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We consider the shock type wave solution of the modified quintic complex Ginzburg – Landau equation
and make a numerical study of its spatiotemporal stability. Discussions related to the behaviour of this
front wave are introduced and it is shown how the velocities of the wave could be utilized to collect infor-
mation concerning the patterns formation in the system.

Для модифiкованого комплексного рiвняння Гiнзбурга–Ландау розглянуто розв’язок типу удар-
ної хвилi та дослiджено його просторово-часову стiйкiсть, поведiнку такої фронтальної хвилi
i показано яким чином застосувати швидкостi хвилi для отримання iнформацiї про структуру
системи, що утворюється.

In these last years, a certain class of nonlinear partial differential equations known as evolution
equations [1 – 4] has become of immense interest to theoretical physicists and mathematicians.
These equations have applications in many areas of physics [5 – 9]. For fact, the quintic com-
plex Ginzburg – Landau equation (QCGLE) is well known as a generic model for the study of
weakly nonlinear waves. It arises in physical systems which involve a balance between nonlin-
earity and dispersion near the critical points. For example, it describes the slow modulations
of an oscillatory mode close to a subcritical bifurcation [10]. Many other applications of this
equation exist, such as patterns formation [11] and thermodynamic potentials [12] in nonequi-
librium systems, Benjamin – Feir turbulence in convective binary fluid mixture [13], subcritical
bifurcations to counter propagating waves [14] to name only few. However, to include other
relevant phenomena namely inhomogeneity, dissipation, discreteness, and allow it to describe
physical systems in which many of those contributing factors are simultaneously acting, the
QCGLE has been recently replaced by the modified QCGLE [15] (MQCGLE):

iUt + PUxx = Q1 |U |2 U + Q2 |U |4 U + C (UxU∗
x/U∗) + iγU. (1)
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Hereafter, we consider physical systems governed by the MQCGLE and propose to exam-
ine the motion of its possible solutions. In this equation, subscripts t and x denote partial
derivatives, U (x, t) is complex amplitude and the parameters P,Q1, Q2, C and γ are complex
constants. Consequently, many types of nonlinear dispersive and dissipative effects are in-
cluded in Eq. (1). Following Pelap and Faye [15], we can distinguish two main regions for
the motion of a plane wave introduced in the MQCGLE that are the unstable region for
(PrQ1r + PiQ1i) − r < 0 and the stable region that corresponds to (PrQ1r + PiQ1i) − r > 0
with r = −2 (PrQ2r + PiQ2i) |a|2 in which |a|2 designates the amplitude of the wave. Hence,
the behaviour of solutions of Eq. (1) should be investigated in each case. Furthermore, these
authors show that the MQCGLE possesses a special type of solution arising from an over-
all balance between the dispersive and nonlinear effects when the latter is greater than the
former. This special solution known as a shock wave can be exploited to study the patterns
formation and/or the spatiotemporal transition from chaotic states to coherent structures. The
corresponding shocklike solution of the MQCGLE has the form [15, 16]

U =
aei(Kx−Ωt)[

1 + e−2µ(x−ηt)
]1

2+iα
(2)

where a is a complex quantity defined by

|a|2 = 2µ
√

Z (3)
with

Z =
1

|Q2|2

[(
α2 − 3

4

)
(PrQ2r + PiQ2i) +

+2α (PiQ2r − PrQ2i) +
(

α2 +
1
4

)
(CrQ2r + CiQ2i)

]
, (4)

K =− 1
A0

[
(1 + 4α2)Pr + 4Z(Q2r + 2αQ2i)

]
µ− 1

A0
(Q1r + 2αQ1i)

√
Z = eµ + d, (5a)

η =4
[(

α +
e

2

)
Pr −

(
α2 + eα− 1

4

)
Pi −Q2iZ +

(
α2 + eα +

1
4

)
Ci

]
µ+

+ 2 (Pr − 2αPi) d− 2Q1i

√
Z − 4αCid, (5b)

Ω =
[
(Pr + Cr) e2 + 4Q2rZ

]
µ2 + 2

[
(Pr + Cr) ed + Q1r

√
Z

]
µ + [γi + (Pr + Cr) d] , (5c)

µ = A1 ±
√

A2
1 + A2, (6)

where

A0 = (1 + 4α2)Pi + 2α(Cr + 2αCi), A1 = −

[
(Pi + Ci)ed + Q1i

√
Z

]
A3

,

A2 =

[
γr − (Pi + Ci)d2

]
A3

, A3 = (Pi + Ci)e2 + 4Q2i

√
Z.
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In these relations, we have set

α = β ±
(
β2 + 3/4

) 1
2 wherein β =

PrQ2r + PiQ2i

PiQ2r − PrQ2i
. (7)

It follows from the expression (3) that Z should always be taken positive so that |a|2 > 0 by
making a proper choice of the branch of α.

The most interesting question about fronts is their dynamical behaviour as solutions of
Eq. (1), namely their stability and the case with which they can be reached from given initial
conditions. In order to fit the mathematical ansatz with physical sense, we must consider its sta-
bility as an important query. Therefore, it becomes worth while to examine the spatiotemporal
stability of the solution (2) in the framework of the MQCGLE. Since computations that lead to
the analytical expression (2) are hard, the numerical approach is selected for our investigation.
The integration of Eq. (1) is performed using the fourth-order Runge – Kutta scheme. In the
numerical simulations, we consider a system of N = 700 sites with infinite boundary conditions
at the two ends of the chain. The step sizes are taken to be ∆t = 0.055 and ∆x = 0.5. The
variables t and x are measured in units of time and space, respectively. During this analysis,
only the branch α+ is used, |a|2 = 1, and the coefficients of the MQCGLE are

Pr = +1, Pi = −2.2, Q1r = +1, Q1i = −0.77, Cr = −0.55, Ci = 0.8,

γr = 2.0, γi = 0.0, Q2i = −0.5
(8)

with unfixed values for the coefficient Q2r.
Before progressing, it should be stressed that the term C (UxU∗

x/U∗) = C
(
|Ux|2 U

/
|U |2

)
present in the MQCGLE tends to the infinity as |U | → 0. Then it is obvious to take into
account such a term only in the presence of the amplitude field, i.e., for |U | 6= 0. Numerically,
this is materialized by |U | > ε where ε << 1. For instance, we choose ε = 10−5 to avoid the
infinite amplitude which has no physical meaning.

To obtain the numerical results, we scrutinize the evolution of the localized initial excita-
tion (2). Figure 1 illustrates the motion of an unstable shock wave for the coefficients defined
by (8) with Q2r = −4.0 at t = 532. These values correspond to a wave moving in the modula-
tional instability domain [15] that is for (PrQ1r + PiQ1i) − r = −3.106 < 0. From this figure,
we remark that there exists a selected pattern which propagates in the finite amplitude state,
accompanying a chaotic region. Hence, we note the coexistence of a coherent structure with a
chaotic state and these two distinct structures are separated by a sharp interface. It should be
mentioned that similar results have been obtained for the complex Ginzburg – Landau equa-
tion [16] (CGLE) which corresponds to the particular case of Eq. (1) where C = Q2 = 0 and
γ real. Besides these results, we have the graph of Fig. 2 which describes the propagation of
the stable shock wave for the parameters (8) with Q2r = −0.75 at t = 532. These values of the
constants deal with the modulational stability case [15], i.e., (PrQ1r + PiQ1i)− r = 3.394 > 0.
Only one spatial pattern moves in the system.

In the following, we introduce another approach that helps to understand the transition
from the chaotic state to the coherent structure during during the evolution of a packet wave in
the system. It also permits to explain the patterns formation in the network. This new analysis
is based on the comparison of the velocity of the front of the chaos (Vch) and the velocity of the
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Fig. 1. Propagation of the unstable shocklike solution of Eq. (1) with the constants
Pr = +1, Pi = −2.2, Q1r = +1, Q1i = −0.77, Cr = −0.55, Ci = 0.8, γr = 2.0,
γi = 0.0, Q2i = −0.5, where Q2r = −4.0 and t = 532. Here, a chaotic structure
and a coherent state coexist and travel together.

Fig. 2. Motion of the stable shocklike solution of Eq. (1) for the parameters of Fig. 1 in
which Q2r = −0.75. Solid curve corresponds to the real part of U (x, t) and the
dashed curve stands for its imaginary part.

front of the shock wave (Vnum). These two velocities are evaluated numerically throughout the
simulations and their representations as function of the coefficient Q2r and are shown on Fig. 3.
This figure reveals that Vch decreases and tends to zero with the increment of Q2r. It implies the
total disappearance of the chaotic state (i.e., the instability regime) in the system and the return
to a coherent and stable state. We could also note that Vch is always less than Vnum. Moreover,
we can simply compare the two velocities by determining their ratio Vch/Vnum versus Q2r as it
is done on Fig. 4. It is deduced from the obtained plot that Vch/Vnum < 1. This result means
that the front of the shock wave moves faster than the front of the chaos.

Because the front of the shock wave moves faster and faster and the chaotic state diminishes
with the increment of Q2r, it could arise a situation where the stable wave behind the front is
unable to follow the front correctly. This situation can occur if the phase velocity Vφ (= Ω/K)
is not adapted to the velocity of propagation of the front η. Indeed, for Q2r = −1.18 we obtain
the graph of Fig. 5 which shows the existence of two wavelength patterns in the system. Here,
the front of the shock wave moves faster and there is a spread of the long wavelength (lw)
between the selected short wavelength (sw) and the front of the shock wave. Analytically we
were expected to have one wave that travels with the frequency Ω (defined by (5c)) behind the
front of the shock wave. Numerically, it is verified only for a certain interval of values of Q2r

(sw) after what another type of wave (lw) arises and they propagate together behind the front.
This approach can be generalized by comparing all the velocities related to the solution (2),

namely, the velocities (η,Vnum) of the front of the shock wave, the velocity of the phase Vφ, and
the velocity of the front of the chaos Vch. The quantities η and Vφ are evaluated analytically
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Fig. 3. Velocities of the front of the chaos (Vch) and that of the shock wave (Vnum) vs the
parameter Q2r . The velocity Vch decreases and tends to zero when Q2r increases
while Vnum increases with Q2r .

Fig. 4. Ration Vch/Vnum as function of Q2r .

from relations (5) while Vnum and Vch are calculated numerically during the simulations. Fig-
ure 6 presents different profiles of the ratios of those velocities in terms of Q2r and incites to
make some comments. First, the ratio Vnum/Vφ is a decreasing function of Q2r but takes values
that remain bigger than 1 showing that Vnum is always greater than Vφ. This mayor difference
between Vnum and Vφ suggests that there could exist many types of structures evolving behind
the front (for e.g., report to Fig. 5). Next, we deduce from Fig. 6 that the ratio Vnum/η is a
constant function of Q2r except for the value Q2r = −1.18. Third, we also note from this last
figure that η/Vφ decreases at the left of Q2r = −1.18 and increases at its right. Then it becomes
of interest to seek the behaviour of (2) for this particular value of Q2r. The investigation leads
to the graph of Fig. 5.

In this paper, the MQCGLE that described wave propagations and phase transitions in
many nonequilibrium systems has been considered and the stability of its shock wave solution
investigated numerically. We have shown that the dynamical behaviour of this solution strongly
depends on the contribution of the quintic term Q2 within Eq. (1). It has appeared from the
behaviours of the velocities of the solution (2) versus Q2r that the velocity of the front of the
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Fig. 5. Evolution of the stable shocklike solution of Eq. (1) for the particular value
Q2r = −1.18 and the constants of Fig. 1. Here, the system comprises two wave-
length patterns (sw and lw) that evolve together behind the front of the shock wave.
At the same time, we note a slight variation of the wave amplitude in a vicinity of the
transition between the different wavelength states.

Fig. 6. Ratios Vnum/η, Vnum/Vφ and η/Vφ as function of Q2r . The other parameters are
taken to be Pr = −1, Pi = −2.2, Q1r = +1, Q1i = −0.77, Cr = 2.24, Ci = 0.8,
γr = 2.0, γi = 0.0, Q2i = −0.5. We have the cross (xx) for Vnum/η; the circle (oo)
for Vnum/Vφ and the dashed line (–) for η/Vφ. Each curve has a smooth evolution
for the diverse values of Q2r except Q2r = −1.18 at where this behaviour is broken.

chaos decreases and tends to zero with the growth of Q2r. As an outcome, we have deduced
that the instability region for the propagation of (2) could be avoided by making a good choice
of the domain of values of Q2r. It has also appeared from this study that the behaviours of the
ratios of diverse velocities of the solution could inform a lot on the spatial patterns formation
in physical systems governed by the MQCGLE.
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