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We consider the equation
XD 4+ o(XX" +F(X, X)X +G(X")+ H(X) = P(t, X, X', X", X"

in two cases: P = 0 and P # 0. In the case P = 0, the asymptotic stability of the zero solution X = 0 of
the equation is investigated; in the case P #* 0 the boundedness of all solutions of the equation are proved.

Pozenadaemvbca pisHanHA

XW 4+ o(XX" +F(X, X)X +G(X")+ H(X) = P(t, X, X', X", X"

y 080x sunaokax: P = 0 ma P # 0. Y sunaoky P = 0 susuaemvbca acCUMRMOMUYHA CIIUKICMD
HYAb08020 po38’azky X = 0 pienauus;, y eunaoxy P # 0 0o8edeHo obmexncenicmb ycix po3s’a3kie
PDIGHAHHA.

1. Introduction. Itis well known that a study of qualitative properties of solutions, in particular,
an investigation of stability and boundedness of them is a very important problem in the theory
and applications of differential equations. In the last three decades, a great effort has been made
to study stability and boundedness of solutions of nonlinear ordinary differential equations of
higher order, second-, third-, fourth-, fifth- and sixth-order, see e.g. [1-38] and the references
cited therein for some related works existing on stability and boundedness of the solutions.
In the above works, perhaps, due to the effectiveness of the method, the authors dealt with
the problems by using the Lyapunov’s second (or direct) method [39] and obtained criteria
for stability and boundedness of solutions of the equations under consideration. It is worth
mentioning the opinions of some authors about the method. In [40], Iggidr and Sallet expressed
that "The most efficient tool for the study of the stability of a given nonlinear system is provided
by Lyapunov theory". Next, in [16], Qian stated that "So far, the most effective method to
study the stability of nonlinear differential equations is still the Lyapunov’s direct method" . Of
course, when one applies this method, finding a proper Lyapunov function in general is a big
challenge. In spite of the existence of many works on the stability and boundedness of solutions
for various second-, third-, fourth- and fifth-order nonlinear scalar differential equations, there
are only a few results about certain fourth-order nonlinear vector differential equations on the
topic. Namely, one may refer to Abou-El-Ela and Sadek [1], Sadek [19] and Tung [24] for some
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recent publications on these topics. Recently, the case when n = 1 was considered in [20, 27]
for the differential equation

2 + o) + f(x,2)2" + g(2') + h(x) = p(t,,2, 2", "),
Here, we consider the fourth-order nonlinear vector differential of the form
XW 4 o(XNX" + F(X,XX"+G(X")+ H(X) = P(t, X, X', X", X", 1)

where X € R", ® and F are (nx)n-symmetric matrix functions; G: R" — R", H: R" — R"
and P: RT xR x R xR xR — R". Let ®, F, G, H and P be continuous and so constructed
such that the uniqueness theorem is valid. Equation (1) is the vector version for systems of real
fourth-order nonlinear differential equations of the form

n
4) "o /// WA, RSN/
+ g ie(x], 2y, .zl + E fir(x1, @, .. T @], Ty, ., X)X+
= k=1
/ / ! / / !
+gi(xy, Xy, oy xy,) F hi(x), Xy, ..y T;,) =
. WA noonro " .
= pilt; w1, @2, Ty X, X, sl a2 2y, i =1,2,...,n

Opir Ofi Ofix
81'3-/ T Oxj’ 81:;- ’

We shall assume, as basic throughout in what follows, that the derivatives

Ogin 4 Ok
8569 695]-
following equivalent system:

,J,k = 1,2,... n, exist and are continuous. Now, we write equation (1) as the

X'=vY, Y=2 Z=W,

2
W' = ®(Z)W — F(X,Y)Z - G(Y) — H(X) + P(t,X,Y, Z,W), @

which was obtained as usual by setting X’ = Y, X” =Y, X" = W in (1). It will also be
assumed throughout the paper that the Jacobian matrices Jy (X), Ja(Y), Jo(Z), J(F(X, Y)Y |X)
and J(F(X,Y)Y|Y) corresponding to H(X),G(Y), ®(Z) and F(X,Y), respectively, are symmet-

ric and given by
([ Oh; [ 0g; ([ 09;

JEXYIYIX) = ( fzkyk> - ( gf’“yk>
Y= k=1 """

JEXYYIY) = ( meyk>—F<X Y)+ ( ‘;’;;y)

Yi k= k=1
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550 C.TUNC

Moreover, the symbol (X,Y) will be used to denote the usual scalar product corresponding
to any pair X,Y in R, that is, (X,Y) = >0 x;y; thus (X,Y) = | X[, and \;(A), i =
= 1,2,...,n, are eigenvalues of the (n x n)-matrix A.

The motivation for the present work has come from the papers of Chin [5], Shi-zhong,
Zheng-rong and Yuan-hong [20], Tung [27], Wu and Xiong [38] and the papers mentioned
above. The results obtained here are also an n-dimensional analogue of the results in [20, 27,
38]. Our aim is to obtain similar results and to generalize, revise, and improve some results
established in the papers just stated above [5, 20, 27, 38] to the equation (1). It should also be
noted that the domain of attraction of the zero solution X = 0 of system (2) (for P = 0 ) in
the following first result is not going to be determined here.

2. The stability and boundedness results of solutions of system (2). In this section, we study
the stability and the boundedness of solutions of system (2) by using the Lyapunov’s second (or
direct) direct method. The following theorems make the main results.

In the case P = 0, we have the following result.

Theorem 1. In addition to the basic assumptions imposed on ®, F, G and H, suppose that
there are positive constants a, b, c, d, 0 and e such that the following conditions are satisfied:

(i) H(0) = G(0) = 0;
1

(ii) abc — 2 — a*d > abe — c||Jg(Y)| — ad /@(UZ)da >8>0 foralY and Z;
0

(iii) eigenvalues of the matrices Ji (X ) and (dI — Ju (X)), that is, and \; (J (X)) and \;[dI—
—Ju (X)), respectively, satisfy \; (Ju(X)) > d and

7

eda

0 <X (dl —Jy(X)) < —¢

forall X, i=1,2,...n,

) b
in which e < 22D’ D = ab+ S and I is the (n x n)-identity matrix;

ac
(iv) eigenvalues of the matrices Jo(Y) and (Ja(Y) — cl), that is, \i(Jg(Y) and X\i(Ja(Y) —
—cl), respectively, satisfy \i(Jq(Y)) > cand

d
0 <\ (Jg(Y)—cl) Sae forall 'Y, i=1,2,...,n;

(v) the matrix F(X,Y) is symmetric, eigenvalues of the matrices F(X,Y') and the matrix
(F(X,Y) —0bl), thatis, \; (F(X,Y)) and \;(F(X,Y) — bI), respectively, satisfy \; (F(X,Y)) >

0 < N (F(X,Y)—0bI) Cé forall X and Y, 1=1,2,...,n;

(vi) the matrix ®(Z) is symmetric, eigenvalues of the matrices ®(Z) and (®(Z) — al), that is,
Xi(®(2)) and \i(®(Z) — al), respectively, satisfy \i(®(Z)) > a and

4

0< X\ (®(Z)—al) < 32(1\/7

forall Z i=1,2....n;
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(vii) J (F(X,Y)Y |X) is negative definite for all X and Y.
Then the zero solution of system (2) is asymptotically stable.

Remark 1. From conditions (ii), (iv) and (vi) of Theorem 1 we can obtain

1
b
/<I>(0Z)da <2 el < ab
0

Remark 2. In the case n = 1, equation (1) reduces to a scalar ordinary nonlinear differential
equation of the form

W 4+ p(R)E + f(x,8)E + g(i) + h(x) = p(t, x, i, &, F).

When we take ¢(Z) = a, f(x,42) = b, g(&) = ¢, h(x) = dz and p(t,z,%,%,T) = 0 in the
above equation, then the equation clearly reduces to a linear constant coefficient differential
equation and conditions (i) — (vii) of Theorem 1 reduce to the corresponding Routh — Hurwitz
criterion.

Remark 3. For the case n = 1, Theorem 1 includes the first results of Tung (Theorem 1 [27])
except that some minor modifications arise in the conditions established here and in Theorem
1 [24], Ezeilo [9, 10], Harrow [12] and Wu and Xiong [38], and also improves the results in [9,
10, 12] and [38] except for the restriction on F(X,Y’), thatis,0 < \; (F(X,Y) —bl) < % E—j,
i = 1,2,...,n. Namely, the results in [9, 10, 12] and [38] were obtained for certain scalar ordinary
differential equations of fourth order, which are special cases of differential equation (1). When,
we compare the assumptions established in Theorem 1 here with that constituted in [9, 10, 12]
and [38], our assumptions are less restrictive than those established in [9, 10, 12] and [38] except
for some minor modifications. For the sake of the brevity, we would not like to give details of
the comparison. Finally, Theorem 1 also revises the first theorem in [20].

In the case P # 0 we have the following result.

Theorem 2. Suppose the following are satisfied:
(i) all the conditions of Theorem 1 hold,
(i) |P(t, X,Y,Z,W)| < (a+ Y|+ ||Z] + ||W])6(t), where 6(t) is a nonnegative and

t
continuous function of t, and satisfies / O(s)ds < b < oo forallt > 0, a and b are positive
0

constants. Then there exists a positive constant k such that any solution (X (t),Y (t), Z(t), W(t))
of system (2) determined by

X(0) = Xo, Y(0) =Y, Z(0) = Z, W(0) =Wy
satisfies, for allt > 0,

IXOI <k YOI <k 2O <k (WO < F.

Remark 4. Theorem 2 revises the second result in [20] , and also gives an n-dimensional
generalization for the results obtained in [9, 13, 20, 27].
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Now, define the Lyapunov function vy = vo(X,Y, Z, W) as

209 = 25/(H(UX),X>dU—|—2ﬁ/<UF(X,UY)Y,Y>dU—
1
—a(dY)Y) +2/ Y)do+a(bZ,Z) +
0

1

+2/ (0®(02)7, Z) do — B(Z, Z) +a (W, W) +2 (H(X),Y) +
0

42 (H(X), Z) + 20 (G(Y), Z) +

+ 25/ (D(02)Z,Y)do + 28 (Y, W) +2(Z, W),

where

The following lemmas will be needed in the proofs of our main results.

Lemma 1. Let A be a real symmetric (n X n)-matrix and

a >XN(A)>a>0, i=12 .n,

where o, a are constants.
Then

a (X, X)

v

(AX,X) > a (X, X)
and

2 <X,X>

Y

(AX,AX) > a® (X, X).

Proof. See [24].

C.TUNC

€)

(4)
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Lemma 2.
p 1
G [ e, X)do = ()Y,
0
p 1
G [Ny = 6. 2),
0
p 1 1
p (cF(X,0Y)Y,Y)do = (F(X,Y)Z,Y) —i—/ F(X,0Y)Y |X)Y,Y)do,
0 0
p 1
dt/ (0®(02)Z, Z) do = (®(Z)W, Z),
0
p 1 1
dt/ (02)2,Y)d <<I>(Z)W,Y>+/<<I>(UZ)Z,Z) do.
0 0
Proof. We have

~

1 1 1
§/<H(O'X),X>d0': /J(JH(UX)Y,X>dJ—|—/(H(JX),Y)dJ:
0 0 0

SIS
o _

(G(oY),Y) do — / o (oY) Z,Y ) do + / (G(oY), Z) do =
0 0

= 0 (GoY), 2)| = (G(),2),
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C.TUNC
d 1 1 1
T (cF(X,0Y)Y,Y)d /O‘FXO’YZYdO'+/O’FXO'YYZ>d0'+
0 0 0
1
+ / (0 J(F(X,oY)Y|X)Y,Y)do+
0
1
+/<02J(F(X, oY)Z|Y)Y,Y)do =
0
1 1
/ (0F(X,0Y)Z,Y) da+/ F(X,oY)Y|X)Y,Y)do+
0 0

1

0

+/030' (cF(X,0Y)Z,Y)do =
0

1
— 2 (F(X,Y)Z,Y) ’(1]+/<0J(F(X, SY)Y|X)Y,Y) do =

= (F(X,Y)Z,Y) +/<aJ(F(X, oY)Y|X)Y,Y) do,

S1ES
o _

1 1
(c®(c2)Z,Z)do = /O’(‘P(O’Z)Z, W) d0+/02 (Jo(cZ)ZW, Z) do+
0 0
1
+/ (c®(cZ)W, Z) do
0

1 1
0
:/ e <O“I’(0‘ZWZCZU—|—/ (c®(cZ)W, Z) do
o
0 0

= o (B 2)W, 2) | = @(2)W. 7).
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=

1 1 1
/ (02)Z.Y)d / (02)Z, Z) do + / o (Jo(0Z)WZ,Y) do+
0 0 0

+ (e Z)W,Y) do

O\H

g

1 1
/ (c2)Z,Z) da+/ 86 (P(cZ)W,Y) do+
0 0
1
+/ (cZ)W,Y) do
0

= o (®(cZ)W,Y) ‘;Jr (@(02)2,2Z) do =

o _

1
= +/ (c2)Z,Z)d
0

Lemma 3. If the conditions of Theorem 1 hold, then there exists a positive constant d;
such that

(XY, Z,W) = di(IX|° + Y1 + |1 ZII* + W)

is valid for every solution of system (2).

Proof. Rewrite the function vy = vo(X, Y, Z, W) as follows:

1
2u = (> |H(X) 4 cY + acZ|* +
c
1 2

+20(G(Y),Z) —2ac (Y, Z) +

+2B/ (c2)Z,Y)do — 2aB3(Z,Y) +sz, (5)

=1
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where

wy = 25/(0F(X7 oY)Y,Y)do — [ad—l—ﬁza] hdE +2/ (G(aY),Y)do —c(Y,Y),
0 0

1
w3zpm—ﬁ—a%mZH+2/Xawamzzyw—agam,
0

1
zmz[a—}HWW.
a

Since agH(aX) = Ju(cX)X,H(0) = 0, we have
g

1

11
2ﬁ/<H(UX),X)dU = 26// (o1 (0109 X)X, X)doado+
0 0 0

2d

Cc

1 1
// O'1JH 0'10'2X X, X>d0’2d(71 >
0 0

1 1
>€dHXH +// O’1JH 0'102X)X X>d0'2d0'1
C
0 0

0

Now, because of Fon (H(01X),H(01X)) = 2(Jg(01 X)X, H(01X)) and H(0) = 0, it follows,
01

on integrating both sides from o1 = 0 to o7 = 1, that

1
<H< 2/ JH 0’1X X H(JlX)>d01.
0

It is also evident that

0

9os (H(0102X),Ju(01X)X) = (o1Ju (o102 X)X, Ju (01 X)X) .
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By integrating both sides from o2 = 0 to o2 = 1, we get

1
(H(01X), Jg(01 X)X / (01Jg(0102X) X, J(01X)X) dos.
0
Hence,
11
w1i > 6d||X” —|-// O'1JH 0'10'2X)X X>d0'2d0'1—
c
0 0

Q\l—l

1 1
// o1Jm (0109 X)X, Jg(01 X)X )do1doy >
0 0

1

1
ed | X |1 + c//(chJH(alagX)X, [dI — Jg(01X)] X)doydoy >
0 0

v

Y

ed || X||* by ().
It follows from conditions (ii), (iv), (v) of Theorem 1 and (4) that

1

wy 2 [ﬂb—ad—ﬁ%] bk +2//<01JG(0102Y)Y,Y>d02d01 —c(Y,Y) >

0 0

od
> [Bb— ad — %] ||Y]* > <2a62> Iv)*.

By a similar estimation, conditions (ii), (vi) of Theorem 1 and (4) show that

4 2 2
wn > (o )12I° and s = <P,

On using the estimates for wy, wo, w3 and wy in (5) we have that

od 0
20 2 ed X1 + (o ) IVI+ (5 ) 1Z1F + £ IWIF 4 20 6(1), 2) -

—2ac(Y,Z) + 25/ (P(c2)Z,Y)do —2ap(Z,Y) .
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Now, consider the terms

ws = <4‘id >||Y|| + 20 (G(Y), Z) — 2ac (Y, Z) + <8a52c) 12|12

and

ws = (mfsd > Ve +2ﬂ/ (02)2,Y)do —2a8(2,Y) + (16

)
) 121°

which are contained in (6). Clearly, the conditions (iv) and (vi) of Theorem 1 imply that

w5 — <4fld > Y2 +2a0/1<(JG(aY)cI)YZ>da+< >|| I

5 [d 5 )
() 1 - (M\/M> W21+ (505, ) 121° =
2
1 /éd 1 )
= [20 a”Y”_Qa\/Qc‘Z‘] >0

and
1
~ (oo ) V12 +28 [ ((@(02) — an) 2 ¥)do + (152 ) 12
wﬁ_ 160/02 g a ) g 160/2C -
0
0 d 5 )
> - I =
Z (16acz>|| I° - <8ac\/;> Yl ”Z”+<16a20> 12|
1 [6d 517
= |=\/— Y= —=+/=[Z][| =0.
[46\/Z|| I 4a\/:” ”] =0
Hence

v

vo

3dd 56§
X1+ (o ) IV + ( ooz ) 1217+ (5) 11 2

> di(|X |7+ Y1+ 12017+ W)

. 36d 5 ¢
where dl = min €d, W’ m, 2}

This completes the proof of Lemma 3.
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Now, let (X (t),Y (t),Z(t),W(t)) be an arbitrary solution of system (2). Define vg(t) =
= vo(X(t),Y(t),Z(t),W(t)). We can easily prove the following lemma.

Lemma 4. Assume that all the conditions of Theorem 1 are satisfied. Then
vo(t) <0 forall t>0

and especially

. d
w(t) = 2 v(X,Y,Z,W) <0 provided X1+ 1Y + 1217 + [W])* > 0.

Proof. An easy calculation, from (3), (2), Lemma 1 and (vii), yields that

d
%vO(X, Y, Z, W) < —wy —ws —wg — a(F(X,Y)Z, W) +ab(Z,W)+

+a (Ju(X)Y, Z) - ad (Y, 2), ()
where

wr = BY,G(Y)) = (Ju(X)Y,Y),

1
ws = |(Z,F(X,Y)Z)—a(Jag(Y)Z,Z) - [ /(I)(aZ)da (Z, Z)] ,
0
wy = a (B(Z)W, W) — (W, W).
It is clear that
Wr > (ec) IY]?, by (iii) and (iv). ®)

From conditions (ii), (iv) and (v) of Theorem 1, we obtain

ws > [baJG(Y) -8 /‘P(UZ)dU ] (2,2) =
0

] 2P

1
= i abc — ¢ —a 0Z)do
(M){b ) d!@(@d

1 Ja (Yl +

— &

1
/¢wmw122>
0

) 0
> (&) 121 - epizi? = (5 ) 121°. ©)

ISSN 1562-3076. Heainitini koausarnnsa, 2006, m. 9, N> 4



560 C.TUNC

Similarly, condition (vi) of Theorem 1 shows that
wy > (ca) [W]. (10)

On substituting the estimates (8) —(10) into (7) we get

GOOLY.ZW) < VI (50 ) 121 = CaIWIE - a (FXY)ZW) 4

dt
b (Z, W) + a (Ja(X)Y, Z) — ad (Y, Z). (1)
Let
w = () IV = o n(x) - vz + (.. ) 121
and

wn = () IWIE = a(FEY) =00 20) + (1o ) 121,

By using conditions (iii), (v) of Theorem 1 and (4) we find

N 5 1 s ?
ec 9 gda 9 ec

> (= — = | — — —\/— >
wo > () ] <4a )IIYII 121+ (15 ) 121 [VQ ) 4\/acnznl >0

and

wn = (29) ||W||2—<1\f> 12111+ ( 1o ) 1217 = [ - 2|

Combining the inequalities for w1 and wyo in (11) we obtain

vz w) < - (S e (2 e - () wie,

Thus, it is evident that

> 0.

vo(t) <0
and especially

Go(t) < 0 whenever X"+ |[Y]* + 1 Z]* + [W]*

Proof of Theorem 1. From Lemma 3 and Lemma 4, we see that the function vg(X,Y, Z, W)
is Lyapunov for system (2). Hence, the zero solution of system (2) is asymptotically stable [38].
This completes the proof of Theorem 1.
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Proof of Theorem 2. The proof here is based essentially on the method devised by Antosi-
ewicz [41]. Consider the function 7y defined as above. Then under the conditions of Theorem
2, the conclusion of Lemma 3 can be obtained, that is

do = di(IXI° + Y I* + 1211 + W), (12)

and since P # 0, the conclusion of Lemma 4 can be revised as follows:

i< = () I = (S ) 1z - (B ) IR + w4 24 57 ) <

< (@[Wll+ 2]+ BY) 1P@E XY, 2, W)| <

< (a[Wl +[12[l + B 1Y) (A+ [V + [|Z]} + W) 6()-
Let dy = max {a, 1, 8}. Using the inequalities

IWI < 1+ W[* and 2(Y[ W] < Y]+ [|W]*
we find
B < dy [3a+ (@+3) (VI + 1217 + W) | 6(0).
Hence,
B < dy [1+ (IVIP + 121> + [WIP) ] o), (13)

where d3 = max {3daa, dz (@ + 3)}.
It follows from (12) and (13) that

éo < d39(t) -+ d4’l709(t), (14)

where dy = ds/d;. Integrating both sides of (14) from 0 to ¢, t > 0, leads to the inequality

t t
Bo(t) — 5(0) < ds / 0(s)ds + dy / o()0(5)ds.
0

On putting d5 = 79(0) + d3b, we obtain

Bo(t) < ds + dy / T0()0(s)ds.
0
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Gronwall — Bellman inequality, see [42], yields

t

vo(t) < dsexp d4/9(5)ds
0

The proof of Theorem 2 is now complete.
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