UDC 517.9

ON INVARIANT SETS OF DIFFERENTIAL EQUATIONS WITH IMPULSES*

ПРО ІНВАРІАНТНІ МНОЖИНИ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ З ІМПУЛЬСАМИ

V.I. Tkachenko

Inst. Math. Nat. Acad. Sci. Ukraine, Ukraine, 252601, Kyiv 4, Tereshchenkivs'ka str.,3 e-mail: vitk@imath.kiev.ua

For a system of ordinary differential equations depending on a small parameter, defined on the direct product of a torus and aEuclidean space, and subjected to impulsive action on a submanifold of codimension 1 of the torus, we study the problem of existence of a piecewise smooth invariant set.

Вивчається задача існування кусково-гладкої інваріантної множини системи диференціальних рівнянь, залежних від малого параметра та заданих на прямому добутку тора та евклідового простору з імпульсною дією на підмноговиді тора корозмірності 1.

1. Introduction. We consider an impulsive system of the form

$$\frac{d\varphi}{dt} = a(\varphi, x, \varepsilon),\tag{1}$$

$$\frac{dx}{dt} = A(\varphi, \varepsilon)x + f(\varphi, x, \varepsilon), \quad \varphi \in \mathbb{T}_m \setminus \Gamma,$$
(2)

$$\Delta x \bigg|_{\varphi \in \Gamma} = B(\varphi, \varepsilon) x + g(\varphi, x, \varepsilon), \tag{3}$$

where $x \in \mathbb{R}^n$, $\varphi \in \mathbb{T}_m$, \mathbb{T}_m is an *m*-dimensional torus, Γ is a smooth compact submanifold of \mathbb{T}_m of codimension 1, and $\varepsilon \in \mathbb{R}$ is a small parameter. Δx stands for the jump of the function x at the point φ obtained during the motion along the trajectory of equation (1).

We suppose that $f = O(||x||^2)$, $g = O(||x||^2)$ as $\varepsilon = 0$. Therefore, system (1) - (3) has the trivial invariant set $S_0 = \{(0, \varphi) \in \mathbb{R}^n \times \mathbb{T}_m\}$ for $\varepsilon = 0$. We are interested in the existence of piecewise continuous (piecewise smooth) invariant set of system (1) - (3) for small $\varepsilon \neq 0$. Partial results of this paper were communicated in [1]. This problem for systems without impulses was studied by many authors [2 - 6]. The invariant sets in particular cases of the impulsive system were considered in [7 - 13].

^{*} Partially supported by INTAS (Grant No. 96-0915) and the Ukrainian Ministry on Science and Technology (Grant No. 1.4/269).

The article is organized as follows: In section 2, we introduce the concept of exponential dichotomy for the linearized system

$$\frac{d\varphi}{dt} = a_0(\varphi),\tag{4}$$

$$\frac{dx}{dt} = A_0(\varphi)x, \quad \varphi \in \mathbb{T}_m \setminus \Gamma, \tag{5}$$

$$\Delta x \bigg|_{\varphi \in \Gamma} = B_0(\varphi) x, \tag{6}$$

where $a_0(\varphi) = a(\varphi, 0, 0)$, $A_0(\varphi) = A(\varphi, 0)$, and $B_0(\varphi) = B(\varphi, 0)$. The properties of separatrix subspaces of the linearized system are studied. In section 3, we prove that the exponential dichotomy for system (4) – (6) is not destroyed by small perturbations of the right-hand sides of the system. In section 4, conditions for the existence of an invariant set of system (1) – (3) for small $\varepsilon \neq 0$ are obtained.

2. Linear system. Let us consider system (4) – (6). We assume that $a_0(\varphi)$ is a Lipschitz function in $\varphi \in \mathbb{T}_m$ and the functions $A_0(\varphi)$, $B_0(\varphi)$ are continuous. Equation (4) has solutions $\varphi \cdot t =$ $= \sigma(t, \varphi), \sigma(0, \varphi) = \varphi$. Suppose that solutions $\sigma(t, \varphi)$ intersect the manifold Γ transversally. The set $I(\varphi)$ of points t where the solution $\sigma(t, \varphi)$ intersects the compact manifold Γ is at most countable. Note that it can be finite or empty. We denote by $t_j(\varphi), j \in I(\varphi) \subseteq \mathbb{Z}$ the ascending sequence of points t where $\sigma(t, \varphi)$ intersects the manifold Γ , $t_0(\varphi) = \max\{t < 0 : \varphi \cdot t \in$ \in $\Gamma \}$, $t_1(\varphi) = \min\{t \ge 0 : \varphi \cdot t \in$ $\Gamma \}$. There exists $\theta > 0$ such that

$$t_j(\varphi) - t_{j-1}(\varphi) \ge \theta \tag{7}$$

for all $\varphi \in \mathbb{T}_m, j \in I(\varphi)$.

7

For fixed φ , system (4) – (6) has the following form:

$$\frac{dx}{dt} = A_0(\sigma(t,\varphi))x, \quad t \neq t_i(\varphi), \tag{8}$$

$$\Delta x \bigg|_{t=t_i(\varphi)} = B_0(\sigma_i(\varphi))x, \tag{9}$$

where $\sigma_i(\varphi) = \sigma(t_i(\varphi), \varphi)$. Let $x(t, \varphi, x_0)$ be a solution of the initial-value problem for (8), (9) with the initial value $x(0, \varphi, x_0) = x_0$. Denote by $X(t, \varphi)$, $t \ge 0$ the fundamental solution for system (8), (9), $X(t, \varphi)x_0 = x(0, \varphi, x_0)$, $X(0, \varphi) = I$, I is the identity matrix. The solution $x(t, \varphi, x_0)$ is piecewise continuous and we assume that it is left-side continuous. It has discontinuities in $t = t_i(\varphi)$. It is supposed that $\det(I + B(\varphi)) = 0$ for some or all $\varphi \in \Gamma$. Therefore, the solutions $x(t, \varphi, x_0)$ cannot be continued on the negative semi-axis t < 0 or can be ambiguously continued.

Using the uniqueness of solutions for equation (4) and transversality of intersections $\sigma(t, \varphi)$ with Γ , we conclude that the theorem on continuous dependence on initial conditions and parameters [8, 14] is valid for impulsive system (4) – (6): for a solution $x(t, \varphi_0, x_0)$ of system (4) – (6) and for an arbitrary $\varepsilon > 0$ and T > 0, there exists $\delta = \delta(\varepsilon, T) > 0$ such that, for any other solution $x(t, \varphi_1, x_1)$ of (4) – (6) with initial conditions (φ_1, x_1) , the inequalities $||x_0 - x_1|| < \delta$, $\rho(\varphi_0, \varphi_1) < \delta$ imply that $||x(t, \varphi_0, x_0) - x(t, \varphi_1, x_1)|| < \varepsilon$ for $0 \le t \le T$ satisfying $|t - t_i| > \varepsilon$, where t_i are the moments in which $\sigma(t, \varphi_0)$ intersects the manifold Γ , and $\rho(., .)$ is a metric on the torus \mathbb{T}_m .

We distinguish the left-hand and right-hand sides of manifold Γ . We call a sequence $\varphi_n \to \varphi \in \Gamma$ negative if there exists a sequence of positive numbers $\delta_n \to 0, n \to \infty$ such that $\varphi_n \cdot \delta_n \in \Gamma$. Analogously, a sequence $\varphi_n \to \varphi \in \Gamma$ is said to be positive if there exists a sequence of negative numbers $\delta_n \to 0, n \to \infty$ such that $\varphi_n \cdot \delta_n \in \Gamma$.

Denote by $C^s(\mathbb{T}_m)$ the space of s times continuously differentiable functions or matrices on \mathbb{T}_m . By $C^s_{\Gamma}(\mathbb{T}_m)$ we denote the space of functions or matrices $a(\varphi)$ with the following properties:

i) $a(\varphi)$ has continuous partial derivatives up to the order s inclusively for $\varphi \in \mathbb{T}_m \setminus \Gamma$;

ii) all partial derivatives of $a(\varphi)$ have continuous continuations to the left-hand and righthand sides of manifold Γ .

For $f(\varphi) \in C^s_{\Gamma}(\mathbb{T}_m)$, we denote the norm

$$\|f(\varphi)\|_{s} = \max_{0 \le |j| \le s} \sup_{\varphi \in \mathbb{T}_{m} \setminus \Gamma} \left\| \frac{\partial^{|j|} f(\varphi)}{\partial \varphi^{j}} \right\|$$

where $j = (j_1, ..., j_m)$, $\varphi^j = (\varphi_1^{j_1} ... \varphi_m^{j_m})$, $|j| = j_1 + ... + j_m$, and ||.|| is the norm in \mathbb{R}^n or in the space of matrices.

Definition 1. System (4), (6) is said to be exponentially dichotomous if, for all $\varphi \in \mathbb{T}_m$, the space \mathbb{R}^n can be represented in the form of the direct sum of the subspaces $U(\varphi)$ and $S(\varphi)$ of dimensions r and n - r, respectively, so that:

1) any solution of system (8), (9) with $x_0 \in S(\varphi)$ satisfies the inequality

$$||x(t,\varphi,x_0)|| \le K \exp(-\alpha(t-\tau)) ||x(\tau,\varphi,x_0)||, \quad t \ge \tau \ge 0;$$
(10)

2) any solution with $x_0 \in U(\varphi)$ satisfies the inequality

$$\|x(t,\varphi,x_0)\| \ge K_1 \exp(\alpha(t-\tau)) \|x(\tau,\varphi,x_0)\|, \quad t \ge \tau \ge 0,$$
(11)

where positive constants α , K, K_1 are independent of φ , x_0 ;

3)
$$X(t,\varphi)S(\varphi) \subseteq S(\varphi \cdot t), \quad X(t,\varphi)U(\varphi) \subseteq U(\varphi \cdot t), \quad t \ge 0;$$

4) the projectors $P(\varphi)$ and $Q(\varphi) = I - P(\varphi)$ corresponding to $S(\varphi)$ and $U(\varphi)$ are uniformly bounded

$$\sup_{\varphi \in \mathbb{T}_m} \|P(\varphi)\| + \sup_{\varphi \in \mathbb{T}_m} \|Q(\varphi)\| < \infty.$$

Analogously to the proof of Theorem 1 [15], we prove the following statement:

Theorem 1. Assume that system (4) – (6) is exponentially dichotomous. Then the projector $P(\varphi)$ is continuous on the set $\mathbb{T}_m \setminus \Gamma$ and has discontinuities of the first kind on the set Γ .

It follows from Definition 1 that the subspace $U(\varphi)$ has a unique negative continuation such that

$$||x(t,\varphi,x_0)|| \le K_2 \exp(\alpha t) ||x_0||, \quad t \le 0, \quad \varphi \in \mathbb{T}_m, \ x_0 \in U(\varphi).$$

Hence, $X(t,\varphi)Q(\varphi)$ is well defined for all $t \leq 0$, and we can define the Green function for system (4) – (6)

$$G(t,\tau,\varphi) = \begin{cases} X(t-\tau,\varphi\cdot\tau)P(\varphi\cdot\tau), & t \ge \tau; \\ -X(t-\tau,\varphi\cdot\tau)Q(\varphi\cdot\tau), & \tau \ge t. \end{cases}$$
(12)

For $t \neq \tau$, the Green function $G(t, \tau, \varphi)$ satisfies equations (8), (9). If system (4) – (6) has exponential dichotomy, then the Green function $G(t, \tau, \varphi)$ is bounded by an exponent:

$$||G(t,\tau,\varphi)|| \le K_3 \exp(-\alpha|t-\tau|), \quad t,\tau \in \mathbb{R}, \quad K_3,\alpha > 0.$$
(13)

The linear inhomogeneous system

$$\frac{dx}{dt} = A_0(\varphi \cdot t)x + f(t), \quad t \neq t_i(\varphi),$$
$$\Delta x \Big|_{t=t_i(\varphi)} = B_0(\sigma_i(\varphi))x + g_i$$

has the following unique bounded solution:

$$u(t,\varphi) = \int_{-\infty}^{\infty} G(t,\tau,\varphi) f(\tau) d\tau + \sum_{i \in I(\varphi)} G(t,t_i(\varphi),\varphi) g_i.$$
(14)

Theorem 2. Suppose that:

1) Γ is a smooth manifold of the class $C^s, s \ge 1$;

2) $a_0(\varphi), A_0(\varphi) \in C^s_{\Gamma}(\mathbb{T}_m), B_0(\varphi) \in C^s(\Gamma);$

3) solutions of equation (4) intersect the manifold Γ transversally;

4) system (4) – (6) is exponentially dichotomous with constants α , K, K_1 .

Then the projector $P(\varphi)$ and the Green function $G(t, s, \varphi)$ have continuous partial derivatives of order s with respect to φ on the set $\mathbb{T}_m \setminus \Gamma$ and, moreover,

$$\left\|\frac{\partial^{|j|}G(t,\tau,\varphi)}{\partial\varphi^j}\right\| \le \tilde{K}_j \exp(-(\alpha_1 - |j|\omega)|t - \tau|),\tag{15}$$

where $j = (j_1, ..., j_m), |j| = j_1 + ... + j_m, |j| \le s, \varphi^j = \varphi_1^{j_1}, ..., \varphi_m^{j_m}, \alpha_1 = \alpha - \varepsilon, \varepsilon$ is an arbitrarily small positive value, $\tilde{K}_j = \tilde{K}_j(\varepsilon)$ is a constant independent of $\varphi \in \mathbb{T}_m$, and $\omega = \|\partial a(\varphi)/\partial \varphi\|_0$.

Proof. Let $\delta \varphi_i$ be an increment of the *i*-th coordinate of φ and $\varphi + \delta \varphi_i = (\varphi_1, ..., \varphi_i + +\delta \varphi_i, ..., \varphi_n)$. Let us consider the difference $R = G(t, \tau, \varphi + \delta \varphi_i) - G(t, \tau, \varphi)$, where the points φ and $\varphi + \delta \varphi_i$ are located at the same side of Γ and do not belong to Γ . The difference R satisfies the following system:

$$\begin{split} \frac{dR}{dt} &= A_0(\sigma(t,\varphi))R + (A_0(\sigma(t,\varphi+\delta\varphi_i)) - A_0(\sigma(t,\varphi)))G(t,\tau,\varphi+\delta\varphi_i),\\ \Delta R\Big|_{t=t_j^1} &= B_0(\sigma_j^1)R - B_0(\sigma_j^1)G(t_j^1,\tau,\varphi+\delta\varphi_i),\\ \Delta R\Big|_{t=t_j^2} &= B_0(\sigma_j^2)G(t_j^2,\tau,\varphi+\delta\varphi_i), \end{split}$$

ISSN 1562-3076. Нелінійні коливання, 1999, т. 2, № 4

where $t_j^1 = t_j(\varphi), t_j^2 = t_j(\varphi + \delta\varphi_i), \sigma_j^1 = \sigma(t_j(\varphi), \varphi), \sigma_j^2 = \sigma(t_j(\varphi + \delta\varphi_i), \varphi + \delta\varphi_i)$. By (14), one has

$$G(0,\tau,\varphi+\delta\varphi_{i}) - G(0,\tau,\varphi) =$$

$$= \int_{-\infty}^{\infty} G(0,s,\varphi)(A_{0}(\sigma(s,\varphi+\delta\varphi_{i})) - A_{0}(\sigma(s,\varphi)))G(s,\tau,\varphi+\delta\varphi_{i})ds +$$

$$+ \sum_{j\in I(\varphi+\delta\varphi_{i})} G(0,t_{j}^{2},\varphi)B(\sigma_{j}^{2})(G(t_{j}^{1},\tau,\varphi+\delta\varphi_{i}) - G(t_{j}^{2},\tau,\varphi+\delta\varphi_{i})) +$$

$$+ \sum_{j\in I(\varphi)\cup I(\varphi+\delta\varphi_{i})} (G(0,t_{j}^{2},\varphi) - G(0,t_{j}^{1},\varphi))B_{0}(\sigma_{j}^{2}))G(t_{j}^{1},\tau,\varphi+\delta\varphi_{i}) +$$

$$+ \sum_{j\in I(\varphi)} G(0,t_{j}^{1},\varphi)(B_{0}(\sigma_{j}^{2}) - B_{0}(\sigma_{j}^{1}))G(t_{j}^{1},\tau,\varphi+\delta\varphi_{i}).$$
(16)

Since $a_0(\varphi) \in C^s(\varphi)$, $s \ge 1$, we have $||a_0(\varphi_1) - a_0(\varphi_2)|| \le \omega ||\varphi_1 - \varphi_2||$, where $\omega = ||\partial a_0(\varphi) / \partial \varphi||_0$. Hence,

$$\|\sigma(t,\varphi_1) - \sigma(t,\varphi_2)\| \le e^{\omega|t|} \|\varphi_1 - \varphi_2\|,\tag{17}$$

$$\left\|\frac{\partial\sigma(t,\varphi)}{\partial\varphi}\right\| \le e^{\omega|t|}.$$
(18)

Let the manifold Γ be defined by $F(\varphi) = 0$ with some smooth function F. By definition, $\sigma(t_j(\varphi), \varphi) \in \Gamma$ or $F(\sigma(t_j(\varphi), \varphi)) = 0, \ j \in I(\varphi), \ \varphi \in \mathbb{T}_m$. Therefore,

$$\frac{\partial F(\sigma(t_j(\varphi),\varphi))}{\partial \varphi_i} = 0, \quad \text{and} \quad \left(\frac{\partial F}{\partial \sigma}, \frac{\partial \sigma_j(\varphi)}{\partial t} \frac{\partial t_j(\varphi)}{\partial \varphi_i} + \frac{\partial \sigma_j(\varphi)}{\partial \varphi_i}\right) = 0,$$

where $\sigma_j = \sigma_j(\varphi) = \sigma(t_j(\varphi), \varphi), \ j \in I(\varphi), i = 1, ..., m; (.,.)$ is a scalar product in \mathbb{R}^n . Let us make the transformation

$$\left(\frac{\partial F(\sigma_j)}{\partial \sigma}, a_0(\sigma_j)\right) \frac{\partial t_j(\varphi)}{\partial \varphi_i} + \left(\frac{\partial F(\sigma_j)}{\partial \sigma}, \frac{\partial \sigma_j(\varphi)}{\partial \varphi_i}\right) = 0.$$
(19)

The intersections of the solution $\sigma(t,\varphi)$ with the compact manifold Γ are transversal, and, therefore,

$$\left(\frac{\partial F(\sigma_j)}{\partial \sigma}, a_0(\sigma_j)\right) \ge C_1 > 0, \quad C_1 \neq C_1(\varphi).$$

By (18) and (19), we see that

$$\left|\frac{\partial t_j(\varphi)}{\partial \varphi}\right| \le \frac{C_2}{C_1} e^{\omega |t_j(\varphi)|} = C_3 e^{\omega |t_j(\varphi)|},\tag{20}$$

where $C_2 \geq \|\partial F/\partial \sigma\|$.

The second derivative $\partial^2 \sigma(t, \varphi) / \partial \varphi_i \partial \varphi_j$, i, j = 1, ..., m, satisfies the following equation:

$$\frac{d}{dt}\frac{\partial^2 \sigma(t,\varphi)}{\partial \varphi_i \partial \varphi_j} = \frac{\partial a_0(\sigma(t,\varphi))}{\partial \sigma} \frac{\partial^2 \sigma(t,\varphi)}{\partial \varphi_i \partial \varphi_j} + \\
+ \sum_{j,k=1}^m \frac{\partial^2 a_0(\sigma(t,\varphi))}{\partial \sigma_k \partial \sigma_l} \frac{\partial \sigma_k(t,\varphi)}{\partial \varphi_i} \frac{\partial \sigma_l(t,\varphi_0)}{\partial \varphi_j}.$$
(21)

Here, $\sigma_k(t, \varphi)$ is the k-component of the vector $\sigma(t, \varphi)$. Taking into account (18) and (21), we obtain

$$\left\|\frac{\partial^2 \sigma(t,\varphi)}{\partial \varphi_i \partial \varphi_j}\right\| \le e^{\omega|t|} (a_1 + a_2 e^{\omega|t|}) \le a_3 e^{(2\omega + \varepsilon)|t|},$$

where ε is an arbitrarily small positive value and a_1, a_2, a_3 are positive constants, $a_3 = a_3(\varepsilon)$.

The higher derivatives are estimated similarly:

$$\left\|\frac{\partial^{|l|}\sigma(t,\varphi)}{\partial\varphi^{l}}\right\| \leq a_{l}e^{(|l|\omega+\varepsilon)|t|},\tag{22}$$

where l is a multiindex, $l = (l_1, ..., l_m)$, $\sum_j l_j = |l|$, $\varphi^l = \varphi_1^{l_1} ... \varphi_m^{l_m}$, ε is an arbitrarily small positive value, and $a_l = a_l(\varepsilon) > 0$.

Differentiating (19) and taking (22) into account, we estimate the higher derivatives of $t_j(\varphi)$:

$$\left\|\frac{\partial^{|l|}t_j(\varphi)}{\partial\varphi^l}\right\| \le C_l e^{(|l|\omega+\varepsilon)|t_j(\varphi)|},\tag{23}$$

where $C_l = C_l(\varepsilon) > 0$ is a constant, and *l* is multiindex as before.

Analogously to [1], we compute limits

$$\lim_{\delta\varphi_i\to 0} \frac{1}{\delta\varphi_i} \Biggl(G(t_j(\varphi + \delta\varphi_i), \tau, \varphi + \delta\varphi_i) - (G(t_j(\varphi), \tau, \varphi + \delta\varphi_i)) \Biggr) =$$
$$= A_0(\sigma_j) G(t_j(\varphi), \tau, \varphi)) \frac{\partial t_j(\varphi)}{\partial\varphi_i}$$
(24)

and

$$\lim_{\delta\varphi_i\to 0} \frac{1}{\delta\varphi_i} \left(G(0, t_j(\varphi + \delta\varphi_i), \varphi) - G(0, t_j(\varphi), \varphi) \right) =$$
$$= -G(0, t_j(\varphi), \varphi) A_0(\sigma_j(\varphi)) \frac{\partial t_j(\varphi)}{\partial\varphi_i}.$$
(25)

Let $t_j(\varphi) \to \infty$ as $\varphi \to \overline{\varphi}$. This means that $j \notin I(\overline{\varphi})$ for sufficiently large j and $G(0, t_j(\varphi), \varphi) \to 0$ as $\varphi \to \overline{\varphi}$. By (18) and (25), one has

$$\lim_{\varphi \to \bar{\varphi}} \lim_{\delta \varphi_i \to 0} \frac{1}{\delta \varphi_i} \Biggl(G(0, t_j(\varphi + \delta \varphi_i), \varphi) - G(0, t_j(\varphi), \varphi) \Biggr) =$$

ISSN 1562-3076. Нелінійні коливання, 1999, т. 2, № 4

$$= \lim_{\delta\varphi_i} \frac{1}{\delta\varphi_i} G(0, t_j(\bar{\varphi} + \delta\bar{\varphi}), \bar{\varphi}) = -\lim_{\varphi \to \bar{\varphi}} G(0, t_j(\varphi), \varphi) A_0(\sigma_j(\varphi)) \frac{\partial t_j(\varphi)}{\partial\varphi_i} = 0.$$
(26)

Taking (24), (25) and (26) into account, we get

$$\frac{\partial G(0,\tau,\varphi)}{\partial \varphi_{i}} = \int_{-\infty}^{\infty} G(0,s,\varphi) \frac{\partial A_{0}(\sigma(s,\varphi))}{\partial \sigma} \frac{\partial \sigma(s,\varphi)}{\partial \varphi_{i}} G(s,\tau,\varphi) ds + \\
+ \sum_{j\in I(\varphi)} G(0,t_{j}(\varphi),\varphi) \frac{\partial B_{0}(\sigma_{j}(\varphi))}{\partial \sigma} \frac{\partial \sigma_{j}(\varphi)}{\partial \varphi_{i}} G(t_{j}(\varphi),\tau,\varphi) + \\
+ \sum_{j\in I(\varphi)} G(0,t_{j}(\varphi),\varphi) A_{0}(\sigma_{j}) B_{0}(\sigma_{j}) G(t_{j}(\varphi),\tau,\varphi) \frac{\partial t_{j}(\varphi)}{\partial \varphi_{i}} - \\
- \sum_{j\in I(\varphi)} G(0,t_{j}(\varphi),\varphi) B_{0}(\sigma_{j}) A_{0}(\sigma_{j}) G(t_{j}(\varphi),\tau,\varphi) \frac{\partial t_{j}(\varphi)}{\partial \varphi_{i}}.$$
(27)

The matrix $\partial A(\sigma(t,\varphi))/\partial \sigma)(\partial \sigma(s,\varphi)/\partial \varphi_i)$ has the elements

$$\sum_{j=1}^{m} \frac{\partial a_{kl}(\sigma(s,\varphi))}{\partial \sigma_j} \frac{\partial \sigma_j(s,\varphi)}{\partial \varphi_i},$$

where $A(\varphi) = \{a_{kl}\}$, and $\sigma = (\sigma_1, ..., \sigma_m)$.

The derivative $\partial G(0, \tau, \varphi) / \partial \varphi_i$ exists if the integral and series in (27) are convergent. Using (13) and (18), we estimate

$$\begin{split} & \int_{-\infty}^{\infty} \left\| G(0,s,\varphi) \frac{\partial A_0(\sigma(s,\varphi))}{\partial \sigma} \frac{\partial \sigma(s,\varphi)}{\partial \varphi_i} G(s,\tau,\varphi) \right\| ds \leq \\ & \leq \int_{-\infty}^{\infty} K_3^2 M e^{-(\alpha-\omega)|s|-\alpha|\tau-s|} ds \leq K_3^2 M \bigg(\frac{2}{2\alpha-\omega} + |\tau| \bigg) e^{-(\alpha-\omega)|\tau|}, \end{split}$$

where $\|A_0(\varphi)\|_s \leq M$, $\|B_0(\varphi)\|_s \leq M$, and $\|a_0(\varphi)\|_s \leq M$. The integral converges if $2\alpha - \omega > 0$. By (7), (13), (18) and (20), we get

$$\begin{split} \sum_{j} \left\| G(0,t_{j}(\varphi),\varphi) \frac{\partial B_{0}(\sigma(t_{j},\varphi))}{\partial \sigma} \frac{\partial \sigma(t_{j}(\varphi),\varphi)}{\partial \varphi_{i}} G(t_{j}(\varphi),\tau,\varphi) \right\| \leq \\ \leq K_{3}^{2} M(1+C_{3}M) \left(\frac{2}{1-e^{-(2\alpha-\omega)\theta}} + \frac{|\tau|}{\theta} \right) e^{-(\alpha-\omega)|\tau|}. \end{split}$$

ISSN 1562-3076. Нелінійні коливання, 1999, т. 2, № 4

546

...

The last sums in (27) are estimated similarly. Therefore,

$$\left\|\frac{\partial G(0,\tau,\varphi)}{\partial \varphi_i}\right\| \le (K_4 + K_5|\tau|)e^{-(\alpha-\omega)|\tau|} \le K_6 e^{-(\alpha_1-\omega)|\tau|},\tag{28}$$

where $\alpha_1 = \alpha - \varepsilon$, ε is an arbitrarily small positive value, and $K_4, K_5, K_6 = K_6(\varepsilon)$ are positive constants independent of $\varphi \in \mathbb{T}_m$.

Differentiating (12) with respect to τ and taking (13) and (28) into account, we get

$$\frac{\partial G(t,\tau,\varphi)}{\partial \tau} = -A(\varphi \cdot t)G(t,\tau,\varphi) + \frac{\partial G(t,\tau,\varphi)}{\partial \varphi}a(\varphi \cdot \tau),$$

and

$$\left\|\frac{\partial G(0,\tau,\varphi))}{\partial \tau}\right\| \le \bar{K}_6 e^{-(\alpha_1 - \omega)|\tau|},\tag{29}$$

where $t, \tau \neq t_j(\varphi), j \in I(\varphi)$, and $\bar{K}_6 = \bar{K}_6(\varepsilon)$ is a positive constants independent of $\varphi \in \mathbb{T}_m$.

To estimate higher-order derivatives of $G(0, \tau, \varphi)$ and $P(\varphi)$ (up to the *s*-th order), we continue the above approach. Successively differentiating (27) and estimating the *i*-th derivative of the integrant by $\exp(-(\alpha_1 - i\omega)|s| - \alpha|\tau - s|)$ and the *j*-th terms in all series by $\exp(-(\alpha_1 - i\omega)|t_j| - \alpha|\tau - t_j|)$, we conclude that the integral and all series are convergent. Thus, we prove the existence of derivatives (up to the *s*-th order) of the projector $P(\varphi)$ and the Green function $G(t, \tau, \varphi)$ and estimate (15). The theorem is proved.

Remark. Differentiating (12) with respect to τ and using estimate (15), we get

$$\left\|\frac{\partial^{s}G(0,\tau,\varphi))}{\partial\tau^{s}}\right\| \leq \bar{K}_{7}e^{-(\alpha_{1}-s\omega)|\tau|},\tag{30}$$

where $t, \tau \neq t_j(\varphi), j \in I(\varphi)$, and $\bar{K}_7 = \bar{K}_7(\varepsilon)$ is a positive constant independent of $\varphi \in \mathbb{T}_m$.

3. Perturbation theorem. Denote by $\mathcal{L}(\delta)$ the set of Lipschitz vectors or matrices $a(\varphi)$ on \mathbb{T}_m such that $||a(\varphi)|| \leq \delta$ and Lip $a \leq \delta$, where Lip $a = \inf\{\lambda > 0 : ||a(\varphi_1) - a(\varphi_2)|| \leq \lambda \rho(\varphi_1, \varphi_2)\}$. We consider a perturbed system

$$\frac{d\varphi}{dt} = a_0(\varphi) + \tilde{a}(\varphi), \tag{31}$$

$$\frac{dx}{dt} = (A_0(\varphi) + \tilde{A}(\varphi))x, \quad \varphi \in \mathbb{T}_m \setminus \Gamma,$$
(32)

$$\Delta x \bigg|_{\varphi \in \Gamma} = (B_0(\varphi) + \tilde{B}(\varphi))x, \tag{33}$$

where $\tilde{a}(\varphi), \tilde{A}(\varphi), \tilde{B}(\varphi) \in C_{Lip}(\mathbb{T}_m)$. Using the properties of system (1) – (3), one can show that, for sufficiently small δ such that $\tilde{a}(\varphi) \in \mathcal{L}(\delta)$, solutions $\sigma(t, \varphi, \tilde{a})$ of equation (31) intersect manifold Γ transversally. Let $t_j(\varphi, \tilde{a}), j \in I(\varphi, \tilde{a})$, be the sequence of points where $\sigma(t, \varphi, \tilde{a})$ intersects Γ . Using the compactness of Γ and transversality of intersections of $\sigma(t, \varphi) =$

 $= \sigma(t, \varphi, 0)$ with Γ , we get the estimate $t_j(\varphi, \tilde{a}) - t_{j-1}(\varphi, \tilde{a}) \ge \tilde{\theta} > 0, \ j \in I(\varphi, \tilde{a})$, with some positive $\tilde{\theta}$. Denote

$$\mathcal{A}(\delta) = \{ (b_1(\varphi), b_2(\varphi), b_3(\varphi)) : b_i(\varphi) \in \mathcal{L}(\delta), i = 1, 2, 3 \}.$$
(34)

Theorem 3. Let system (4) – (6) be exponentially dichotomous. Then there exists a sufficiently small $\delta > 0$ such that system (31) – (33) with $(\tilde{a}(\varphi), \tilde{A}(\varphi), \tilde{B}(\varphi)) \in \mathcal{A}(\delta)$ has exponential dichotomy.

To prove the theorem, we use ideas of [16, 17].

Denote $\mathcal{M} = \mathcal{M}(\delta) = \mathbb{T}_m \times \mathcal{A}(\delta)$. We define a flow on the set $\mathcal{M}(\delta)$:

$$p \cdot t = (\sigma(t, p), \hat{a}), \ t \in \mathbb{R},$$

where $p = (\varphi, \hat{a}) \in \mathcal{M}(\delta)$, $\hat{a} = (\tilde{a}, \tilde{A}, \tilde{B}) \in \mathcal{A}(\delta)$, and $\sigma(t, p)$ is a solution of equation (31). Let $x(t, x_0, p)$ be a solution and let $\Phi(t, p)$ be the fundamental solution of system (31) – (33). The function $\Phi(t, p)$ has discontinuities of the first kind for $t = \bar{t}$ such that $\bar{\varphi} = \varphi \cdot \bar{t} \in \Gamma$, and, moreover,

$$\Phi(\bar{t}+0,p) - \Phi(\bar{t},p) = B(\bar{\varphi})\Phi(\bar{t},p).$$

We assume that $\Phi(t, p)$ and $x(t, x_0, p)$ are left-continuous with respect to t.

We define the following piecewise continuous linear skew-product semiflow on $\mathbb{R}^n \times \mathcal{M}(\delta)$:

 $\pi(t, x, p) = (\Phi(t, p)x, p \cdot t), \quad x \in \mathbb{R}^n, \ p \in \mathcal{M}(\delta), \ t \ge 0.$

A point (x, p) is said to have a negative continuation with respect to π if there exists a piecewise continuous function $\phi : (-\infty, 0] \to \mathbb{R}^n \times \mathcal{M}$ that possesses the following properties:

1) $\phi(t) = (\phi^x(t), p \cdot t)$, where $\phi^x : (-\infty, 0] \to \mathbb{R}^n$; 2) $\phi(0) = (x, p)$; 3) $\pi(t, \phi(s)) = \phi(s + t)$ for each $s \le 0$ and $0 \le t \le -s$; 4) $\pi(t, \phi(s)) = \pi(t + s, x, p)$ for each $0 \le -s \le t$.

We define the following sets:

 $\Omega(x,p)$ is the set of ω -limit points of the trajectory $\pi(t,x,p)$,

 $A(x, p, \phi)$ is the set of α -limit points of the negative continuation ϕ of the point (x, p),

 $M = \{(x, p) : (x, p) \text{ has a negative continuation}\},\$

 $U = \{(x, p) \in M : \text{there is a negative continuation } \phi(t, x, p) \text{ of } (x, p) \text{ such that } \|\phi(t, x, p)\| \to 0, t \to -\infty\},\$

 $\mathcal{B}^-=\{(x,\varphi):$ there is a bounded negative continuation $\phi(t,x,p)$ of (x,p), i.e., $\sup_{t\leq 0}\|\phi(t,x,p)\|<\infty\},$

$$\begin{split} \mathcal{B}_u^- &= \{(x,p): \ (x,p) \text{ has a unique bounded negative continuation} \}, \\ \mathcal{B}^+ &= \{(x,p): \ \sup_{t \geq 0} \|\Phi(t,p)x\| \leq \infty \}. \\ S &= \{(x,p): \ \|\Phi(t,p)x\| \to 0, \ t \to +\infty \}. \\ S(p) &= \{x: \ (x,p) \in S \}, \ U(p) = \{x: \ (x,p) \in U \}, \\ \mathcal{B} &= \mathcal{B}^+ \cap \mathcal{B}^- \text{ is the bounded set of the semiflow } \pi. \end{split}$$

Lemma 1. Let a point (x, p) have a bounded negative continuation $\phi(t, x, p)$ and $(\bar{x}, \bar{p}) \in A(x, p, \phi), \ \bar{p} \notin \bar{\Gamma}$. Then $x(t, \bar{x}, \bar{p}) \in \mathcal{B}$.

Proof. Denote $A_{\bar{p}}(x, p, \phi) = \{\bar{x} : (\bar{x}, \bar{p}) \in A(x, p, \phi)\}$. We prove that

$$\pi(t, A_{\bar{p}}(x, p, \phi), \bar{p}) = (A_{\bar{p}\cdot t}(x, p, \phi), \bar{p}\cdot t)$$
(35)

for $\bar{p} \notin \bar{\Gamma}$, $\bar{p} \cdot t \notin \bar{\Gamma}$, $t \ge 0$. $A_{\bar{p}}(x, p, \phi)$ can be characterized as the collection of all points (\bar{x}, \bar{p}) such that there exist sequences (x_n, p_n) and $t_n \to -\infty$ such that $p_n = p \cdot t_n \to \bar{p}$, $x_n = = \phi(t_n, x, p) \to \bar{x}$.

Let us fix t > 0 and set $\hat{x}_n = \Phi(t, p_n)x_n$ and $\hat{p}_n = p_n \cdot t$. The sequence (\hat{x}_n, \hat{p}_n) is bounded. Choose a convergent subsequence so that $(\hat{x}_n, \hat{p}_n) \to (\hat{x}, \hat{p}) = (\Phi(t, \bar{p})\bar{x}, \bar{p} \cdot t)$. On the other hand, $(\hat{x}_n, \hat{p}_n) = \pi(t, x_n, p_n) = \phi(t_n + t, x, p)$. Hence, $(\hat{x}, \hat{p}) \in A_{\bar{p} \cdot t}(x, p, \phi)$.

To prove the inverse inclusion in (35), we consider $\hat{x} \in A_{\bar{p}\cdot t}(x, p, \phi)$ and sequences (\hat{x}_n, \hat{p}_n) and $\hat{t}_n \to -\infty$ such that

$$\hat{p}_n = p \cdot \hat{t}_n \to \bar{p} \cdot t, \ \hat{x}_n = \phi(\hat{t}_n, x, p) \to \hat{x}, \ n \to \infty.$$

The bounded sequence $\phi(\hat{t}_n - t, x, p)$ has a convergent subsequence such that $\phi(\hat{t}_n - t, x, p) \rightarrow \tilde{x}$, $p \cdot (\hat{t}_n - t) \rightarrow \bar{p}$. Hence, $\tilde{x} \in A_{\bar{p}}(x, p, \phi)$. We have proved (35), i.e., π maps $A_{\bar{p}}(x, p, \phi)$ onto $A_{\bar{p}\cdot t}(x, p, \phi)$ and every $(\bar{x}, \bar{p}) \in A_{\bar{p}}(x, p, \phi), \bar{p} \notin \bar{\Gamma}$ has a negative continuation. Clearly, $(\bar{x}, \bar{p}) \in \mathcal{B}$.

Lemma 2. Suppose that $x(t, x, p) \in \mathcal{B}^+$ and $(\bar{x}, \bar{p}) \in \Omega(x, p), \ \bar{p} \notin \bar{\Gamma}$; then $x(t, \bar{x}, \bar{p}) \in \mathcal{B}$.

Proof. Denote $\Omega_{\bar{p}}(x,p) = \{\bar{x} : (\bar{x},\bar{p}) \in \Omega(x,p)\}$. By analogy with the proof of Lemma 1, we prove that

$$\pi(t, \Omega_{\bar{p}}(x, p), \bar{p}) = (\Omega_{\bar{p}\cdot t}(x, p, \phi), \bar{p}\cdot t)$$
(36)

for $\bar{p} \notin \bar{\Gamma}$, $\bar{p} \cdot t \notin \bar{\Gamma}$, $t \ge 0$. Then every point $(\bar{x}, \bar{p}) \in \Omega(x, p)$, $\bar{p} \notin \bar{\Gamma}$, has a negative continuation and $(\bar{x}, \bar{p}) \in \mathcal{B}$.

Assumption. In the next lemmas, we assume that $\mathcal{B} = \{0\} \times \mathcal{M}$.

Lemma 3. Let $t_k \to -\infty$ and let there exist continuations of points (x_k, p_k) on $[t_k, 0]$ such that

$$\|\phi(t, x_k, p_k)\| \le M \quad for \quad t \in [t_k, 0].$$

Assume that $(\bar{x}, \bar{p}) = \lim_{k \to \infty} (x_k, p_k), \ \bar{p} \notin \bar{\Gamma}$; then (\bar{x}, \bar{p}) has a negative continuation and $(\bar{x}, \bar{p}) \in U$, *i.e.* $\|\phi(t, \bar{x}, \bar{p})\| \to 0, \ t \to -\infty$.

Proof. The sequence $(\phi(t_1, x_k, p_k), p_k \cdot t_1), k = 1, 2, ...,$ is bounded. Assume that there exist limits (otherwise, we consider subsequences)

$$x_k^1 = \phi(t_1, x_k, p_k) \to \bar{x}_1, \ p_k^1 = p_k \cdot t_1 \to \bar{p}_1, \ k \to \infty.$$

If $\bar{p}_1 \in \bar{\Gamma}$, we consider the sequence $t_1 + \varepsilon$ with sufficiently small $\varepsilon > 0$.

By the theorem on continuous dependence of solutions of impulsive system on parameters, we get

$$\pi(-t_1, \bar{x}_1, \bar{p}_1) = (\Phi(-t_1, \bar{p}_1)\bar{x}_1, \bar{p}_1 \cdot (-t_1)) = \lim_{k \to \infty} \pi(-t_1, \phi(t_1, x_k, p_k)) =$$
$$= \lim_{k \to \infty} (\Phi(-t_1, p_k^1) x_k^1, p_k^1 \cdot (-t_1)) = \lim_{k \to \infty} (x_k, p_k) = (\bar{x}, \bar{p}).$$

Hence, the point (\bar{x}, \bar{p}) has a continuation on $[t_1, 0]$, which is bounded by a constant M.

ISSN 1562-3076. Нелінійні коливання, 1999, т. 2, № 4

Next, we consider the sequence $\phi(t_2 - t_1, x_k^1, p_k^1)$, $p_k^1 \cdot (t_2 - t_1)$), k = 2, 3, ..., and show analogously a continuability of the point (\bar{x}, \bar{p}) on $[t_2, 0]$, and so on. Hence, a continuation of the point (\bar{x}, \bar{p}) exists for $t \leq 0$ and is bounded.

By Lemma 1, the α -limit set of the point (\bar{x}, \bar{p}) belongs to \mathcal{B} . Since \bar{B} is trivial, we get $x(t, \bar{x}, \bar{p}) \to 0, t \to -\infty$, i.e., $(\bar{x}, \bar{p}) \in U$.

Lemma 4. $S = \mathcal{B}^+$. The set S is closed and there exist constants $K \ge 1$ and $\beta > 0$ such that, for all $(x, p) \in S$, one has

$$\|\Phi(t,p)x\| \le Ke^{-\beta t} \|x\|, \quad t \ge 0.$$
(37)

If $p \in \overline{\Gamma}$, then S(p) is closed in p - 0 and p + 0.

Proof. Let $(x_k, p_k) \in S$ and let $(x_k, p_k) \to (x, p), k \to \infty, p \notin \overline{\Gamma}$. If x = 0, then $(x, p) \in S$. If $x \neq 0$, we consider the solution x(t, x, p). It is bounded. By Lemma 3, $\Omega(x, p) \in \mathcal{B}$. Using the triviality of \mathcal{B} , we have $x(t, x, p) \to 0, t \to \infty$, i.e., $x(t, x, p) \in S$.

If $p \in \overline{\Gamma}$, we consider positive and negative sequences $p_k \to p$ and prove analogously that S(p) is closed in p - 0 and p + 0.

There exists T > 0 such that, for all $(x, p) \in S$, one has

$$\|\Phi(t,p)x\| \le \frac{1}{2} \|x\|$$
 for $t \ge T$. (38)

If this were not true, then there would exist $(x_k, p_k) \in S$ and $t_k \to \infty$ such that $\|\Phi(t_k, p_k)x_k\| \ge \frac{1}{2} \|x_k\|$. Let $\|x_k\| = 1$. Then $\|\Phi(t_k, p_k)x_k\| \ge \frac{1}{2}$. Denote $\hat{x}_k = \Phi(t_k, p_k)x_k$, $\hat{p}_k = p_k \cdot t_k$. These sequences are bounded. Therefore, there exists a convergent subsequence $(\hat{x}_k, \hat{p}_k) \to (\bar{x}, \bar{p})$. Let $\bar{p} \notin \bar{\Gamma}$. Then, by Lemma 4, $(\bar{x}, \bar{p}) \in S$. On the other hand, by Lemma 1, $(\bar{x}, \bar{p}) \in U$. Hence, $\|\bar{x}\| = 0$. This contradicts $\|\bar{x}\| \ge \frac{1}{2}$.

Let now $\bar{p} \in \bar{\Gamma}$. Assume that there exists an infinite subsequence t_{k_j} of the sequence t_k such that points $p_{k_j} \cdot t_{k_j}$ are located on the positive side of $\bar{\Gamma}$ obtained during the motion along the trajectories $p \cdot t$. We consider the subsequence $t_{k_j} + \varepsilon$ with sufficiently small $\varepsilon > 0$. Using the piecewise continuity of $\Phi(t, p)$, one has $\|\Phi(\varepsilon, p_{k_j} \cdot t_{k_j})x\| \ge \frac{\|x\|}{2}$, hence

$$\|\Phi(\varepsilon + t_{k_j}, p_{k_j})x_{k_j}\| \ge \|\Phi(\varepsilon, p_{k_j} \cdot t_{k_j})\Phi(t_{k_j}, p_{k_j})x_{k_j}\| \ge \frac{1}{4}\|x_{k_j}\| = \frac{1}{4}.$$

Taking boundedness into account, we conclude that, there exists a convergent subsequence $\Phi(\varepsilon+t_{k_j}, p_{k_j})x_{k_j} \to x^*, p_{k_j} \cdot (\varepsilon+t_{k_j}) \to p^*, k \to \infty$, and $p^* \notin \overline{\Gamma}$. By construction, $(x^*, p^*) \in S$; on the other hand, Lemma 1 implies that $(x^*, p^*) \in U$. Then $x^* = 0$, which contradicts $||x^*|| \ge \frac{\nu}{4}$.

If a positive subsequence t_{k_j} does not exist, we choose another subsequence t_{k_l} such that points $p_{k_l} \cdot t_{k_l}$ are located on the negative side of $\overline{\Gamma}$. In this case, we consider the subsequence $t_{k_l} - \varepsilon$ with sufficiently small $\varepsilon > 0$ and arrive at a contradiction as before.

Define β and K as follows:

$$\beta = \frac{\ln 2}{T}, \quad K = 2 \sup\{\|\Phi(t,\varphi)x\| : (\varphi,x) \in S, \ \|x\| = 1, \ 0 \le t \le T\},\$$

where T is given in (38). (37) is proved by induction analogously to [16, p. 51].

Lemma 5. $U = \mathcal{B}_u^-$. If $(x, p) \in U$, the function $\Phi(t, p)x$ is well defined for all $t \leq 0$. The set U is closed and there exist constants $K \geq 1$ and $\beta > 0$ such that, for all $(x, p) \in U$, one has

$$\|\Phi(t,p)x\| \le K e^{\beta t} \|x\|, \quad t \le 0.$$
(39)

If $p \in \overline{\Gamma}$, then U(p) is closed in p - 0 and p + 0.

Proof. Let $(x_k, p_k) \in U$ and $(x_k, p_k) \to (x, p), p \notin \overline{\Gamma}$. If x = 0, then $(x, p) \in U$. Let $x \neq 0$. By Lemma 3, (x, p) has a negative continuation $\phi(t, x, p)$ such that $\phi(t, x, p) \to 0, t \to -\infty$, i.e., $(x, p) \in U$.

There exists T < 0 such that, for all $(x, p) \in U$, one has

$$\|\Phi(t,p)x\| \le \frac{1}{2} \|x\|, \quad t \in (-\infty,T).$$
(40)

If this were not true, then there would exist (x_k, p_k) and $t_k \to -\infty$ such that $\|\Phi(t_k, p_k)x_k\| \ge \frac{\|x_k\|}{2}$. Choose $\|x_k\| = 1$; then $\|\Phi(t_k, p_k)x_k\| \ge 1/2$. The sequence $(\hat{x}_k, \hat{p}_k) = (\Phi(t_k, p_k)x_k, \varphi_k \cdot t_k)$ is bounded. Therefore, there exists a convergent subsequence $(\hat{x}_k, \hat{p}_k) \to (\hat{x}, \hat{p})$. Let $\hat{p} \notin \bar{\Gamma}$. Since U is closed, we have $(\hat{x}, \hat{p}) \in U$. On the other hand, the solutions $x(-t_k, \hat{x}_k, \hat{p}_k)$ are uniformly bounded and $-t_k \to +\infty$ as $k \to \infty$; therefore, $x(t, \hat{x}, \hat{p}) \in S$. Then $\|\hat{x}\| = 0$, which contradicts $\|\hat{x}\| \ge 1/2$. If $\hat{p} \in \bar{\Gamma}$, we consider the sequence $t_k + \varepsilon$ analogously to the proof of Lemma 4.

Define $\beta = -(\ln 2)/T$ and

$$K = \frac{1}{2} \sup\{\|\Phi(t, p)x\| : (x, p) \in U, \|x\| \le 1, t \in [T, 0]\},\$$

where T is given in (40). (39) is proved analogously to [16, p. 52].

Lemma 6. For $p \in \mathcal{M}$, one has

$$\dim U(\eta) \ge n - \dim S(p),$$

where $\eta \in \omega(p)$ ($\omega(p)$ is an ω -limit set of the trajectory $p \cdot t$).

Proof. Let $\mathcal{K}(p)$ be a subspace of \mathbb{R}^n such that

$$\mathcal{K}(p) \cap S(p) = \{0\}, \quad \mathcal{K}(p) \oplus S(p) = \mathbb{R}^n.$$
(41)

Let $\{t_k\}$ be a sequence of positive numbers such that $t_k \to +\infty$. Denote

$$\mu_k = \min\{\|x(t_k, x, p)\| : x \in \mathcal{K}(p), \|x\| = 1\}.$$

Clearly, $\mu_k \to +\infty$ as $t_k \to +\infty$. Let $p \cdot t_k = p_k \to \eta \in \omega(p)$. Denote $K_k(p) = \Phi(t_k, p)\mathcal{K}(p)$. $\Phi(t_k, p)$ is a one-to-one mapping of $\mathcal{K}(p)$ onto the linear subspace $K_k(p)$. For any $x \in K_k(p)$ with $||x|| \leq 1$, one has $||\Phi(-t_k, p_k)x|| \leq \mu_k^{-1}$.

By definition, one has

$$\dim K_k(p) = \dim \mathcal{K}(p) = n - \dim S(p), \quad k \ge 0$$

There exists a subsequence of t_k such that $K_k(p) \to K$, $k \to \infty$, and $\dim K = \dim \mathcal{K}(p)$. To prove that

$$K \subset U(\eta), \tag{42}$$

ISSN 1562-3076. Нелінійні коливання, 1999, т. 2, № 4

we consider a sequence (x_k, p_k) , $||x_k|| \le 1$, $x_k \in K_k$, $p_k = p \cdot t_k$. Suppose that $x_k \to x'$, $k \to \infty$. It suffices to prove that $(x', \eta) \in U(\eta)$.

For $x \in K_k, t \in [-t_k, 0]$, the trajectory $x(t, x, p_k)$ is well defined. There exists M > 0 such that

$$\sup_{-t_k \le t \le 0} \|x(t, x, p_k)\| \le M \tag{43}$$

for $x \in K_k$, $||x|| \le 1$, k = 1, 2, ... If this were not true, then there would exist sequences x_k , $||x_k|| = 1$, $x_k \in K_k$, and $\beta_k \to \infty$ such that $\beta_k = \sup_{-t_k \le t \le 0} ||x(t, x_k, p_k)||$. Denote $\tau_k \in [0, t_k]$ such that $\beta_k/2 \le x(-\tau_k, x, p_k) \le \beta_k$. Let us consider the sequence $(\xi_k, \eta_k) = (\beta_k^{-1}x(-\tau_k, x_k, p_k), p_k \cdot (-\tau_k))$. Obviously,

$$1/2 \le \|\xi_k\| \le 1,$$
 (44)

and

$$\|x(\tau_k,\xi_k,\eta_k)\| = \beta_k^{-1} \|x_k\| \to 0, \ k \to \infty,$$

$$\|x(-t_k + \tau_k,\xi_k,\eta_k)\| = \beta_k^{-1} \|\Phi(-t_k,p_k)x_k\| \le \beta_k^{-1} \mu_k^{-1} \to 0, \ k \to \infty.$$

If $(\xi_k, \eta_k) \to (\bar{\xi}, \bar{\eta})$, then $(\bar{\xi}, \bar{\eta}) \in \mathcal{B}$, hence $\bar{\xi} = 0$. This contradicts (44). Therefore, (43) is valid. Using (43) and Lemma 1, one has $(x', \eta) \in U$. Hence, dim $U(\eta) \ge \dim \mathcal{K}_k(p) = n - \dim S(p)$, which completes the proof of the lemma.

Lemma 7. Let $p \in \mathcal{M}$. Then the semiflow π admits exponential dichotomy over the ω -limit set $\omega(p)$. The semiflow π admits exponential dichotomy over minimal sets of the flow $\varphi \cdot t$.

Proof. Analogously to the proof of Lemma 1 in [18], we prove that, for each $p \in \mathcal{M}$, the function dim $S(p \cdot t)$ is a nonincreasing function of t:

$$\dim S(p \cdot t) \le \dim S(p \cdot \tau) \text{ for } t \ge \tau.$$
(45)

Inequality (45) implies that there exist limits

$$\lim_{t \to -\infty} \dim S(p \cdot t) = k_1, \quad \lim_{t \to \infty} \dim S(p \cdot t) = k_2.$$

Taking into account the last limits and the fact that the space \mathbb{R}^n is finite-dimensional, we get dim $S(\eta) = k_2$ for all $\eta \in \omega(p)$. By Lemma 6, dim $U(\eta) = n - k_2$. Therefore, the semiflow π admits exponential dichotomy over $\omega(p)$.

Proof of Theorem 3. The semiflow π admits exponential dichotomy over $\mathcal{M}(0)$; therefore, π has no nontrivial bounded solutions, i.e.,

$$\mathcal{B}_0 = \{0\} \times \mathcal{M}(0).$$

We shall show that there exists $\delta > 0$ such that the semiflow π does not have nontrivial bounded solutions over $\mathcal{M}(\delta)$. If this were not true, then there would exist a sequence $\{\delta_n\}, \ \delta_n > 0, \ \delta_n \to 0, \ n \to +\infty$ and a sequence $\hat{a}_n(\varphi) \in \mathcal{A}(\delta_n)$, such that system (31) - (33) with $\hat{a}(\varphi) = \hat{a}_n(\varphi) = (\tilde{a}, \tilde{A}, \tilde{B})$ would have a nontrivial bounded solution $x_n(t, x_n^0, \varphi_n^0, \hat{a}_n), \ x_n(0, x_n^0, \varphi_n^0, \hat{a}_n) = x_n^0$. Denote

$$\beta_n = \sup_{t \in \mathbb{R}} \{ \| x_n(t, x_n^0, \varphi_n^0, \hat{a}_n) \| \}.$$

Choose $t_n \in \mathbb{R}$ such that $||x_n(t_n, x_n^0, \varphi_n^0, \hat{a}_n)|| \ge \frac{\beta_n}{2}$. Let

$$(\xi_n, \eta_n) = (\beta_n^{-1} x_n(t_n, x_n^0, \varphi_n^0, \hat{a}_n), \ \sigma(t_n, \varphi_n^0, \hat{a}_n)).$$

Then $\|\xi_n\| \geq \frac{1}{2}$ and $\|x_n(t,\xi_n^0,\eta_n^0,\hat{a}_n)\| \leq 1$ for all $t \in \mathbb{R}$. The sequence (ξ_n,η_n) is bounded. We choose a convergent subsequence so that $(\xi_n,\eta_n) \to (\xi,\eta)$. Without loss of generality, we may assume that $\eta \notin \overline{\Gamma}$. The point (ξ,η) has the following properties: $\eta \in \mathcal{M}(0), \|\xi\| \geq \frac{1}{2}$. By Lemma 3, the solution $x(t,\xi,\eta,0)$ has a negative continuation and $\|x(t,\xi,\eta,0)\| \leq 1, t \in \mathbb{R}$. This contradicts the triviality of \mathcal{B}_0 . Hence, there exists $\delta_0 > 0$ such that the semiflow π does not have nontrivial solutions over $\mathcal{M}(\delta_0)$.

Let us consider the set

$$\Theta_k = \{ p = (\varphi, \tilde{a}) \in \mathcal{M}(\delta_0) : \dim S(p) = k, \dim U(p) = n - k \}.$$

The set Θ_k is closed for $p \notin \overline{\Gamma}$ and closed in p - 0 and p + 0 if $p \in \overline{\Gamma}$. Therefore, for $p \in \mathcal{M}(\delta_0)$, there exists a compact neighborhood of $\Theta_k(p) = \{x : (x,p) \in (\Theta_k) \text{ that is disjoint with the} other sets <math>\Theta_j, j \neq k$. Since the compact set $\mathcal{M}(0)$ belongs to Θ_k , one can see that, for some $\delta_1 \leq \delta_0$, the set $\mathcal{M}(\delta_1)$ is disjoint with the other sets $\Theta_j, j \neq k$.

We show that dim S(p) = k for all $p \in \mathcal{M}(\delta_1)$. Let p_0 be a point such that dim $S(p_0) < k$ (sign "<"is chosen for definiteness). The function dim $S(p \cdot t)$ is nonincreasing; therefore, one has dim $S(\eta) = k_1 < k$ for all $\eta \in \alpha(p)$ ($\alpha(p)$ is the set of α -limit points of the trajectory $p \cdot t$.) By Lemma 7, the semiflow π is exponentially dichotomous over the minimal set A_0 contained in $\alpha(p)$. Moreover, dim $S(\xi) = k_1$, $\xi \in A_0$. Hence, $A_0 \subset \Theta_{k_1}$, contrary to the fact that $\mathcal{M}(\delta_1)$ contains only the set Θ_k . We have proved that the semiflow π is exponentially dichotomous for ($\tilde{a}, \tilde{A}, \tilde{B}$) $\in \mathcal{A}(\delta_1)$. The theorem is proved.

Now we consider a linearized system with small parameter

$$\frac{d\varphi}{dt} = a_0(\varphi) + \varepsilon a_1(\varphi, \varepsilon), \tag{46}$$

$$\frac{dx}{dt} = (A_0(\varphi) + \varepsilon A_1(\varphi, \varepsilon))x, \quad \varphi \in \mathbb{T}_m \setminus \Gamma,$$
(47)

$$\Delta x \Big|_{\varphi \in \Gamma} = (B_0(\varphi) + \varepsilon B_1(\varphi, \varepsilon))x, \tag{48}$$

where $\varepsilon \in (-\varepsilon_0, \varepsilon_0), \ \varepsilon_0 > 0$.

Theorem 4. *Suppose that the following conditions are satisfied:*

1) for $\varepsilon = 0$, system (46) – (48) satisfies the conditions of Theorem 2;

2) functions a_1, A_1 , and B_1 have continuous partial derivatives with respect to φ, ε up to the order *s* inclusively for $\varphi \in \mathbb{T}_m \setminus \Gamma$ and $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$, and all their partial derivatives have continuous continuations to the left-hand and right-hand sides of the manifold Γ and have discontinuities of the first kind for $\varphi \in \Gamma$.

Then there exists $\varepsilon_1 \in (0, \varepsilon_0)$ such that, for $\varepsilon \in (-\varepsilon_1, \varepsilon_1)$, system (46) – (48) is exponentially dichotomous with the projector $P(\varphi, \varepsilon)$ and the Green function $G(t, \tau, \varphi, \varepsilon)$ which have

continuous partial derivatives with respect to φ, ε up to the s-th order inclusively on the set $\varphi \in \mathbb{T}_m \setminus \Gamma, \ \varepsilon \in (-\varepsilon_1, \varepsilon_1)$, and, moreover,

$$\left\|\frac{\partial^{|j|}G(t,\tau,\varphi,\varepsilon)}{\partial\varphi^{\bar{j}}\partial\varepsilon^{j_{m+1}}}\right\| \leq \bar{K}_{j}\exp(-(\alpha_{1}-|j|\omega)|t-\tau|),\tag{49}$$

where $j = (\bar{j}, j_{m+1}) = (j_1, ..., j_m, j_{m+1}), |j| = j_1 + ... + j_{m+1}, |j| \le s, \varphi^j = \varphi_1^{j_1}, ..., \varphi_m^{j_m}, \alpha_1 = \alpha - \nu, \nu$ is an arbitrarily small positive value, $\bar{K}_j = \bar{K}_j(\nu)$ is a constant independent of $\varphi \in \mathbb{T}_m$, and $\omega = \|\partial a(\varphi)/\partial \varphi\|_0$.

Proof. By Theorem 3, there exists $\varepsilon_1 > 0$ such that system (46) – (48) has exponential dichotomy for $\varepsilon \in (-\varepsilon_1, \varepsilon_1)$. Instead of equation (46) we consider the equations

$$\frac{d\varphi}{dt} = a_0(\varphi) + \varepsilon a_1(\varphi, \varepsilon), \quad \frac{d\varepsilon}{dt} = 0$$
(50)

defined on the product $\mathbb{T}_m \times (-\varepsilon_1, \varepsilon_1)$. The impulsive system (50), (47), (48) is defined on the direct product of the manifold $\mathbb{T}_m \times (-\varepsilon_1, \varepsilon_1)$ and Euclidean space \mathbb{R}^n and subjected to the impulsive action on the submanifold $\overline{\Gamma} = \Gamma \times (-\varepsilon_1, \varepsilon_1)$ of codimension 1 of the manifold $\mathbb{T}_m \times (-\varepsilon_1, \varepsilon_1)$. System (50), (47), (48) satisfies conditions of Theorem 2. Hence, the projector $P(\varphi, \varepsilon)$ and the Green function $G(t, \tau, \varphi, \varepsilon)$ have continuous partial derivatives with respect to φ, ε up to the *s*-th order inclusively on the set $\varphi \in \mathbb{T}_m \setminus \Gamma, \varepsilon \in (-\varepsilon_1, \varepsilon_1)$. The theorem is proved.

4. Integral set. In this section, by $C^s_{\Gamma}(\mathbb{T}_m \times (-\varepsilon_0, \varepsilon_0))$ we denote the space of functions or matrices $a(\varphi, \varepsilon)$ with the following properties:

i) $a(\varphi, \varepsilon)$ has continuous partial derivatives with respect to φ, ε up to the order *s* inclusively for $\varphi \in \mathbb{T}_m \setminus \Gamma$, $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$,

ii) all partial derivatives of $a(\varphi, \varepsilon)$ have continuous continuations to the left-hand and righthand sides of the manifold $\Gamma \times (-\varepsilon_0, \varepsilon_0)$.

For $f(\varphi, \varepsilon) \in C^s_{\Gamma}(\mathbb{T}_m \times (-\varepsilon_0, \varepsilon_0))$, we denote

$$\|f(\varphi,\varepsilon)\|_{s} = \max_{0 \le |j| \le s} \sup_{\varphi \in \mathbb{T}_{m} \setminus \Gamma} \sup_{\varepsilon \in (-\varepsilon_{0},\varepsilon_{0})} \left\| \frac{\partial^{|j|} f(\varphi,\varepsilon)}{\partial \varphi^{\overline{j}} \partial \varepsilon^{j_{m+1}}} \right\|,$$

where $j = (\bar{j}, j_{m+1}) = (j_1, ..., j_m, j_{m+1}), \ \varphi^j = (\varphi_1^{j_1} ... \varphi_m^{j_m}), \ |j| = j_1 + ... + j_{m+1}.$

Theorem 5. Assume that system (4) – (6) is exponentially dichotomous and the right-hand sides of system (1) – (3) have continuous partial derivatives with respect to x, φ, ε up to the s-th ($s \ge 1$) order inclusively, where

$$(x,\varphi,\varepsilon)\in\mathcal{O}=\{\|x\|\leq d,\ \varphi\in\mathbb{T}_m,\ \varepsilon\in(-\varepsilon_0,\varepsilon_0)\}.$$
(51)

Then there exists $\varepsilon' \in (0, \varepsilon_0]$ such that, for each $\varepsilon \in (-\varepsilon', \varepsilon')$, system (1) – (3) has a unique integral manifold $x = u(\varphi, \varepsilon), \varphi \in \mathbb{T}_m$, where $u(\varphi, \varepsilon)$ have continuous partial derivatives with respect to φ, ε up to the (s - 1)-th $(s \ge 1)$ order inclusively for $\varphi \in \mathbb{T}_m \setminus \Gamma$, $\varepsilon \in (-\varepsilon', \varepsilon)$ and has the discontinuities of the first kind for $\varphi \in \Gamma$.

Proof. We rewrite system (1) - (3) in the form

$$\frac{d\varphi}{dt} = a_0(\varphi) + b(\varphi, x, \varepsilon), \tag{52}$$

$$\frac{dx}{dt} = (A_0(\varphi) + A_1(\varphi, x, \varepsilon))x + f(\varphi, \varepsilon), \quad \varphi \in \mathbb{T}_m \setminus \Gamma,$$
(53)

$$\Delta x\Big|_{\varphi\in\Gamma} = (B_0(\varphi) + B_1(\varphi, x, \varepsilon))x + g(\varphi, \varepsilon),$$
(54)

where $f(\varphi, 0) = g(\varphi, 0) = 0$, $b(\varphi, x, 0) = O(||x||)$, $A_1(\varphi, x, 0) = O(||x||)$, and $B_1(\varphi, x, 0) = O(||x||)$. We construct the sequence of sets

$$\{x = u_k(\varphi, \varepsilon) : \mathbb{T}_m \times (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}^n\}, \quad k = 0, 1, \dots$$

where $u_0(\varphi, \varepsilon) \equiv 0$ and $u_{k+1}(\varphi, \varepsilon)$ is an invariant set of the system

$$\frac{d\varphi}{dt} = a_0(\varphi) + b(\varphi, u_k(\varphi, \varepsilon), \varepsilon),$$
(55)

$$\frac{dx}{dt} = (A_0(\varphi) + A_1(\varphi, u_k(\varphi, \varepsilon), \varepsilon))x + f(\varphi, \varepsilon), \quad \varphi \in \mathbb{T}_m \setminus \Gamma,$$
(56)

$$\Delta x\Big|_{\varphi\in\Gamma} = (B_0(\varphi) + B_1(\varphi, u_k(\varphi, \varepsilon), \varepsilon))x + g(\varphi, \varepsilon).$$
(57)

There exists $\varepsilon_1 > 0$ such that $||b(\varphi, 0, \varepsilon)||_s \le \delta$, $||A_1(\varphi, 0, \varepsilon)||_s \le \delta$, $||B_1(\varphi, 0, \varepsilon)||_s \le \delta$ for $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$ and the constant $\delta > 0$ defined in Theorem 3. By Theorem 4, the linearized system

$$\frac{d\varphi}{dt} = a_0(\varphi) + b(\varphi, 0, \varepsilon), \tag{58}$$

$$\frac{dx}{dt} = (A_0(\varphi) + A_1(\varphi, 0, \varepsilon))x, \quad \varphi \in \mathbb{T}_m \setminus \Gamma,$$
(59)

$$\Delta x\Big|_{\varphi\in\Gamma} = (B_0(\varphi) + B_1(\varphi, 0, \varepsilon))x, \tag{60}$$

is exponentially dichotomous with a piecewise smooth projector $P_1(\varphi, \varepsilon)$ and the Green function $G_1(t, \tau, \varphi, \varepsilon)$ satisfying estimate (49).

The function $u_1(\varphi, \varepsilon)$ is defined by the formula

$$u_{1}(\varphi,\varepsilon) = \int_{-\infty}^{\infty} G_{1}(0,\tau,\varphi,\varepsilon) f(\sigma_{1}(\tau,\varphi,\varepsilon),\varepsilon) d\tau + \sum_{j\in I_{1}(\varphi,\varepsilon)} G_{1}(0,t_{j}^{1}(\varphi,\varepsilon),\varphi,\varepsilon) g(\sigma_{j}^{1}(\varphi,\varepsilon),\varepsilon),$$
(61)

where $\sigma_1(t, \varphi, \varepsilon)$ is the solution of equation (58), $t_j^1(\varphi, \varepsilon), j \in I_1(\varphi, \varepsilon)$ are points where $\sigma_1(t, \varphi, \varepsilon)$ intersects the manifold Γ , and $\varphi_j^1(\varphi, \varepsilon) = \sigma(t_j^1(\varphi, \varepsilon), \varphi, \varepsilon)$.

In view of the smoothness of the functions $t_j^1(\varphi, \varepsilon)$ and the piecewise smoothness of the Green function $G_1(0, \tau, \varphi, \varepsilon)$, the function $u_1(\varphi, \varepsilon)$ has continuous partial derivatives with respect to φ, ε up to the order *s* inclusively for $\varphi \in \mathbb{T}_m \setminus \Gamma$ and $\varepsilon \in (-\varepsilon_1, \varepsilon_1)$ and the functions $\partial^{|j|} u(\varphi, \varepsilon) / \partial \varphi^j \partial \varepsilon^{j_{m+1}}$, $j = (\overline{j}, j_{m+1}) = (j_1, ..., j_{m+1})$, $1 \leq |j| \leq s$, have discontinuities of the

first kind for $\varphi \in \Gamma$. Differentiating formula (61) *s* times and taking into account (23) and (49), we get

$$\|u_1(\varphi,\varepsilon)\|_s \le C_1(\|f(\varphi,\varepsilon)\|_s + \|g(\varphi,\varepsilon)\|_s),\tag{62}$$

where C_1 is some positive constant.

Choose $\varepsilon_2 > 0$ such that, for $\varepsilon \in (-\varepsilon_2, \varepsilon_2)$ and $u(\varphi, \varepsilon) \in C^s_{\Gamma}(\mathbb{T}_m \times (-\varepsilon_2, \varepsilon_2)$ satisfying (62), the following inequalities are valid:

$$\|b(\varphi, u(\varphi, \varepsilon), \varepsilon)\|_{s} \leq \delta, \ \|A_{1}(\varphi, u(\varphi, \varepsilon), \varepsilon)\|_{s} \leq \delta, \ \|B_{1}(\varphi, u(\varphi, \varepsilon), \varepsilon)\|_{s} \leq \delta,$$

where the constant $\delta > 0$ is defined in Theorem 3.

Let a piecewise smooth function $u_p(\varphi, \varepsilon)$, $\varphi \in \mathbb{T}_m, \varepsilon \in (-\varepsilon_2, \varepsilon_2)$, be an invariant set of system (55) – (57) for k = p. We assume that $u_p(\varphi, \varepsilon)$ belongs to $C_{\Gamma}^s(\mathbb{T}_m) \times (-\varepsilon_2, \varepsilon_2)$ and satisfies inequality (62). Then the linearized system (55) – (57) (if $f = g \equiv 0$) is exponentially dichotomous with the projector $P_p(\varphi, \varepsilon)$ and the Green function $G_p(t, \tau, \varphi, \varepsilon)$ satisfying estimate (15). We define the invariant set $u_{p+1}(\varphi, \varepsilon)$ by the formula

$$u_{p+1}(\varphi,\varepsilon) = \int_{-\infty}^{\infty} G_p(0,\tau,\varphi,\varepsilon) f(\sigma_p(\tau,\varphi,\varepsilon),\varepsilon),\varepsilon) d\tau + \sum_{j\in I_p(\varphi,\varepsilon)} G_p(0,t_j^p(\varphi,\varepsilon),\varphi,\varepsilon) g(\sigma_j^p(\varphi_j^p(\varphi,\varepsilon),\varepsilon),\varepsilon),\varepsilon),$$
(63)

where $\sigma_p(\tau, \varphi, \varepsilon)$ is the solution of (55), $t_j^p(\varphi, \varepsilon), j \in I_p(\varphi, \varepsilon)$, are the points of intersections of $\sigma_p(\tau, \varphi, \varepsilon)$ with the manifold Γ , and $\sigma_j^p(\varphi, \varepsilon) = \sigma_p(t_j^p(\varphi, \varepsilon), \varphi, \varepsilon)$.

Differentiating (63) and and taking into account (23) and (49), we get

$$\|u_{p+1}(\varphi,\varepsilon)\|_s \le C_1(\|f(\varphi,\varepsilon)\|_s + \|g(\varphi,\varepsilon)\|_s).$$
(64)

Hence, we obtain the uniform boundedness of the sequence $\{u_n(\varphi, \varepsilon)\}$ for $\varphi \in \mathbb{T}_m, \varepsilon \in (-\varepsilon_2, \varepsilon_2)$.

Define $w_{k+1}(\varphi, \varepsilon) = u_{k+1}(\varphi, \varepsilon) - u_k(\varphi, \varepsilon)$. Since the functions $u_k(\varphi, \varepsilon)$ are smooth for $\varphi \in \mathbb{T}_m \setminus \Gamma, \varepsilon \in (-\varepsilon_2, \varepsilon_2)$ and have discontinuities of the first kind for $\varphi \in \Gamma$, the function $w_{k+1}(\varphi, \varepsilon)$ satisfies the following equation:

$$\begin{split} \frac{\partial w_{k+1}}{\partial \varphi} (a_0(\varphi) + b(\varphi, u_k, \varepsilon)) + \frac{\partial u_k}{\partial \varphi} (b(\varphi, u_k, \varepsilon) - b(\varphi, u_{k-1}, \varepsilon)) &= \\ &= (A_0(\varphi) + A_1(\varphi, u_k, \varepsilon)) w_{k+1} + (A_1(\varphi, u_k, \varepsilon) - \\ &- A_1(\varphi, u_{k-1}, \varepsilon)) u_k, \ \varphi \in \mathbb{T}_m \setminus \Gamma, \\ \Delta w_{k+1} \Big|_{\varphi \in \Gamma} &= (B_0(\varphi) + B_1(\varphi, u_k, \varepsilon)) w_{k+1} + \\ &+ (B_1(\varphi, u_k, \varepsilon) - B_1(\varphi, u_{k-1}, \varepsilon)) u_k. \end{split}$$

Hence, $w_{k+1}(\varphi, \varepsilon)$ determines an invariant set of system (55) – (57) with $f(\varphi, \varepsilon) = (A_1(\varphi, u_k, \varepsilon) - A_1(\varphi, u_{k-1}, \varepsilon))u_k - (\partial u_k/\partial \varphi)(b(\varphi, u_k, \varepsilon) - b(\varphi, u_{k-1}, \varepsilon)), g(\varphi, \varepsilon) = (B_1(\varphi, u_k, \varepsilon) - B_1(\varphi, u_{k-1}, \varepsilon))u_k$. We can express $w_{k+1}(\varphi, \varepsilon)$ in the form

$$w_{k+1}(\varphi,\varepsilon) = \int_{-\infty}^{\infty} G_k(0,\tau,\varphi,\varepsilon) \left[\left(A_1(\sigma_k(\tau,\varphi,\varepsilon), u_k(\sigma_k(\tau,\varphi,\varepsilon),\varepsilon),\varepsilon) - A_1(\sigma_k(\tau,\varphi,\varepsilon), u_{k-1}(\sigma_k(\tau,\varphi,\varepsilon),\varepsilon),\varepsilon) \right) u_k(\sigma_k(\tau,\varphi,\varepsilon),\varepsilon),\varepsilon) - \frac{\partial u_k(\sigma_k(\tau,\varepsilon),\varepsilon)}{\partial \varphi} \left(b(\sigma_k(\tau,\varphi,\varepsilon), u_k(\sigma_k(\tau,\varphi,\varepsilon),\varepsilon),\varepsilon) - b(\sigma_k(\tau,\varphi,\varepsilon), u_{k-1}(\sigma_k(\tau,\varphi,\varepsilon),\varepsilon),\varepsilon),\varepsilon) \right) \right] d\tau + \sum_{j \in I_k(\varphi,\varepsilon)} G_k(0, t_j^k, \varphi, \varepsilon) (B_1(\sigma_j^k, u_k(\sigma_j^k, \varepsilon), \varepsilon) - B_1(\sigma_j^k, u_{k-1}(\sigma_j^k, \varepsilon),\varepsilon))).$$
(65)

By (65), we have

 $||w_{k+1}(\varphi,\varepsilon)||_0 \le C_0(\varepsilon) ||w_k(\varphi,\varepsilon)||_0,$

where $C_0(\varepsilon) \to 0$, $\varepsilon \to 0$. There exists $\varepsilon' \in [0, \varepsilon_2]$ such that $C_0(\varepsilon) \le \rho_0 < 1$ for $\varepsilon \in (-\varepsilon', \varepsilon')$. Then

$$\|w_{k+1}(\varphi,\varepsilon)\|_{0} \le \rho_{0}^{k-1} \|u_{1}(\varphi,\varepsilon)\|_{0} \le \rho_{0}^{k-1} C_{1}(\|f(\varphi,\varepsilon)\|_{0} + \|g(\varphi,\varepsilon)\|_{0}).$$
(66)

Inequality (66) proves the convergence of the sequence $\{u_p(\varphi,\varepsilon), p = 0, 1, ...\}$ in the space $C_{\Gamma}(\mathbb{T}_m \times (-\varepsilon', \varepsilon'))$. To show that $u(\varphi, \varepsilon) \in C_{\Gamma}^{s-1}(\mathbb{T}_m \times (-\varepsilon', \varepsilon'))$, we use the uniform boundedness and equicontinuity of the sequence $D^r u_k(\varphi, \varepsilon), k = 0, 1, ..., r \leq s$, which follow from estimate (64). By the Arzela lemma, any infinite subsequence of $D^r u_k(\varphi, \varepsilon), k = 0, 1, ...,$ uniformly converges to some function $v^{(r)}(\varphi, \varepsilon)$. This, with the use of the limit $\lim_{k \to \infty} u_k(\varphi, \varepsilon) = u_k(\varphi, \varepsilon)$.

 $u(\varphi,\varepsilon)$, proves that $D^r u(\varphi,\varepsilon) = v^{(r)}(\varphi,\varepsilon)$ and $u(\varphi,\varepsilon) \in C^{s-1}_{\Gamma}(\mathbb{T}_m \times (-\varepsilon',\varepsilon'))$. The theorem is proved.

- 1. *Tkachenko VI*. On exponential dichotomy and invariant sets of impulsive systems // Extended Abstrs Fourth Int. Conf. Different Equat. and Appl. (Poznan, Poland). 1998. P. 341 344.
- Bogolyubov N.N., Mitropolskij Yu.A. The method of integral manifolds in nonlinear mechanics // Proc. Int. Symp. Anal. Methods in Theory Nonlinear Vibrations (1961). — Kiev: Izdat. Akad. Nauk Ukr. SSR, 1963. — 1. — P. 93 – 154.
- 3. Hale J.K. Integral manifolds of perturbed differential systems // Ann. Math. 1961. 73. P. 496 531.
- Mitropol'skii Yu.A., Lykova O.B. Integral manifolds in nonlinear mechanics. Moscow: Nauka, 1973. 512 p.
- Samoilenko A.M. Elements of mathematical theory of multi-frequency oscillations. Dordrecht: Kluwer Acad. Publ., 1991. – 313 p.

- 6. Yi Y. A generalized integral manifold theorem // J. Different. Equat. 1993. 102. P. 153 187.
- 7. Akhmetov M.U. Quasiperiodic solutions of impulsive systems // Asymptotic Methods in Equations of Math. Phys. Kiev: Inst. Math. Acad. Sci. Ukr. SSR, 1989. P. 12 18.
- Samoilenko A.M., Perestyuk N.A. Impulsive differential equations // World Sci. Ser. on Nonlinear Sci. Ser. A. – 1995. – 14. – 462 p.
- Samoilenko A.M., Teplinskii Yu.V., Tsyganovskii N.S. Behavior of solutions of a quasilinear system of differential equations with impulses in the neighbourhood of an invariant torus // Different. Uravneniya. – 1982. – 18. – P. 833 – 839.
- Tkachenko VI. The Green function and conditions for the existence of invariant set of impulsive systems // Ukr. Math. J. – 1989. – 41, № 10. – P. 1187 – 1190.
- Tkachenko VI. On the existence of a piecewise-smooth invariant torus of an impulsive system // Method for Investigating Differential and Functional-Differential Equations. — Kiev: Inst. Mat. Acad. Sci. Ukr. SSR, 1990. — P. 91 – 96.
- Tkachenko VI. On multi-frequency systems with impulses // Nonlinear Oscillations. 1998. № 1. P. 107 - 116.
- 13. *Trofimchuk S.I.* Impulsive linear extensions // Asymptotic Solutions of Nonlinear Equations with a small Parameter. Kiev: Inst. Math. Acad. Sci. Ukr. SSR, 1991. P. 124 131.
- 14. Lakshmikantham V., Bainov D., Simeonov P.S. Theory of impulsive differential equations. Singapore: World Sci., 1989. 273 p.
- 15. *Sacker R. J., Sell G.R.* Existence of dichotomies and invariant splittings for linear differential systems, I // J. Different. Equat. 1974. **15**. P. 429 458.
- Sacker R.J., Sell G.R. Dichotomies for linear evolutionary equations in Banach spaces // Ibid. 1994. 113. – P. 17 – 67.
- 17. Sacker R.J., Sell G.R. A spectral theory for linear differential systems // Ibid. 1978. 27. P. 320 358.
- Tkachenko V.I. On exponential dichotomy of pulse evolution systems // Ukr. Math. J. 1994. 46, № 4. P. 441 – 448.

Received 15.07.99