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We consider the following system of difference equations:

—)\Zglkl (Cur (0),ug(f), ... un(f), k€ {0,1,...,T}, 1 <i<mn,

where A\ > 0and T > N > 0. Our aim is to determine those values of A such that the above system
has a constant-sign solution. In addition, explicit intervals for X\ will be presented. The generality of the
results obtained is illustrated through applications to several well known boundary-value problems. We
also extend the above problem to that on {0,1,...},

_Azg,kl (Cur(0),un(0), ... un(£)), ke {0,1,...},1<i<n.

Finally, both systems above are extended to the general case when \ is replaced by \;.
Pozenanymo cucmemy ougpepenyianbHux pieHAHb
= )\Zgl (k, O)Py(€,up (0), ug (L), ... ,un(f), ke {0,1,..., T}, 1 <i<mn,
=0

oe X > 0iT > N > 0. Memoro cmammi € 3HAXOONCEHHA MUX 3HAYEHDb )\, OAs AKUX HABeOeHda ClU-
CMema mae po3e 30K NOCMILIHO20 3HAKY. TaKox 3HALLOEHO 8 ABHOMY 8UAAOL IHMEPBAAU 0N MAKUX .
3azanbHicmb OMPUMAHUX Pe3YALIMAMIE NPOIAIOCIPOBAHO 3ACMOCYBAHHAMU 00 HUIKU 000pe 8100MUX
2PAHUYHUX 3A0aH. HaeeOeHa suLye 3a0a4a MAKOXC Y3a2AAbHIOEMbCA 00 makoi x 3ada4i Ha {0,1,. ..},

= )\Zgl (k, O)Py(€,up (0), uz(L), ... ,un(f), ke {0,1,..., T}, 1 <i<n,
Ha 3asepuienns yi 08i cucmemu NOWUPIOIOMBbCA HA 3A2AAbHUL BUNAOOK, KOAU \ 3AMIHIOEMbCS HA \;.
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4 R.P. AGARWAL, D. O’REGAN, P.J.Y. WONG

1. Introduction. We shall use the notation Z[a,b] = {a,a + 1,...,b} where a,b (> a) are
integers. In this paper two systems of difference equations are discussed. The first system is on
a finite set of integers,

N

)\Z i(k, O) P (L, ur(£),ug(l), ... ,un(f)), kel =2[0,T],1<i<n, (L1)
=0

where 7" > N > 0. The second system is on the infinite set of N = {0, 1,...},

= Azg, ke, O)Py(0,ur(£), uz(f), ... ,un(f), k€ N, 1 <i<n. (1.2)

A solution v = (uy,us,...,u,) of (1.1) will be sought in (C'(1))" = C(I) x ... x C(I) (n
times), where C'(I) denotes the class of functions continuous on 7 (discrete topology). We say
that w is a solution of constant sign of (1.1) if for each 1 < i < n, we have O;u;(k) > Ofork € I
where 0; € {1,—1} is fixed. On the other hand, a solution u = (u1,us,... ,u,) of (1.2) will be
sought in a subset of (C'(IN))” = C(IN) x ... x C(IN) (n times) where limj_,, u;(k) exists for
each 1 < i < n. Moreover, u is a solution of constant sign of (1.2) if for each 1 < ¢ < n, we
have 6;u;(k) > 0 for k € IN where 0; € {1, —1} is fixed.

For each of (1.1) and (1.2), we shall characterize those values of A for which the system
has a constant-sign solution. If, for a particular A the system has a constant-sign solution v =
= (u1,ug,...,uy), then X is called an eigenvalue and u a corresponding eigenfunction of the
system. Let F be the set of eigenvalues, i.e.,

E = {X| X > 0Osuch that the system under consideration has a constant-sign solution}.

We shall establish criteria for E to be an interval (which may either be bounded or unbounded).
In addition explicit subintervals of F are derived.
Finally, both (1.1) and (1.2) are extended to the following systems:

N

wi(k) = XY gi(k, OPi(Cur (0),uz(0), ... un(0)), k€1, 1<i<m, (1.3)
{=0

=\ Zgz (k, O)P; (0, u1 (0), us(0), ... ,un(f)), ke N, 1 <i<n. (1.4)

For each of (1.3) and (1.4), we shall characterize those values of \;, 1 < i < n, for which the
system has a constant-sign solution. If, for a particular A = (A1, Ag,...,\,) the system has a
constant-sign solution u = (ug, ug, ... ,uy), then Ais called an eigenvalue and u a corresponding
eigenfunction of the system. The set of eigenvalues is denoted by

E = {A= (A, 2,...,\) | N >0, 1 <i < nsuch that the system
under consideration has a constant-sign solution}.

Results analogous to those for (1.1) and (1.2) will be developed for systems (1.3) and (1.4).
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EIGENVALUE CHARACTERIZATION OF A SYSTEM OF DIFFERENCE EQUATIONS 5

Recently, Agarwal and O’Regan [1] have investigated the existence of positive solutions of
the discrete equation

N

y(k) = gk, 0)f(y(0)) + h(k), k € Z[0,T]. (15)
=0

The continuous version of (1.5) is well known in the literature, see [2—4]. We remark that a
generalization of (1.5) to a system with existence criteria for single and multiple constant-sign
solutions has recently been presented in [5]. In the present paper, besides extending (1.5) to a
system, we have added in the parameter A (or \;) and we consider constant-sign solutions. As
a result, it is the eigenvalue problem that is of interest in this paper. Note that the term h(k)
in (1.5) has been excluded as we intend to apply the results to homogeneous boundary-value
problems (in which case h(k) = 0), which have received almost all the attention in the recent
literature. However, it is not difficult to develop parallel results with the inclusion of h(k) or
even h;(k), 1 < ¢ < n. Many papers have discussed eigenvalues of boundary-value problems
(see the monographs [6, 7] and the references cited therein). Our eigenvalue problems (1.1)—
(1.4) generalize almost all the work done in the literature to date as we are considering systems
as well as more general nonlinear terms. Moreover, our present approach is not only generic,
but also improves, corrects and completes the arguments in many papers in the literature. It is
also noted that this paper provides a discrete extension to the recent work [8].

The outline of the paper is as follows. In Section 2, we shall state Krasnosel’skii’s fixed-
point theorem which is crucial in establishing subintervals of E. The system (1.1) is discussed in
Sections 3 and 4. In Section 3, we develop criteria for F to contain an interval, and for F to be
an interval, which may either be bounded or unbounded. Moreover, upper and lower bounds
are established for an eigenvalue A. Explicit subintervals of E are derived in Section 4. To
illustrate the importance and generality of the results obtained, applications to six well known
boundary-value problems are included in Section 5. The treatment of systems (1.2), (1.3) and
(1.4) is respectively presented in Sections 6—9 and 10, 11.

2. Preliminaries. The following theorem will be needed. It is usually called Krasnosel’skii’s
fixed point theorem in a cone.

Theorem 2.1 [9]. Let B = (B, | - ||) be a Banach space, and let C C B be a cone in B.
Assume 1, Qo are open subsets of B with 0 € Qq, 1 C Qo, and let

S:CN(@\Q) — C

be a completely continuous operator such that, either
(@) ||Su|| < ||ull, w € C NNy, and ||Su|| > |Jull, w € C NI, or
(b) ||Sul| > ||ul, v € C N O, and ||Sul|| < ||lu|, v € C N INs.
Then S has a fixed point in C' N (Q2\ Q).

3. Characterization of E for (1.1). Throughout we shall denote v = (uy,us,...
, un). Let the Banach space
B = {u

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N2 1
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6 R.P.AGARWAL, D. O'REGAN, P.J.Y. WONG
be equipped with norm

[ul = nax. max |u; (k)| = nax. |uilo (3.2)

where we let |u;|o = maxger |ui(k)|, 1 < i < n. Moreover, for fixed 0, € {1,-1}, 1 < i < n,
define

f(:{ueB

9iui>0,1<’i<n}

and

-

For the purpose of clarity, we shall list the conditions that are needed later. Note that in
these conditions §; € {1,—1}, 1 < i < n, are fixed.
(Cy) Foreach 1 < ¢ < n, assume that P; : Z[0, N] x R" — IR is continuous and

fju; > 0forsome j € {1,2,... ,n}} = K\{0}.

ik, €) > 0, (k,¢) € I x Z[0, N].

(Cy) For each 1 < i < n, there exists a constant M; € (0,1), a continuous function H; :
Z[0, N] — [0,00), and an interval Z[a,b] C Z[0, N] such that

gi(k,0) > MH;(¢) > 0, (k,{) € Z[a,b] x Z]0, N].

(C3) For each 1

IN

1 < n,
gi(k,0) < Hi(0), (k.0) € Ix Z[0,N].
(C4) For each 1 < i < n, assume that

0.P(,u) >0, ue K, € Z[0,N] and 6;Pi(f,u) >0, uc K, £ € Z|[0,N].

(Cs) Foreach 1 <

< n, there exist continuous functions f;, a;, b; with f; : R" — [0, c0)
and a;, b; : Z[0, N] o0)

such that

7
[0,
Hzpz(g, u

| ) i) we i
a;(f) < ) < b)), we K, { € Z[0, N].

(Cg) For each 1 < i < n, the function a; is not identically zero on any nondegenerate
subinterval of Z[0, V], and there exists a number 0 < p; < 1 such that

CLZ(E) > pibi(g), l e Z[O, N]
(C7) Foreach 1 < i,j < n,if |u;| < |vj], then
OiP; (0, ut, ..o U1, U Uity - Un) < G P (G ur, .o U1, 05, U1, - U), £ € Z[0, N

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N 1



EIGENVALUE CHARACTERIZATION OF A SYSTEM OF DIFFERENCE EQUATIONS 7
(Cg) Foreach 1 < i,j < n,if |uj| < |vj], then

fi(ul,... 7uj—17uj7uj+17~-- ,un) S fi(ul,... ,uj_l,vj,uj+1,... ,un).

To begin the discussion, let the operator S : B — B be defined by

Su(k) = (Sui(k), Sug(k), ..., Sun(k)), k € I, (3.3)
where
N
Sui(k) = XY gi(k, OPi(L,u(?), ke, 1<i<n. (3.4)
£=0

Clearly, a fixed point of the operator S is a solution of the system (1.1).
Next, we define a cone in B as

C:{UGB

foreach1 < i <mn, Qu;(k) > 0fork € I,

and | min ui(k) pU\o} (3.5)

where M; and p; are defined in (Cz) and (Ce) respectively. Note that C' C K. A fixed point of
S obtained in C' or K will be a constant-sign solution of the system (1.1). For R > 0, let

C(R) = {u € C||ul < R}.

If (C1), (C4) and (Cs) hold, then it is clear from (3.4) that for u € K,

N N
A gilk, Oai(0) fi(u(0) < 0;Sui(k) < XY ik, Obi(0) fi(u(0)), k€ I, 1 <i<n. (3.6)
£=0 £=0

Lemma 3.1. Let (Cy) hold. Then, the operator S is continuous and completely continuous.

Proof. Using Ascoli— Arzela Theorem as in [10], (C;) ensures that S is continuous and
completely continuous.

Lemma 3.2. Let (C1)—(Cg) hold. Then, the operator S maps C into itself.
Proof. Let u € C. From (3.6) we have for k € ITand 1 < i < n,

N

0iSui(k) > X gi(k, €)ai(£) fi(u(e)) > 0. (3.7)
/=0

Next, using (3.6) and (Cs) givesfor k € Tand 1 < i < n,

N N
|Sui(k)| = 0;Sui(k) < XY gi(k, Obi(0) fi(u(€)) < XD Hi(0)bi(£) fi(u(0)).
=0 =0

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N2 1



8 R.P. AGARWAL, D. O’REGAN, P.J.Y. WONG

Hence, we have

N
|Suilo < XY Hi(0)bi(0) fi(u(0), 1 < i < n. (3.8)
/=0

Now, employing (3.6), (Cz), (Cs) and (3.8) we find for £ € Z[a,b] and 1 < i < n,

N N
0iSui(k) > XD gi(k, O)as(0) fi(u(€)) = XY MiHy(0)ai(€) fi(u(£)) >
=0 =0

N

>N MH(0)pibi(£) fi(u(0)) > M;pi| Suilo.
=0

This leads to

k€Z[a,b]

Inequalities (3.7) and (3.9) imply that Su € C.
Theorem 3.1. Let (C1)—(Cg) hold. Then, there exists ¢ > 0 such that the interval (0,c] C E.
Proof. Let R > 0 be given. Define

-1
N
=R m(U1, U2, ... Uy H;(£)b;(¢ . 3.10
‘ {[mm s, o )] 310 “} 10
1<j<n B

Let A € (0,c]. We shall prove that S(C(R)) € C(R). To begin, let u € C(R). By Lemma
3.2, we have Su € C. Thus, it remains to show that || Su|| < R. Using (3.6), (C3) and (3.10), we
getfork € Tand1 < i < n,

IN

N
|Su; (k)| = 0;Sui(k) < )\ZHi(E)bi(g)fi(u(g))
=0

N
< )\[ sup fi(u1,uz, ... 7un)] ZHi(E)bi(E) <
[uj|<R
1<j<n

N
<A a. S m 5 yeee s Up Hlfblg <
<A, s pntunsvn )| SO0

1<j<n

N
Sc[ max  sup fm(ug,us,... ,un)] ZHi(ﬂ)bi(ﬁ) = R.

I<Sm<n |u;|<r
1<j<n

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N 1



EIGENVALUE CHARACTERIZATION OF A SYSTEM OF DIFFERENCE EQUATIONS 9

It follows immediately that
[Sull < R.

Thus, we have shown that S(C(R)) C C(R). Also, from Lemma 3.1 the operator S is conti-
nuous and completely continuous. Schauder’s fixed point theorem guarantees that S has a fixed
point in C'(R). Clearly, this fixed point is a constant-sign solution of (1.1) and therefore A is an
eigenvalue of (1.1). Since A € (0, ¢ is arbitrary, we have proved that the interval (0,¢] C E.

Theorem 3.2. Let (Cy), (Cy) and (Cz) hold. Suppose that \* € E. Then, for any X\ € (0, \*),
we have \ € E, ie., (0,\*] C E.

Proof. Let uv* = (uj,u,... ,u’) be the eigenfunction corresponding to the eigenvalue \*.
Thus, we have

N
uf(k) = XY gi(k, OP(C,u*(0), keI, 1<i<n. (3.11)
=0

Define

K*:{uef(

foreach 1 < i < n, Ou;(k) < b;u;(k), k € I}.

Foru € K* and A € (0, \*), applying (C;), (C4) and (Cy) yields

N
0;Sui(k) =0; [)\Z gi(k, O)Py(¢, u(e))] < 0
=0

N
A Zgi(’faf)ﬂ(ﬁ,u*(z))] _

=0

=0u;(k), kel, 1<i<n,
where the last equality follows from (3.11). This immediately implies that the operator S defi-
ned by (3.3) maps K* into K*. Moreover, from Lemma 3.1 the operator S is continuous and
completely continuous. Schauder’s fixed point theorem guarantees that S has a fixed point in
K*, which is a constant-sign solution of (1.1). Hence, ) is an eigenvalue, i.e., A € E.

Corollary 3.1. Let (Cy), (Cy) and (C;) hold. If E # (), then E is an interval.

Proof. Suppose FE is not an interval. Then, there exist Ao, \{; € E (Ao < A\j) and 7 € (Ao, \[))
with 7 ¢ E. However, this is not possible as Theorem 3.2 guarantees that 7 € E. Hence, E is
an interval.

‘We shall now establish conditions under which £ is a bounded or an unbounded interval.
For this, we need the following result.

Theorem 3.3. Let (C1)—(Cg) and (Cs) hold. Suppose that \ is an eigenvalue of (1.1) and
u € C'is a corresponding eigenfunction. Let ¢; = |uilo, 1 < i < n. Then, foreach 1 < i < n,
we have

N —1
A > a — [Z Hi(é)bi(é)] (3.12)

fi(Q17q27°" -0

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N2 1



10 R.P. AGARWAL, D. O'REGAN, P.J.Y. WONG

and

b

)< di

-1
M;H;(O)a;(0)| . 3.13
= fi(Mipigr, Mapags, . .., Mypngn) LZ; (O)ai( )] (3.13)

Proof. First, we shall prove (3.12). For each 1 < i < n,let k& € I be such that
¢ = |uilo = Giui(k}), 1 < i < n.

Then, in view of (3.6), (C3) and (Cg), we find

N
=0
N N
<A Gk OO fi(u(0) < XS H(Obi(O filar, a2, 1)
=0 £=0

from which (3.12) is immediate.
Next, to verify (3.13), we employ (3.6), (C4), (Cs) and the fact that minge z(q,5 Oiui(k) >
> Mipiluilo = M;p;q; to get

N
=0

N b
> A gi(a, Oai(0) fiu(®)) = XD MH;(0)ai(¢) fiu(t)) >
=0 l=a
b
> A Z M;H;(0)a;(€) fi(Myprq1, Mapaqa, . .., Mpppgn)
l=a

which reduces to (3.13).
Theorem 3.4. Let (C1)—(Cg) hold. For each 1 < i < n, define

FB = {f : IR" — [0, 00) ' o u‘;m o) is bounded for u € ]R"},
PO — {f:IR”—> [0,00)‘ lim [ —0},
n’linlgjgn |’U‘J‘~>OO f(ul, UQ, “e e 7un)
F* = {f : R" — [0, 00) ’ lim [ui = O}.
minlgjgn |u]|—>oo f(U]_, UQ, P ,Un)

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N 1



EIGENVALUE CHARACTERIZATION OF A SYSTEM OF DIFFERENCE EQUATIONS 11

(a) If fi € FB foreach1 < i < n,then E = (0,c) or (0, ] for some ¢ € (0, ).
(b) If fi € F? foreach 1 < i < n, then E = (0, c] for some ¢ € (0,00).

(c) If fi € F® foreach1 < i < n,then E = (0,00).

Proof. (a) This is immediate from (3.13) and Corollary 3.1.

(b) Since F C FP, 1 < i < n, it follows from Case (a) that E = (0, ¢) or (0, ¢] for some
¢ € (0,00). In particular,

c=supk.
Let {\,}>°_; be a monotonically increasing sequence in £ which converges to ¢, and let

{um = (Ujlnﬂuga e 7u?)}22:1 e K
be a corresponding sequence of eigenfunctions. Further, let ¢/* = |ul*|p, 1 < ¢ < n. Then,
(3.13) together with f; € F? implies that no subsequence of {¢/"}5°_; can diverge to infinity.
Thus, there exists R; > 0, 1 < ¢ < n,such that ¢" < R;, 1 < i < n, for all m. So u"
is uniformly bounded for each 1 < i < n. This together with Su”™ = u™ (note Lemma 3.1)
implies that for each 1 < i < n there is a subsequence of {u["}>°_,, relabeled as the original
sequence, which converges uniformly to some u; € K;, where

K; = {y e C(I)

Clearly, we have

N
ul(k) = Am Y gi(k, O PG ul (0, ug' (0), ... ,up(0), k€1, 1<i<n (3.14)
(=0

Since u]* converges to u; and A, converges to ¢, letting m — oo in (3.14) yields

N
wi(k) = ¢ gi(k, O Pi(Lur(0),uz(l), ... ,un(0)), k€1, 1<i<n.
(=0
Hence, c is an eigenvalue with corresponding eigenfunction v = (u1,us,...,uy), i.., ¢ =

= sup E € E. This completes the proof for Case (b).
(c) Let A > 0 be fixed. Choose ¢ > 0 so that

N
A max H;(0)b;(£) <

1<i<n

(3.15)

By definition, if f; € F°, 1 < i < n, then there exists R = R(e) > 0 such that the following
holds foreach1 < i < n:

filui,ug, ... ,up) < elug], |ujl > R, 1 <j < n. (3.16)

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N2 1



12 R.P. AGARWAL, D. O'REGAN, P.J.Y. WONG

We shall prove that S(C(R)) € C(R). Tobegin, letu € C(R). By Lemma 3.2, we have Su € C.
Thus, it remains to show that ||Su|| < R. Using (3.6), (Cs), (Cs), (3.16) and (3.15), we find for
kelandl <i <n,

N

|Sui (k)| = 0:Sui(k) < A Hi(0)bi(0) fi(u(l)) <

£=0

N
< Afi(R Hl ) < AeR) Y Hi(0)b R.
/=0

OMZ

It follows that ||Su|| < R and hence S(C(R)) € C(R). From Lemma 3.1 the operator S is
continuous and completely continuous. Schauder’s fixed point theorem guarantees that S has a
fixed point in C'(R). Clearly, this fixed point is a constant-sign solution of (1.1) and therefore A
is an eigenvalue of (1.1). Since A > 0 is arbitrary, we have proved that £ = (0, c0).

4. Subintervals of E for (1.1). For each f;, 1 < i < n, introduced in (Cs), we shall define

?OZ‘ — limsup fl(u17 U2, . 7un)7 fo — hm 1nf fl(ula UQ, 7un) 7
' maxi<j<n |[uj|—0 ‘U‘Z| o max; < j<n |uj[—0 ’ul‘

?OOZ‘ — limsup fi(Ul,UQ,... 7un) and f = hmlnf fl(u17u27 7u7’l)

’ min; < j<p, |uj|—o0 ’ul‘ oot ming < <p |uj|—00 ‘UZ‘

Theorem 4.1. Let (C1)—(Cg) hold. If X satisfies

i <A <720, 1 <@ <, (4.1)
where
b -1
Y, = [Lm MiPiZMiHi(f)az‘(@]
{=a
and
N -1
V2,0 = lfo,iZHz’(@bi(e)] )
£=0

then A € E.

Proof. Let )\ satisfy (4.1) and lete; > 0, 1 < ¢ < n, be such that

b -1 N —1
(f ., €i)Mz’piZMz‘Hi(5)ai(f)] <A (foi+e€i) ZHZ ] , 1 <7< n.
’ t=a =0
(4.2)

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N 1
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First, we choose w > 0 so that

fitw) < (Fou+e)lud, 0<ul <w, 1<i<n.

13

(4.3)

Let u € C be such that ||u| = w. Then, applying (3.6), (Cs), (4.3) and (4.2) successively, we

findfork € Tand1 < i < n,

N
|Sui(k)| = 0;Sui(k) < )\Z (k, 0)b;(0) fi(u(l)) <

=0

< A Hi(Obi(0) fiu(t)) <
=0
N —

< A Hi(Obi(0)(Fo +e)ui(0)] <
=0
N —

< AY HOb(O)(Fos +edlull < Jull.
=0

Hence,
[Sull < flu].

If weset Q; = {u € B ||u|| < w}, then (4.4) holds for u € C'N IN;.
Next, pick » > w > 0 such that

filu) > (ioo’l. —e)|uil, |ui| =r 1 <i<n.
Let u € C be such that
Jull =" = max 3 ()
Suppose ||u|| = |u|p for some z € {1,2,... ,n}. Then, for ¢ € Z]a,b] we have

luz(£)] > M.p.luzlo = M.p.||lul| > M.p,

r
= 7"7
M.p.

which, in view of (4.5), yields

f(u(0)) = (f  , —&)lu=(0)], £ € Z[a,b].

00,2

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N2 1
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Using (3.6), (C2), (4.6) and (4.2), we find

N
|Suz(a)|] = 0.Suz(a) > XD g:(a,0)a(0)f=(u(l)) >

=0

> A ML (Oa.(0)f-(ul(t) >
=0
b

> A M (O (Of.(u(h) >
l=a
b

> AN MO0 . e)lus(0)] >
l=a
b

> )\ZMsz(g)az(g)(iooyz — &) M.pzluzlo =
l=a

= /\ZMZHz(E)GZ(g)(iOQZ_EZ)MZPZHUH = ull-

Therefore, |Su;|op > ||u|| and this leads to
[Sull = {lu]]- (4.7)

If we set Qo = {u € B |lu|]| < '}, then (4.7) holds for u € C' N 9.

Now that we have obtained (4.4) and (4.7), it follows from Theorem 2.1 that S has a fixed
pointu € C'N (Q2\) such that w < |Jul| < r'. Since this u is a constant-sign solution of (1.1),
the conclusion of the theorem follows immediately.

The following corollary is immediate from Theorem 4.1.

Corollary 4.1. Let (Cy) - (Cg) hold. Then,
(Y1,572,4) € B, 1 <i < n,
where 7y, ; and 72 ; are defined in Theorem 4.1.

Corollary 4.2. Let (C1)— (Cy) hold. Then,

(min V1,4, Mmax ’Y2,i> CFE

1<i<n 1<i<n

where 7y ; and 72 ; are defined in Theorem 4.1.
Proof. This is immediate from Corollaries 4.1 and 3.1.

Theorem 4.2. Let (C1)—(Cg) hold. If X satisfies

V3 < A< Y44, 1 <0<, (4.8)

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N 1
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where
) -1
V3,0 = [[071. MiPiZMiHi@)ai(Z)]
{=a
and
N —1
Va,i = [TOO,Z‘ZHi(@bz(@] )
0=0
then A\ € E.

Proof. Let )\ satisfy (4.8) and lete; > 0, 1 < ¢ < n, be such that

b 1 1
(o~ €z‘)Miszz’H¢(f)ai(5)] <A< [(Too,i +€i)ZHi(f)bi(f)] y1<i<n
l=a

=0
(4.9)
First, pick @w > 0 such that
fi(u) > (LM —gi)|wl, 0 < u| <w, 1<i<n. (4.10)
Let u € C be such that ||u|| = w. Suppose ||u|| = |u.|o for some z € {1,2,... ,n}. Employing

(3.6), (C3), (4.10) and (4.9) successively, we get

N

|Suz(a)| = 0:Su.(a) = )\Zgz(a,ﬁ)az(f)fz(u(f)) >

£=0
N

> AY M.H.(0)a=(0) f-(u()) >
=0
N

> )‘ZMzHZ(g)aZ(E)(iQ,Z —&2)|u-(0)] >
£=0
b

> A MH(O0(O(, . - e)lus(0)] >
l=a
b

> AY MH.(Oax(0)(f,, — ) Mepsluslo =
l=a

b
= )‘ZMZHZ(E)GZ(E)(LLZ_EZ)MZPZHUH > ul.
l=a

Therefore, |Su.lo > |lul| and inequality (4.7) follows immediately. By setting ©Q; =
= {u € B ||u| < w}, we see that (4.7) holds for u € C'N 9.

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N2 1
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Next, choose ¥ > w > 0 such that
filu) < (Too,i —I-Ei)”ui‘, lug| > 7, 1 <i<n. (4.11)

For each f;, 1 < i < n, we shall consider two cases, namely, f; is bounded and f; is unbounded.
Let N, and N, be subsets of {1,2,... ,n} such that

NyNN, =0, NbUNu:{1,2,...,n},
fi is bounded for i € Ny,
fi is unbounded for i € N,.

Case 1. Suppose that f;,i € N, is bounded. Then, there exists some R; > 0 such that

fl(u) < Ri, u € ]Rn, 1€ Nb. (412)
We define
N
" = max~vs; R; H;()b;(£).
g B ) (KO

Let u € C be such that ||u]| > . Applying (3.6), (Cs), (4.12) and (4.8) gives for i € N, and

kel
N

Sui(k)| = 6:Sus(k) < A gi(k, Obi(0) fi(u(l)) <
< A Hi(Obi(OR; <

N
< yaa Y Hi(Obi(OR; < 1’ < lull.
£=0

It follows that for u € C with |lul| > 7/,

o < |lull. 413
grel%fISUIo_IIUH (4.13)

Case 2. Suppose that f;,i € N,,is unbounded. Then, there exists
" > max{r,r"} (> w)
such that

fi(u) < ;2a¥1} filmr” e ), ugl <71 <G <. (4.14)
nje{-1,
1<j<n

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N 1
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Let u € C be such that ||u| = r”. Then, successive use of (3.6), (4.14), (4.11), (C3) and (4.9)
provides fori € N,and k € I,

N
1Sui (k)] = 6:Sui(k) < A gi(k, Obi(0) fi(u(l)) <
=0
. . . 1 " "
< A gk Obi(0) max filmr"smar” . mar”) <
1<j<n
S Azglkg fooz+€l) S
< /\ZH O)(Foos +ellull < Jul.
Therefore, we have for v € C with |ju| = r”,
max |Suilo < |lu. (4.15)
1ENy

Combining (4.13) and (4.15), we obtain for v € C with ||u|| = ",

Suilo <
iemax [ Suilo < lul,

which is actually (4.4). Hence, by setting Qo = {u € B | |Ju|| < r"}, we see that (4.4) holds for
ueln 892

Having obtained (4.7) and (4.4), an application of Theorem 2.1 leads to the existence of a
fixed point u of S in C N (Q2\Q1) such that w < |Jy|| < . This u is a constant-sign solution of
(1.1) and the conclusion of the theorem follows immediately.

Theorem 4.2 leads to the following corollary.

Corollary 4.3. Let (C1)—(Cg) hold. Then,
(73,>,744) € E, 1 <0 < n,

where vy3 ; and 74, are defined in Theorem 4.2.

Corollary 4.4. Let (C1)—(C7) hold. Then,

C
((min v o 90 ) € 2
where vy ; and 74, are defined in Theorem 4.2.

Proof. This is immediate from Corollaries 4.3 and 3.1.

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N2 1
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Remark 4.1. For a fixed i € {1,2,...,n},if f; is superlinear (i.e., ?O,i =0and f_ . = 00)
or sublinear (i.e., f . = oo and fooi = 0), then we conclude from Corollaries 4.1 and 4.3 that
E = (0,00),1i.e., (1.1) has a constant-sign solution for any A > 0. We remark that superlinearity
and sublinearity conditions have also been discussed for various boundary-value problems in

the literature for the single equation case (n = 1), see for example [3, 6, 7, 11-14] and the
references cited therein.

5. Applications to boundary-value problems. In this section we shall illustrate the generali-
ty of the results obtained in Sections 3 and 4 by considering various well known boundary-
value problems in the literature. Indeed, we shall apply our results to systems of boundary-
value problems of the following types: (m, p), Lidstone, focal, conjugate, Hermite and Sturm -
Liouville.

Case 5.1. (m, p) Boundary-value problem. Consider the system of (m, p) boundary-value
problems

A"u;i(k) + APi(k,u(k)) = 0, k € Z]0, N],
' (5.1)
Alui(0) =0,0<j <m-—2, APiui(N+m —p;) =0

where ¢ = 1,2,... ,n. It is assumed that m > 2, N > m — 1 and foreach 1 < i < n,
1 <p; <m-—1lisfixedand P; : Z[0, N] x R" — IR is continuous.
Let G;(k, ¢) be the Green’s function of the boundary-value problem

_Amy(k,) =0, k¢ Z[O7N]>
Aly(0) =0,0<j<m—2  APiy(N+m—p;) = 0.

It is known that [6, p. 315]

[ Em=D(N +m — p; — 1 — ¢)(m—pi=1)

) (N +m — p;)m=—pi=D)

(a) Gi(k,0) = ) ¢ e Z[0,k — m];
E=D(N +m —p; — 1 — 0)m=pi=1)

\ (N +m— pi)(m_pi_l)

(b) AVG(k,0) (wrt. k) >0, 0<j<p;, (k{) € Z[0,N+m—j] x Z[0, N];

(c) for (k,0) € Z[m — 1, N +m — p;] x Z[0, N], we have

—(k—t—1)m=),

e Z[k—m+1,N];

Gl(k,f) > bi (N m—p — 1 g)(m—pi—l);

= (N m—p)n (N + 1)
(d) for (k,¢) € Z[0, N +m] x Z|[0, N], we have

(N +m)m=1)
(m — DN +m — p;)(m—pi=1)

Gl(k>€) < (N—I—m—pl-—l—ﬁ)(m_pi_l).
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Now, with I = Z[0, N +m],u = (u1,ug, ... ,uy) is a solution of the system (5.1) if and only
if u is a fixed point of the operator S : B — B defined by (3.3) where

N
Sui(k) = XY Gi(k, O)Pi(t,u(), k€I, 1<i<n, (5.2)
£=0

In the context of Section 3, we have

(m—1)lp;
(N +m)m)’
(5.3)

ik, 0) = Gi(k,0), I = Z[0,N +m), Z[a,b] = Z[m —1,N], M; =

(N +m)m=1)

O = G D m— po D

(N +m —p; —1—0)m=pi=b),

Then, noting (a) — (d), we see that the conditions (C;) - (Cs) are fulfilled.

The results in Sections 3 and 4 reduce to the following theorem, which improves and extends
the earlier work of [11, 15] (for n = 1) — not only do we consider a more general P;, our
method is also generic in nature.

Theorem 5.1. Let E = {\| X\ > 0such that (5.1) has a constant-sign solution}. With g;, a, b,
M; and H; given in (5.3), we have the following:

(i) ( Theorem 3.1). Let (Cy) — (Cg) hold. Then, there exists ¢ > 0 such that the interval (0, c| C
C FE.

(ii) ( Theorem 3.2 and Corollary 3.1). Let (Cy) and (Cr) hold. Suppose that \* € E. Then,
forany A € (0,\*),we have \ € E,ie., (0,\*] C E. Indeed, if E # 0, then E is an interval.

(iii) ( Theorem 3.3). Let (Cy) — (Cg) and (Cs) hold. Suppose that \ € E and

ueC = {u € (C(I))" | foreach1 < i < n, Q;u;(k) > 0fork € I,

and . min ui(k) > pm@

is a corresponding eigenfunction. Let g; = |u;lo, 1 < i < n. Then, foreach 1 < i < n, we have

N —1
> & — [2 m(@)W)]

filar, a2, - - =

and

-1

\ < qi

b
M;H;(0)a;(¢
= [i(Miprar, Mapagg, - - . Mnpngn) L:a Bl

(iv) (Theorem 3.4). Let (Cy) - (Cs) hold. For each 1 < i < n,let FP, F? and Ff° be defined
as in Theorem 3.4.

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N2 1



20 R.P. AGARWAL, D. O'REGAN, P.J.Y. WONG

(a) If fi € FB foreach1 < i < n,then E = (0,c) or (0, ] for some ¢ € (0, ).

(b) If fi € F? foreach 1 < i < n, then E = (0, c] for some ¢ € (0,00).

(c) If fi € F® foreach1 < i < n,then E = (0,00).

(v) ( Theorem 4.1, Corollaries 4.1 and 4.2). Let (Cy) - (Cg) hold. Foreach 1 < i < n, let fo,i
and, | . Dbe defined as in Section 4. If X satisfies

T, <A <724, 1 < i <,
where
b _1
i = [Lm M;p; Z Mz‘Hz‘(E)ai(ﬁ)]
l=a

and

N —1

Vo0 = [To,izHi(f)bi(ﬁ)] ,

(=0

then A € E. Indeed,

(M,724) CE, 1 <i<mn.

Moreover, if (C;) holds, then

min ;. max | C E.
<1<z’<n%"“ 1<i<n7272> =

(vi) (Theorem 4.2, Corollaries 4.3 and 4.4). Let (Cy) — (Cg) hold. Foreach 1 < i < n, let iOi
and foo’i be defined as in Section 4. If \ satisfies

Y3, < A< Va4, 1 < <o,

where
b —1
V3, = [io,i Mip; Y MiHi(f)ai(f)]
{=a

and

then \ € E. Indeed,
(73,1’774,2') - Ea 1 < 1 < n.

Moreover, if (C7) holds, then

min 7y3;, max y4; | € F.
1<i<n >V 1<i<n |

(vii) ( Remark 4.1). Let (Cy)—(Cs) hold. If f; is m superlinear (i.e., foyj = 0 and iooj = 00)
or sublinear (i.e., io,j =ocand f o, ; = 0) forsome j € {1,2,... ,n}, then E = (0, 0).
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Example 5.1. Consider the system of (m, p) boundary-value problems

[u1 (k) + 1][uz(k) +1]
k(k — 1)(11 — k) + 1)[k(k — 1)(20 — k) + 1]

Aduq (k) + A =0, ke Z[0,5)],

Alua(k) A G — k) + 201 k(k — 1)(20 — F) + 20

=0, k € Z[0,5), (5.4)

u1(0) = Aup(0) = 0, Aug(7) = 0;  ug(0) = Aug(0) = 0, A%uy(6) = 0.
In this example,n = 2, m =3, N =5, p = 1, p» = 2,

[u1 (k) + 1][ua(k) + 1]

Py(k, u(k)) = ek —1)(11 — &) + 1][k(k — 1)(20 — k) + 1]

d
" w1 (k) + 20][uz (k) + 20]
[k(k — 1)(11 — k) + 20][k(k — 1)(20 — k) + 20]

Fix 6; = 6, = 1. Clearly, (C4) and (C7) are satisfied. Now, choose

Py(k,u(k)) =

fi(u) = [ur(k) + Yua(k) +1],  fa(u) = [ui(k) + 20][uz(k) + 20],

a1 (k) = by(k) = {[k(k —1)(11 — k) + 1][k(k — 1)(20 — k) + 1]} !

and
as(k) = ba(k) = {[k(k —1)(11 — k) + 20][k(k — 1)(20 — k) + 20]} 1.
Then, (Cs), (Cg) (With p; = p2 = 1) and (Cs) are fulfilled. Moreover, we have H;(¢) = 4(6 —¢)

and Hy(¢) = 28.
It is easy to see that

TO,I = io,l = 00, 700,1 = ioo,l = 1’ 70,2 = io’g = o0 and ?00,2 = iOO,Z =1
Clearly, fi € FP, i = 1,2. Hence, Theorem 5.1(iv) guarantees that
E = {)\| X > 0such that (5.4) has a constant-sign solution} = (0, ¢) or (0, c| (5.9)

for some ¢ € (0, 00).
By direct computation, we get

73,1 = V3,2 = 0, V4,1 = 0,02271 and V4,2 = 6,3121.

It follows from Theorem 5.1(vi) that

(._%f;’m,u m%’m,z') = (0,63121) C E. (5.6)
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Coupling with (5.5), we further conclude that £ = (0, c¢) or (0, c¢|] where ¢ > 6,3121. Indeed,
when A = 6 € E, the system (5.4) has a positive solution given by

u(k) = (ui(k),ua(k)) = (k(k—1)(11 = k), k(k —1)(20 — k)), k € Z[0,8].

Case 5.2. Lidstone boundary-value problem. Consider the system of Lidstone boundary-
value problems

(—1)™ Ay (k) = APi(k,u(k)), k € Z[0, N],

‘ . (5.7)
A%y;(0) = AYu;(N +2m —2j) =0, 0 < j <m— 1,

where i = 1,2,... ,n. Itis assumed that m > land P, : Z[0,N] x R" — IR, 1 < i < n,is
continuous.

Let G, (k, ¢) be the Green’s function of the boundary-value problem

A*My(k) = 0, k € Z[0,N],
AYy(0) = AYy(N +2m—2j) =0,0<j < m— 1.

It is given in [16] that

(a) G (K, ) = SN2 Gk, 7)G1 (7, £) Where

1 (N+2m—k)({+1), €€ Z[0,k—2];
G(k7£) = Gl(k>€) = -
N+2m | g(N+2m—1-10), (€ Zk—1,N+2m—2];
(b) (=1)"Gm(k, ) = 0, ( t) € Z[0, N +2m] x Z[0, NJ;
(c) for (k,¢) € Z[1,N + 2m — 1] x Z[0, N], we have
(=1)"Gp(k, ) > Bpymin{f+1,N +1—¢} > Nﬁj—l 1 L+1)(N+1-2)
where
m -1 m—1
= H(N+2]) H T2j 1
j=1 j=1
and
N+ ‘ 1 (N+5)?+6(N+7)+1, (N+j)isodd;
T; = Zm1n{7’+1,N+g+2—T} = — ,j > 1
=1 4 (N +j)(N+j+6), (N + j)is even

(d) for (k,¢) € Z[0,N + 2m] x Z[0, N], we have
(=1D)™"Gm(k,l) < ap(l+1)(N+1-17)
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where
m -1 m—1
Ay, = H(N+2]) H ng
j=1 =1
and
N+j 1
si=Y (T+)(N+j+1-71) = 6(N+j+3)(3), ji>2
7=0

Clearly, with I = Z[0, N + 2m]|, u = (u1,us, ... ,uy,) is a solution of the system (5.7) if and
only if u is a fixed point of the operator S : B — B defined by (3.3) where

N
Sui(k) =AY (=1)"Gm(k, O)Pi(L,u(), k€I, 1<i<n, (5.8)
£=0

In the context of Section 3, let

gi(k,0) = (~1)"G(k,0), I=Z[0,N+2m],  Za,b = Z[1,N],

= o N D) and H;({) = ap(+1)(N+1—10).

Then, the conditions (C;)—(Cg3) are satisfied in view of (a)—(d).

Applying the results in Sections 3 and 4, we obtain the following theorem which improves
and extends the earlier work of [16] (for n = 1). Note that the P; considered in (5.7) as well as
the methodology used are both more general.

Theorem 5.2. Let E = {\ | X > 0such that (5.7) has a constant-sign solution}. With g;, a,
b, M; and H; given in (5.9), the statements (i) — (vii) of Theorem 5.1 hold.

Case 5.3. Focal boundary-value problem. Consider the system of focal boundary-value
problems

(=1)"7Pi AMu;(k) = AP;i(k,u(k)), k € Z[0, N],
(5.10)
Alui(0) =0,0<j<pi—1;  Auw(N+1)=0,p <j<m-—1,
where ¢ = 1,2,... ,n. Itis assumed that m > 2, and foreach1 < i < n,1 < p; < min{m —
—1, N}isfixed and P; : Z[0, N] x R" — IR is continuous.
Let G;(k, ¢) be the Green’s function of the boundary-value problem

A™y(k) =0, k€ Z[0,N],
Aly(0) =0,0<j <p—1; Ay(N+1)=0,p; <i<m-—1.
In [17] it is given that
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)

¢ (k—j—D@D+m—p;—1—j)mPpi-1)
= (pi = D(m —pi — 1)!
¢e Z[0,k—1];

<

(a) Gi(k, ) = (—1)mPi

S
—

(k—j— 1)(pi—1)(g_|_ m—p;—1— j)(m_Pi_l)
(pi — DI(m —p; —1)! ’
¢ € Z[k, NJ;

<.
Il
o

(b) the signs of the differences of G;(k, ¢) w.r.t. k are as follows:
(_l)m_piAjGi(k7£) Z Oa (kag) S Z[OaN +m _]} X Z[OvN]7 0 S .7 S Di — 17

(_1)m—pi+jAj+piGi(k’€) > 0,

(k,0) € Z[0,N +m—j—pi] x ZI0O,N], 0 < j <m—p; = 1;
(c) fora given 6; € Z[p;, N|, and (k,¢) € Z[0;, N +m] x Z[0, N], we have
(=)™ "Gk, £) = Li(=1)"""Gi(N +m, {)

where
L; = TN T
ce2fo.N) Gi(N +m, 1)
(d) (—1)™ PGy, £) < (—1)" P Gi(N +m,0), (k,¢) € Z[0,N +m] x Z[0, N].
Obviously, with I = Z[0, N + m], u = (u1,ug, ... ,u,) is a solution of the system (5.10) if
and only if  is a fixed point of the operator S : B — B defined by (3.3) where

N
Sui(k) = A (~1)" PGk, O P(¢u(t), keI, 1<i<n. (5.11)
=0

Let 0; € Z[p;, N], 1 < i < n,be fixed and § = max;<;<, 0;. In the context of Section 3, let

Gk 0) = (1" PiGy(k,0), I=Z[0,N+m],  Zla,b| = Z[5,N],
5.12
M, = L, and Hz(f) = (—1)m_pZGZ(N—|—m,€) ( )

Then, from (a) — (d) we see that the conditions (C;)—(Cj3) are satisfied.

The results in Sections 3 and 4 reduce to the following theorem which improves and extends
the earlier work of [17] (for n = 1). We remark that the P; considered in (5.10) as well as the
methodology used are both more general.

Theorem 5.3. Let E = {\ | A\ > 0such that (5.10) has a constant-sign solution}. With
gi, a, b, M; and H; given in (5.12), the statements (i) — (vii) of Theorem 5.1 hold.
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Case 5.4. Conjugate boundary-value problem. Consider the system of conjugate boundary-
value problems

(—1)™ P A™uy(k) = AP;(k, u(k)), k € Z[0, N],

Ay (0)=0,0<j < pi—1; Aui(N+pi+1)=0,0<j<m—p;—1, (5.13)
where i = 1,2, ..

,n. It is assumed that m > 2, andforeach1 < ¢ < n,1 < p; < m — 1,
N > minj<;<, p; and P; : Z[0, N] x R" — IR is continuous.

Let G;(k, ¢) be the Green’s function of the boundary-value problem

Amy(k) =0, k€ Z[OvN]a

Aly(0) = 0,0 < j < p;—1;

Ay(N+pi+1)=0,0<j <m—p;—1.
It is known that [18, 19]

piz_:l ri—zj:—l <m T — 1> ELU+T) ]
(

(= —1)(m=3-1)
-
j=0 L 7=0

jim —j —1)!

N+ m — j)m—pi+n) %

X(N +m —k)m=P) ¢ e 7Z[0,k— 1],
(a) Gi(k,0) =

m—p;—1 [m—p;—j—1 ] . . ; — \(G+7) )
B Z [ Z <pz+7' 1) (N+pz+]+7_ k) ] —1)]><
=0

= T (N +pi+1+j+7)Pit7)

(N'i‘pi —E)(m_j_l) (pi)
7 Z N .
\ Am—j—nr o LE AN
(b) (—1)™ PGk, £) > 0, (k,£) € Z[0, N +m] x Z[0, N];
(c) for a given §; € Z[p;, N + p;], and (k,¢) € Z[6;, N + p;] x Z[0, N], we have

(=)™ PGi(k, ) = Kil|Gi(+, 0|
where

HGz(ae)” = kGZI[{)l%(+m] |Gl(k7£)| = max

= —1)™PiGy(k, 0),
keZ[O,Ner]( ) (k €)

MaXye 7[5, N4p] V(i + 1,k)" maxpe 715, Nyp) V(D k

min . qu(ps+ 1L,k min . Jv(pi, k
K; = min { keZ[5:,N+p;) V(P ) keZ[5:,N+pi] V(i k) }’
and the function v is defined as

v(z, k) = K@TD(N +m — k)=o)
(d) (~1)"™ P Gi(k,£) < |Gi(-, 0], (k,0) € Z[0, N +m] x Z[0, N].
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Now, with I = Z[0, N + m|, v = (u1,ua,... ,uy) is a solution of the system (5.13) if and
only if u is a fixed point of the operator S : B — B defined by (3.3) where

N
Sui(k) = A (~1)" PGk, O Pt u(t), keI, 1<i<n. (5.14)
=0

Let&; € Z[pi, N +pi], 1 < i < n,be fixed and 6 = max;<;<y, 0;. In the context of Section
3, let

gi(k,0) = (—1)™PiG(k,0), I=2Z[0,N+m],  Za,b = Z[5N],
(5.15)

Then, (a) - (d) ensures that the conditions (C;)—(Cs3) are fulfilled.

Applying the results in Sections 3 and 4, we obtain the following theorem which improves
and extends the earlier work of [18] (for n = 1). Note that the P; considered in (5.13) as well
as the methodology used are both more general.

Theorem 5.4. Let E = {\ | A\ > 0such that (5.13) has a constant-sign solution}. With
gi, a, b, M; and H; given in (5.15), the statements (i) — (vii) of Theorem 5.1 hold.

Case 5.5. Hermite boundary-value problem. Consider the system of Hermite boundary-
value problems

A™uy(K) = Ak u(k). k € Z[0,N],
. (5.16)
Ajui(kl,)zo, j:(),...,ml,—l,yzl"_.,(]’

wherei = 1,2,... ,n. Itisassumed that J > 2, m,, > 1forv =1,...,J, Zizlm,, = m, and
k,’s are integers such that £y > N and

O=Kk <ki+mi <ky<ko+me<...<kj<kjy+mjyj—1=N+m.
Moreover, for each 1 < i < nand k € Z|[0, N], we assume

{@ﬂ%awww» ke Zlkykyor —1,v=1,...,J -2
Fi(k,u(k)) = (5.17)
(=1)7-1Pi(k,u(k)), k€ Zlks_1,ky],

where P, : Z[0, N] x R" — IR, 1 < i < n,is continuous and

J
Yy = Z mj, 1 <v<J-—1
j=v+1

We shall also use the notation

I, = Zlky +my, ki1 — 1), 1 <v < J—1.
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Let G(k, ¢) be the Green’s function of the boundary-value problem

A"y(k) =0, ke Z[0,N],

It is known that [20, 21]
(a) the signs of G(k, ¢) are as follows:

(1) G(k,0) > 0, (k,0) € Z[ky, k1] X ZIO,N], v =1,...,J — 1,

G(k,0) = 0,(k,t) € Z[ks, N +m] x Z[0, N];
(b) for (k,¢) € I, x Z[0O,N], v = 1,...,J — 1, we have
(=1)"G(k, £) = L[|G(, 0)||
where

. = B 1)
IGC Ol = e[GOl = x| max (=1 Gk 0),

L. — mi {mln {p(ku +m1/)ap(ku+1 - 1)} min {Q(ku +m1/)vQ(ku+1 - 1)}}
, = min )
MaXpye 7(0, N+m] P(k) maXye 70, N+m] 4(K)

and the functions p and ¢ are defined as

J
H YD (N 4 m — k) mo=1), q(k) = km=1 H

(© (=D)"G(k, ) < |GG, Ol, (k,€) € Z[0,N+m]x Z[0,N], v =1,...,J - L
Clearly, with I = Z[0, N + m|, u = (u1,u2, ... ,u,) is a solution of the system (5.16) if and
only if u is a fixed point of the operator S : B — B defined by (3.3) where

N
Sui(k) =AY Gk, OF(Lu(?), ke, 1<i<n. (5.18)
=0

In the context of Section 3, let
gi(k, ) = (=1)""G(k,?), I = Z[0,N + m)], Zla,b] = I, N Z]0, N1,
(5.19)
Then, noting (a) - (c) the conditions (C;), (C3) and (Cy) (for v = 1,2,...,J — 1) are fulfilled.
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The results in Sections 3 and 4 reduce to the following theorem, which improves and extends
the earlier work of [21] (for n = 1) — note that a more general F; is considered by using a more
general method.

Theorem 5.5. Let E = {\ | A\ > 0such that (5.16) has a constant-sign solution}. With
gi, a, b, M; and H; given in (5.19), the statements (i), (ii), (iv) and (vii) of Theorem 5.1 hold.
Moreover, we have the following:

(iii) (Theorem 3.3). Let (Cy)— (Cg) and (Cs) hold. Suppose that \ € E and

ueC = {u e (C(I))" | foreach1 < i < n, Qju;(k) > 0fork € I,

and min Olul(k) > L,,pi|ui|0, VvV = 1,2,... ,J— 1}
kel,NZ[0,N]

is a corresponding eigenfunction. Let q; = |u;|o, 1 < i < n. Then, we have

N —1
q; .
> Hi(Ob(0)| . 1<i<n, 20
= filar a2, an) L . (0 ()] (5.20)

and

A< E S LH(Ow)|

fi(LVP1Q1> LVP2Q27 cee 7LVPnQn) tel,NZ[0,N]

(5.21)
1<i<n, 1<v<J-1

(v) (Theorem 4.1, Corollaries 4.1 and 4.2). Let (C4)—(Cg) hold. For each 1 < i < n, let ?071-
and f . be defined as in Section 4. If X satisfies

Vipw <A< 724, 1 <i<n 1<v<J-1, (5.22)
where
1
My = ioo’i L,p; Z L,H;({)a;(0)
¢€1,nZ[0,N]
and

N —1
Yo,i = lfo,izﬂi(f)bi(f)] :
/=0
then A € E. Indeed,
(’71,1’,1/772,1‘)CE7 1§1§n71§V§J_1

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N 1



EIGENVALUE CHARACTERIZATION OF A SYSTEM OF DIFFERENCE EQUATIONS 29

Moreover, if (C7) holds, then

min 14 max v2; | C FE.
. Y,ivs 1§i§nry J

(vi) (Theorem 4.2, Corollaries 4.3 and 4.4). Let (Cy) — (Cg) hold. Foreach 1 < i < n, let L)i
and 700,1' be defined as in Section 4. If )\ satisfies

V3w <A<V, 1 <i<n, 1<v<J-—1, (5.23)
where
1
Vaiw = Lo, Lopi Y LuHi(O)ai(0)
(€1,NnZ[0,N)]
and

N —1
Vi = lfoo,izHi(@bz’(f)] J
=0
then A € E. Indeed,
(73,7;,V7’y4,i)gE7 1§/L§n71SV§J_]—

Moreover, if (C7) holds, then

min ; max | C E.
V3,ivs 1§i§n’74’z S

Proof. (iii) Here, the cone C'in (3.5) is modified to that in the statement of Theorem 5.5(iii).
The proof of (5.20) is similar to that in the proof of Theorem 3.3. To verify (5.21),let1 < i < n
and 1 < v < J — 1 be fixed. Using (3.6), (C2), (Cs) and the fact that mingc;, 7o, N Oiui(k) >
> Lypiluilo = Lypigi, we get

¢ = luilo > Oiuilkyy1—1) =

N
= 6:AY_ Gi(kyr1 — 1, OFi(C,u(l)) >
/=0

> 0\ > Gi(kys1 — 1, O)(=1)"Py(¢,u(l)) >
L€ Z[ky ky1—1]NZ[0,N]
> A > (1) Gilkys1 — 1, Oai(l) fi(u(l)) >

€ Z[ky k1 —1]NZ[0,N]

> A Y LyHi(Oai(0) fiu(l) >
LeI,NZ[0,N]

> A Z L,H;(€)a;(€) fi(Luprqi, Lup2go, - . Lupngn)
¢€1,NnZ[0,N]
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which reduces to (5.21).

(v) Let A satisfy (5.22) and lete;, > 0, 1 < i <mn, 1 <v < J— 1, be such that

N
—ciw)lvpi Y LuHi(Oai(0)| <A< |(foi+en) Y HiObi(O)]
Lel,NZ[0,N] £=0

(f

L 00,1

1<i<n, 1<v<J-1.

First, we can choose w > Osothatforl <i<nandl <v < J-—1,

filu) < (fo; +ei)luil, 0 < fu] < w. (5.25)

As in the proof of Theorem 4.1, it now follows that ||Su|| < |jul| for v € C N 92y where
O ={u e B||u| < w}.
Next, pick T > w > Osuchthatfor1 <i <nandl <v < J -1,

filw) > (f . —ew)|wil, |ui] > T. (5.26)

L 00,1

Let u € C be such that

=
o

Jull = T/ =

ANEVAN

AN
(s
~
N
>

Suppose ||u|| = |u.|o for some z € {1,2,... ,n}. Letv € {1,2,...,J — 1} be fixed. Then, for
¢ e I,NZ[0, N] we have

T
luz(€)] > Lypzluzlo = Lyp:llull > LVPZL P =T,

which, in view of (5.26), yields

fz(u(l)) > (iooz — ) |uz(0)], l eI, NZ0,NI. (5.27)
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Using (3.6), (Cy), (5.27) and (5.24), we find

|S’LLZ(]€Z,+1 — 1)| = stuz(ky+1 — 1) 2

> 0.\ > G.(kyi1 — 1, 0)(=1)" P,(£,u(f)) >
eZky ky+1—1]NZ[0,N]

> A > (—1)" G (kps1 — 1, O)a(0) fo(u(l)) >
L€ Zlky ky41—1]NZ[0,N]

> A Z LyH,(€)ax(0) f2(u(l)) >

¢el,NZ[0,N]

—ew)|uL(0)] >

> A\ Z LVsz)az(e)(i

¢e1,NZ[0,N]

00,2

>X Y LH(0a:(0(f .~ ) Lupalusly =
LeI,NZ[0,N]

=X Y LH.(Oa(O(f . — ) Lupsull
Lel,NZ[0,N]

v

[[]]-

Therefore, |Su,|o > ||u|| and this leads to ||Su|| > |lul|. Setting Q2 = {u € B ||u| < T"}, we
have ||Su| > |Ju|| for u € C' N ONs.
The rest of the proof is similar to that of Theorem 4.1.

(vi) The proof is similar to that of Theorem 4.2 with analogous modification as in the proof
of Theorem 5.5(v).

Case 5.6. Sturm — Liouville boundary-value problem. Consider the system of Sturm — Liouville
boundary-value problems

A™ui(k) + APi(k,u(k)) = 0, k € Z[0, N],
Aui(0) =0,0<j <m-—3, (5.28)
GA™ 2u;(0) — A" i (0) = 0, %A 2 (N +1) + 6;A™ Ly (N +1) = 0,

where ¢ = 1,2,...,n. It is assumed that m > 2, N > m — 1, and foreach 1 < i < n,
P, : Z]0, N] x R™ — IR is continuous,

G >0, v >0, ni > 0, 8 > Vi Y = (N + 1) + Géi +niyi > 0.
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Let h;(k, £) be the Green’s function of the boundary-value problem
—A"y(k) =0, k € Z[0, N],
Aly(0) =0,0 < j <m—3,
GA™2y(0) — A y(0) = 0, AT TPY(N + 1) + HA™ (N +1) = 0.
It can be verified that [14]
Gi(k,0) = A™2h;(k, 0) (wrt. k) (5.29)
is the Green’s function of the boundary-value problem

~A%w(k) =0, k € Z[0, N],

Gw(0) — n;Aw(0) = 0, viw(N 4+ 1)+ §;Aw(N +1) = 0.

Further, it is known that [14]
1 [ i+ GEl+D)6i+%(N+1-k), €€ Z[0,k—1];
(a) Gi(k, () = —{
G Ui+ GG + (N - 0)], ¢ € Z[k, NY;
(b) Gi(k,¢) > 0, (k,¢) € Z[0,N +2] x Z[0, NJ;
(c) for (k,¢) € Z[1,N] x Z[0, N], we have

Gi(k, 0) > A; Gi(L,0)

where
(i + Gi) (6 + i)
(i + GN)(0; +vN)’

d) for (k,¢) € Z[0,N + 2] x Z[0, N], we have

i =

Gi(k,0) < B; G;(4, )

where

B; = i

77i+Cz" > 0;
2, 772:0

In the context of Section 3, let the Banach space

B— {u = (up, s, up) € (C(Z[0,N +m]))"

Nu,-(O):o,ogjgm—s,lgign}
(5.30)

be equipped with norm

|lu|| = max max \Am_zui(k)] = max |u;lo (5.31)
1<i<n keZ[0,N+2] 1<i<n
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where we denote |u;o = maxgezio N2 |A™=2y;(k)|, 1 < i < n. Further, define the cone C in
B as

C = {u = (uy,u2,...,uy) € B |foreach1 <i < n, QiAm_zui(k) > 0fork € Z[0,N + 2],

d i QiAm72 (k) > M;|u; 5.32
and | min ui(k) = !uo} (532)

where M; = gz € (0,1), 1 <4 < n. It can be shown that S maps C into C.
i
Lemma 5.1 [14].
(a) Letu € B. For0 < j < m — 2, we have

, k(m—2—j) . .
In particular,
N (m—2)
()] < YEMTT L ke Z0,N+m), 1< i <n. (5.34)
(m —2)!
(b) Letu € C. For0 < j < m — 2, we have
0; A (k) > 0, ke Z0,N+m—7],1<i<n, (5.35)
and
, (k —1)m=2-J)
QZAJUZ(k) > M,-pi\ui|0, k € Z[l,N—l—m— 2 —j], 1 << n. (536)
(m—2—j)!
In particular,
quz(k) > Miﬂi’”i‘o, ke Z[m— 1IL,N+m— 2}, 1 <i<n. (537)
Hence, if u = (u1,ug,...,u,) € Cis asolution of (5.28), then it follows from (5.35) that u

is a constant-sign solution. Clearly, u is a solution of the system (5.28) if and only if « is a fixed
point of the operator S : B — B defined by (3.3) where

N
Sui(k) =AY hi(k, O)Pi(6,u(0)), k € Z[0,N+m], 1 <i<mn, (5.38)
=0
or equivalently
N
A2 (Su) (k) = XY Gi(k, O)P(Gu(0), k€ ZO,N+2],1<i<n. (5.39)
=0
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Now, in the context of Section 3, let

gi(k,0) = Gi(k,0), I =Z[0,N +2], Zla,b] = Z[1, N],
(5.40)
Mi = % and HZ(E) = Bi Gl(g,g)

Then, noting (a) —(d), we see that (C;)—(Cj3) are fulfilled.

The results in Sections 3 and 4 together with Lemma 5.1 lead to the following theorem,
which improves and extends the earlier work of [14, 21, 22] (for n = 1) — not only do we
consider a more general P;, our method is also more general.

Theorem 5.6. Let E = {\ | A\ > 0such that (5.28) has a constant-sign solution}. With
gi, a, b, M; and H; given in (5.40), the statements (i), (ii), (iv)—(vii) of Theorem 5.1 hold.
Moreover, we have the following:

(iii) (Theorem 3.3). Let (Cy)—(Cg) and (Cg) hold. Suppose that A € E and v € C (see
(5.32)) is a corresponding eigenfunction. Let q; = |u;lo, 1 < i < n. Then, foreach 1 < i < n,

we have
N (m=2) N (m=2) N(m 2) -1
q1 q2 Qn
A>qi|fi , e H;(¢
_q[f<(m—2)! (m — 2)! )Z ]
and
N -1
A< [fi(M101Q1,M2P2Q2,~-- Mopngn) > MiHi(l ] .
l=m—1

Proof. (iii) For each 1 < i < n,let k} € I be such that
¢ = |uilo = 6;A™ 2uy(kF), 1 < i < n.
Then, applying (Cs), (Cg) and (5.33) gives

G = 00" 2u(kl) = 0,0™(Suy) (k) =

N
=00 )_ Gi(kf, O)Pi(t,u(0) <
=0

N
XY Gl OB ful0) <

=0

N N(m=2) g N(m—2) Nm=2)g,
<A Hi(Obi(0)fi ( (m_z)qll’ (m—2;1!2"" ’ (m—2§]! )

from which the first inequality is immediate.
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Next, we use (Cz), (Cs) and (5.37) to get
¢ = |uilo >

> 0;,A™ %y (m — 1) =

N
2 S0 MHOmOH0) >
N
_Z () fi(Myprq1, Mapaqa, . .. , Mpppgn)

which reduces to the second inequality.

6. Characterization of E for (1.2). This section extends the results in Section 3 to the system
of difference equations (1.2) on the infinite set of N = {0, 1,... }. To begin, let the Banach
space B = (C(IN))"™ be equipped with norm

lull = max km;ﬁ!uz( )| = max fuilo (6.1)

where we let |u;|o = max, N [uwi(k)|, 1 < i < n.
We shall seek a solution u = (uj,us,... ,u,) of (1.2) in (C;(IN))" where

lim w;(k) exists, 1 < i < n} (6.2)

k—o0

(N = {u e (C(N))"

For the purpose of clarity, we shall list the conditions that are needed later. Note that in
these conditions §; € {1,—1}, 1 < i < n are fixed.
(C1) Foreach 1 < i < n, assume that

gF(0) = gi(k,0) > 0, (k,0) € Nx N,
> k() < o0, k € N (ie., gF(0) € I'(N), k € N),

ISSN 1562-3076. Heainitini koausanns, 2004, m. 7 N2 1



36 R.P. AGARWAL, D. O'REGAN, P.J.Y. WONG

there exists §; € [!(IN) such that klim Z lg¥(0) = 3:(0)] = 0 (ie., gF — G inl'(IN) as k — c0),
=0
P, : IN x R™ — IR is continuous,

for each r > 0, there exists M, ; such that for k € INand |u;| < r, 1 < j < n, |Pi(k,u)|] <
< Mr,i-

(C2)so For each 1 < i < n, there exists a constant M; € (0,1), a continuous function
H; : N — [0,00), and an interval Z[a,b] C IN such that

gi(k, 0) > MyH;(£) > 0, (k,€) € Z[a,b] x N.
(C3)o0 Foreach 1 < i < m,
gi(k,ﬁ) < HZ(E), (k,é) € IN x N.
(C4)so Let K and K be as in Section 3 with B = (C(IN))™. For each 1 < i < n, assume that

0:P(0,u) >0, ue K, (e N and  6;P(f,u) >0, ue K, { € N.

(C5)o0 Foreach 1 < i < n, there exist continuous functions f;, a;, b; with f; : R" — [0, 00)
and a;,b; : IN — [0, 00) such that

< QZPZ(K, ’LL)

ai(f) < F(0) <b(0), ue K, cN.

(Cs)oo For each 1 < ¢ < n, the function q; is not identically zero on any nondegenerate
subinterval of IN, and there exists a number 0 < p; < 1 such that

a;(0) > pibi(£), ¢ € IN.
(C7)oo Foreach 1 < i,j < n,if |u;| < |vj|, then
OiPi(L, 01, U1, Ujy Ujgts - o 5 Up) < O P50 Uty oo U1, U, Ujg1s - - 5 Up), £ € INL
(Cg)oo Foreach 1 < i,j < n,if |u;| < |vj|, then
filut, oo w1, U, U1, - ) < fiur, oo Wi, U, Wi, - s Up).

Assume (Cj) holds. Let the operator S : (C;(IN))" — (C;(IN))™ be defined by

Su(k) = (Sui(k), Sua(k),...,Sun(k)), k € IN, (6.3)
where
Sui(k) = )\igi(kz,@ﬂ(&u(ﬁ)), EelN, 1<i<n. (6.4)
=0
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Clearly, a fixed point of the operator S is a solution of the system (1.2). We shall show that S
maps (C;(IN))™ into itself. Let u € (C;(IN))" and i € {1,2,... ,n} be fixed. We need to show
that limy_, o, Su;(k) exists. Fix » > 0. Then, it follows from (C1), that

Zglk‘f ()P (0, u(l gz [k, 0) — §i(0)|My; — 0
o=
as k — oo. Therefore, as K — oo we have

Sui(k) = A _gi(k Pt u(0) — XY Gi(O) Pl u(L)).
=0 =0

Hence, S maps (C;(IN))™ into (C;(IN))™ if (C1)~ holds.
Next, we define a cone in B as

C = {u e (Cy(IN))"

foreach 1 < i < n, O;u;(k) > 0fork € N,

and | min ui(k) pilu o} (6.5)

where M; and p; are defined in (Cy)s, and (Cg)oo respectively. Note that C' C K. A fixed point
of S obtained in C will be a constant-sign solution of the system (1.2). For R > 0, let

C(R) = {u € C||ul < R}.

If (C1)oo, (C4)oo and (Cs)s hold, then it is clear from (6.4) that for u € K,

A gilk, Oai(0) fi(u(0)) < 0;Sui(k) < XY gi(k, Obi(0) fi(u(0)), k € N, 1 <i < n. (6.6)

Lemma 6.1. Let (C1) hold. Then, the operator S is continuous and completely continuous.

Proof. As in [10] (Chapter 5), (C;)o ensures that S is continuous and completely conti-
nuous.

Lemma 6.2. Let (C1)oo — (Cs)oo hold. Then, the operator S maps C' into itself.

Proof. The proof is similar to that of Lemma 3.2, with the intervals Z[0, N| and I replaced
by IN.

Theorem 6.1. Let (C1)oo—(Cg)oo hold and let Hib; € 1'(IN), 1 < i < n. Then, there exists
¢ > 0 such that the interval (0,c] C E.

Proof. Let R > 0 be given. Define

-1

c=R max - sup fm(u1,ug, ... ,un)] Z H;(0)b; () . (6.7)
=TSy <R =0
I<j<n
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Let A € (0,c]. Using an argument similar to that in the proof of Theorem 3.1 yields
S(C(R)) C C(R). Applying Lemma 6.1 and Schauder’s fixed point theorem, we see that S has
a fixed point in C'(R). Clearly, this fixed point is a constant-sign solution of (1.2) and therefore A
is an eigenvalue of (1.2). Since A € (0, ¢| is arbitrary, we have proved that the interval (0,¢] C E.

Theorem 6.2. Let (C1)s, (C1)oo and (C7)o hold. Suppose that \* € E. Then, for any
A € (0,\*), we have A € E,ie., (0,\*] C E.

Proof. Let u* = (uf,us,... ,u}) be the eigenfunction corresponding to the eigenvalue \*,
i.e.,
ui (k) = A*Zgi(k‘,é)Pi(E,u*(é)), EelN,1<i<n. (6.8)
=0
Define

i ={ue @y

foreachl <i < n, 0 < Q;u;(k) < Ou;(k), k € ]N}.

Foru € K* and A € (0,\*), an application of (C1)s, (C4)oo, (C7)s and (6.8) gives

IN

0; [)\*Zgi(k,ﬁ)]%(f,u*(f))] =
=0
= bGu(k), ke N,1<i<n.

=0

This immediately implies that S maps K* into K*. Coupling with Lemma 6.1, Schauder’s fixed
point theorem guarantees that S has a fixed point in K*, which is a constant-sign solution of
(1.2). Hence, A is an eigenvalue, i.e., A € E.

Corollary 6.1. Let (C1) oo, (Cy)oo and (C7)oo hold. If E # (), then E is an interval.

Proof. The argument is similar to that in the proof of Corollary 3.1, where Theorem 6.2
(instead of Theorem 3.2) is used.

We shall now establish conditions under which F is a bounded or an unbounded interval.
For this, we need the following result.

Theorem 6.3. Let (C1) oo — (Cs) oo and (Cg) oo hold and let H;b; € 1'(IN), 1 < i < n. Suppose
that \ is an eigenvalue of (1.2) and uw € C is a corresponding eigenfunction. Let q; = |u;|o, 1 <
<1 < n. Then, foreach 1 < i < n, we have

o0 -1
4di
' e 6.9
= fila a2 an) ng (€) ()] 69)
and
b -1
qi
' M;H;(f)ai(6)| - 6.10
= fi(Mipigr, Mapags, - -, Mypnan) L_a (0)ai( )] (6.10)
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Proof. The proof is similar to that of Theorem 3.3, with the intervals Z[0, N| and I replaced
by IN.

Theorem 6.4. Let (C1)o — (Cs)oo hold and letH;b; € 1'(IN), 1 < i < n.Foreach1 < i < n,
let FP, F? and F® be defined as in Theorem 3.4.

(a) If f; € FP foreach 1 < i < n,then E = (0,c) or (0, c] for some c € (0,00).

(b) If fi € F? foreach 1 < i < n, then E = (0, c] for some ¢ € (0,0).

(c) If f; € F™® foreach1 < i < n,then E = (0,00).

Proof. (a) This is immediate from (6.10) and Corollary 6.1.

(b) The argument is similar to that in the proof of Theorem 3.4, with

K; = {y € C(IN) ' klim y(k) exists and 0,y(k) > 0, k € ]N}.

(c) Let A > 0 be fixed. Choose £ > 0 so that

o)

) . <
A Joax. H;(0)b;(£) <

. (6.11)

The rest of the proof is similar to that of Theorem 3.4, with the intervals Z[0, N] and I replaced
by IN.

7. Subintervals of E for (1.2). For each f;, 1 < ¢ < n, introduced in (C5)~,, we shall define

Foo—  limsup fiur, uz, ... up) f = liminf filur, ug, ... un)

05 = I, =

' max; < j<n || —0 |us 7 04 maxi<;j<n luj|—0 s 7

Fooi = lim sup filu1, Uz, -, tn) and [ = lim inf fiua, Uz, -, tn)
’ |uil T minggjcy fujl—o0 |uil

ming <j<p |uz|—o0

Theorem 7.1. Let (C1)oo—(Cs)oo hold and let H;b; € I'(IN), 1 < i < n. If X satisfies

i <A< A2, 1 < i <im, (71)
where
b -1
i = [iooz M;p; Z MiHi(E)ai(E)]
l=a
and
00 ~1
Yo, = lfo,iZHi(E)bi(g)] ,
=0
then A € E.
Proof. The proof is similar to that of Theorem 4.1, with the intervals Z[0, N] and [ replaced
by IN.
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The following corollary is immediate from Theorem 71.

Corollary 7.1. Let (C) — (Cg) oo hold and let H;b; € 1*(IN), 1 < i < n. Then,

(&1,’57’3’2#) c EJ 1 S 1 S n,
where 1 ; and 7 ; are defined in Theorem 71.
Corollary 7.2. Let (C1) oo — (C7)oo hold and let H;b; € I'(IN), 1 < i < n. Then,

min 414, max Jo; | € E
1<i<n 1<i<n

where 41 ; and 7 ; are defined in Theorem 71.
Proof. This is immediate from Corollaries 7.1 and 6.1.

Theorem 7.2. Let (C1)oo —(Cs)oo hold and let Hib; € I1(IN), 1 < i < n. If \ satisfies

Y3 <A <A, 1 <i<m, (72)
where
b -1
Y3 = [zoﬂ. Mipi 'y MiH; (@ai(z)]
{=a
and
. —1
Yai = lfoo,iZHi(@bz‘(@] ,
=0
then A € E.

Proof. The proof is similar to that of Theorem 4.2, with the intervals Z[0, N] and [
replaced by IN.

Theorem 72 leads to the following corollary.

Corollary 7.3. Let (C1) oo — (Cg) oo hold and let H;b; € I'(IN), 1 < i < n. Then,
(93,0, 94,4) € E, 1 <0 < n,

where 73 ; and A4; are defined in Theorem 72.

Corollary 74. Let (C1)oo — (C7) oo hold and let H;b; € I'(IN), 1 < i < n. Then,

min 43;, max ya; | € F
<1§i§n73’“ lgign’y ,Z>

where 73 ; and 74; are defined in Theorem 72.

Proof. This is immediate from Corollaries 7.3 and 6.1.
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Remark 7.1. For a fixed i € {1,2,... ,n},if f; is superlinear (i.e., 7071» =0and f_ . = 00)
or sublinear (i.e., f 0; = ocand foo’i = 0), then we conclude from Corollaries 71 and 7.3 that
E = (0,00), i.e., (1.2) has a constant-sign solution for any A > 0.

8. Characterization of E for (1.3). Let the Banach space B = (C(I))" be equipped with
norm || - || as given in (3.2). Define the operator S : B — B by (3.3) where

N
Sui(k) = X > _ gi(k, O)P(C,u(f), k€I, 1<i<mn, (8.1)
=0

Clearly, a fixed point of the operator S is a solution of the system (1.3).

Next, with the conditions (C7)—(Cg) stated as in Section 3 and the cone C' defined as in
(3.5), it is obvious that a fixed point of S obtained in C' or K will be a constant-sign solution of
the system (1.3).

If (C1), (Cy) and (Cs) hold, then it is clear from (8.1) that for u € K,

N N
A gilk, Oai(0) fi(u(€)) < 0;Sui(k) < N> gi(k, Obi(0) fi(u(?)), k€I, 1 <i<n. (82)
=0 £=0

Using similar arguments as in Section 3, we obtain the following results.

Lemma 8.1. Let (C1) hold. Then, the operator S is continuous and completely continuous.
Lemma 8.2. Let (C1)—(Cs) hold. Then, the operator S maps C' into itself.

Theorem 8.1. Let (C1)—(Cg) hold. Then, there exist ¢; > 0, 1 < i < n, such that

(0,01] X (O,CQ} X ... X (O,Cn] C FE.

Proof. Let R > 0 be given. For each 1 < ¢ < n, define

1
N
¢ =Rq | max sup - fn(ug,us,. .. 7un):| > Hi(0)bi(t)
==y <R (=0
1<j<n

Let \; € (0,¢;], 1 < @ < n. Using a similar technique as in the proof of Theorem
3.1, we can show that S(C(R)) C C(R). Also, from Lemma 8.1 the operator S is conti-
nuous and completely continuous. Schauder’s fixed point theorem guarantees that S has a fi-
xed point in C'(R). Clearly, this fixed point is a constant-sign solution of (1.3) and therefore
A = (A1, A2,..., A,) is an eigenvalue of (1.3). Since A; € (0, ¢;] is arbitrary, we have proved that
(0,¢1] x (0,¢9] x ... x (0,¢,] C E.

Theorem 8.2. Let (C1),(Cy4) and (Cr) hold. Suppose that (X, \5,... ,\:) € E. Then, for
any \j € (0,X7), 1 <i <mn,wehave (A, 2,...,\,) € E, e,

(0, A7] X (0,A3] x ... x (0,\}] C E.
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Proof. Letu* = (uj,ul, ... ,u})be the eigenfunction corresponding to the eigenvalue \* =
= (A}, A5, ..., AY). Thus, we have

N
=0

Define K* as in the proof of Theorem 3.2. For u € K* and \; € (0,A), 1 < i < n, it follows
that

N N
0:5ui(k) = 6 [N S gilk, OPAL, uw))] < 4, [A:ngk,ﬁmw,u*w)) _
= = Hiu;k(ki,:ok el,1<i<n.

Hence, we have shown that S(K*) C K*. Moreover, from Lemma 8.1 the operator S is conti-
nuous and completely continuous. Schauder’s fixed point theorem guarantees that .S has a fixed
point in K*, which is a constant-sign solution of (1.3). Hence, A = (A1, \2,...,Ay) is an ei-
genvalue of (1.3).

Theorem 8.3. Let (C1)—(Cg) and (Cs) hold. Suppose that (A1, \a, ... , \,) is an eigenvalue
of (1.3) and uw € C'is a corresponding eigenfunction. Let ¢; = |u;lo, 1 < i < n. Then, for each
1 < i < n,wehave

fila1,q2,- -+ 1 qn)

A > & [i H;(¢ ]1 (8.3)
. 2

and

-1

qi
N = M;H;(¢ : 8.4
fi(Mipig1, Mapaqo, . .. s Mypngn) [Z:: ] (8.4)

Theorem 8.4. Let (C1)—(Cs) and (Cg) hold. For each 1 < i < n, define F° as in Theorem
34.1If fi € F° foreach 1 < i < n,then E = (0,00)".

Proof. Fix A\ = (A1, \2,... ,\,) € (0,00)™. Choose e > 0so that foreach 1 < i < n,
N 1
. < —
Ai 11;1?%(” H;(0)b;(0) < - (8.5)

By definition, if f; € F°, 1 < i < n, then there exists R = R(¢) > 0 such that the following
holds foreach 1 < 7 < n:

filui,ug, ... ,up) < elug], |ujl > R, 1 <5 <n. (8.6)
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We shall prove that S(C(R)) € C(R). Tobegin, letu € C(R). By Lemma 8.2, we have Su € C.
Thus, it remains to show that || Su|| < R. Using (8.2), (Cs), (Cs), (8.6) and (8.5), we find for
kelandl <i <n,

|Sui(k)| = 6;Sui(k) <

It follows that ||Su|| < R and hence S(C(R)) € C(R). From Lemma 8.1 the operator S is
continuous and completely continuous. Schauder’s fixed point theorem guarantees that S has
a fixed point in C'(R). Clearly, this fixed point is a constant-sign solution of (1.3) and therefore
A = (A1, Ag,..., A,) is an eigenvalue of (1.3). Since A € (0, 00)™ is arbitrary, we have proved
that £ = (0,00)".

9. Subintervals of E for (1.3). Define 70,1’: f 0.4 foo’i and f o 35 in Section 4. Using similar
arguments as in Section 4, we obtain the following results.

Theorem 9.1. Let (C1)—(Cs) hold. For each 1 < i < n, if \; satisfies

T, < Ai < V2,45 0.1)
where
b —1
Vi = [foo’i Mz‘Pz’ZMz’Hi(@ai(@]
l=a
and

N -1
V2,0 = [?O,iZHi(f)bi(@] )
(=0

then ()\1, A9, ... ,)\n) € FE.
Corollary 9.1. Let (Cy)—(Cg) hold. Then,

(71,1772,1) X (71,2,72,2) XX (“Yl,nﬁz,n) CFE

where 7y ; and 72 ; are defined in Theorem 9.1.
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Theorem 9.2. Let (C1)—(Cs) hold. For each 1 < i < n, if \; satisfies

Y30 < Ai < Y4 (9.2)
where
b —1
V3, = [iO,i MiPiZMiHi(f)ai(f)]
l=a
and

N -1
Vai = lfoo,izHi(f)bz’(f)] ;
=0

then (A, \a,... , \p) € E.
Corollary 9.2. Let (C1) - (Cs) hold. Then,

(93,1, 74,1) X (13.2,74,2) X - .. X (Y30, 74m) C E

where 73 ; and vy, ; are defined in Theorem 9.2.

Remark 9.1. For each 1 < i < n, if f; is superlinear (i.e., ?O,i = 0 and iooi = o0) or
sublinear (ie., f 0; = ooand foo,i = 0), then we conclude from Corollaries 9.1 and 9.2 that
E = (0,00)", i.e., (1.3) has a constant-sign solution for any \; > 0, 1 < i < n.

10. Characterization of E for (1.4). Let the Banach space B = (C(IN))" be equipped with
norm || - || as given in (6.1). With (C;(IN))™ given in (6.2), define the operator S : (C;(IN))" —
— (Cy(IN))™ by (6.3) where

Sui(k) = X > gi(k, O)P(C,u(f)), k€ N, 1 <i<n. (10.1)
=0

Clearly, a fixed point of the operator S is a solution of the system (1.4).

Next, with the conditions (C] ). — (Cs) stated as in Section 6 and the cone C defined as in
(6.5), it is obvious that a fixed point of S obtained in C will be a constant-sign solution of the
system (1.4).

If (C1)oos (C4)oo and (C5)so hold, then it is clear from (10.1) that for u € K,

=0 =0

(10.2)

Using similar arguments as in Section 6, we obtain the following results.
Lemma 10.1. Let (C1)oo hold. Then, the operator S is continuous and completely continuous.

Lemma 10.2. Let (C1)oo— (C6)oo hold. Then, the operator S maps C into itself.
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Theorem 10.1. Let (C1)oo — (Cg)oo hold and let H;b; € I'(IN), 1 < i < n. Then, there exist
¢ > 0,1 <1i < n,suchthat

(0,¢1] x (0,¢9] x ... x (0,¢,] C E.

Proof. Let R > 0 be given. For each 1 < i < n, define

-1

o]
¢ =R max sup  fm(ui,ug,... ,un)} E H;(£)b;(¢
1<m<n
== Jui| <R =0
1<j<n

The rest of the proof is similar to that of Theorem 8.1.
Theorem 10.2. Let (C1)co, (C4)oo and (C7)oo hold. Suppose that (\;, X5, ..., \) € E. Then,
forany \; € (0,X7), 1 <i < n,wehave (Ai,)e,... ,\y) € E, e,

(0, M5 % (0, M%] % ... x (0,\]] C E

Proof. The proof is similar to that of Theorem 8.2, with K* defined as in Theorem 6.2.

Theorem 10.3. Let (C1)oo — (Cs)oo and (Cg)oo hold and let Hib; € I'(N), 1 < i < n.
Suppose that (A1, Aa, ... , \,) is an eigenvalue of (1.4) and u € C is a corresponding eigenfuncti-
on. Let q; = |uilo, 1 < i < n. Then, foreach 1 < i < n,we have

fz(q1a q2,- - -

-1
, 4i
Ai > — o [ZH ] (10.3)

and

-1
q;

A < M;H;(¢ . 104

fi(Myiprqr, Mapaga, . .. , Mppngn) [Z:: ] ( )

Theorem 10.4. Let (C1)o — (Cp)oo and (Cs)oo hold and let Hib; € 1'(N), 1 < i < n. For
eachl < i < n,define F° as in Theorem 3.4. If f; € F® foreach1 < i < n,then E = (0,00)".

The proof is similar to that of Theorem 8.4, where the intervals Z[0, N] and [ are replaced
by IN, and Lemmas 10.1 and 10.2 are used instead of Lemmas 8.1 and 8.2.

11. Subintervals of E for (1.4). Define 7071», oo foo’i and f . asin Section 7 Using similar
arguments as in Section 7, we obtain the following results.

Theorem 11.1. Let (C1)oo— (Cg) oo hold and let H;b; € I'(IN), 1 < i < n. Foreach1 < i <
< m, if \; satisfies

'AYl,i < )\i < '3/2,1‘ (111)
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where
b -1
A1, = [iooﬂ- MiPz’ZMiHi(f)ai(f)]
{=a

and

oo 1

Y2, = lfo,iZHi(E)bi(g)] ,
=0

then ()\1, Ao, ... ,)\n) e FE.
Corollary 11.1. Let (C1)o — (Cg) oo hold and let Hib; € 1'(IN), 1 < i < n. Then,

(F1,1,92,1) X (F1,2,92,2) X oo X (A1, 92m) € F

where 1 ; and 7 ; are defined in Theorem 11.1.

Theorem 11.2. Let (C1)oo—(Cg)oo hold and let H;b; € I'(IN), 1 < i < n. Foreach1 < i <
< n, if \; satisfies

’3/371‘ <A < ’7471‘ (11.2)
where
b -1
Y3, = [io,i M;p; ZMin'(@ai(f)]
l=a
and

- 1
Yai = [?oo,iZHi(f)bi(f)] :
=0

then ()\1, Ao,y ... ,)\n) e FE.
Corollary 11.1. Let (C1)o, — (Cg) oo hold and let Hib; € 1'(IN), 1 < i < n. Then,

(F3,1,94,1) X (F3,2,94,2) X .. X (430, 94n) € E

where 3 ; and 74 ; are defined in Theorem 11.2.

Remark 11.1. For each 1 < i < n, if f; is superlinear (i.e., 7071» = 0 and iooi = o0) or
sublinear (i.c., f . = oo and Too,i = 0), then we conclude from Corollaries 11.1 and 11.2 that
E = (0,00)", i.e., (1.4) has a constant-sign solution for any \; > 0, 1 < i < n.
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