits exponential dichotomy over ω(p).

Proof of Theorem 3. The semiflow π admits exponential dichotomy overM(0); therefore,
π has no nontrivial bounded solutions, i.e.,

B0 = {0} ×M(0).

We shall show that there exists δ > 0 such that the semiflow π does not have nontrivi-
al bounded solutions over M(δ). If this were not true, then there would exist a sequence
{δn}, δn > 0, δn → 0, n → +∞ and a sequence ân(ϕ) ∈ A(δn), such that system
(31) – (33) with â(ϕ) = ân(ϕ) = (ã, Ã, B̃) would have a nontrivial bounded solution
xn(t, x0

n, ϕ
0
n, ân), xn(0, x0

n, ϕ
0
n, ân) = x0

n. Denote

βn = sup
t∈R
{‖xn(t, x0

n, ϕ
0
n, ân)‖}.
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Choose tn ∈ R such that ‖xn(tn, x0
n, ϕ

0
n, ân)‖ ≥ βn

2
. Let

(ξn, ηn) = (β−1
n xn(tn, x0

n, ϕ
0
n, ân), σ(tn, ϕ0

n, ân)).

Then ‖ξn‖ ≥
1
2

and ‖xn(t, ξ0
n, η

0
n, ân)‖ ≤ 1 for all t ∈ R. The sequence (ξn, ηn) is bounded.

We choose a convergent subsequence so that (ξn, ηn) → (ξ, η). Without loss of generality, we

may assume that η 6∈ Γ̄. The point (ξ, η) has the following properties: η ∈ M(0), ‖ξ‖ ≥ 1
2
. By

Lemma 3, the solution x(t, ξ, η, 0) has a negative continuation and ‖x(t, ξ, η, 0)‖ ≤ 1, t ∈ R.
This contradicts the triviality of B0. Hence, there exists δ0 > 0 such that the semiflow π does
not have nontrivial solutions overM(δ0).

Let us consider the set

Θk = {p = (ϕ, ã) ∈M(δ0) : dimS(p) = k, dimU(p) = n− k}.

The set Θk is closed for p 6∈ Γ̄ and closed in p− 0 and p+ 0 if p ∈ Γ̄. Therefore, for p ∈ M(δ0),
there exists a compact neighborhood of Θk(p) = {x : (x, p) ∈ (Θk) that is disjoint with the
other sets Θj , j 6= k. Since the compact set M(0) belongs to Θk, one can see that, for some
δ1 ≤ δ0, the setM(δ1) is disjoint with the other sets Θj , j 6= k.

We show that dimS(p) = k for all p ∈ M(δ1). Let p0 be a point such that dimS(p0) < k
(sign "<"is chosen for definiteness). The function dimS(p · t) is nonincreasing; therefore, one
has dimS(η) = k1 < k for all η ∈ α(p) (α(p) is the set of α-limit points of the trajectory p · t.)
By Lemma 7, the semiflow π is exponentially dichotomous over the minimal set A0 contained
in α(p). Moreover, dimS(ξ) = k1, ξ ∈ A0. Hence, A0 ⊂ Θk1 , contrary to the fact thatM(δ1)
contains only the set Θk. We have proved that the semiflow π is exponentially dichotomous
over the setM(δ1), and, correspondingly, system (31) – (33) is exponentially dichotomous for
(ã, Ã, B̃) ∈ A(δ1). The theorem is proved.

Now we consider a linearized system with small parameter

dϕ

dt
= a0(ϕ) + εa1(ϕ, ε), (46)

dx

dt
= (A0(ϕ) + εA1(ϕ, ε))x, ϕ ∈ Tm \ Γ, (47)

∆x
∣∣∣
ϕ∈Γ

= (B0(ϕ) + εB1(ϕ, ε))x, (48)

where ε ∈ (−ε0, ε0), ε0 > 0.

Theorem 4. Suppose that the following conditions are satisfied:
1) for ε = 0, system (46) – (48) satisfies the conditions of Theorem 2;
2) functions a1, A1, and B1 have continuous partial derivatives with respect to ϕ, ε up to the

order s inclusively for ϕ ∈ Tm \ Γ and ε ∈ (−ε0, ε0), and all their partial derivatives have
continuous continuations to the left-hand and right-hand sides of the manifold Γ and have di-
scontinuities of the first kind for ϕ ∈ Γ.

Then there exists ε1 ∈ (0, ε0) such that, for ε ∈ (−ε1, ε1), system (46) – (48) is exponenti-
ally dichotomous with the projector P (ϕ, ε) and the Green function G(t, τ, ϕ, ε) which have
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continuous partial derivatives with respect to ϕ, ε up to the s-th order inclusively on the set
ϕ ∈ Tm \ Γ, ε ∈ (−ε1, ε1), and, moreover,∥∥∥∥∥∂|j|G(t, τ, ϕ, ε)

∂ϕj̄∂εjm+1

∥∥∥∥∥≤ K̄j exp(−(α1 − |j|ω)|t− τ |), (49)

where j = (j̄, jm+1) = (j1, ..., jm, jm+1), |j| = j1 + ... + jm+1, |j| ≤ s, ϕj = ϕj11 , ..., ϕ
jm
m , α1 =

= α−ν, ν is an arbitrarily small positive value, K̄j = K̄j(ν) is a constant independent of ϕ ∈ Tm,
and ω = ‖∂a(ϕ)/∂ϕ‖0.

Proof. By Theorem 3, there exists ε1 > 0 such that system (46) – (48) has exponential
dichotomy for ε ∈ (−ε1, ε1). Instead of equation (46) we consider the equations

dϕ

dt
= a0(ϕ) + εa1(ϕ, ε),

dε

dt
= 0 (50)

defined on the product Tm × (−ε1, ε1). The impulsive system (50), (47), (48) is defined on
the direct product of the manifold Tm × (−ε1, ε1) and Euclidean space Rn and subjected to
the impulsive action on the submanifold Γ̄ = Γ × (−ε1, ε1) of codimension 1 of the manifold
Tm × (−ε1, ε1). System (50), (47), (48) satisfies conditions of Theorem 2. Hence, the projector
P (ϕ, ε) and the Green function G(t, τ, ϕ, ε) have continuous partial derivatives with respect to
ϕ, ε up to the s-th order inclusively on the set ϕ ∈ Tm \Γ, ε ∈ (−ε1, ε1). The theorem is proved.

4. Integral set. In this section, by CsΓ(Tm × (−ε0, ε0)) we denote the space of functions or
matrices a(ϕ, ε) with the following properties:

i) a(ϕ, ε) has continuous partial derivatives with respect to ϕ, ε up to the order s inclusively
for ϕ ∈ Tm \ Γ, ε ∈ (−ε0, ε0),

ii) all partial derivatives of a(ϕ, ε) have continuous continuations to the left-hand and right-
hand sides of the manifold Γ× (−ε0, ε0).

For f(ϕ, ε) ∈ CsΓ(Tm × (−ε0, ε0), we denote

‖f(ϕ, ε)‖s = max
0≤|j|≤s

sup
ϕ∈Tm\Γ

sup
ε∈(−ε0,ε0)

∥∥∥∥∥ ∂|j|f(ϕ, ε)
∂ϕj̄∂εjm+1

∥∥∥∥∥,
where j = (j̄, jm+1) = (j1, ..., jm, jm+1), ϕj = (ϕj11 ...ϕ

jm
m ), |j| = j1 + ...+ jm+1.

Theorem 5. Assume that system (4) – (6) is exponentially dichotomous and the right-hand
sides of system (1) – (3) have continuous partial derivatives with respect to x, ϕ, ε up to the s-th
(s ≥ 1) order inclusively, where

(x, ϕ, ε) ∈ O = {‖x‖ ≤ d, ϕ ∈ Tm, ε ∈ (−ε0, ε0)}. (51)

Then there exists ε′ ∈ (0, ε0] such that, for each ε ∈ (−ε′, ε′), system (1) – (3) has a unique integral
manifold x = u(ϕ, ε), ϕ ∈ Tm, where u(ϕ, ε) have continuous partial derivatives with respect to
ϕ, ε up to the (s − 1)-th (s ≥ 1) order inclusively for ϕ ∈ Tm \ Γ, ε ∈ (−ε′, ε) and has the
discontinuities of the first kind for ϕ ∈ Γ.

Proof. We rewrite system (1) – (3) in the form

dϕ

dt
= a0(ϕ) + b(ϕ, x, ε), (52)
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dx

dt
= (A0(ϕ) +A1(ϕ, x, ε))x+ f(ϕ, ε), ϕ ∈ Tm \ Γ, (53)

∆x
∣∣∣
ϕ∈Γ

= (B0(ϕ) +B1(ϕ, x, ε))x+ g(ϕ, ε), (54)

where f(ϕ, 0) = g(ϕ, 0) = 0, b(ϕ, x, 0) = O(‖x‖), A1(ϕ, x, 0) = O(‖x‖), and B1(ϕ, x, 0) =
= O(‖x‖). We construct the sequence of sets

{x = uk(ϕ, ε) : Tm × (−ε0, ε0)→ R
n}, k = 0, 1, ...

where u0(ϕ, ε) ≡ 0 and uk+1(ϕ, ε) is an invariant set of the system

dϕ

dt
= a0(ϕ) + b(ϕ, uk(ϕ, ε), ε), (55)

dx

dt
= (A0(ϕ) +A1(ϕ, uk(ϕ, ε), ε))x+ f(ϕ, ε), ϕ ∈ Tm \ Γ, (56)

∆x
∣∣∣
ϕ∈Γ

= (B0(ϕ) +B1(ϕ, uk(ϕ, ε), ε))x+ g(ϕ, ε). (57)

There exists ε1 > 0 such that ‖b(ϕ, 0, ε)‖s ≤ δ, ‖A1(ϕ, 0, ε)‖s ≤ δ, ‖B1(ϕ, 0, ε)‖s ≤ δ for
ε ∈ (−ε0, ε0) and the constant δ > 0 defined in Theorem 3. By Theorem 4, the linearized
system

dϕ

dt
= a0(ϕ) + b(ϕ, 0, ε), (58)

dx

dt
= (A0(ϕ) +A1(ϕ, 0, ε))x, ϕ ∈ Tm \ Γ, (59)

∆x
∣∣∣
ϕ∈Γ

= (B0(ϕ) +B1(ϕ, 0, ε))x, (60)

is exponentially dichotomous with a piecewise smooth projector P1(ϕ, ε) and the Green functi-
on G1(t, τ, ϕ, ε) satisfying estimate (49).

The function u1(ϕ, ε) is defined by the formula

u1(ϕ, ε) =

∞∫
−∞

G1(0, τ, ϕ, ε)f(σ1(τ, ϕ, ε), ε)dτ+

+
∑

j∈I1(ϕ,ε)

G1(0, t1j (ϕ, ε), ϕ, ε)g(σ1
j (ϕ, ε), ε), (61)

where σ1(t, ϕ, ε) is the solution of equation (58), t1j (ϕ, ε), j ∈ I1(ϕ, ε) are points where σ1(t, ϕ, ε)
intersects the manifold Γ, and ϕ1

j (ϕ, ε) = σ(t1j (ϕ, ε), ϕ, ε).
In view of the smoothness of the functions t1j (ϕ, ε) and the piecewise smoothness of the

Green function G1(0, τ, ϕ, ε), the function u1(ϕ, ε) has continuous partial derivatives with
respect to ϕ, ε up to the order s inclusively for ϕ ∈ Tm \ Γ and ε ∈ (−ε1, ε1) and the functions
∂|j|u(ϕ, ε)/∂ϕj∂εjm+1 , j = (j̄, jm+1) = (j1, ..., jm+1), 1 ≤ |j| ≤ s, have discontinuities of the

ISSN 1562-3076. Нелiнiйнi коливання, 1999, т. 2, № 4 555



first kind for ϕ ∈ Γ. Differentiating formula (61) s times and taking into account (23) and (49),
we get

‖u1(ϕ, ε)‖s ≤ C1(‖f(ϕ, ε)‖s + ‖g(ϕ, ε)‖s), (62)

where C1 is some positive constant.
Choose ε2 > 0 such that, for ε ∈ (−ε2, ε2) and u(ϕ, ε) ∈ CsΓ(Tm × (−ε2, ε2) satisfying (62),

the following inequalities are valid:

‖b(ϕ, u(ϕ, ε), ε)‖s ≤ δ, ‖A1(ϕ, u(ϕ, ε), ε)‖s ≤ δ, ‖B1(ϕ, u(ϕ, ε), ε)‖s ≤ δ,

where the constant δ > 0 is defined in Theorem 3.
Let a piecewise smooth function up(ϕ, ε), ϕ ∈ Tm, ε ∈ (−ε2, ε2), be an invariant set of

system (55) – (57) for k = p. We assume that up(ϕ, ε) belongs to CsΓ(Tm) × (−ε2, ε2) and sati-
sfies inequality (62). Then the linearized system (55) – (57) (if f = g ≡ 0) is exponentially
dichotomous with the projector Pp(ϕ, ε) and the Green function Gp(t, τ, ϕ, ε) satisfying esti-
mate (15). We define the invariant set up+1(ϕ, ε) by the formula

up+1(ϕ, ε) =

∞∫
−∞

Gp(0, τ, ϕ, ε)f(σp(τ, ϕ, ε), ε), ε)dτ+

+
∑

j∈Ip(ϕ,ε)

Gp(0, t
p
j (ϕ, ε), ϕ, ε)g(σpj (ϕ

p
j (ϕ, ε), ε), ε), (63)

where σp(τ, ϕ, ε) is the solution of (55), tpj (ϕ, ε), j ∈ Ip(ϕ, ε), are the points of intersections of
σp(τ, ϕ, ε) with the manifold Γ, and σpj (ϕ, ε) = σp(t

p
j (ϕ, ε), ϕ, ε).

Differentiating (63) and and taking into account (23) and (49), we get

‖up+1(ϕ, ε)‖s ≤ C1(‖f(ϕ, ε)‖s + ‖g(ϕ, ε)‖s). (64)

Hence, we obtain the uniform boundedness of the sequence {un(ϕ, ε)} for ϕ ∈ Tm, ε ∈
∈ (−ε2, ε2).

Define wk+1(ϕ, ε) = uk+1(ϕ, ε) − uk(ϕ, ε). Since the functions uk(ϕ, ε) are smooth for ϕ ∈
∈ Tm \ Γ, ε ∈ (−ε2, ε2) and have discontinuities of the first kind for ϕ ∈ Γ, the function
wk+1(ϕ, ε) satisfies the following equation:

∂wk+1

∂ϕ
(a0(ϕ) + b(ϕ, uk, ε)) +

∂uk
∂ϕ

(b(ϕ, uk, ε)− b(ϕ, uk−1, ε)) =

= (A0(ϕ) +A1(ϕ, uk, ε))wk+1 + (A1(ϕ, uk, ε)−

−A1(ϕ, uk−1, ε))uk, ϕ ∈ Tm \ Γ,

∆wk+1

∣∣∣
ϕ∈Γ

= (B0(ϕ) +B1(ϕ, uk, ε))wk+1+

+(B1(ϕ, uk, ε)−B1(ϕ, uk−1, ε))uk.
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Hence, wk+1(ϕ, ε) determines an invariant set of system (55) – (57) with f(ϕ, ε) =
= (A1(ϕ, uk, ε) − A1(ϕ, uk−1, ε))uk − (∂uk/∂ϕ)(b(ϕ, uk, ε) − b(ϕ, uk−1, ε)), g(ϕ, ε) =
= (B1(ϕ, uk, ε)−B1(ϕ, uk−1, ε))uk. We can express wk+1(ϕ, ε) in the form

wk+1(ϕ, ε) =

∞∫
−∞

Gk(0, τ, ϕ, ε)

[(
A1(σk(τ, ϕ, ε), uk(σk(τ, ϕ, ε), ε), ε)−

− A1(σk(τ, ϕ, ε), uk−1(σk(τ, ϕ, ε), ε), ε)

)
uk(σk(τ, ϕ, ε), ε)−

− ∂uk(σk(τ, ε), ε)
∂ϕ

(
b(σk(τ, ϕ, ε), uk(σk(τ, ϕ, ε), ε), ε)−

− b(σk(τ, ϕ, ε), uk−1(σk(τ, ϕ, ε), ε), ε)

)]
dτ+

+
∑

j∈Ik(ϕ,ε)

Gk(0, tkj , ϕ, ε)(B1(σkj , uk(σ
k
j , ε), ε)−B1(σkj , uk−1(σkj , ε), ε)). (65)

By (65), we have

‖wk+1(ϕ, ε)‖0 ≤ C0(ε)‖wk(ϕ, ε)‖0,

where C0(ε) → 0, ε → 0. There exists ε′ ∈ [0, ε2] such that C0(ε) ≤ ρ0 < 1 for ε ∈ (−ε′, ε′).
Then

‖wk+1(ϕ, ε)‖0 ≤ ρk−1
0 ‖u1(ϕ, ε)‖0 ≤ ρk−1

0 C1(‖f(ϕ, ε)‖0 + ‖g(ϕ, ε)‖0). (66)

Inequality (66) proves the convergence of the sequence {up(ϕ, ε), p = 0, 1, ...} in the space
CΓ(Tm × (−ε′, ε′)). To show that u(ϕ, ε) ∈ Cs−1

Γ (Tm × (−ε′, ε′)), we use the uniform
boundedness and equicontinuity of the sequence Druk(ϕ, ε), k = 0, 1, ..., r ≤ s, which follow
from estimate (64). By the Arzela lemma, any infinite subsequence of Druk(ϕ, ε), k = 0, 1, ...,
uniformly converges to some function v(r)(ϕ, ε). This, with the use of the limit lim

k→∞
uk(ϕ, ε) =

u(ϕ, ε), proves that Dru(ϕ, ε) = v(r)(ϕ, ε) and u(ϕ, ε) ∈ Cs−1
Γ (Tm × (−ε′, ε′)). The theorem is

proved.
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