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The object of this paper is to study the problem of constructing an approximate solution to the first order
weakly nonlinear ordinary differential equation with deviated argument and slowly varying coefficients.
Based on asymptotic techniques in nonlinear mechanics an algorithm for asymptotic integration of the
differential equation under consideration is given.

Poszenndaemubcesa 3a0aua npo noby0o8y HabauIeHUX PO36°A3KIE CAAOKOHEAIHIIIHO20 OUpepeHUiaNbHO-
20 PIBHAHHA NEPULO20 NOPAOKY 3 BIOXUNCHHAM aPYMeHMY I NOBIAbHO 3MIHHUMU Koeiuienmamu. Ha
OCHOBI ACUMINMOMUYHUX MEMOOI8 HEATHIUHOT MEXAHIKU 3ANPONOHOBAHO AA20PUMM ACUMIIOMUYHO20
iHme2pyB8arnta OuphepeHYiaAbHO20 PIBHAHHA BKA3AH020 8UUE KAACY.

1. Introduction. Studying oscillatory processes is known to be of a great importance for di-
fferent fields of mechanics, physics, technology and a number of other areas of natural sciences.
In many cases the mathematical model of the system under consideration is presented by di-
fferential equations with deviating argument and slowly varying coefficients. As a rule, such
equations are nonlinear, but in many cases they are close to linear ones, since they contain
some small parameter such that, if its value is zero, the differential equations become linear. For
such equations a number of perturbation theory methods is developed, including asymptotic
methods of nonlinear mechanics [1-6] that are of great efficacy.
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Up to the present, many problems of the theory of asymptotic methods of nonlinear mecha-
nics have been thoroughly elaborated for different classes of differential equations by a number
of authors; unfortunately it is impossible to list all of them here. We will only recall some
papers of N. M. Krylov and N. N. Bogolyubov, devoted to the development of asymptotic
method and connected with the discussed problem. V. P. Rubanik [7 — 9] and V. I. Fodchuk [10]
have considered a weakly nonlinear nonstationary differential equation with delayed almost
constant arguments and, in general, have described an algorithm for asymptotic integration,
found a formula for the first approximation and the first improved approximations. Yu. A. Mi-
tropol’skiy and Le Suan Kan [11, 12] have studied multifrequency and one-requency oscillati-
ons in systems with slowly varying parameters and constant delay. Algorithms for asymptotic
integration of different types of differential equations with constant delay using the techniques
due to N. M. Krylov and N. N. Bogolyubov are given by Yu. A. Mitropol’skiy and D. I. Martynyuk
[13].The problem of constructing asymptotic solutions to delay differential equations of the
second order with slowly varying coefficients was studied in papers [14, 15].

In the present paper we consider the problem of constructing asymptotic approximations
for the first order ordinary differential equation with deviated argument and slowly varying
coefficients. Such a problem is of a certain practical importance, through its connection to a
study of nonstationary processes in oscillatory systems.

2. Formulation of the problem. We study the problem of constructing asymptotic solutions
for the first order weakly nonlinear ordinary differential equation with deviated argument and
slowly varying coefficients of the following form:

dx(t) +B(r) dz(t — o(1))

dt S wi(n)a(t) +wi(r)e(t - o(7) =

—ef <T, 0, 2(t), 2(t — o(7)), dfflf), da(t ;f””) . @.1)

Here ¢ is a small parameter; 7 = et is slow time; df/dt = v(7) is an instant frequency of an
external periodical force; o(7) > o > 0is a delay; the function f (7,6, z,y, u, v) is supposed to
be 2m-periodic with respect to # and have the from

f(Tagvxvya U7U) = Z einefn(TvxvyvlL?U)' (22)
[n|[<N

We also suppos that the coefficients f, (7, z,y,u,v),|n| < N, are infinitely differentiable
with respect to 7 and are polynomials of the variables x, y, u, v.

The quantities § = ((7),w1 = wi(7),ws = wa(7),v = v(7),0 = o(7) are supposed to be
smooth enough as functions of 7. We also assume that the equation (2.1) has a unique solution
of the initial problem for all ¢ > ¢y, where ¢y is an arbitrary (but fixed) moment of time.

Assume that characteristic equation of system (2.1),

A+ B(0)Ae M) 4 W2 (1) + wi(r)e M) = 0, (2.3)

has solutions A = +iw(7) at every moment of the slow time 7. It means that the fundamental
frequency w = w(7) of the unperturbed system (2.1) (when ¢ = 0) for every 7 satisfies the
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system of characteristic equations,

D;(w) = Bwsinwe + wi + w3 coswo = 0, (2.4)

Dsy(w) = w+ fwcoswo — w3 sinwa = 0, (2.5)

and is smooth enough in the variable 7.

Thus the unperturbed system (2.1), for every value of the parameter 7, has a set of periodic
solutions z(t) = acos (wt + ¢), where a = a(7) and ¢ = ¢(7) are arbitrary values.

On the basis of ideas used in asymptotic techniques in nonlinear mechanics [1], developed
by N. M. Krylov, N. N. Bogolyubov and Yu. A. Mitropol’skiy, we describe an algorithm that
allows to find an approximate solution to the problem (2.1) as an asymptotic expansion in the
small parameter e, which is asymptotically close to the periodic solution z(t) = a cos (wt + ¢),
which would give a solution to the unperturbed system (2.1).

3. Asymptotic expansion. In the context of solving the problem of constructing approxi-
mate (asymptotic) solutions, one usually studies nonresonance and resonance cases, and soluti-
ons to the problem are found separately for each of these cases. A dependence of both the
fundamental frequency w(7) and the frequency of external force v(7) on the slow time 7 does
not allow to apply such an approach to the problem under consideration. As is known [1],
the problem is connected with the possibility for the system (2.1) from one, for example, non-
resonance state, to another, resonance state, and vice versa, caused transform by varying the
frequencies w(7), v(7) with the slow time 7.

Thus, an asymptotic solution of the problem (2.1) we seek in the following form:

z(t) = acosp + ZEkUk(T, a,0,p), p = §6+ 1, (3.1)
k=1

where the numbers p, ¢ are mutually distinct natural and depend on the relation between the
frequencies w(7), v(7).
The functions a(t) and v (¢) satisfy the following differential equations:

% - ZSkAk(T’avw)v % = w(r) — %V(T) + ZekBk:(Ta a,1), (32)
k=1

k=1

where the functions Ay (7, a,v), Bx(T,a,v), for any k € N, are 2r-periodic in the variable .
The functions Uk (7, a, 0, @),k € N, are supposed to be 27-periodic in the variables 6, 1), and
not to have the first harmonics in their Fourier series expansion in ¢, i.e.,

2m
/Uk(T,a,H, go)eiwdgp =0, ke N. (3.3)
0

It is known that condition (3.3) gives a possibility to uniquely determine the functions
Ug(T,a,0, ) for every k € N. On the other hand, these conditions allow to construct asymptotic
solutions containing no secular terms.

ISSN 1562-3076. Heninitini koausanns, 2004, m. 7 N> 4



478 YU. A. MITROPOL'SKIY, G. MATARAZZO, A.POMPEI, AND V. HR. SAMOYLENKO

As is well known, in order to find differential equations for the functions Ay (7, a,v), Bg(T,

a,¥), Uk(1,a,0,9), k € N, it becomes necessary to substitute the expansion (3.1) into equation
(2.1), taking into account the differential equations (3.2), expand the obtained relation into the
series in the small parameter ¢, and finally equate the terms with the same degree of ¢.

Let us introduce the following notations:

Qo = <w<r>—pv< >) o Q= g+ (e v+ Biln e )5

Qe = Au(r,,0) o + Bilr,a, ) Z > 9, (3.4)

Tnm = Z Qk1Qk2 s an7 Pm = Z an’ﬂh
k120,k2>0,... kn>0 n=0
where T, = dom, dom is the Kronecker symbol,n € N;m = 0,1, . ...

In particular, oo = 0,71 = Qm,Tho = Q@ for n,m € N; the operators Qy, Tm, P act
on the functions Ay (7, a, ), Bx(7,a,), where k,n € N;m = 0,1,.... We also note here that
Pm =0,m=0,1,...,if c = 0, i.e., the delay is absent.

By direct calculations it is possible to find the following formulas:

k—1
T za (zTn_l,mAk_m), wso
m=0

atm ~ © el

dnw 1 dnfl k—1
= W( - *V + ZE Z Tnfl,mBk—m , no> 2,
m=0

dx . > , 0 0
n = —awsmgp-i-kzlg {—aBksmgo—i-Akcos4p+<V80+wa >Uk}+

+Z€kgk(7—7 aﬂba%a)a (35)

k=1

d*x 9 > & < P ) OBy,
— = —aw“ cos ¢ + e — | 2wAL +a|lw—=v sin o+
= { < b ) v v

dt?
k=1

0A;
+ w — fy —— — 2awBy, | cos +
( < q > I k) S0}
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0? 0?
+Z8 { (7/ w+2ywaea(p+w 8(10> Uk+8k(7- a’aw P, )}’

where gi(7,a,1,¢,0), sp(T,a,1¥,,0), k € N, are determined from the functions A,, = A, (T,
a,¥), By, = By (1,0,¢), Uy, = Up(7,0,0,0),m = 1,k — 1.

Using the Rubanik’s idea [10] of representing the function ¢g(¢ — o) in ferms of the power
series

x k O'k
slt=0) = a0+ 3 (Gao ).
k=1

which is possible, for instance, under the conditions
’ tkg ‘ < CLF forall t€ R,keN,

with some constancs C, L, the functions a(t — o(7)),¢(t — o(7)) and 0(t — o(7)) can also be
represented an asymptotic expansion in the small parameter ¢ with the coefficients being functi-
ons of a(t), 1 (t), 6(t) without delay as follows:

[e%S) k—1
a(t—o(r)) = a(t) + ) & (Z PmAk_m(T,a(t),w(t))> :
k=1 m=0

00 k—1
Ut —o(r) =)+ e (Z PmBk_m(T,au),w(t))) +
k=1 m=0

° o)kt gk P
kz (k _|_ (k+1)! dr¥ <w(7') - qV(T)> ) (3.6)
k+1 dk
o=olr Z k:+1 dT(k)‘

k=

Further, as a consequence, we find

xz(t—o(71)) = acos(p —wo) + Zak{PoAk(T, a,v) cos (¢ — wo)—
k=1

- aPOBk‘(T7 a, w) Sin(@ - wa) + Uk‘(T7 a, 0 — vo,p — WO—) + Qk(7—7 a, wv ®, 9)}7
3.7)
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dz(t — o(7))
dt

= —awsin(p — wo)+
+ Z " { [RoAk(T,a,¥) — awPoBy(7, a,1))] cos(p — wo)—
- [WPOAk(7'7 a, ¢) - aROBk(Tv a, ,¢)] sin (SO - wo_)}—i_

+Z€ { (V—i—waa ) Uk(T,a,H—Va,go—wa)—i—rk(T,a,z/J,go,G)},

where the explicit form of each function gi(7,a, ¥, ¢,0), ri(7,a,9,¢,0), for any k& € N, is
determined by the functions A,,(7,a, ), By (7, a,v), Uy (1,a,0,0),m = 1,k — 1.
In addition,

(3.8)

the values assumed as a = a(t),v¥ = ¥(t), o = ¢(t),0 = 6(t), i.e., containing no delay.

Note that there are many functions that can be represented in a way similar to relations
(3.6), (3.7). Specifically, this takes place if the power series for such functions are convergent
for all values of 7.

Substituting formulas (3.5) - (3.7) into the right-hand side of equation (2.1) and expanding
the result in the small parameter ¢ yields

. <T707x(t)7x(t o), d:;iﬂj dx(t dtU(T))> =3 A a6,).
k=0

In a standard way, we substitute the obtained expressions into equation (2.1), equate the
coefficients at the same powers of the small parameter € and find

0 0
[ + w— —i—wl} Uk(1,a,0,0)+

a0 Oy
+ |8 g+a+2U( 0— —wo) =
Vag TV, ) TWE|Us(m a0 —wop —wo) =
= Fi(1,a,0,0) + (LA + aEBy) cos ¢ + (EAy — aLBy) sin p, (3.9)
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where the differential operators £, £ are as follows:

L= (w — pl/> 8(1 + 1+ Ry coswo + BwPysinwo + w 730 coswo,
(3.10)
E = 2w+ Rysinwo — PwPycoswo + w%PO sinwo.

An explicit form of the functions Fy, = fi_1 — (agk + 8k + w3qk + Sk)s fi—1> Gks Qks Tk Sks
for every k € N, can be found after a consequtive calculation of the functions A,,(7,a, ),

B (1,a,%), Un(7,a,0,0), m = 1,k — 1. To implement this, we have to use the 27-periodicity
of the functions Ay (1, a,v), Bx(1,a,v), Ux(T,a,0,9), Fx(T,a,p,0),k € N, with respect to the
variables v, ¢, 6, correspondingly, and then represent these functions in terms of their Fourier
series as follows:

+o00
Uk‘ (7_7 a, 07 SO) = Z Ukmn (7-7 a)ei(mQ-f—ngo)’

m,n=—00

Fy, (7_7 a, @, 9) = Z kan T,a z(m@—i—ng@)

m,n=—0oo

(3.11)
Ag(r,a,9) = Z Agn(1,0)e ”“l’

n=—oo

By(1,a,¢) = Z Byp(1,a)e mw

where
2m 2m
1 (mb+neyp)
Ukmn(Ta CL) ) U (7—7 a 97 (P) v d@d(p
4
0 0
2m 2m
Frpmn(1,0) = 1 Fy (7, a,,0)e"M0F12) 4o dp
mn 47(2 ) ) )
0 0

1 .
Aunlria) = 5 [ Autr.a, )™,
0

2

Bn(ria) = 5 [ Bulr.a )™y,

0
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Taking into consideration the relation ¢ — Py — 1), we separate the resonance and the

nonresonance terms in the Fourier expansion (3.11) of the functions Fy(7,a,,0,¢),k € N, in
the following way:

Fp(moa,0,0) = > Frn(7,0)e/ M9y
mg+(n£1)p#0

+ Z Fromn (1, 0)e"™M09) o n e Z,
mg+(n+1)p=0

where the last term can be wriften as

5 At
mg+(n£1)p=0

o0
= Z [Fk,_pmqn_l(T, a)e"” + F _pngn+1(T, a)efw] ety

n=—0oo

Using both condition (3.3) and relation (3.9) we find the following differential equations for
the functions A (7, a, ), Bi(7,a,v), Ux(1,a,60,¢), k € N:

yaag + wai + Wi | Uk(T, 0,0, 0)+
0 0 9
+ |3 (1/80 —|—w&p) + w5 | Uk(1,a,0 — wo, o —wo) =
+o00 )
= Z Frmn(T, a)e’(m0+w), mg+(n+1l)p#0, k€N, (3.12)
+0c0 )
LA, +aEBy = Z Gin (T, a)emw, k € N,

(3.13)

+o00
EAL —al By = Z Hp, (T, a)e”“z’, k € N,

n=—0oo
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where the differential operators £, £ are given by formula (3.10) and

2 +oo
Gn(7, ) = / S [P pmgm1(7,0) + Fopmsgm (7, )] x
m=—0oQ
27 2w
[(mg—n)y _
x e ma=mv gy, — 4773/ Z //FkTa,go,
m—ooo
x P9 = imap i (ma—m)¥ qog o dhdpdip,
Hyn(7,0) = / Z Fy—pm,gm+1(T,a) — Fi —pmgm-1(7, @) | X
m=—00
1 27 +00 2w 2w
Xei(mqn _3/2//Fk’77 7SO>
0 M™=0 o0

% ezpmge*imqvei(mqfn)w sin @) d@dgodlb

To solve equations (3.12), (3.13) we use the Fourier representations (3.11) and easily find

systems of linear algebraic equations for the Fourier coefficients of the functions U(7, a, 0, ¢)
k ¢ N, as follows:

[i(my +nw) + w4 (iB(my 4 nw) + wd) e~ mrinele

I

mn\T,Q) = .
: 0, it mg+ (n+1)p =0

I

where m,n € Z, and, respectively, the functions Ak (7, a,v), Bx(7,a,v),k € N, are given as
follows:

Ly Ay, + a&p By = Gkn(Ta (l), EnAgn

— aly By, = Higp(71,0), n € Z, (3.15)
where
Ly = inl + 1+ Be " coswo + (Bwsinwo + w3 coswo)p(nl)
En = —2w + Be” ™7 sinwo + (—Pw coswo + wi sinwa)p(nl)
l=w-"?
q

(e=™o — 1) /(inl), if nl # 0,
v, p=pnl) = ,
—o, if nl = 0.
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Evidently, the system of algebraic equations (3.14) has a unique solution,

. kan(Tu CL)
Ukmn(Tv a) - Monn +Nmne—i(mu+nw)a’

ifmg+ (n£1)p # 0and Uy (7,a) = 0if mg + (n+ 1)p = 0, where

Mopn, = i(mv +nw) +w?, Npn = i8(my + nw) + w3,
if and only if the system of characteristic equations (2.4), (2.5) has no solution A =
= mv + nw,m,n € Z, such that mqg + (n + 1)p # 0.

Similarly, the system of algebraic equations (3.15) has a unique solution,

LnGin(7,0) + EnHiy (T, 0)
L2 4 &2 ’

Agp(1,0) =

EnGin(T,a) — Ly Hin (T, a)

Boln®) === mrven

if and only if the following condition takes place:
+2w — nl + i + i’ FTD7 4 (iw? + Bw)p(nl)eTT # 0 Vn € Z. (3.16)

The last condition, if n = 0, is equivalent to the assumption that the numbers + w are simple
roots of the characteristic equations (2.4) and (2.5). In the opposite case, if n # 0, relationship
(3.16) yields

sinnlo

1+ B cosnlo coswo — (fwsinwo + w3 cos wo) # 0,

nl

1 — cosnlo

nl — Bsinnlo coswo + (Bwsinwo + w3 coswa) ; # 0,
n
innl
—2w + Bcosnlo sinwo + (Bw coswo — w3 sinwa)smn 7 # 0,
. . 9 . 1 —cosnlo
—fsinnlo sinwo + (—fw coswo + wj smwa)il # 0.
n

Thus the functions Uy(7,a,0,¢), Ak(T,a,v), Br(r,a,v), k € N, can be represented as
follows:

1 —i(mr+nw)o -1
Uk<T7 a, 67 90) - @ Z (an + N’mne (my+nw) ) X
mq+(n+1)#£0

21 21

X ei(m0+”‘p)//Fk(T,a,cp,G)e_i(meJrW) dfdp,
0 0
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21 2w

1 X
Ak(Tva‘aw):rﬂ_?) Z (£2+52 'nu/)/ Z //FkT(l,QD,

n=—oo m=—00 0

X €m0 (L, cos g+ Ep sin)e’ I dfdpdy,

27 2w

1
Bk(Ta aﬂﬁ) 4@71'3 Z EQ +52 an/ Z //Fk T,a, 907

m=—0oQ 0

x PO (L, sin i — £, cos )M dfdpdy.

Many properties of weakly-nonlinear oscillatory systems, such as the stationary mode, stabi-
lity, dependence on the parameters of stationary oscillations, often appear in the first approxi-
mation and can be studied by the first approximation and the first improved approximation.
The first improved approximate solution to the problem (2.1) has the following form:

2(t) = acos <p9 n ¢> T el (T, a,0,20 + ¢> ,
q q

where

Ul (T’ aje’ 29+¢> - 47711-2 Z (an +Nmn€ i(myt+nw)o >_1 X

mq+(n£1)#£0

21 27
X ei(m9+”¢)//f0(7, a, 0, )e M) dodep, o = %9 + .

The functions a = a(t) and ¢ = v(t) satisfy the differential equations for the first approxi-

mation,

d = ey
aa ngl(T,a@b):% Z (L2 +&2) beind

dt
n=—00
21 +00 21 21
J 5 T riran imecs
m=—00 {

X (=L cos @ + E, sin ) MY d0dpda,
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% =w-— gl/—i-eBl(T,aw) =
- p e <= 2 2\ L iny
_w—qy—4aﬁgnz_:oo(ﬁn—|—5n) e x
2r o 2727
X / Z //fo(T,a,H, )Pl emiame
0 MTT0 0

X (L sing + £y cos @)Y d0dpda).

4. Conclusion. On the basis of asymptotic methods in nonlinear mechanics, an algorithm for
constructing asymptotic approximations for the first order ordinary differential equation with
deviated argument and slowly varying coefficients is given.
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