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The oscillation spaces O;’vs/ (RY), introduced by Jaffard, are a variation on the definition of Besov spaces

for either s > 0 or s < —d/p. On the contrary the spaces (9;75/ (RY) for —d/p < s < 0 cannot be sharply
imbedded between Besov spaces with almost the same exponents, and thus are new spaces of really di-
fferent nature. Their norms take into account correlations between the positions of large wavelet coeffici-
ents through the scales. Several numerical studies have uncovered such correlations in several settings inclu-
ding turbulence, image processing, traffic, finance,. .. These spaces allow to capture oscillatory behaviors
which are left undetected by Sobolev or Besov spaces. Unlike Sobolev spaces (resp. Besov spaces B, (R%))
which are expressed by simple conditions on wavelet coefficients as { norms (resp. mixed (¥ — £ norms),
oscillation spaces are written as ¢P averages of local C*" norms. In this paper, we prove the completeness
of oscillation spaces in spite of such a mixture of two norms of different kinds.

IIpocmopu koausamv O;""’/(Rd), eeeoeri [lncaghgpapom, € sapiayiamu o3naveHHs npocmopis becosa
oan s > 0a6o s < —d/p. Aae, akwo —d/p < s < 0, npocmopu O;’S/(Rd) He Moxcymyb 6ymu cmpoz0
8KAtoHeHi mix npocmopamu becosa 3 matine makumu x ROKASHUKAMU, | MOMY € HOBUMU NPOCMODA-
MU, WO MAIOMDb OIUCHO THULY NPUPOOY. SHAUEHHA HOPMU 8 UUX NPOCMOPAX 3ANeH UMb 810 KOpeAauil
NONONHEHHA KOeDIUIEHMI8 NPU 8eAUKUX B8ell8Aemax Y NoCAI008HOCHI npocmopis. [ekiabka vucenb-
HUX 00CAIONHCEHb BIOKPUAU MAKY KOPEAAYIIO 8 KIAbKOX 8UNAOKAX, W0 OXONAIOOMb MYpPOYAeHMHICMb,
06pobKY 300paxcenb, pyx mawun, inarcu i m. 0. Lli npocmopu 00360.4710Mb NOMIMUMU KOAUBAHHS,
AKI 3aauwaromvca Henomimuumu 'y npocmopax Coboaesa ma becosa. Ha 6iominy 8i0 npocmopis Co-
6o.e6a (8ionosiono Becosa, B;"I(Rd)), AKI BUHAYAIOMBCA NPOCMUMU YMOBAMU HA Koegiuienmu npu
gelisaemax y mepminax Hopm (P (8ionosiono (P — 1), npocmopu KoAuBaHb BU3HAUAIOMbCA (P-cepeOHimu
aokaavrux nopu C° .Y cmammi 006ederno noeHomy npocmopie KoAUBAHb, He38ANCAIOULL HA MAKe No-
€OHAHHA HOPM PIZHUX MUNIB.

1. Introduction. We will use a family of 2% — 1 smooth wavelets U(?) such that the () and their
partial derivatives have fast decay. The 24/2W() (272 — k) (i = 1,...,2¢ —1,j € Z,k € Z%)
form an orthonormal basis of L?(R%). We will use a L°>° normalization for wavelets, so that we
write

f@) =Y CRuO e k), (1)

i7j7k

where
cl) = Cl(f) = 29 / FOUD (27 — )at.
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We will use the following simpler notations; A and X’ will denote respectively the cubes \;; =
= k277 +1[0,277[¢ and i gt = k'277" 4 [0,277'[¢, Cy will denote the coefficient Cﬁ, and U
will denote the wavelet ¥() (272 — k) (note that we forget the index i of the wavelet which is of

no consequence).
Recall that f belongs to the Besov space By ?(RY) with p > 0 and ¢ > 0 if

1/p
2579~ 4/p (Z\CAV?) = ¢; with ¢ €19 )
k

(which follows directly from [1, p. 50, 197] and [2, p. 45]). Note that BS’Z is the Sobolev space
H* and that B3y® is the Holder space C°. Recall that f € C*(R?) for s > 0 if there exist a
polynomial P of degree smaller than s and a constant C such that

Ve € RY Vzg € RY: |f(z) — Pz — x0)| < Ol — xol°. (3)

The spaces (9;’5/ (RY) are function spaces that have been introduced by Jaffard in [3] in
order to quantify the degree of correlations between positions of large wavelet coefficients
through the scales. Several numerical studies have uncovered such correlations in several set-
tings including turbulence [4], image processing, traffic [5], finance [6], . ... Oscillation spaces
allow to capture oscillatory behaviors which are left undetected by Sobolev or Besov spaces.

Definition 1. Let p > 0, and s, s' € R; a function f belongs to the oscillation space Of;’sl (RY)
if its wavelet coefficients satisfy

NCA

1/p
sup |2% (Z sup \C,\IQS/j/|p> < 00 (4)
J k

(modified if p = +0).

The left-hand side defines the (9;’5/ (R%) quasinorm. Note that this definition is independent
on the wavelet basis which is chosen (see [3]).

In [7], Jaffard proved that, for either s > 0 or s < —d/p, the (’)f;s/ (RY) are a variation
on the definition of Besov spaces (05 = B3 T4/P> it ¢ 5 0 and ¢* if s < —d/p, and
By PP <y 0% <, BS TP On the contrary the spaces O3 for —d/p < s < 0 cannot be
sharply imbedded between Besov spaces with almost the same exponents (in fact BITUPP
— 05 < 0¥ and C5+'+4/p — 05 and the imbeddings are optimal), and thus are new
spaces of really different nature.

In [8], Jaffard proved several related results concerning the genericity (in the sense of Baire’s

categories) of multifractal functions. One result asserts that, if s > —, generically, functions
b

of the Besov space B,(R%) are multifractal. The completeness of Besov spaces was a key
topological property in his proof. (Note that the validity of the multifractal formalism never
holds in complete generality, but it has also been checked under an additional self-similarity
assumption in [9-11].)
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In the next section, we will first briefly recall the proof of the completeness of Besov spaces.
We will then see that oscillation spaces can be written as (7 averages of local C* norms. We
will prove the completeness of these spaces in spite of such a mixture of two norms of different
kinds. So, the main statement of the this paper is the following theorem.

Theorem 1. The oscillating spaces (’);’S/ forp > 0,and s, s € R; are quasi-Banach spaces
(Banach spaces if p > 1).

2. The completeness. 2.1. Completeness of Besov spaces. Recall that if A is a (real or
complex) linear vector space, || - || is said to be a quasinorm if || - || satisfies the usual condi-
tions of a norm with the exception of the triangle inequality, which will be replaced by

L Z 1 V(al,ag) € A2 : Ha1 —|—a2H S L(HalH + HGQH) (5)

(If L = 1, then A is a normed space). A quasinormed space is said to be a quasi-Banach space
if it is complete (i.e., any Cauchy sequence in A with respect to || - | converges).

Itis well known that LP = LP(R%) (the set of all Borel measurable complex valued functions
on R? such that [ |f(z)|P dz < oo) is a quasi-Banach space (a Banach space if p > 1).

The vector space ¢, of all sequences b = (by)xen of complex numbers such that

1/p
[1blle, = [1(br)klle, = <Z|bk|p> < o0

(modified if p = o0) is a quasi-Banach space (a Banach space if p > 1). Using the normalization
we choose, the wavelet characterization of Besov spaces By? = By (R?) for (s € R, p > 0,
q > 0) can be written

< 0. (6)
04

s—4yj
1£llse = | (2% 27 1(Ci)klln )
J

The completeness of Besov spaces Bp? can be deduced from the continuous isometry that
relates it to quasi-Banach spaces ¢4(¢P) (a mixed ¢/ — ¢ norm) (see [2, p. 14, 48]).

2.2. Completeness of oscillation spaces. Let us begin by some remarks.
Remark 1. If T(f) := Z w(A) Uy, with w(A) = sup |Cy(f)|, then we can easily check that
X NCA

fe 0y’ e T(f) e ByFtree

Nevertheless, the mapping T is not linear.
Remark 2. In [3], Jaffard proved that ||(—A)*/2f|| 030 and || f||pse are equivalent norms. It

follows that Of,’sl is complete if and only if (9}‘3’0 is complete. Therefore, we can restrict the proof
of the completeness to the space (’);’0.

Remark 3. The left-hand side of (4) is an *° norm (on the scale j) of the sequence 2%
multiplied by a ¢’ norm of the quantities

sup [Cy[2°7 (7
NCA
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and these quantities clearly look like a local Holder C*' norm. Indeed a function belongs to C*'
if its wavelet coefficients satisfy sup |Cy/|2°7 < oo, but in (7) the supremum is restricted to the
)\/

subcubes of . Hence (’)f,’sl can be written as a £? average of local C*' norms. Such a mixture
of two norms of different kinds does not allow us to find an isometry similar to the above one
for Besov spaces, in order to check the completeness of (’)f,’sl. We will instead use the following
result which can be deduced from [12, p. 58].

Proposition 1. Let A be a quasinormed vector space. Denote L a constant which appears in
the generalized triangle inequality (5). The space A is complete if and only if any sequence (ay,)n,
of elements of A satisfies the following property:

“if there exists a constant D > L such that for any n ||ay|| < D" then the series Z a, converges

n

in A’

Proof. Assume that A is a complete vector space. Let L be a constant which appears in the
generalized triangle inequality (5). Let (a,), be a sequence of A. Assume that there exists a

N
constant D > L such that ||a,|| < D™" ¥n. Let Sy = Zan. For M > N

n=1
M
12 — S|l = H 3 al.
n=N-+1
If A is normed then
M M
D—(N+1)
IS =Sl < > flaull < Y D S
n=N+1 n=N+1

Since D > L > 1, (Sy) is a Cauchy sequence of A. So, (Sy) converges. If A is quasinormed
then

M
1S3 =Sull = | D2 au <

n=N-+1

M
< Lyl + L] 3 a
n=N+2

<

< Lljan1]| + L2 lans2 + .. + LM Nay | <
< LD W+) L r2p-WN+2) 4 [M-Np-M

D—N
1

< (because D > L).

_ L
D
So, (Sn) converges.
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Now, for the converse part of Proposition 1, assume that A is a quasinormed vector space,
and that any sequence (a, ), of elements of A satisfies the following property: “if there exists

a constant D > L such that ||a,| < D™ Vn, then the series Z ap converges in A”. We will

prove that A is complete; let (b, ) be a Cauchy sequence of A. It suffices to show that there exists
a subsequence (by, ), which converges in A; we extract a subsequence (b, ) such that

Denote a;, = by, ., — by,. Relation (8) implies that Vk > 1 : |las|| < D~*. Hence, by the
K
assumption, the series Z ay converges in A. Denote by S its limit. Denote Sk = Z a. We

k k=1
have Sk = bny,, — by So, (by, )i converges to S + by, .
The proof of Proposition 1 is now finished.
We will now pursue the proof of completeness of the oscillation spaces using Proposition 1.
As mentioned in Remark 2, we only have to do this for O5°(R?). Recall that f € O5°(RY) if
there exists a constant C' > 0 such that

1/p

(Z(w()\))f’> < C27 v, )

k

where w(\) = sup |Cy (f)|. We will use Proposition 1; we take A = O5°(R%), D = 2ifp > 1,
NCA

and D = L+ 1if 0 < p < 1 (with L a constant which appears in the generalized triangle

inequality (5)). Let (f,,), be a sequence in Of,’o such that

fallogo < D V. (10)

We will prove that the series Z fn converges in O;’O. We will divide the proof into three steps.

n

First step. In this step we will prove that for any cube X the series Z Cx(fn) converges;
relation (10) is equivalent to

1/p
(Z(wn(A))p> < D27 vy (11)
k
with
wn(A) = sup [Cx (fn)l- (12)
NCA
It follows that
ICx(fn)| < DT"279% Vj Vk. (13)

Since D > 1 we deduce that the series Z Cx(fn) converges.

n
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Second step. For any cube \ we write
> Ca(fn) = Ch. (14)
n=0
We denote f Z WU y. We will prove that f € Of,’o (and in the third step, we will prove that
A

N
the series Z fn converges to fin Of;o). For that we will first show that ( fn = Z f”>N isa
n n=0

bounded sequence in O5°.
If p > 1 then

N N
I <D 0 fall <> 27" <2 VN, (15)

n=0 n=0

if 0 < p < 1then

IFNI < L foll + L2 fll + -+ LV fv]) <
< LILAD) O+ L2 L+10) .+ IV L+ 1) YN,
Hence
Ifxll < L(L+1) VN. (16)
Consequently, (fy) y is a bounded sequence in O;’O. This property, together with (14), will allow

us to show that f = Z C\U, € (’);’0. Let (C’N(/\)),\ denote the wavelet coefficients of fN, ie.,
A

N
= > C(fa)-
n=0

Relation (14) can be written

Jim Ox() =Gy v (17)

Let wy () denote sup |C(\)|, and @()\) denote sup |Cy/|. We have
NCA NCA

< Z sup |C/\’(fn)| = an()‘)
n:O)‘/C/\ n=0

Relation (11) implies that w,(\) < D~"277%. Whence @(\) is finite.

o) = s

NCA
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For ¢ > 0 there exists \. C A such that
w(A) < \C‘,\g] +e.
It follows from (17) that for /V large enough,
w(N) < [Cy(\)| 4 2 < dn(N) + 2.
Therefore

@(N) < liminf én(\) VA (18)

N—+oc0

The previous relation implies that

gw(m*’ < liminf ] (@n(N)P Vi,

From (9) and the fact that (fy)y is bounded in (’);’0, we deduce that

1/p
(Z(w@)l’) < C27% Vi

k
Whence f € O5°.
Third step. We will prove that the series Z fn converges to fin (95’0:

if p > 1then, for M > N,

M M
< S sl Y 2

M
s = Fnll = H > fa

n=N+1 n=N+1 n=N+1
(where |- || = || - HOg,o), hence
HJEM_JFNH <27V (19)
if 0 < p < 1then,for M > N,
) ) M
I =ivll = 3 £ <

n=N+1

<

M
< Lfwall +L] X f

n=N+2

< Ll sl + L2 vl + oo+ LN far|| <

< LL+1)" WD 4 p2(L 4+ 1) W+ 4 pMNp )M
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Hence
Ifse = Fnll < L(L+1)7N. (20)

Using similar arguments to those of the previous step, properties (19), (20) and (17) will imply
that (f)y converges to f in O5"; let N > 1. For ¢ > 0 there exists AL x C Asuch that

sup IOy = Cn(N)| < e+[Cx = Cn(AL NI
/C ’

It follows from (17) that for M large enough

AsupAléx — COn(N)| < 26+ |Cu(My) = Cn(ALy)| < 25+ASUI;|CM( ') = Cn(N)].
'c 'C

Therefore

sup |Cy — Cn(XN)| < liminf [sup |ICar(N) — C’N(/\’)@ VA. (21)
MNCA M—+oco | e

The previous relation implies that

sup |Cy — Cn(\)])? < liminf sup [Cyy(N) = Cn VNP V5.
zk:(mr;! A NI < liminf [Zk:(XCpAI m(N) = Cn( )!)] J

. ~ 1/p
Hence sup [2Sj <Z(sup |Cy — CN(X))p> ] is smaller than
J E NCA

1/p
liminf |sup [2% (Z(Sup \C’M()\’) — C’N(A/)|)p)
J

M—-+oco P NCA

From properties (19) and (20), we deduce that || fx — f|| < 27V if p > 1, and L(L + 1)~V
if 0 < p < 1. Whence (fn)n converges to f in Of;o.
The proof of Theorem 1 is now achieved.

Acknowledgments. The author is thankful to Stéphane Jaffard for suggesting the problem
studied in this paper. The author is grateful to Yves Meyer for his valuable help. The author
thanks the Department of Mathematics of Paris XII University, where a part of this work was
done, for its kind hospitality.

1. Meyer Y. Ondelettes et opérateurs. — Paris: Hermann, 1990.
2. Triebel H. Theory of function Spaces. — Birkhduser, 1983.

3. Jaffard S. Oscillation spaces: Properties and applications to fractal and multifractal functions // J. Math.
Phys. — 1998. — 39. — P. 4129-4141.

4. O’Neil J., Meneveau C. Spatial correlations in turbulence: predictions from the multifractal formalism and
comparison with experiments // J. Phys. Fluids A. — 1993. — 1. — P. 158 -172.

ISSN 1562-3076. Heainitini xoausanns, 2005, m. 8, N> 4



ON THE COMPLETENESS OF OSCILLATION SPACES 443

RGN I

10.

11.

12.

Willinger W, Taqqu M., and Erramili A. A bibliographical guide to selfsimilar traffic and performance mode-
ling for modern high-speed networks // Stochastic Networks. Theory and Applications / Eds E Kelly, 1. Zi-
eldins. — Clarendon Press, 1996. — P. 339-366.

Mandelbrot B. Fractals and scaling in finance. — Springer, 1997
Jaffard S. Beyond Besov spaces. Pt 2. Oscillation spaces // Constr. Approxim. — 2005. — 21. — P.29-61.
Jaffard S. On the Frisch-Parisi conjecture // J. math. pures et appl. — 2000. — 79. — P. 525-552.

Aouidi J., Ben Slimane M. Multifractal formalism for quasi-selfsimilar functions // J. Statist. Phys. — 2002. —
108. — P. 541-589.

Ben Slimane M. Multifractal formalism for selfsimilar functions expanded in singular basis / Appl. Comput.
Harmon. Anal. — 2001. — 11. — P. 387-419.

Ben Slimane M. Multifractal formalism for selfsimilar functions associated to the n-scale dilation family //
Math. Proc. Cambridge Phil. Soc. — 2004. — 136. — P. 195-212.

Brezis H. Analyse fonctionnelle. Théorie et applications. — Paris: Masson, 1989.

Received 21.10.2004,
after revision — 15.09.2005

ISSN 1562-3076. Heainitini koausarnnsa, 2005, m. 8, N> 4



