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In the paper we consider a mixed boundary-value problem for the Poisson equation in a plane two-level
junction ., which is the union of a domain Qy and a large number 2N of thin rods with variable thickness
of order e = O(N~1'). The thin rods are divided into two levels depending on their length. In addition,
the thin rods from each level are c-periodically alternated. We investigate the asymptotic behaviour of the
solution as € — 0 under the Robin conditions on the boundaries of the thin rods. By using some special
extension operators, the convergence theorem is proved.

Posenadaemuca miwana kpatiosa 3adawa 044 pienanna I[lyaccona y naockomy 080pieHesomy 3’ €OHAHHI
Q., axe € 00’eonannam deaxoi obaacmi Qo ma eaukoi Kinbkocmi 2N MOHKUX CHEPHCHIB I3 3IMIHHOIO
moswunor nopaoky ¢ = O(N~1). Touki cmepacni po3dineno na 06a pieHi 6 3asexcHocmi 6i0 ix 006-
Hcunu. Kpim moeo, MoHKI CmepxcHi 3 KOJCHO?0 PIBHA £-NepioOUHHO depeyromuvcesa. Busueno acumnmo-
MUYHY N08edIHKY p036°A3KY, Koau € — 0, npu kpaiiosux ymosax Pobina Ha mexcax MmoOHKUX CIePHCHIB.
13 suxopucmanHam cneyianbHUx onepamopie NPoO0B8XceHHA 008e0eHO meopemy 30IHHOCHI.

Introduction. In this paper we consider a new type of thick junctions, namely, thick multilevel
junctions. A thick multilevel junction is the union of some domain, which is called the junction’s
body, and a large number N = O(e~!) of thin domains of thickness of order O(¢). Here ¢ is a
small parameter. The thin domains are divided into a finite number of levels depending on their
length. In addition, the thin domains from each levels are e-periodically alternated along some
manifold on the boundary of the junction’s body. This manifold is called the joint zone.

The aim of researches is to develop rigorous asymptotic methods for boundary-value
problems in thick multilevel junctions when the parameter € goes to 0, i.e., when the number
of the attached thin domains increases and their thickness decreases. The asymptotic methods,
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HOMOGENIZATION OF THE ROBIN PROBLEM IN A THICK MULTILEVEL JUNCTION 337

which were developed in [1-3] are used. A spectral problem in a plane thick multilevel juncti-
on with the flat boundaries of the thin rods was considered in [4]. Here we consider a mixed
boundary-value problem for the Poisson equation in a plane thick two-level junction with vari-
able thickness of the thin rods.

1. Statement of the problem. Let a, di, do, b1,by be positive real numbers and let d; <
< dg, 0 < by < by < 1. Consider two positive piecewise smooth functions h; and hy on
the the segments [—d;, 0] and [—ds, 0], respectively. Suppose the functions h; and h satisfy the
following conditions:

350 € (bl,bg) \V/xg S [*dl,O] 0< bl — hl(ﬂjg)/Q, bl +h1(l‘2)/2 < (50;

Vg € [—dg,()] : 0 < bg—hg(xg)/Q, b2+h2(1‘2)/2 < 1.
It follows from these assumptions that there exist positive constants mg, My such that

0<mg< hl(l‘g) < dp and ’h/1<l'2)| < My a.e.in [—dl,O],

(1)

0<mg < hg(.%'g) <1-— (50 and ’hé(l‘g)‘ < Mo a.e.in [—dQ,O].

Let us divide segment [0, a] into N equal segments [¢j,e(j +1)], 7 = 0,...,N — 1. Here N
is a large integer, therefore, the value ¢ = a/N is a small discrete parameter.
A model plane thick two-level junction €. consists of the junction’s body

Q={reR?: 0<z<a, 0<z<n~(z1)}

where v € C*([0,a]), 7(0) = y(a), miny ;v > 0, and a large number of the thin rods
GW(e) = {z € R?: |z1 —e(j+b1)| < ehi(22)/2, x2 € (=d1,0]}, j=0,1,...,N—1,

GP(e) = {x € R?: |1 —e(f+bo)| < eha(22)/2, @2 € (=d2,0]}, j=0,1,....,N—1,

i.e.,
Q. = QUG () UG (o),

where G (¢) = Uj.V;Ong-l)(s), G (e) = Uj.V:BIGgg)(s).

We see that the number of the thin rods is equal to 2NV and they are divided into two levels
G (e) and G?(¢) depending on their length (we recall that d; < ds). The small parameter ¢
characterizes the distance between the thin neighboring rods and their thickness. The thickness
of the rods from the first level is equal to €h; and to ehy for the rods from the second level.
These thin rods from each level are e-periodically alternated along the segment Iy = {z : z1 €
€ [0,a], zo = 0}.

(i,%)
Denote by T

the right or left surface respectively. The base of ng') (¢) will be denoted by @? (€). Also we
introduce the following notations:

(¢) the lateral surfaces of the thin rod G§.i) (¢); the signs "+"or "—" indicate

‘ N-1 - A N-1 ]
TiH(e) = [ 1P (e), 09() = ] el e,
7=0 7=0
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338 U. DE MAIO, T.A. MELNYK, AND C. PERUGIA

TO(e) == YEH () uTEI () ueW(e),

fori =1,2.
In Q. we consider the following mixed boundary-value problem:

Az uc(z) = fe(@), z € Q,

dyuc(z) = —ekiu(x), z € TW(e),

Opuc(r) = —ehyue(), z € TO(e), )
O uc(0,00) = 0% uc(a,xs), x2 € [0,7(0)], p = 0,1,

Oyuc(z) = 0, z e T..

Here 0, = 0/0v is the outward normal derivative, 0, = 0/0x;, the constants k; and ko are
positive. Thus, we have the Robin conditions on the boundaries of the thin rods, the periodic
conditions on the vertical sides of {2y and the Neumann condition on the other part I'; of 0€)..

We can regard without loss of generality that the right-hand side f. belongs to L?(£23), where
s is the interior of Qg U Dy, Dy = (0,a) x (—dz,0) is a rectangle that is filled up by the thin
rods from the second level in the limit passage as ¢ — 0. Similarly, D; = (0,a) x (—d;,0) and
Q, is the interior of Qg U D;.

We assume that

fo — fo in L*Qy) as e — 0. 3)
The aim of our research is to study the asymptotic behaviour of the solution to problem (2)

as ¢ — 0, i.e,, when the number of attached thin rods infinitely increases and their thickness
tends to 0.

2. Auxiliary inequalities. First we recall that for every fixed value ¢, in accordance with
the main results of the theory of boundary-value problems, there exists a unique weak solution
us. € H, to problem (2) such that the integral identity

Vus - Vodr 4+ ek / Ue @ dly + €ko / Us pdly = /fe(x)w(x)d:v (4)
Qe
Qe

T (e) TR (e)
holds for any function ¢ € H,., where
He ={ue H(Q): 92u(0,22) = P ula,z2), z2 € [0,7(0)], p=0,1}.
In addition, the solution . satisfies the inequality
ucllgio,y < allfellzzn- (&)
Let us show that the constant ¢; in (5) is independent of the small parameter ¢.
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HOMOGENIZATION OF THE ROBIN PROBLEM IN A THICK MULTILEVEL JUNCTION 339

Lemma 1. For € small enough, the usual norm || - || g1(q,) in the Sobolev space H'(.) and
the norm:

1/2

[Vllekr ks = /|VU2d$ + ek / v dl, + ek / v? dl,
Qs T(U(g) T(2)(5)

are uniformly equivalent, i.e., there exist constants C1 > 0, Co > 0 and ey such that for all
e € (0,e0) and any function v € H'(S).) the inequalities

Cillvllr @) < llekiks < Collvlla @) (6)

are satisfied.

Proof. Let us defined the following function:

—t+by, tE€ [0,(50),
Y(t) = (7)
—t+be, t € [bo]1),
and then periodically extend it to R.
Integrating by parts the integral ¢ / Y (x1/e) Oz, vdx and taking into account
G (e)uG?) (g)

that the outward normal to the lateral surfaces Tg.i’i)

set of measure zero, has the form

(¢) of the thin rod Gy) (), except for some

i 1 h!
v (e) = <il,—5z(x2)>, i=1,2 j=0,....N—1, (8)
N =T e

we get the identity

hi
> o) __ -
; 2¢/1 + e24-1|hl(x2)]?

,L:lT(i’i)(a)

= / vdr — e / Y(%) Opvdr Vv e HY(Q). (9)

G (e)UG3) (¢) G () UG (¢)

Using the identity (9), the properties of the trace operator and taking into account that
maxp |Y| < 1, we obtain
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340 U. DE MAIO, T.A. MELNYK, AND C. PERUGIA

- / Vol do +

Q.
2
24/1 24-1 ! 2 h;
ek / VERILO D] (z2) - o2 dl+
pt hi(x2) 2y/1+ 24~ 1|l (z2)?
T @)
2
+5Zki v? dr; <
= e

hi(w2) -
Vo2 dx + ¢ E / c v2dl, + ec E VI e <
/ | ! 2\/1—{—524 TR (2)? * L Il o ) =

= 1T(Z i)

< C3||UH%11(QE) +61Q / vide — ¢ / Y(?)Zv@xlvdaz> <
(UG (e) G (UG (e)

< C3||UH12111(Q€) +01Q / v?dr + / 8((89512))2-1-1)2) dac) <
M (e)uG P (e) G (UG (e)

< CollulB g, (10)

Similarly, we obtain

||UHHl(QE /\VU\2d$+/v dx + / v?de = /]Vv|2d:c+/v2dx+

Qo G (e)UG@) (e) Qe Qo

2
h(IEQ) 2 / €1
+€E vidl, + e Y| — 200, vdx <
/ 2\/1+g24 Tl (x2)]2 (g) L

=lya s (e GO (UG ()

< CllolEp g+ [Parre [ tan
o G (UG (e)

whence

ol 0 < Co [ 1ol + [ o2z (11)
Qo
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HOMOGENIZATION OF THE ROBIN PROBLEM IN A THICK MULTILEVEL JUNCTION 341

Now let us show that there exists a positive constant C's such that for € small enough and
forany v € HY(Q.),

/’L)le' < Cslv
Qo

|g,k1,k2' (12)

We argue by contradiction. If not, then there exist sequences {¢,, : m € N} and {v,,} C
C HY(Q., ) such that lim,, .o, = 0,

/vfn dr =1, (13)
Qo
2 1
/ Vo[ dz + em > ks / w2 dl, < —. (14)
m
Qe i=1 Y@ ()

Since the sequence {v,,} is bounded in H'(€)), we may assume without loss of generality
that it is a Cauchy sequence in L?(£)). From inequality (14) it follows that {v,,} is a Cauchy
sequence also in H'(Qyg),

[vm — Un”%fl(ﬂo) < [lom — UnH%Q(QO) + m + n’

Hence, {v,,} converges to some element vy € H'(Qg). Obviously, vg = const in H*()) and,
due to (13), vy = || ~'/2, where || denotes the measure of the domain €.

Then, the sequence of the traces of {v,,} converges to vy in L?(9€) as well and it is easy to
verify that

2
/ vfn(:nl,()) dr1 = Z/Xi(:cl/sm)vfn(:vl,())dxl —

Io(em) =11

2
= > _hi(0) / v3(21,0) day = (h1(0) + ha(0))| Q| 1a £ 0, m — oo,

i=1

1o
(15)
where Iy(e) := Ip N 2. and y;(+) is a 1-periodic function such that
1, te (bi _ul0) by + hi(o)),
K0 = L), o) (10
0, teo1\ (b2 b ),
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342 U. DE MAIO, T.A. MELNYK, AND C. PERUGIA

for i = 1,2. Obviously,
1
Xi(z1/e) — /Xi(t) dt = h;(0) weaklyin L?*(0,a) as ¢ — 0.
0

On the other hand, from (9) and (14) it follows that

(IVom|? +v2,) dz < G
m
G(l)(sm)UG(Q)(Em)
and, therefore,
2 2 .2 Cs
/ v (21,0)dzy < Cy / (\va| —i—vm) dr < ool
Io(em) GO (em)UG? (em))
where the constants Cg, C7, Cg are independent of m. This means that
/ v2 (x1,0)dr; — 0 as m — oo. (17)

Io(em)

However (17) varies from (15). This contradiction establishes estimate (12).
Thus, by virtue of (11) and (12), we obtain the left inequality in (6).
The lemma is proved.

Remark 1. Hereafter all constants {¢;, C;} in asymptotic inequalities are independent of the
parameter .

3. Extension operator. Due to the a-periodic condition in problem (2), we can assume that
the function f. and the solution u. are a-periodic functions with respect to z;.

Theorem 1. Let condition (3) be satisfied and, in addition, there exist constants C and €
such that for all values ¢ € (0, )

/ (Fz (2))*dx < C, (18)

Qe

where F. (x) = e Y( fo(z +ee1) — fo(x)) (&1 = (1,0)).
Then there exist extension operators

P HY Qo UG () — HY Q) and PP : H' (99 UG (e)) — H' ()
such that, for the solution u,,

I POuc ey + I PPue I, < Co (IFellrzn + 1 fllz2@)) < Cs. (19)
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HOMOGENIZATION OF THE ROBIN PROBLEM IN A THICK MULTILEVEL JUNCTION 343

Proof. The first step in the proof is to show that scattering of the values of the solution u.
on neighboring thin rods is small in some sense.

Here we assume for simplicity that v = const. In general case similarly as in the proof of
Theorem 4.1 [4], we should multiply the differential equation of problem (2) by a smooth cut-
off function x( such that yo(xz2) = 0 for o > 70, and xo(z2) = 1 for zo < /2, where vy =
= ming, ¢[g,q 7(71); and consider the function v. = xp u. which is a solution to the correspondi-
ng boundary-value problem in a thick two-level junction whose junction’s body is the rectangle
[0, a] > [0, 70]-

Thus, the problem (2) is invariant under the e-shift along the axis z;. This means that the
function

Ue(e) = e (uele +221) —uc(2)), & = (1,0), (20)

is a solution, a-periodic in z1, to the following problem:

—-A,U.(x) = F.(z), x € Q,
O U.(z) = —ekU(z), xeTW(e),
OUs(z) = —ck2Us(z), z €Y, (21)
a£1U8(07x2) - a£1UE(aax2)) To € [Oa’y(o)]a P = 07 17
81,U5(5L‘) = 0, z € T..
By virtue of Lemma 1 and condition (18), we get the following estimate:
[Ucllm.y < C2lFell2@.) < Cs. (22)
At first we extend the solution u. the domain €2; by using the "linear matching"
" Ue, z e GW(e),
pi : h ~ 23
2 (ue) () B (x2) + 55 (22) <x1 — 5(] +b; + 1(2952))) , T E Qg-l)(a), (23)

in the domain Qg U G (e) U QM (¢). Here

Bj(x2) = ue (€(j + b1 + h1(:r2))7$2> ;

2

S0 = gy (10 = 1GE) ) - B
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344 U. DE MAIO, T.A. MELNYK, AND C. PERUGIA

and the domain

~ 1(x2)

Q§1)(6) = {w towg € (—di,—€), 71 € (e<j+b1+ h 5 ),5<j+1+b1— hl(;”))}

is situated between two rods G§-1) (e) and Gﬁl(e). In the case of the extreme rods, we perform
the a-periodic extension of problem (2) with respect to the axis Oz;.
Without the loss of generality, we can assume here that h; is smooth on [—dy, 0]. It is easy

to calculate that

H‘Ps(l) (utf) Hifl(égm(&)) =

:@g%) B: (x2) + S5 (x2) [:1:1 —c (j + b+ i (;2)>] da+
+ / (BS(22))' + S5(w2) + (55(22))’ %
Q")
X [:cl s (j Fh 4 (2”32))] de. (24)

Further, we will not indicate that functions B; , S]? and h; are depending on x5 if it doesn’t

lead to a confusion. By using the inequality (a + b)? < 2a? + 2b% and properties (1) for hy, we
get

~ 2
IO gy <2 [ (B
Qe

2
h
+2 / (55)? [m1—€<j+bl+21>

Q" (e)

dr +

+2 / ((B;)’)de+4 / (55)° da+

QM (e) QM (e)

+4 ((S;)’)2 [xl—s(j+b1+h21>

QM (e)

2
dx.

ISSN 1562-3076. Heaninitini koausarnna, 2004, m. 7 N2 3



HOMOGENIZATION OF THE ROBIN PROBLEM IN A THICK MULTILEVEL JUNCTION 345

Now, taking into account the geometry of the domain va) (¢), we deduce

—€ —€

@ < d0-mo) [ [(B;)2+((B;)’)2+(s;)2] v [ (5" +

—d1 —d1

]35(1)(“6)

|

e(j+1+b-2)
N2 . h\1°
+ ((SJE)) } / [:cl—€<j+b1+2>} dxy dzy <
€(j+b1+%>

—€

<ac-mo) [ |87+ () + (59| doar

—d;

< {g ] [(Bj)2 (o)) + (55.)2] ds +

I ]E [ (59)% + ((Sj»)')Z] d:cz} . (25)

Now, let us estimate each term in the right-hand side of (25) by using the following two
inequalities:

u?(0) < 2671 [ WPty dt+2¢ [ (u/(1))% dt, (26)
o]
(w(0) — u(e))? < = / ()2 (1) dt 27)
0

that hold for every u € H! ([0, ¢]).

ISSN 1562-3076. Heaninitini koausarnsa, 2004, m. 7 N2 3
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By adapting (26) to our case, we obtain

e(+br+41) e(+br+41)
h
u? <5 <j + by + 21> ,:Ug) < 271 / ug(x) dxy1,+2¢ / (axlug(:v))Q dzr1,
rit) o)

and integrating over (—d;, —¢) , we have

—€

o\ 2
€ / (Bj) dxo < 2 {Hué‘Hi2(é§1)(€)) + &2 H@g;luaHiQ(é§1)(€))} < e HugHip (Gg;)(e)) , (28)
—dy

where G\ (e) = GV (e) N {z : —dy < 22 < —¢}.
Moreover,

—€

[ (5o =

—d;

—€

- [ e 1)) (i 20). )] e

—d;

—E&

< cpe2 / [u5(€<j+1+b1 - %),1‘2) —Us<€(j+bl — %)7332)4‘

—dq

R N R CRE TR | R
.

= cpe 2 / {aUa <€(j + by — %),xg)—i—

—d;

+ ue(2(ji+ b1 - %)xg) —uc(=(j+br *fél)’“)rd“ <

—&

< 2@/ [Us(s(wbl—};l),@)rdxw
“dy
+ 2¢92 /E [ug (5(]’ + b1 + %),xg) — Ug (5(]’ + b1 — f;),@)rd@.

—dy
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HOMOGENIZATION OF THE ROBIN PROBLEM IN A THICK MULTILEVEL JUNCTION 347

By (26) and (27), we have

—&

2 _
/ (S;) dry < dege™! HUgHiQ (é(_l)(g)) + 4coe Haa;anHiQ (é(_l)(s)) +
_d1 J J
. a(j+b1+%>
+ 2c0e " My / / (azlug(x))2 dxidxs <
—d; s(j+b17 ]7,21)
< (5_1 ||Ug||iz(é§1)(a)) +¢e HamUEHiZ (69) +et ||amu5||i2(é§.”(a))> .
(29)
Thus
—e —e
€3 / (S§)2dx2 < 5/ (Sj)2da:2 <
—di —d;
< oo (10, m0, 0y + €2 100U, sy, oy + 10z uell?, 50 <
< 1 \1Uelia o) + £ 10 Vel g +10ntells o) ) <
< cs5 (’Ua”Zl(Gy)(s)) + HuaHZl(Gén(e))) . (30)

Now we are going to estimate the other terms in (25),

—€

[ ((B5)) s -

—dq

—E&

o [ [ (o0 12), ) e (250 ) )] e <

,dl

M?
0 2

5 / |:am1us <€<j +b1 + f;),l‘z)rd@—l-

—d

IN

—&

+2/ (8x2u5(8(j+b1+h;),xg)>2d$2. (1)

—dy
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348 U. DE MAIO, T.A. MELNYK, AND C. PERUGIA

If we apply to the last two integrals in (31) the same calculation of (28) we obtain

—&

c / ((Bi(2)')

—dq

IN

c7 <52 Hamusnig (6’;1)(&)) +et }}aﬂgluEHiQ (é;l)(e)) +

+me@@ww+summ!@@wm>§

| /\

er (IV0e a0y + 2 el i) )

To estimate the norm ||u.||? we use the second energy inequality [S] with the smooth

H?2 (G(l)( )) ’
cut-off function

V

0, = °
P 2 Z T35
Xe (1:2) = 2

1, z9 < —e.

We obtain that &2 ||u5||§{2(6§_1>(5)) <ec (H“€|H1 (6P) + er”B(G(l (E)>) So,

—&

o [ (E5)) o < o (Il o) + Vel ) (32)

—dq

Now, let us estimate the integral of square of the derivative,
Ry (z2) 1 , h
€ P _M1\t2)  ge . M
(S5 (x2)) T ha(2) S5 (w2) + S = I (2)) {5 0z, Ue (5(] + b1 5 ),$2)+

+ [amug(e(j by — %)332) — Onyuc (2 (5 + b + h;)m)] } =

_M[%ue( (741400 - h2) 72) + Or, e (e (j+b1+h21),x2)],

Taking into account the properties of hq, its derivative (see (1)), estimate (29) and applying (26)
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HOMOGENIZATION OF THE ROBIN PROBLEM IN A THICK MULTILEVEL JUNCTION 349

and (27), we deduce

—E&

[ (57) de <

—d;

s@%4 wUr(m0+ﬂ%uu(m@+fW%%@@wm)*

—|—610< Haang ||L2(G(1>( )+EH xl,sz HL2(G<1 ))) +

+epe? H T xQUEHiQ(é;l)(E)) + c12 (8_1 Hagmusnig (é;i)l(g)) +e€ Haﬁlug\\; (@521(5))> +

IN

+ C13 ( Haﬁﬂluf':HLQ(G(l)( )) te ||631U€Hi12(é§1)(8))>:|
< cus < U, HHl(G(l)( ) +¢e[|[VU: ||L2(G<1>( ) +e||U HHQ(G(D(E)) +

~1 2
e el @ euan @) * vl (ERIE >u@§-$1<e))> '
Again applying the second energy inequality as above, we have

—&

2
[ ((5) < e (100 g + 2 0 ) + 2 I ) +
—dy

2
+_W%”H%GQR)UGO)(D_%WﬁHD%GykdUGﬁH@D>' (33)
Thus, by (28), (30), (32) and (33), the right-hand side of (25) is estimated in the following

way:

prww(umf&%@%%@mD+M”m@n)+MH@UD+

2 2
+ e HF HLQ (G(l)( )) + H 5HH1 (G(l)( ) G;‘iﬁ)l(e)) + ”fEHL2(G§1)(E)UG§.1+)1(E))) .
(34)

Summing (33) over j from —1 to N, using Lemma 1 and (3), we get

IO )2 17 (1020 + I1F=13500,)) - (35)

o E@uame) = °
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Now it remains to extend P." (ue) to

TM () = {x L mp € (—6,0), @1 € (e(j+ by +2 "y (2)),e(G + 1+ by —2’1}11(:1:2)))},

j=-1,0,1,...,N.

Since the domains Tj(l)
from Tél) (¢) by a parallel shift along the axis Ox;), we use results about extension operators
in perforated domains [6]. It follows from these results that there exist an extension operator

g . fgt (GO (&) UQW(e)) = H'(1), uniformly bounded in e.

Thus, the extension operator Pgl) = ‘,]39 o ]35(1) is constructed and it satisfies the uniform

estimate (19). Similarly we can construct the operator P2 : H'(QoUG®(e)) ~— H'(5) which
also satisfies (19).

The theorem is proved.

(€),j = —1,0,1,.., N, are equal (each of this domain can be obtained

4. Convergence theorem. To prove this theorem we should pass to the limit in the integral
identity (4) as ¢ — 0. For this we will use identity (9), the extension operators constructed in
Section 3, and the following characteristic functions

0, z € Qo,
0, =€ D;\ G(i)(g)a

1,2.

We can assume that these functions are e-periodic with respect to x;. Similarly as in Section 4

[1], we can prove that XS') — h; weaklyin Lo(D;)as € — 0.

Theorem 2. Let u. be a weak solution to problem (2). Then

2,—
— g

(UE)|QO - U(J)ra (Pgl)%)

— v(l]’f, (Pg)us)

D1
weakly in H'(Q), H*(D1), H' (D) respectively as ¢ — 0, where the vector-valued function

var(x), x € Q,

v(1)7_(a:), x € Dy,
vg’_(az), r € Do,
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is the unique weak solution to the following problem:

351

(36)

Ay v (z) = folw), x € Qo,
aczn)lv(—)i_(ova) = aglv(—)’—(aﬂ'%?): b= 07 17 To € [077(0)]7
8V1)J(a;) = 0, zely,
— 0Oy, (M1 (22) 5'3521)3’_(3:)) + 2k, vé’_(x) = hi(z2)fo(x), x € Dy,
83327)(1]’_(1,‘1, —d;) = 0, x1 € o,
— 8y (ha(22) Duyvy ™ (2)) + 2ka vy~ (x) = haolz2) fol), z € Do,
33321)3’7@1, —ds) = 0, x1 € o,
va'(:zrl,O) = vé’_(xl,O) = vg’_(xl,O), x1 € I,
Oryvd (£1,0) = D1 (0)Dyvy ™ (21,0)+
+ hg(O)@xQUS’_(iﬂl,O), x1 € I,

where 'y = {z : x5 = (1), z1 € Ip}.

Proof. With the help of (9), the extension operators Pg) and the functions XQ), i=1,2,we

rewrite identity (4) in the following way:

2 a
/Vu6 -Vedr + Z (/ X9 (z) v (Pg’)%) -V (p) dz + 5ki/ (Xg) Py, cp> 232:_alidacl +
o =1, 0
Aq
TFPTTH@P o, (o
wa [V EIE 0 (PO) () ploa | =
D;
N ' 1y V/1+ 247 hi(0)[?
= 2¢ 3 k; / Y( 6 hi(z2) O0x, (ug go) dx +
TGl
Az
2 .
+ [ R s Y [N@f@e)d Yoe L @) G
Qo =1p,
where Hul,ml(Qg) ={p € H (D) : ¢(0,22) = ¢(a,z2) for x5 € (0,7(0))}.
Because of (3), (5), (19), the sequences
(0, (PYw)} L i=12, (38)
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are bounded in Lo(D;), ¢ = 1, 2. Therefore, we can choose a subsequence of {¢} ( still denoted
by {e}) such that Xé’) Oz, (Pg)ug) — aj(.l) weaklyin Lo(D;), j =1,2,i= 1,2, and

2,—
— 7y

(u5)|ﬂo - Uarv <P§1)u5> Dy

— v(l]’f, (P(Q)u5>

D1

weakly in H(Qy), H*(D1), H'(D) and strongly in L?(€), L?(D;), L?(D2) respectively as
e — 0. Since (u.)|g, = (Pgl)ua) |1, = (P?)ug) | 1, the traces of limit functions are equal as
well, i.e.,var(:vl,()) = vé’_(xl,O) = ’Ug’_(.%'l,O), x1 € I.

Obviously, the summands A; and As in (37) vanishe as ¢ — 0. Now, passing to the limit in
(37) and taking (3), (38) into account, we obtain

2 2
/Vvar -Veodr+ Z (D/Zaj(l)(x) Oz, () dx + 2ki/vé’g0dx) =
& i=1 \p, i=1

i

— [ h@e@)ds + 3 [ hilen) folahpla)do, € Bl (2. (9

Next we should find a](i), j=12i=12.
In order to determine O'Y), i = 1,2, we consider the integral identity (4) with the following
test functions :

O, T € QO, 07 T € QOa
di(e) = eq Y(er/e)¢i(z), =€ GU(e), Pa(x) =€ O z € GU(e),
0, z € GP)(e), Y(z1/e) ¢2(x), € GP(e),

where ¢; and ¢, are arbitrary functions from C§°(D;) and C§5°(Dz) respectively. It is obvious
that ¢ and v, belong to H !, (€2.). As a result, we get

/ X (@) 9, PY (ue) 61 dz = O(e), / X (2) 0, PP (ue) godz = O(e), & — 0,
D1 D2

whence 09) = 0 and 09) = 0.

Next let us define aél). Take any function ¢ € C§°(D;) and perform the following calculati-
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ons:
N-1
/ X ()0, (PLue () o) d = Or, (uc()) () d =
Dy FOG;%)
N-1
= ( / uecﬁagl)(m’g,e) dly — / Ug 8x1¢dm‘> =
770 e ¢Pe)
0 N-1
= -2 / Z u5¢ r1=c(j+b1th1(z2)/2) drz —
—dq J=0

- / VD () (PO )b de = By(e) + Bale).  (40)

-1
Here agl) (x,e) = —eh)(z2) (2 V1+e24-1(n) (:cg))2> is the second coordinate of the outward

unit normal u(il ) (see (8) to the lateral surfaces T§-1’i) (¢) of the thin rod Gg-l) (). Itis easy to veri-
fy that

liy Ba(e) = — [ b2}~ (@)0ns0(c) d (41)
D1

To find the limit of B (e) we rewrite this value in the following way:

N_1 EU+bitho(z2)/2)

0
Bi(e) = —215/h’1(w2) Z / Or, (uc9) dzy | dag —
—dq

I=0c(jby—ho(22)/2)

0 N-1
~c / hll (w2) (Z ((u6 - Uéﬁ) ¢) z1€(j+b1h0($2)/2)) dry—
—dy

0 N-1
- / hy (x2) ( A (V0™ ®)lerme(jeby —ho(aa)/2) (€ + 1) — €j)) dx;. (42)

The first term in (42) is bounded by &||uc|| g1 () (o)) |9l 71 (D, ) - Due to estimate (26), the second
term in (42) is estimated by the value

€1 (HPQ)UE - U(ll’_HL2(G(1)(E)) + 52"8:61(1:)‘(91)”5 - HLQ(G(I) ) ||¢||H1 (D1)* (43)
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Since for almost all points z2 € (—d,0) the function v(l)’f € H'(0,a), the inner sum in the
a
third term in (42) is the Riemann sum for the integral / v(l)’_ ¢ dx;. Then in view of Lebesgue’s

0
Theorem and Fubini’s Theorem, the limit of the third term is equal to

- [ @) @) n (44)
Dy
Passing to the limit in (40) and taking (41) —(44) into account, we get
(1) — 177
oy (z) = hi(x2) Ozvy (x), @ € Dy.

Similarly we deduce that 052) (x) = ha(x2) 8@@8’_(3:), x € Ds.

Thus, we obtain that the vector-valued function v satisfies the following identity:

/ Vol Vapde+y / (hi(w2) Duyvis (@) Buyol(a) + 2k i (2) () dar =

= [ h@e@)ds + 3 [ hlen) folwhelarde Vo € HL (). (45
Identity (45) is the corresponding integral identity for problem (36) in the following ani-
zotropic Sobolev vector-space:
Ho = {u = (uo,u1,u2) € Vo := L*(Q0) x L*(D1) x L*(Dy) |
ug € H'(Q), up(0,z2) = ug(a, ) for x5 € (0,7(0));
3 0p,u1 € L*(Dy); 3 0pyun € LA(Dy);
uo(.%'l,O) = ul(acl,O) = ug(xl,O), xr1 € Io}
with the scalar product
2
(u’V)Ho: /VUO -Vogdx + Z/(hl(m)&xzuz 812’01' + Qkiuivi)da:.
Qo =1p,
Obviously, the space Hy continuously embeds in V.
By using standard Hilbert space methods, we can state that there exists a unique weak
solution vy € H to problem (36), which is called the limit problem for problem (2). It should

be noted that in the rectangles D; and D, we have ordinary differential equations with respect
to z9 and there are no boundary conditions on the vertical sides of D;, i = 1, 2.
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Due to the uniqueness of the solution to problem (36), the above reasoning holds for any
subsequence of {¢} chosen at the beginning of the proof. Therefore, the theorem is proved.

Example. In the case hy = const and hy = const, we can reduce problem (36) to some
boundary-value problem in the junction’s body. By solving these ordinary differential equations
with regard to the Neumann conditions and the first transmission condition in Iy, we find

vy (z) = _pli /Sinh(Pz‘(m —1)) fo(z1,1) dt +
“d

0
cosh(pi(z2 + d;)) N 1
0) = [ sinh(pit Jt)dt | Di, (46
cosh(pidy) vy (21,0) s /sm (pit) fo(xy,t) = (46)

where p; = \/2kih;1, 1 = 1,2. Putting these functions in the second transmission condition,
we obtain the following problem:

Ay v (@) = folz), x € Qo,
85&3(0,1:2) = aglvar(a,mg), p=0,1, xo € [0,7(0)],
g (@) = 0, rel,, (47)
Oryoif (21,0) = (X3, hops tanh(pidy) Joif (21,0), +folwn), @1 € Io,
where
9 0
Folzy) = _Zhi /(cosh(pz-t) + tanh(p;d;) sinh(p;t)) fo(z1,t) dt.

=1y

Problem (47) is a classical boundary-value problem with the Robin condition on Iy. Obviously,
it has a unique weak solution from H*'(Qy).
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